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Searching the coding region for microRNA targets

RAY M. MARÍN,1,2 MIROSLAV ŠULC,1 and JIŘÍ VANÍČEK3

Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne,
CH-1015 Lausanne, Switzerland

ABSTRACT

Finding microRNA targets in the coding region is difficult due to the overwhelming signal encoding the amino acid sequence.
Here, we introduce an algorithm (called PACCMIT-CDS) that finds potential microRNA targets within coding sequences by
searching for conserved motifs that are complementary to the microRNA seed region and also overrepresented in comparison
with a background model preserving both codon usage and amino acid sequence. Precision and sensitivity of PACCMIT-CDS
are evaluated using PAR-CLIP and proteomics data sets. Thanks to the properly constructed background, the new algorithm
achieves a lower rate of false positives and better ranking of predictions than do currently available algorithms, which were
designed to find microRNA targets within 3′ UTRs.

Keywords: binding site conservation; microRNA target prediction; microRNA targets in the coding region

INTRODUCTION

MicroRNAs (miRNAs) are endogenous small, single-strand-
ed RNAs that modulate mRNA levels and/or translation in
the cell. Since the discovery of the first functional miRNA tar-
gets in Caenorhabditis elegans and Drosophila melanogaster, it
has been observed that animal miRNAs act primarily on the
3′ untranslated region (3′ UTR) of the protein-coding genes
through incomplete complementarity with the target se-
quence (Lee et al. 1993; Stark et al. 2003). Binding sites within
coding sequences (CDSs) were widely observed only in plants
(Jones-Rhoades and Bartel 2004). Because the first examples
of functional miRNA binding sites in animals were found in
the 3′ UTR, the vast majority of miRNA target prediction al-
gorithms has focused on this region (Alexiou et al. 2009;
Bartel 2009). Moreover, different studies have demonstrated
that 3′ UTR sites are more effective in down-regulating gene
expression than sites located in the coding region (Grimson
et al. 2007; Forman et al. 2008; Gu et al. 2009; Forman and
Coller 2010; Hafner et al. 2010; Fang and Rajewsky 2011).
As a consequence, experimental validation of functional
binding sites has been highly biased toward 3′ UTRs, creating
an illusion of higher abundance of miRNA binding sites in
this part of the gene transcripts.
The main role of the coding region is to carry the sequence

information of functional proteins. However, the high degen-

eracy of the genetic code allows for much more information
to be encoded. In particular, one could expect miRNA recog-
nition sites to be found in the coding sequence as well. This
hypothesis is already supported by several examples: The
most overrepresented 6-mers in the human transcripts
down-regulated after overexpression of miR-1 and miR-124
match perfectly the seeds of these miRNAs, and in fact, these
motifs are present not only in the 3′ UTRs but also in the
CDSs (Lim 2005). Similarly, most of the highly conserv-
ed motifs in D. melanogaster CDSs correspond to miRNA
seed matches (Forman et al. 2008; Schnall-Levin et al. 2010).
These observations together with the growing number of
functional sites discovered in the coding region (Forman
et al. 2008; Hafner et al. 2010; Schnall-Levin et al. 2010,
2011) have increased the interest in the prediction of
miRNA binding sites within coding sequences. Several re-
search groups have recently performed detailed analyses of
proteomics data in order to estimate the extent of gene
down-regulation caused by either the CDS or 3′ UTR sites in
human transcripts (Forman and Coller 2010; Fang and
Rajewsky 2011).One suchanalysis concluded that3′UTRsites
are more effective than CDS sites in repressing protein syn-
thesis (Forman and Coller 2010). Another study showed
that targeting in the coding region enhances repression in-
duced by the more potent 3′ UTR sites (Fang and Rajewsky
2011). As for abundance of binding sites in different regions
of the transcript, similar distributions of conserved potential
binding sites were reported in 3′ UTRs and CDSs of D. mel-
anogaster genes (Schnall-Levin et al. 2010). Likewise, cross-
linking and immunoprecipitation PAR-CLIP experiments in
the human (Hafner et al. 2010) have shown that both CDSs
and 3′ UTRs contain similar proportions of miRNA binding
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sites, challenging the notion that target sites are much more
abundant in 3′ UTRs.

