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Abstract

This paper considers the task of finding a tar-
get location by making a limited number of
sequential observations. Each observation re-
sults from evaluating an imperfect classifier
of a chosen cost and accuracy on an inter-
val of chosen length and position. Within a
Bayesian framework, we study the problem
of minimizing an objective that combines the
entropy of the posterior distribution with the
cost of the questions asked. In this problem,
we show that the one-step lookahead policy
is Bayes-optimal for any arbitrary time hori-
zon. Moreover, this one-step lookahead pol-
icy is easy to compute and implement. We
then use this policy in the context of localiz-
ing mitochondria in electron microscope im-
ages, and experimentally show that signifi-
cant speed ups in acquisition can be gained,
while maintaining near equal image quality
at target locations, when compared to cur-
rent policies.

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

1. Introduction

We consider the problem of quickly identifying the lo-
cation and size of an object of interest by asking a
series of questions about the region it occupies. This
is key to speeding up the imaging of target objects,
such as intracellular structures, when using scanning
electron microscopes (SEM), which can focus resources
on promising areas (Lucchi et al., 2011; Veeraragha-
van et al., 2010). In this application, asking a ques-
tion involves acquiring image data over a portion of
the capture area and feeding it to a classifier that re-
turns an estimate of the presence of a target within
the queried region. This data can be either acquired
quickly, which degrades the reliability of the estimate,
or slowly, which severely impacts overall acquisition
time.

While both image acquisition and classification are
subject to noise, requiring the use of statistical in-
ference to estimate the target’s location, the heart of
this work lies in the Decision Problem of what ques-
tions to ask to localize the target efficiently. As in
Active Learning (Dasgupta et al., 2007; Castro et al.,
2005; Settles, 2009) and Sequential Experimental De-
sign (DeGroot, 1970; Wetherill & Glazebrook, 1986;
Berry & Fristedt, 1985; Srinivas et al., 2010), the de-
cisions can be made adaptively, which may increase
efficiency but makes the optimal decision policy more
difficult to find.

In this paper, we formulate this problem in a Bayesian
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framework and explicitly characterize the globally
Bayes-optimal policy. Furthermore, we prove that,
somewhat surprisingly, the greedy, or one-step looka-
head, policy is in fact Bayes-optimal over arbitrary
time horizons. The greedy policy is easy to com-
pute, which is beneficial in many time-sensitive and
computationally-limited applications. This optimality
result is in contrast with other solutions to Bayesian
active learning problems, where the greedy policy is
suboptimal and can only serve as a heuristic (Brochu
et al., 2009; Zhang et al., 2003).

We demonstrate the effectiveness of this optimal
greedy policy in the context of SEM imaging, where
our results show that images of desired quality at tar-
get locations are acquired in half the time required by
other state-of-the-art methods.

Akin to this work, (Jedynak et al., 2011) considers
a related target localization task and shows that the
greedy policy is also Bayes-optimal over any time hori-
zon. The current work differs from the latter by con-
sidering that the target X∗ = (X∗1 , X

∗
2 ) covers an in-

terval within the search space, rather than a single
point. It also differs in that questions with a variety of
noise models and costs are available, while (Jedynak
et al., 2011) only considered questions with a single
homogeneous cost and noise model. Both aspects are
important in the SEM application treated here.

This paper is organized as follows: Sec. 2 surveys the
related literature. Then in Sec. 3, we explicitly formu-
late our problem and objective, and then present our
main theoretical result in Sec. 4. In Sec. 5, we detail
an embodiment of our policy in the context of SEM
imaging, experimentally validating our approach and
we conclude with final remarks in Sec. 6.

2. Related Literature

A substantial amount of literature exists in active
learning (Dasgupta et al., 2007; Srinivas et al., 2010;
Castro et al., 2005; Settles, 2009) and sequential ex-
perimental design (DeGroot, 1970; Wetherill & Glaze-
brook, 1986; Srinivas et al., 2010). Within this broad
literature, many authors have considered Bayesian for-
mulations (Brochu et al., 2009; Zhang et al., 2003;
Chick & Frazier, 2012; Gittins & Jones, 1974) and
it is well-known that the Bayes-optimal policy for a
problem in sequential experimental design is the so-
lution to a partially observable Markov decision pro-
cess (POMDP), which is characterized by the dynamic
programming equation. In a few cases authors have
applied dynamic programming to explicitly calculate
Bayes-optimal sequential policies for specific problems

(Berry & Fristedt, 1985; Gittins & Jones, 1974; Chick
& Frazier, 2012). In many problems, however, comput-
ing the Bayes-optimal sequential policy is considered
to be intractable, leading many authors to use greedy
policies as heuristics (Brochu et al., 2009; Zhang et al.,
2003).

