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Abstract

Recent works have shown that 3D shape of non-rigid

surfaces can be accurately retrieved from a single im-

age given a set of 3D-to-2D correspondences between that

image and another one for which the shape is known.

However, existing approaches assume that such correspon-

dences can be readily established, which is not necessarily

true when large deformations produce significant appear-

ance changes between the input and the reference images.

Furthermore, it is either assumed that the pose of the cam-

era is known, or the estimated solution is pose-ambiguous.

In this paper we relax all these assumptions and, given a

set of 3D and 2D unmatched points, we present an approach

to simultaneously solve their correspondences, compute the

camera pose and retrieve the shape of the surface in the

input image. This is achieved by introducing weak priors on

the pose and shape that we model as Gaussian Mixtures. By

combining them into a Kalman filter we can progressively

reduce the number of 2D candidates that can be potentially

matched to each 3D point, while pose and shape are refined.

This lets us to perform a complete and efficient exploration

of the solution space and retain the best solution.

1. Introduction

Reconstructing 3D deformable surfaces from single im-

ages is one of the central goals in computer vision with

a large number of applications in related fields such as

robotics, computer graphics or augmented reality. When

3D-to-2D correspondences between an input image and

another one for which the shape is known can be estab-

lished, monocular 3D non-rigid reconstruction is a well

understood problem effectively addressed by many recent

works [7, 19, 21, 22, 23]. However all these methods rely

on the quality of the matches, which are usually established

by means of local image descriptors that may become unre-
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Figure 1. Simultaneous Correspondence and Non-Rigid Shape Re-

construction. Left column: Reference configuration for which we

know the shape and a set of 3D points lying on it. Right Col-

umn: Given a set of 2D points in an input image in which the

shape is unknown and the camera pose is different from that in

the reference configuration, we seek to simultaneously establish

the 3D-to-2D matches (second row) and retrieve the pose of the

camera and the shape of the surface in the input image (third row,

right image). Our approach solves the matching problem without

considering texture information, which in this case is unreliable

because the scene contains many repetitive patterns. In addition,

we can handle certain amount of outliers and clutter points, shown

as red crosses and circles, respectively, in the second row images.

liable when the shape deformation in the reference and input

images is significantly different, or when the surface texture

contains repetitive patterns, such as the example shown in

Fig 1. In addition, existing approaches assume the pose of

the camera with respect to the reference shape to be known

and that does not change when capturing the input image.

In order to obtain a solution that performs robustly when

texture is not a reliable cue and when the camera can freely

move, we propose an approach that simultaneously solves

for the correspondences, pose and 3D shape without using

image appearance information, that is, just considering the
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3D position and the 2D location of two unmatched sets of

points. Inspired on a recent paper on rigid object pose esti-

mation [18], we reduce the complexity of this problem us-

ing weak priors on pose and shape, that we learn from train-

ing data, and model as Gaussian Mixture Models. These

priors let us to define a region in the image where to seek

for the potential 2D candidates that may be assigned to each

3D point. Using a Kalman filter strategy this search region

is progressively shrunk while the estimations of the pose

and shape are refined. This is repeated for different com-

binations of pose and shape priors, in order to guarantee a

complete exploration of the solution space. As shown in

Fig. 1, we can recover shape and correspondences even un-

der the presence of outliers and clutter.

To the best of our knowledge, this is the first ap-

proach addressing the simultaneous pose and correspon-

dence problem for non-rigid objects. Indeed, several works

have already been proposed for retrieving matches and the

six degrees of freedom of the pose in rigid objects [6, 10,

18, 20]. However, when reconstructing non-rigid surfaces

many more variables need to be considered to account for

the deformation degrees of freedom, which require from a

different solution to make the problem tractable.

2. Related Work

Monocular 3D reconstruction of non-rigid surfaces is

known to be a highly under-constrained problem that re-

quires from prior information to solve it.