Seedmatches in the coding region have been observed since
the appearance of the first prediction methods. However, due
to the strong selectionpressure in theCDS, overrepresentation
of these motifs could not be properly estimated (Lewis et al.
2005; Lim 2005). Motifs matching miRNA seeds may be
overrepresented for several reasons different from miRNA-
mediated gene regulation. They may be present so as to pre-
serve a given amino acid sequence (i.e., to preserve protein
function), or to privilege the use of codons for which the cor-
responding tRNA isoacceptors are more abundant (i.e., co-
don usage for translational efficiency) (Novoa et al. 2012).
In order to identify seed matches overrepresented specifically
due to miRNA function, overrepresentation must be assessed
with respect to a background of random sequences that ac-
count for these other possible signals (Robins et al. 2008).

In previous studies, Robins and Press (2005) and Murphy
et al. (2008) introduced a statistical framework for quantify-
ing the extent of overrepresentation of 3′ UTR miRNA seed
matches compared with a Markov model background. If
c is the number of seed matches in the real sequence, the
overrepresentation is measured by means of the so-called
single hypothesis P-value (PSH), which is the probability to
find the same seed match by chance at least c times in the
random background sequence. Advantages of this approach
in identifying and ranking high confidence miRNA-target
interactions have been demonstrated on several occasions,
where it has been used in conjunction with conservation
(Robins and Press 2005; Murphy et al. 2008; Marin and
Vanicek 2012) and accessibility filters in the algorithm called
PACCMIT (Prediction of ACcessible and/or Conserved
MIcroRNA Targets) (Marin and Vanicek 2011, 2012). The
original version of the algorithm successfully predicted
(Murphy et al. 2008) that the immediate early gene IE1 in
the human cytomegalovirus was repressed by hcmv-mir-
UL112-1, one of the first known miRNAs encoded by viruses
(Pfeffer et al. 2005). Despite the effectiveness of PACCMIT in
predicting 3′ UTR targets, this algorithm cannot be directly
applied to the coding sequences because of the overwhelming
strength of the coding signal in the CDS.

Here, we develop an algorithm to compute PSH in such
a way that possible biases due to amino acid sequence and
codon usage are removed. To do so, we combined the rig-
orous Fisher-Yates algorithm for generating permutations
(Knuth 1997) with the method used by Fuglsang (2004)
and Robins et al. (2005) for generating random background
sequences preserving both amino acid sequence and codon
usage. This ensures that the best scoring interactions cor-
respond to complementary sites that are maintained for
gene regulation purposes only. In contrast to the shuffling
algorithm used by Fuglsang (2004), our approach based on
the Fisher-Yates algorithm is unbiased; i.e., each permuta-
tion of codons is equally likely. Because of the proximity to
the method PACCMIT, we have called the new algorithm

PACCMIT-CDS (even though at present the new algorithm
does not consider accessibility of the binding site).
Our analysis using experimentally validated targets shows

that PACCMIT-CDS is, indeed, more appropriate to rank
CDS targets than the best algorithms designed for the predic-
tion of 3′ UTR sites. In addition, we present, for the first time,
a comparison of the precision and sensitivity achieved by two
other methods designed specifically to predict targets in the
coding region. We will show that PACCMIT-CDS outper-
forms those algorithms in terms of precision, especially
among the top predictions, which are the most likely to be se-
lected for further experimental validation.

RESULTS

Ranking of predicted targets by overrepresentation
of seed matches

Considering that the gene transcripts have been shaped by
millions of years of stochastic mutations and selection, it is
reasonable to assume that functional binding sites that have
avoided deleterious mutations should be overrepresented
with respect to the composition of the surrounding sequence
(Robins and Press 2005; Murphy et al. 2008; Marin and
Vanicek 2012). If c denotes the number of seed matches
(i.e., oligomers complementary to a given miRNA seed) in
the real sequence, we can quantify the extent of overrepresen-
tation by computing the probability PSH that this seed match
would be found in this sequence at least c times by chance.
Specifically, probability PSH is computed as

PSH = Nc

Ntotal
, (1)

where Nc is the number of random sequences with at least c
seed matches and Ntotal is the total number of random se-
quences. Lower PSH values (i.e., stronger overrepresentation)
imply a higher likelihood of coevolution between the miRNA
and the seed match and hence, a higher likelihood of biolog-
ical functionality. The procedure used for the generation of
the random sequences is described in the next subsection.
Precision of the algorithm can be increased by considering

conservation of the seed match: If ccons is the number of con-
served seed matches observed in the real sequence and Nccons

the number of random sequences with at least ccons conserved
seed matches, the above formula is modified as

PSH = Nccons

Ntotal
. (2)

The procedure to classify a seed match as conserved is de-
scribed in the Materials and Methods section.