Another line of closely related research is the Twenty
Questions literature. The original Twenty Questions
game and its noise-free answers has long been asso-
ciated with notions in Information Theory (Cover &
Thomas, 1991) and dichotomous search. Later on, a
number of works looked at cases where an unknown
but bounded number of questions could be answered
incorrectly, and where bounds can be computed in
some of these cases (Spencer & Winkler, 1992; Dhagat
et al., 2004). Related to this work, is that of Dis-
tilled Sensing (Haupt et al., 2011), where sparse tar-
gets in white Gaussian noise were shown to be reliably
found using an adaptive-sampling scheme. More re-
cently, (Jedynak et al., 2011) showed that when all an-
swers are noisy, with a symmetric noise model, choos-
ing questions that include half the probability mass
of the posterior distribution yields a globally optimal
strategy with regards to the entropy after a finite num-
ber of questions. This policy, more generally known
as the probabilistic bisection search was first proposed
by (Horstein, 1963). A number of other works have
also analysed its performance, or the performance of
closely related policies, under different conditions and
measures of uncertainty (Castro & Nowak, 2007; Ben-
Or & Hassidim, 2008; Novak, 2008; Chakraborty et al.,
2011; Waeber et al., 2011). In this work, we extend in
the direction of (Jedynak et al., 2011) and consider
the situation where X∗ is an interval (as opposed to
an unconstrained parameter) and where multiple ques-
tion types with varying costs can be used to optimize
an entropy-based objective.

3. Formulation and Objective

Consider the continuous random vector of dimension
two, X∗ = (X∗1 , X

∗
2 ). We denote p0 = p0(x1, x2) for

the joint probability density function of X∗ and we
assume that p0(x1, x2) = 0 when x1 > x2, so that
X∗1 ≤ X∗2 with probability 1. As depicted in Fig. 1,
X∗ represents an interval of length |X∗2 − X∗1 |. The
differential entropy of p0 (or of X∗) is then the quan-
tity,

H(p0) = −
∫ 1

x1=0

∫ 1

x2=0

p0(x1, x2) log p0(x1, x2)dx1dx2

(1)
where log is the logarithm base 2. Note that H(p0) is
not necessarily positive.
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Figure 1. Problem formulation. (left) Object to find is an
interval, X∗ = (X∗

1 , X
∗
2 ) (in blue), and is located in (0,1).

Example of a possible question Xn = (an, bn, kn) (in gray)
is also shown. (right) Probability distribution. Grey region
corresponds to the density of X∗, with (X∗

1 , X
∗
2 ) shown for

this example (white cross). The question Xn = (an, bn, kn)
is also shown with the corresponding a≤x1,x2≤b region (in
black).

We consider a collection of questions of the form “is
a ≤ X∗

1 and X∗
2 ≤ b?”, indexed by a and b, and where

a noisy answer to this question is observed instead of
the true one. In addition, we assume that there is in
fact a finite collection of such questions, or question
types, for each pair (a, b). Asking a question of type k,
induces a specific cost W (k), and the amount of noise
in the observed answers also depends on the type k.
Typically, the higher the cost, the lower the noise level.

More formally, a question is specified by a tuple
(a, b, k), with 0 < a < b < 1 and a type k ∈ {1, . . . ,K}.
A given function k �→ W (k) ∈ R defines the cost of a
question of type k. The true answer to a question is de-
noted Z(a, b, k), where Z(a, b, k) = 1 when a ≤ X∗

1 and
X∗

2 ≤ b, and Z(a, b, k) = 0 otherwise. Here, we assume
that Z(a, b, k) is unobserved, but that a noisy ver-
sion, Y (a, b, k) is observed instead. We treat Y (a, b, k)
as a continuous random variable whose density given
Z(a, b, k) = 1 is denoted fk

1 = fk
1 (y) and whose density

given Z(a, b, k) = 0 is denoted fk
0 = fk

0 (y). Note that
the question types are assumed to affect the amount
of noise observed in answers, and hence noise models
(i.e. fk

1 and fk
0 ) are indexed by k. In the information

theory literature, the mapping Z(a, b, k) �→ Y (a, b, k)
defines a (noisy) communication channel with binary
input alphabet. Such a channel is associated with a
channel capacity which defines the maximum amount
of information that can be transmitted through this
channel (Cover & Thomas, 1991). The channel capac-
ity is in this case a scalar in the range [0; 1], where the
minimum value (=0) is achieved when fk

0 = fk
1 and

the maximal value (=1) is achieved when fk
0 and fk

1

have disjoint support.