Preservation of the protein sequence and/or
codon usage in the random sequences

In order to remove possible false signals due to protein se-
quence or codon usage, we used four protocols to generate
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the random background sequences. These protocols differed
in the restrictions imposed on the random sequences. In the
first protocol, no restrictions (NR) were imposed. Each co-
don was randomly replaced by any other codon of the genet-
ic code, independently of whether it was present or absent
in the original sequence. In order to ensure preservation of
the protein sequence (PS), in the second protocol each codon
was also replaced randomly but only with synonymous co-
dons. In the third protocol, we ensured the preservation of
codon usage (CU) by shuffling all the codons present in
the real sequence. The fourth and most restrictive protocol
was designed to preserve both protein sequence and codon
usage (PS + CU). This was achieved by Fuglsang (2004)
and Robins et al. (2005) by shuffling only the codons that
encode the same amino acids. However, in our case, in both
CU and PS + CU protocols, the shuffling was implemented
differently—namely, we used the Fisher-Yates shuffling al-
gorithm (also known as the Knuth shuffle) (Knuth 1997).
This method is known to be unbiased; i.e., it generates per-
mutations with equal likelihood, unlike the more straightfor-
ward (but unfortunately, not formally correct) shuffling
algorithm employed by Fuglsang (2004). For details, see the
Materials and Methods section.

Importance of preserving protein sequence and
codon usage in the random background

Combining the ranking criterion (Eq. 1) with one of the four
backgrounds from the previous subsection yields our new
PACCMIT-CDS algorithm. We applied PACCMIT-CDS to
search the coding region of human genes for seed matches
(i.e., 7-mers complementary to positions 2–8 of a miRNA)
to all mature sequences registered in miRBase v18. For each
miRNA-gene pair, the PSH-value, computed according to
Eq. 1, was used to rank all the predicted interactions. In order
to see towhat extent the overrepresentation signal can be con-
taminated by other properties of the sequence unrelated to
miRNA binding, we tested the four different background
models described above. Naturally, we are interested in the
background that provides the lowest signal because this as-
sures that the noise caused by other fea-
tures is removed. According to Figure
1A, both PS and CU backgrounds are
able to remove part of the noise observed
in thenaivecaseofNR.However,PS + CU
is the background model giving the least
contaminated signal, implying that con-
servation of protein sequence and conser-
vation of codon usage are independent
constraints that would cause a substanti-
al bias in the significance of the results
if they were not incorporated into the
background.
An alternative way to corroborate the

nonnegligible contamination of the signal

caused, e.g., by the preservation of the protein sequence is to
compare the signal from a random genome RG1(PS + CU)
that preserves the original amino acid sequence and codon
usage with that from the real genome, while using a CU back-
ground in both cases (see Fig. 1B). The RG1(PS + CU) distri-
bution (red curve) gives an estimate of the part of the signal in
the real genome simply due to the conservation of protein se-
quence. Specifically, we found that ∼30% of the signal ob-
served for the real genome at PSH values below 10−5 comes
from preservation of protein sequence. As expected, another
random genome RG2(CU), preserving only the codon usage
but not protein sequence, shows no signal in the low PSH
range, which follows from the figure, since the fraction of
miRNA-gene pairs is approximately proportional to PSH.
Altogether, our observations confirmed the importance of
requiring the preservation of both protein sequence and co-
don usage in the random background. As a consequence,
from now on, PACCMIT-CDS denotes the algorithm based
on Eq. 1 and on the PS + CU background, unless a different
background is mentioned explicitly.