We will consider a sequential accumulation of ques-

tions and answers. We letXn = (an, bn, kn) denote the
question asked at time n, and let Yn = Y (an, bn, kn)
denote the corresponding answer. Starting with an
initial distribution on X∗ (which is p0), the first ques-
tion and answer are X0 = (a0, b0, k0) and Y1 = Y (X0),
respectively. The posterior density of X∗ given X0, Y1

is denoted p1. Proceeding this way, the history of
questions and answers, up to the nth question, is
denoted Bn = {X0, Y1, . . . Xn−1, Yn}. We assume
that Y1, . . . , Yn are conditionally independent given
Z(X0), . . . , Z(Xn−1), so that if the same question is
asked multiple times, potentially different answers are
generated due to noise. Then, the posterior density
of X∗ given Bn is denoted pn and can be computed
recursively using Bayes formulae,

pn+1(u1, u2) =
pn(u1, u2)

Q

(
fkn
1 (Yn+1) (an≤u1,u2≤bn)+

fkn
0 (Yn+1) (an≤u1,u2≤bn)

)
, (2)

where Fn(an, bn) = pn(an ≤ X∗
1 , X

∗
2 ≤ bn), Q =

Fn(an, bn)f
kn
1 (Yn+1)+(1− Fn(an, bn)) f

kn
0 (Yn+1), and

the line over the event an ≤ u1, u2 ≤ bn indicates the
complement of that event. From (2), we see that the
density pn is multiplied by a constant factor over the
domain {(u1, u2); a ≤ u1, u2 ≤ b} and by another con-
stant factor over the complement of this domain, cre-
ating a kind of “earthquake” to the surface defined by
pn. The magnitude of this earthquake depends on how
different fkn

0 (y) and fkn
1 (y) are from each other.

Objective: In what follows, after having observed
the answers to n questions, we are interested in having
gained information about X∗. This will be quantified
by H(pn); lower values being preferable. We are also
interested in the cost (or time) paid for achieving this
information gain. This is quantified by the sum of the
costs (or times) of each question; Tn =

∑n−1
i=0 W (ki).

To cast this problem into the classical dynamic pro-
gramming setting, we define a value function,

V (p, n, t) = inf
π

Eπ [H(pN ) + λTN |pn = p, Tn = t] ,

(3)
where λ ≥ 0 is a constant used to modulate the
relation between entropy and cost. A policy which
achieves this value is considered optimal. The Opti-
mality Principle (Dynkin & Yushkevich, 1979), allows
us to re-write the above value function recursively,

V (p, n, t) = inf
Xn

EYn+1 [V (pn+1, n+ 1, Tn+1)|

pn = p, Tn = t,Xn] (4)

where the optimization is now only over all possible
questions Xn and the expectation is over the answers
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that may arise from the question Xn. One great ben-
efit of the recursive definition of the value function is
that a policy which attains its minimum, for all n, p,
and t, also attains the minimum of (3).

4. Optimal and Greedy Policy

With the goal of solving (3), this section begins by
demonstrating how to solve the much simpler, one-
step lookahead problem. The derived greedy policy is
then shown to be optimal with respect to (3).

First, we define some notation. Let ϕ(u, k) = H(ufk1 +
(1 − u)fk0 ) − uH(fk1 ) − (1 − u)H(fk0 ), which will be
used later to quantify the mutual information, and
let G(u, k) = ϕ(u, k) − λW (k), which is called the
gain function. Let G? = maxu∈[0,1],k∈{1,...,K}G(u, k).
In (Jedynak et al., 2011), it was shown that u 7→
ϕ(u, k) is concave, and thus this maximum is attained.
Let u∗k be the value of u attaining this maximum given
k.

We now state the following lemma, which solves the
one-step lookahead problem, and thus implicitly de-
fines the greedy policy.