Requiring conservation of binding sites increases
the signal-to-noise ratio

Previous studies have shown that requiring site conservation
in 3′ UTRs significantly reduces the rate of false positives in
miRNA target prediction. However, in order to effectively
implement a similar strategy for predicting targets within
CDSs, we must consider only the conservation of nucleotide
sequence beyond the conservation of the amino acid se-
quence. This is done precisely by using the PS + CU back-
ground instead of the Markov model background used in
PACCMIT. The predictions are now ranked according to
the probability (given by Eq. 2) to observe, in a random se-
quence preserving both protein sequence and codon usage,
a motif that matches the miRNA seed and that is conserved
among this random sequence and the real sequences of sev-
eral other species. If a motif that matches themiRNA seed ap-
pears in conserved regions of the real sequence but is rarely
observed in the conserved regions of the randomly generated

FIGURE 1. (A) Distribution of predicted miRNA-gene pairs according to their PSH values using
four different background models. Percentages are computed with respect to the total number of
predicted pairs. (B) Distribution of predicted miRNA-gene pairs for the real and two random ge-
nomes. PSH in the three genomes was computed using the CU background. RG1(PS + CU) and
RG2(CU) were generated by shuffling the real sequences 1000 times.
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sequences, it is reasonable to assume that such a motif has a
function beyondmaintaining the protein sequence. In our al-
gorithm, we assume that this function is miRNA regulation,
but the motif may also be a transcription factor binding site
or another regulatory signal. The fact that the motif has been
conserved throughout evolution increases the likelihood that
the function is real.

In Figure 2A, we show the distribution of the predictions
obtained for the real genome and for the random genome
RG1(PS + CU). Each of them was analyzed with and without
considering site conservation (green and red curves, respec-
tively) and always using a PS + CU background. In the real
genome, one observes a higher percentage of conserved inter-
actions than nonconserved interactions in most PSH intervals.
In other words, the conservation filter resulted in enrichment
in significant interactions. In the random genome, one ob-
serves the opposite; i.e., a lower percentage of predicted
miRNA-gene pairs when conservation is required. This re-
flects the difficulty of observing those conserved sites just
by chance, even if protein sequence and codon usage are pre-
served. These two complementary effects are the cause of the
strong enhancement of the signal-to-noise ratio observed in
Figure 2B. On one hand, these results show that we can
achieve much more reliable predictions by requiring target
site conservation in our algorithm. On the other hand, the re-
sults also show that, even if the conservation filter is not used
(e.g., in order to predict species-specific miRNA-gene inter-
actions), the appropriate treatment of the background still
ensures that the top predictions are far from mere random
occurrences of a given motif with no regulatory function
(see red curve in Fig. 2B).

Precision of PACCMIT-CDS

In order to estimate the precision of PACCMIT-CDS, we
used a set of positive and negative interactions derived
from PAR-CLIP experiments (Hafner et al. 2010). Positive
interactions were defined as miRNA-gene pairs in which
the genes contained 7-mer seed matches located in the cod-
ing regions bound by the AGO-miRNA complex. Negative

interactions were defined as miRNA-
gene pairs in which the genes contained
seed matches but for which binding was
not detected. In total, 4376 validated
interactions were used to test the predic-
tive power of different algorithms (see
Materials and Methods for details about
the data set preparation).
Comparison between different back-

ground models (PS + CU, CU, and NR)
shows that using a background that pre-
serves both protein sequence and codon
usage, indeed, removes more false posi-
tives than less restrictive randomization
schemes, such as CU or NR. This is re-

flected in the high precision for the PS + CU curves observed
in Figure 3. The figure also shows that requiring site conserva-
tion increases the precision of the algorithm by as much as
∼20%, independently of the background used (compare solid
vs. dashed curves). In the case of “CUwith conservation” and
“NR with conservation,” many predictions have PSH < 10−8.
Since in those cases the resolution obtained with 108 random
sequences is not enough to establish a ranking (see Materials
and Methods), we plotted the precision expected if such pre-
dictions were randomly ordered (flat regions).
To sum up, the expected advantages of using a proper

background and conservation filter have been confirmed by
the precision vs. sensitivity curves.

Changing the length of the seed match

Several different definitions of the minimal seed region have
appeared in the literature. We, therefore, investigated the
effects that longer or shorter seed matches would have on
the performance of PACCMIT-CDS. For this purpose, the
“shorter” seedmatchwas defined as the 6-mer complementa-
ry to positions 2–7 in themiRNA, and the “longer” seedmatch
was defined as the 8-mer complementary to positions 1–8.