Lemma 4.1. For each n,

min
Xn

EYn+1 [H(pn+1) + λTn+1|Xn, pn, Tn] =

H(pn) + λTn −G∗. (5)

Moreover, any Xn = (an, bn, kn) attaining the min-
imum in (5) satisfies Fn(an, bn) = u∗kn and kn =
arg maxk∈{1,...,K}G(u∗k, k).

Proof. First, EYn+1 [H(pn+1) + λTn+1|Xn, pn, Tn] can
be written as

H(pn)− I(X∗, Yn+1|Xn, pn) + λTn + λW (kn),

where I(X∗, Yn+1|Xn, pn) is the mutual information
between X∗ and Yn+1 given the history Bn and
the question Xn (using the notation of (Cover &
Thomas, 1991)). Since H(pn) and Tn do not de-
pend on Xn, (5) is equivalent to H(pn) + λTn −
supXn

{I(X∗, Yn+1|Xn, pn)− λW (kn)}.

Letting u = Fn(an, bn), we rewrite the mutual in-
formation I(X∗, Yn+1|Xn, pn) as ϕ(u, kn), and we
see that I(X∗, Yn+1|Xn, pn) − λW (kn) = ϕ(u, kn) −
λW (kn) = G(u, kn). Hence, (5) is equivalent to

H(pn) + λTn − sup
Xn

G(Fn(an, bn), kn)

Since X∗ is a continuous random vector, Fn(an, bn) is
a continuous function of (an, bn), and there is at least

one pair (an, bn) for which Fn(an, bn) = u∗k. Given
this value for Fn(an, bn), the optimal value of kn is
arg maxk∈{1,...,K}G(u∗k, k).

Given the greedy policy defined in the previous lemma,
we may now verify that it attains the minimum in (4),
for each n.

Theorem 4.2. Any policy that chooses each Xn =
(an, bn, kn) to satisfy, Fn(an, bn) = u∗k and kn =
arg maxk∈{1,...,K}{ϕ(u∗k, k) − λW (k)} is optimal. Ad-
ditionally, for each n, the value function is

V (pn, n, Tn) = H(pn) + λTn − (N − n)G∗. (6)

Proof. We proceed by backwards induction. At n =
N the value function has the claimed form, and the
optimal policy makes no decision, and so the claimed
form for the optimal policy also holds, vacuously.

For n < N , we assume that the value function and
optimal policy are of the form claimed at n+ 1. Then,

V (pn, n, Tn) = inf
Xn

EYn+1 [V (pn+1, n+ 1, Tn+1)|Xn, pn, Tn]

= inf
Xn

EYn+1 [H(pn+1) + Tn+1−(N−n−1)G∗|Xn, pn, Tn]

= inf
Xn

EYn+1 [H(pn+1) + Tn+1|Xn, pn, Tn]−(N−n−1)G∗

(7)

= H(pn) + Tn −G∗ − (N − n− 1)G∗

= H(pn) + Tn − (N − n)G∗,

which is the claimed form for the value function at time
n. In this sequence of equations, we used Lemma 4.1
to show that the infinimum in (7) has the form claimed
on the next line. Moreover, the same lemma also shows
that the infimum in (7) is attained by an Xn satisfying
the form claimed in the statement of the theorem, and
thus, by the dynamic programming optimality princi-
ple, this Xn is the decision of the optimal policy at
time n. Thus, by induction, the claimed form for the
value function and optimal policy hold for all n.

Given this last result, we have obtained an optimal
policy which is also a greedy policy and hence easy
to implement. It allows one to balance entropy and
time for localizing an interval on a number line. Note
that a single type of question, which can be computed
beforehand, is used at all steps of the optimal policy.

5. Efficient EM Scanning Strategy

In this section, we apply our main result from Sec. 4
to a real-world application. We consider the problem
of acquiring as fast as possible SEM images that are
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sharp at locations of interest and potentially blurrier
elsewhere, and where the speed gains come from not
spending imaging resources on uninteresting regions.

For many biologists, SEM offers the ability to acquire
detailed images of intra-cellular structures at nm res-
olution, such as those of Fig. 2 (left). To this end,
this microscope uses an electron beam to sweep the
surface of a tissue block, line-by-line, many times. At
each pixel location, the average response is computed
and used to produce a precise image for the user. The
tissue surface is then sliced off the tissue block, and the
process is repeated on a newly visible surface. While
this process produces image stacks of invaluable worth,
doing so is extremely time consuming, i.e. 48 hours for
a 10µm3 tissue volume.