FIGURE 2. (A) Distribution of predicted miRNA-gene pairs for the real genome and random
genome RG1(PS + CU). Results with and without considering site conservation are shown for
both genomes. In all cases, PS + CU background is used. (B) Comparison of the signal-to-noise
ratios obtained from curves in panel A. The real genome is considered as the signal, whereas RG1
(PS + CU) is considered as the noise.

FIGURE 3. Precision vs. sensitivity curves for three different shuffling
methods of PACCMIT-CDS. In all cases, the results with and without
the conservation requirement are shown. Flat regions in the case of
“CUwith conservation” and “NRwith conservation” represent the cases
in which the resolution obtained with 108 random sequences is not suf-
ficient to establish a ranking (PSH < 10−8).
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Figure 4A shows the precision vs. sensitivity curves for the
three different lengths of the seed match (6-, 7-, and 8-mers),
always requiring site conservation. Surprisingly, the precision
of the algorithm is not trivially correlated with the length of
the seed. As one might expect, higher precision was obtained
with 7-mers than with 6-mers. However, in most of the sen-
sitivity range, the use of 7-mers resulted in a higher preci-
sion than even that achieved with 8-mers. The precision
obtained with 8-mers was similar to that obtained with
7-mers only among the top predictions (below a sensitivity
of 0.05). One might object that these observations could be
biased by the definition of the data set of validated inter-
actions from PAR-CLIP (we only considered bound 7-mers
as functional targets). However, we observed the same rela-
tive performance among 6-, 7-, and 8-mers even for the pro-
teomics data set (Selbach et al. 2008), in which the definition
of functional and nonfunctional targets is completely inde-
pendent of any seed match requirement (see Fig. 4B).
The fact that 7-mers perform better than 6-mers is consis-

tent with previous studies in 3′ UTRs showing a higher specif-
icity and effectiveness in gene repression when the target site
perfectly matches positions 2–8 of the miRNA than when it
only matches positions 2–7 (Grimson et al. 2007; Hafner
et al. 2010). On the other hand, the fact that 7-mers are
more reliable than 8-mers indicates that complementarity to
position 1 does not confer any specificity to themiRNA-target
recognition. This is consistent with the observation that con-
served 7-mers in the 3′UTRmatching po-
sitions 2–8 of the miRNA tend to be
flanked downstream by adenines inde-
pendently of the nucleotide in position 1
of the miRNA (Lewis et al. 2005).

Comparison of different tools
for predicting targets in the
coding region

While many algorithms have been de-
signed to predict target sites in 3′ UTRs
(Hammell 2010), only a few have been
specifically designed for target prediction

in the coding region. MinoTar (Schnall-
Levin et al. 2010) is an extension of the al-
gorithm introduced by Forman et al.
(2008), in which targets are determined
by the presence of conserved 8-mers in
the CDS. During the preparation of this
manuscript, we also learned about the ex-
istence of DIANA-microT-CDS (Reczko
et al. 2012), a method that considers
both 3′ UTR and CDS sites. Although
both methods have successfully demon-
strated their advantages as prediction
tools, it is not known how these methods
perform with respect to each other.

Here, we sought to fill this gap by comparing for the first
time three CDS target prediction algorithms; i.e., MinoTar,
DIANA-microT-CDS, and PACCMIT-CDS. Moreover, we
also included in our comparison some methods designed to
predict targets in the 3′ UTR (miRanda [Enright et al.
2003], TargetScan [Garcia et al. 2011], and PACCMIT [Marin
and Vanicek 2012]) in order to evaluate whether the algorith-
mic improvements specific to the coding region, in fact,
decrease the false positive rate. In order to avoid bias due to
3′UTR sites, only targeting in theCDSwas evaluated:Namely,
predictions that involved at least one 6-mer in the 3′ UTR
matching positions 2–7 of the miRNA were removed from
the predictions of each method (see Materials and Methods).
Figure 5A shows that, among the CDS algorithms,

PACCMIT-CDS and MinoTar are more precise than
DIANA- microT-CDS in the region of low sensitivity; i.e.,
among the top predictions. This is confirmed in Figure 5B,
where DIANA-microT-CDS is shown to make two mistakes
before predicting the first true positive, whereasMinoTar and
PACCMIT-CDS predict 11 and 12 true interactions, re-
spectively, before they make the first mistake. The lower pre-
cision of DIANA-microT-CDS is most likely explained by
the flexibility of the algorithm, allowing mismatches and
wobble pairs inside the seed match. Regarding sensitivity,
PACCMIT-CDS and DIANA-microT-CDS by far outper-
form MinoTar. This is not surprising, given the long seed re-
quirement in MinoTar, in which only 8-mers are considered.

FIGURE 4. Effect of the length of the seed match on the precision and sensitivity of PACCMIT-
CDS. In all cases, site conservation was required and PS + CU background was used. Results are
shown for (A) the PAR-CLIP and (B) the proteomics data sets.

FIGURE 5. Comparison of different miRNA target prediction algorithms. (A) Precision vs. sen-
sitivity curves for the different methods. (B) Numbers of true positives found before the first, sec-
ond, and third false positives are found.
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Finally, the figure also shows that CDS-specific algorithms
perform generally better than 3′ UTR-specific algorithms,
confirming that the additional restrictions included in the
CDS-specific methods have, indeed, a positive impact on pre-
cision. Nevertheless, it is important to remark that, since 3′

UTR methods had not been designed to predict targets in
the coding region, a suboptimal performance was expected.
Given that the signal in the coding region is strongly “con-
taminated” with coding information, algorithms designed
for the prediction of sites in the 3′ UTR should not be capable
of differentiating the real signal from the noise. Because of
this, we find it remarkable that PACCMIT and TargetScan al-
ways outperformed MinoTar and DIANA-microT-CDS (but
not PACCMIT-CDS) as far as the number of mistakes among
the very top predictions is concerned (see Fig. 5B).

DISCUSSION

We have introduced a method to predict targets in the coding
region of the gene transcripts in which miRNA-gene interac-
tions are ranked according to overrepresentation of con-
served seed matches. The use of overrepresentation was
inspired by the demonstrated success in predicting targets
in the 3′ UTR (Murphy et al. 2008; Marin and Vanicek
2011, 2012). However, due to the fact that CDSs can carry
both coding and regulatory information, further restrictions
in the modeling of the background sequences were imple-
mented in order to identify overrepresented motifs with a
regulatory function. In fact, we have shown that ∼30% of
the most overrepresented (PSH < 10−5) seed matches in the
human CDSs cannot be reliably associated to a regulatory
function. In order to subtract the signal produced by motifs
that have no other role than to preserve protein function and
translational efficiency, background sequences were required
to preserve the amino acid sequence and codon usage.

The practical advantages of using conservation and a prop-
er background were corroborated by using experimentally
validated miRNA targets. The resulting precision vs. sensitiv-
ity curves showed not only that the best performance of the
algorithm was achieved when PS + CU background and site
conservation were used but also that PACCMIT-CDS was,
indeed, more suitable to predict targets in the CDS than
methods designed for 3′ UTR target identification. In addi-
tion, we compared, for the first time, the performance of
three different methods specifically designed to predict tar-
gets in the coding sequence. We found that PACCMIT-
CDS was more precise among the top predictions than
MinoTar and DIANA-microT-CDS. As our algorithm was
able to achieve high precision without having to restrict
seed matches to 8-mers, PACCMIT-CDS also turned out to
be much more sensitive than MinoTar.

In comparison with the prediction of miRNA targets in the
3′ UTR, target prediction in the coding region has been much
less explored, and therefore, there is still room for improve-
ment. The high information content of the coding region and

the lower efficacy of CDS sites constitute the main challenges
in the prediction of CDS targets. The rigorous approach
presented here contributes to the field by describing a new
method that effectively removes nonregulatory signals in
the coding region and, at the same time, achieves the best
balance between precision and sensitivity among available
algorithms.

MATERIALS AND METHODS

Fisher-Yates algorithm for generating unbiased shuffles

The shuffling protocols CU and PS + CU employed the Durstenfeld
modification of the Fisher-Yates algorithm for generating random
permutations (“shuffles”) of an array with N elements (Knuth
1997). The Fisher-Yates-Durstenfeld method consists of performing
a pass over the array elements with indices i from 1 toN−1. For each
index i, one picks a random integer j satisfying i≤ j≤N and conse-
quently swaps ith and jth elements. This algorithm exhibits linear
complexity inN in contrast to the original quadratic implementation
of Fisher and Yates. More importantly, both versions generate all of
the N! different permutations with equal likelihood. This follows
since the total number of generated sequences is N! and since one
can attain any possible permutation of the original array with this al-
gorithm.Note that onemight be tempted to choose both i and j from
the entire range; i.e., 1≤ i,j≤N (Fuglsang 2004). However, since this
“alternative” algorithm can generateNNpossible sequences and since
NN is, forN > 2, not divisible byN!, one concludes that this approach
produces some permutations more often than others.