Moreover, for many users, imaging the entire block
accurately is unnecessary. Instead, they may only be
interested in obtaining high resolution images at lo-
cations of specific structures of interest. For exam-
ple, mitochondria are organelles that occupy less than
8%-10% of a tissue sample and have been linked to
a number of diseases. Visualizing their development
is highly relevant to understanding the progression of
illness and recovery. As such, we demonstrate in this
section, that images with good resolution at mitochon-
drion locations can be acquired much faster by our
proposed policy when compared to current microscope
policies. The remainder of this section details the em-
bodiment of our policy within this context.

5.1. Formulation

We let each slice of a tissue block be composed of a
fixed number of strips: S = {S1, . . . , ST }, where St ∈
I is a gray scaled image to be imaged (30×960 pixels,
Fig. 2 (left) depicts these strips). We will apply the
policy of Sec. 4 on a strip by strip basis.

On each strip, we are looking for a mitochondrion,
denoted by X∗ = (X∗1 , X

∗
2 ) ∈ St and which is re-

stricted to be at locations {0, 2d − 1}, with d = 5,
such that each discrete location defines a 30× 30 pixel
region of the strip (i.e. X∗1 is the starting point
and X∗2 the end point of the target on one strip).
Here, X∗ is a discrete random variable with density
p0(u1, u2), u1, u2 ∈ {0, 2d−1} and where p0(u1, u2) = 0
for u1 > u2. The questions are denoted by Xn =
(an, bn, kn), 0 ≤ an ≤ bn ≤ 2d − 1, where (an, bn)
are integers, kn ∈ {1, . . . , 4} for 0 ≤ n ≤ N . The
answers Yn+1 are computed by first scanning the re-
gion interval (an, bn), W (kn) times. From this, each
pixel location of the interval (an, bn) receives W (kn)
values, which are averaged to form a noisy image de-
noted by Ian,bn,kn . From Ian,bn,kn , we compute a

question score, denoted yn+1 ∈ R. In the follow-
ing subsection we detail how these scores are com-
puted and what their associated noise models are. The
cost associated with a question type kn is as follows:
W (1) = 4,W (2) = 20,W (3) = 40 and W (4) = 60.

Given that X∗ is now a discrete, and not a continuous
random variable, we are no longer guaranteed to al-
ways find an interval question satisfying Fn(an, bn) =
u∗kn and hence the greedy optimal solution from the
previous section no longer holds. To approximate the
optimal policy in this context, we select the available
interval and question type that maximizes the gain
function G(u, k) instead and compute this by perform-
ing a brute force search over the (a, b, k).

5.2. Image Observation and Noisy Channels

Given a sampled image, Ia,b,k, we must evaluate a
question score: yn+1. To do this, we first evaluate
if each 30 by 30 pixel block of Ia,b,k is part of a mito-
chondrion or not. This is achieved by first dividing a
block into nine 10 by 10 regions, computing an inten-
sity histogram from the center region and constructing
another intensity histogram from the combined eight
neighbouring regions. These histograms are concate-
nated and then evaluated with a two-class RBF kernel
SVM. Having done so for every block in Ia,b,k, the
proportion of locations where the SVM has returned
1, that is the positive class, is returned.

Given that the number of scans performed, W (kn),
induces significantly different noise levels in Ia,b,k, a
separate SVM must be learned and used for images
with W (kn) scans. Each SVM was trained using five,
1032 × 1032 pixel images, where an expert provided
mitochondria groundtruth segmentations.

Learning observation models: Recall from Sec. 3
that the answer Yn+1 comes from one of two possible
observation sources: fk1 or fk0 . We model both of these
to be Gaussian with parameters (µk1 , σ

k
1 ) and (µk0 , σ

k
0 ),

respectively and where the parameters are estimated
from the same training data used to train the SVMs.
To estimate these for any value k, we randomly gen-
erated 2000 intervals (a, b) for each image, evaluated
X = (a, b, k) and computed the corresponding scores
from the 2000 intervals. Using the scores and the mi-
tochondria expert segmentations, we then computed
the parameters for f0 and f1 using maximum likeli-
hood estimation. Finally, estimating the ϕ(u, k), was
achieved by Monte Carlo simulation and we have plot-
ted G(u, k), in Fig. 2 (right). Note that in the case
where λ = 4.5 × 104 (which is task specific), G(·, k)
can be maximized when k = 4 or 20 (i.e. using 20
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Figure 2. (left) Example of an image acquired with a SEM. Our approach localizes the indicated mitochondria one strip,
Si at a time. (right) Plot of gain function G(u, k) as a function of the probability u, for different values of k = {1, . . . , 4},
when λ = 4.5× 104.

scans when 0.15 < u < 0.88 and using 4 scans oth-
erwise) and using other scanning quantities would be
sub-optimal.