Acceleration of the calculation of PSH values

Random sequences were generated by the following iterative proce-
dure. In each iteration, the sequence of codons was scanned linearly
and the codon at each position was replaced by a codon randomly
selected according to one of the NR, PS, CU, and PS + CU protocols.
In order to obtain a resolution of 10−n for PSH, 10

n random sequenc-
es (i.e., 10n randomizing iterations) are required. The value of n = 8
was chosen as a compromise between resolution and computational
cost. However, instead of using the same value of n for all genes, the
following trick was employed to decrease the computational cost
enormously: Because in >95% of the cases PSH was above 10−3, fur-
ther refinement to a resolution of 10−8 was not necessary. In order
to avoid the unnecessary (and expensive) refinement, we started
with low resolution (n = 3) and gradually increased it from n = 3 to
n = 8. Every time nwas increased, we checked PSH values, and when-
ever all PSH values for gene g (i.e., for all miRNA-g interactions) were
at least five times the current resolution (i.e., PSH≥ 5 × 10−n), we
considered PSH values to be sufficiently converged. In this case,
PSH values for gene g were not further refined and g was excluded
from further iterations. Given that only a few genes actually needed
108 iterations to estimate PSH, the overall computational cost was
much lower than it would have been if the PSH values for all genes
had been unnecessarily refined with the same resolution.

Distribution of PSH values

The predicted miRNA-gene pairs were divided among different
bins according to the extent of overrepresentation. PSH intervals

Marín et al.

6 RNA, Vol. 19, No. 4

 Cold Spring Harbor Laboratory Press on February 12, 2013 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com


were defined as 10−(n+1) ≤ PSH < 10−n, for n = 0, 1,…, 7. Since the
best resolution of PSH that one can achieve with 108 random se-
quences is 10−8, the last interval was simply defined as PSH < 10−8.
Finally, we divided the number of pairs in each bin by the total num-
ber of predicted pairs. This facilitated the comparison of distribu-
tions in which the total numbers of predicted pairs were different.
The signal-to-noise ratio for a given PSH interval was defined as

the ratio between the fractions of predictions within this PSH interval
in two genomes: the real genome (signal) and the random back-
ground (noise). In other words, noise is the percentage of predicted
interactions within a PSH interval that is expected by chance. Thus, a
high signal-to-noise ratio implies a high probability that the predic-
tions in that PSH interval are functional.

Data sets of validated targets

In order to compute precision and sensitivity of different methods,
we constructed positive and negative data sets using the binding
sites reported in the PAR-CLIP experiments (Hafner et al. 2010).
In order to obtain a set of bound and unbound sites located
in the coding region, we followed a similar procedure to that used
by Marin and Vanicek (2012). We only focused on the 100 most
abundant miRNAs since these account for 96% of the miRNA
sequence reads. From the set of 100 most abundant miRNAs, we
selected only the 74 that are conserved (see miRNA conservation
section below). Functional miRNA-gene pairs were defined as
those pairs in which at least one 7-mer matching miRNA positions
2–8 was found between positions 21 and 30 of the cluster-centered
regions (CCRs) that were mapped to the coding region of human
transcripts (human assembly hg18). This particular location in the
CCR was used because, according to the PAR-CLIP validation, a
majority of the perfect miRNA seed matches are found there. A total
of N = 2188 highly reliable positive interactions were identified in
this way.
As for the negative data set, we first selected all unbound genes;

i.e., all genes for which no CCR could be mapped to any region
of the whole transcript (5′ UTR, CDS, or 3′ UTR). Among these
unbound genes we selected all the cases in which at least one
7-mer complementary to positions 2–8 of any of the 74 conserved
miRNAs was found. We call these the “unbound” miRNA-gene
pairs. Finally, the negative data set of nonfunctional pairs was con-
structed by randomly selecting N = 2188 pairs from the list of un-
bound pairs. We intentionally constructed the negative data set
of the same size as the positive data set in order that the values of
precision achieved by various methods were well-distributed be-
tween 0 and 1 and not concentrated at either of the extremes, as
could happen if the proportion of negatives in the data set were
too high or too low.
The proteomics data of Selbach et al. (2008), which provides the

protein fold changes measured after overexpression of five con-
served miRNAs, was also used to compute precision and sensitivity
in the case in which different lengths of the seed match were tested.

mRNA sequences and site conservation

Genomic coordinates of Ensembl human genes (hg18) were used to
extract the human coding sequences available at the UCSC Table
browser (http://genome.ucsc.edu) (Karolchik et al. 2004). When al-
ternative transcript isoforms were reported for the same Ensembl

gene ID, only the one with the longest coding sequence was used
in the analysis. We also removed exceptional cases (∼1%) in which
the length of the sequence was not a multiple of three; i.e., for which
not all nucleotides could be assigned to a codon, probably due to er-
rors in the exon annotation. Finally, a total of 21,426 coding se-
quences was analyzed.
In order to assess the conservation of seed matches in the human

genome among different species, we used the 28-species alignment
(MAF file) available at the UCSC Table browser (Miller et al.
2007). In particular, we employed the “Any-species” approach intro-
duced by Marin and Vanicek (2012). In this approach, a seed match
is considered conserved if it is present in the aligned sequences of at
least S species (including the human), regardless of their phylogenet-
ic distance from the human. Increasing Smakes the conservation fil-
termore stringent. Since previous parameterization of the filter using
3′ UTR alignments showed that conservation in 12 species (S = 12)
provided the best precision-sensitivity trade-off, we used this cutoff
(S = 12) in all calculations with PACCMIT and PACCMIT-CDS.

miRNA sequences

Mature human miRNA sequences were obtained from the miRBase
v18 (http://www.mirbase.org) (Griffiths-Jones et al. 2006). A total of
1919 sequences was used in our analysis. Conservation of the
miRNAs present in the data set of experimental interactions validat-
ed by PAR-CLIP was defined in the same way as done by Marin and
Vanicek (2012); i.e., miRNAs were considered to be conserved if
they shared the same seed sequence (positions 2–8) in different
species. Specifically, we call “conserved” miRNAs those labeled
as “highly conserved” in the TargetScan database (http://www.
targetscan.org).

Predictions by other methods

DIANA-microT-CDS (Reczko et al. 2012): Predictions were down-
loaded from http://www.microrna.gr/microT-CDS in March 2012.
MinoTar (Schnall-Levin et al. 2010): Predictions were obtained
from http://www.flyrnai.org/cgi-bin/DRSC_MinoTar.pl in August
2011. MiRanda (Enright et al. 2003): The latest version of the soft-
ware (August 2010), downloaded from http://www.microrna.org/
microrna/getDownloads.do, was used with default parameters.
TargetScan (Garcia et al. 2011): The latest version of the software
(version 6.0), downloaded from http://www.targetscan.org/cgi-
bin/targetscan/data_download.cgi?db=vert_61, was used to com-
pute the total context + scores. PACCMIT (Marin and Vanicek
2012): Predictions were obtained using the “Any-species” approach
for conservation of the binding site, with S = 12.
In order to compare the different methods on the same experi-

mental data sets, gene names in the predictions of MinoTar were
translated from RefSeq IDs and gene symbols to Ensembl gene
IDs using the BioMart tool and Ensembl version 54 (available at
http://may2009.archive.ensembl.org). In order to eliminate possible
bias due to 3′ UTR targeting, only CDS targets from each method
were considered. In the case of DIANA-microT-CDS, this was en-
sured by selecting only genes with so-called “CDS” sites. In the
case of the other algorithms, we removed from the list of predictions
all target genes with at least one 6-mer seed match in the 3′ UTR
(i.e., complementary to positions 2–7 of the miRNA). This
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restriction removed between ∼30% and ∼40% of the predictions
of the compared methods.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article and shows
PACCMIT-CDS predictions in the human (both with and without
the conservation requirement). These predictions were obtained
with 7-mer seed matches and with the PS+CU background. The
PACCMIT-CDS program is available freely at http://lcpt.epfl.ch/
PACCMIT-CDS.
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