5.3. Algorithm

The proposed policy can be cast as a hypothesis-and-
test algorithm. For each strip, we evaluate the algo-
rithm outlined in Alg. 1. By the end of the procedure,
we return the posterior distribution, pN and the set of
image observations, {Ian,bn,kn

}Nn=0.

Given that for the first strip S1, no information on
the target location is known, we assign p0 to be a
discrete uniform probability distribution in the range
(0,31). This initial prior indicates that the target has
equal chance of being anywhere. However, once a strip
has been processed with Alg. 1, we maintain the pos-
terior distribution and use it as initial prior for the
subsequent strip. That is, the posterior computed af-
ter N questions on strip St, is the the prior used for
strip St+1. Given that mitochondria are 2D objects
(even 3D if the volume is taken into account), and
do not move significantly from one strip to another,
reusing the computed posteriors from previous strips
effectively encodes 2D spatial information.

Note that in practice multiple or no mitochondria may

Algorithm 1 Fast Strip Imaging (N, p0,W, λ)

1: for n = 0, . . . , N do
2: {an, bn, kn} = argmaxa,b,k{ϕ(Fn(a, b), k) −

λW (k)}, where Fn(a, b) = pn(a ≤ X∗
1 , X

∗
2 ≤ b)

3: Sample noisy image: Ian,bn,kn

4: Compute question score yn+1 from Ian,bn,kn

5: Compute posterior distribution pn+1 using (2)
6: end for
7: return pN and {Ian,bn,kn

}Nn=0

be present on a strip. To deal with this, we use the
same approach as in (Sznitman & Jedynak, 2010) and
extend the hypothesis space of X∗ such that an ad-
ditional point mass indicates that the target is not
present in the visible domain. For multiple targets, we
apply non-maximum suppression (on both the imag-
ing domain and the density) to regions that have been
observed more than a number of times (i.e. 600 scans)
and proceed until n = N .

5.4. Experiments

We validate our approach by evaluating our policy
against what is typically possible with current micro-
scopes, and a similar policy to that in (Jedynak et al.,
2011) which does not take into account time costs.
The standard policy scans each location of the block
surface a fixed number of times, and averages the re-
ceived values at each location. For any scanning pol-
icy, we may quantify its performance by 1) the average
scanning time per pixel and 2) the per-pixel estimated
intensity value at mitochondrion locations (measured
by the Peak Signal-to-Noise Ratio (PSNR) and the
average proportion of error per pixel, i.e. the differ-
ence between the true and estimated intensity values,
divided by the true intensity).

We let the entropy-cost factor λ = 4.5 × 104 when
evaluating each strip and will vary the number of it-
erations, N . Once a surface imaged, the process is
repeated on the next surface.

5.4.1. SEM Data and Image sampling

Using an SEM, we first collected five images of size
1032 × 1032 pixels, using 600 scans, of a rodent brain
tissue. These images were used for training purposes.
We then collected 160, 1500 × 960 images with 600
scans (which when stacked forms a volume) for test-
ing purposes. On both the train and test data, mi-
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Log Pixel Error Scanned Image Per Pixel Scan Count 

Figure 3. Scanned Image: shows the image acquired when running our approach on a series of strips. Red regions
indicate mitochondria. Two blown-up regions are shown on the left, where an image regions is noisy (top) and where a
large number of scans took place (bottom). Log Pixel Error: corresponding image where at each pixel the log pixel
difference between our produced image and the true image was computed. Per Pixel Scan Count: visually depicts
regions that were scanned more times (in orange and red).

tochondria locations were hand segmented by an ex-
pert. Given that current microscopes are incapable
of storing images acquired with different scan counts
for entire volumes, the following scheme (similarly
to(Sznitman et al., 2012; Veeraraghavan et al., 2010))
was used to acquire data with W (k) scans at test time
1.

On a single surface, we first collected 60 images ac-
quired with 10 scans each, and note that the corre-
sponding 600 scan image is the per-pixel average of
the 60 images, which we denote µp for pixel p. The
standard deviation of the pixel intensity observed, de-
noted by σp, can be estimated as function of the true
pixel intensity, σp = mµp+b, where m and b are linear
regression parameters and were estimated from this
data. Then, with an image of 600 scans, and assum-
ing a Gaussian model for the pixel intensity values,
we can generate an image with W (k) scans by sam-
pling G(µp,mµp + b), W (k) times, and averaging the
received values. This generating process is used to cre-
ate sample noisy images in Alg. 1 (line 3).

5.4.2. Results

The “Scanned Image” of Fig. 3 shows an example of a
produced image using our approach. This image was
produced by spending only 280 scans per pixel on av-
erage, as opposed to the traditional 600. Mitochondria
locations are shown in red, and looking closely at the
indicated yellow boxes, which have been blown-up on
the left, we notice that the image noise at mitochondria
locations is noticeably lower than in other regions. To
further show this, the “Log Pixel Error” of Fig. 3 shows

1Implementing our policy on an SEM is currently im-
possible largely due to the fact that internal access and
details to the device are not available.

the log pixel difference between the true and produced
image. Darker regions indicate lower pixel error. Sim-
ilarly, “Per Pixel Scan Count” of Fig. 3 shows how
many times each pixel was scanned. Notice that in
both cases the mitochondria locations correlate highly
with low pixel error and large scan counts. Submitted
with this manuscript, a supplementary video shows the
algorithm as it proceeds to scan an entire image, strip
by strip. We also show a visual evolution of the poste-
rior distribution after each iteration and the produced
image.

We evaluated each approach on the 160 test images,
which consists of running our policy 8000 times. Quan-
titatively, our policy improves on the time necessary
to acquire images of equal quality at mitochondria lo-
cations, as can be seen from Table. 1. In fact, in nearly
half of the time typically taken, we acquire the images
of nearly equal quality at mitochondria locations. In
practice, this speed up would allow a biologist to scan
a 10µm3 tissue volume and verify a hypothesis in one
day instead of two. In addition, we see the benefit of
including time cost in our objective function, as we
outperform in time and accuracy the case where λ = 0
and W (k) = 60.

Finally, in addition to having high quality images, bi-
ologists are often interested in extracting 3D segmen-
tations of mitochondria in order to better visual their
3D structure. One method to do this automatically
is to use the MRF method of (Lucchi et al., 2011),
and which we have applied to the image stacks pro-
duced by our scanning policy. Using the first 80 im-
ages for MRF training, we evaluated the remaining
80 images. We report that when imagining with 600
scans, segmentations of 98% accuracy (and a PASCAL
VOC score of 83%) are achieved, while our policy, in
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Method Average # of Scans PSNR Proportion of per Pixel Error

Full Scanning 600 (0.0) 42.66 0.032 (1.6)
Full Scanning 300 (0.0) 41.10 0.046 (2.3)
Optimal Policy (N = 80) 320 (2.7) 42.50 0.034 (2.6)
Optimal Policy (N = 40) 296 (3.1) 41.89 0.039 (2.7)
Full Scanning 200 (0.0) 40.20 0.056 (2.8)
Optimal Policy (N = 20) 198 (2.5) 41.03 0.047 (2.5)
Policy (N = 80, λ = 0,W (k) = 60) 421 (2.6) 42.57 0.034 (2.1)
Policy (N = 40, λ = 0,W (k) = 60) 380 (2.9) 41.92 0.038 (4.6)
Policy (N = 20, λ = 0,W (k) = 60) 361 (3.1) 41.39 0.043 (7.1)

Table 1. Quantitative comparison of proposed policy against other polices. The PSNR and Proportion of per Pixel Error
(standard error in brackets with a factor of 10−6) are estimated at target locations.

half that time, produces segmentations of 97% accu-
racy (and a PASCAL VOC score of 81%). Please visit
http://cvlab.epfl.ch/~sznitman for additional re-
sults and videos.

6. Conclusion

This paper considered the task of finding a target when
making a finite number of sequential observation, N ,
by evaluating intervals of chosen length, position and
type. With the constraint that observations are always
noisy, and that different types of questions may induce
different costs, we have presented a Bayes optimal pol-
icy for an entropy-cost based objective function. The
use of our optimal policy, which has the particular-
ity of being greedy, is demonstrated in the context of
localizing mitochondria in SEM images. We show ex-
perimentally that our policy provides significant speed
ups in image acquisition while maintaining near equal
image quality at target locations, when compared to
current policies.
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