The most common approach to limit the set of possible

solutions is to represent the shape as a weighted sum of

modes, either physically-based ones [4, 15, 16] or learned

from training data [2, 5]. Estimating shape, then amounts to

retrieving the weights of this linear combination, by mini-

mizing an image-based objective function. However, since

such functions usually are non-convex and have many local

minima, these methods require from good initializations.

Several approaches have shown that shape may be re-

covered from a set of 3D-to-2D correspondences, between

the 3D points of a reference shape and the 2D points on

the input image [7, 19, 21, 22, 23]. These point correspon-

dences use to be computed by SIFT-like local image de-

scriptors [1, 12, 14, 17], which have been proved to be ro-

bust to certain transformations of the image, although they

are prone to fail when dealing with the large nonlineari-

ties produced in the deformation of non-rigid surfaces. Re-

cent works have addressed the problem of general deforma-

tions [3, 13]. While these are promising approaches, they

are still based on assumptions that can only rarely be sat-

isfied, such as that intensity variations due to deformations

are minimal.

This brings us to the situation where image intensity be-

comes an unreliable cue to establish correspondences, for

example because the deformation itself creates artifacts on

the image, such as self-shadowing or strong occlusions, or

because the surface texture contains repetitive and undis-

tinguishable patterns. In these cases it becomes necessary

to simultaneously retrieve the shape and establish the cor-

respondences. This problem has been deeply studied for

rigid objects, in which case is then necessary to simultane-

ously estimate pose and correspondences. The most tradi-

tional approach in doing so is the RANSAC algorithm [9],

which, given a set of 3D and 2D points, iteratively hypothe-

sizes and validates small subsets of correspondences until a

good solution is found. Many variants of this strategy have

been proposed over the years to reduce the computational

cost [6, 10, 18, 20].

In fact, our approach is inspired in [18], a recent work

that uses priors on the camera pose to register rigid objects.

However, in order to address the problem for non-rigid sur-

faces, besides pose and correspondences, we will have to

estimate additional variables accounting for the degrees of

freedom of the surface deformation. This, considerably in-

creases the complexity of the problem and we believe that

our approach is the first one to simultaneously solve for cor-

respondences, pose and non-rigid shape from single images.

3. Shape and Pose Priors for Non-Rigid Sur-

face Reconstruction

In this section we first show that the solution of our prob-

lem can be expressed as a minimization of an error function

depending on the correspondences, pose, and shape param-

eters. We then show that weak priors on both pose and

shape can be effectively used to retrieve the minimum of

the error function, in spite of having to explore a high di-

mensional solution space.

3.1. Problem Statement and Notation

We assume we are given a set of 3D points P =
{pref

1 , . . . ,pref
M } on a reference configuration with known

shape, and a set of 2D points U = {u1, . . . ,uN} on an input
image of the same surface but with a different and unknown

deformation. The correspondence between these two sets

of points is also unknown.

We represent the surface as a triangulated 3D mesh

with nv vertices vi concatenated in a vector x =
[v⊤

1 , . . . ,v⊤

nv
]⊤, and denote by xref the reference mesh,

and x the mesh we seek to recover.

Let pi be a point on the mesh x corresponding to the

point p
ref
i in the reference configuration. We can express

pi in terms of the barycentric coordinates of the face it be-

longs:

pi =

3
∑

j=1

aijv
[i]
j , (1)

where the aij are the barycentric coordinates and v
[i]
j are

the vertices of the face containing the point pi. Since we



assume the mesh does not stretch while it deforms, these

barycentric coordinates remain constant for each point and

can be easily computed from points p
ref
i and the mesh

xref . Let us denote by A = {a1, . . . ,aM} the set of

barycentric coordinates associated to the 3D points, where

ai = [ai1, ai2, ai3]
⊤.

Additionally, we assume we can model the mesh defor-

mation as a linear combination of a mean shape x0 and nm

deformation modes Q = [q1, . . . ,qnm
]

x = x0 +

nm
∑

i=1

αiqi = x0 + Qα , (2)

where α = [α1, . . . , αnm
]⊤ are the unknown weights of

the basis shapes. In our implementation, these modes were

obtained by applying Principal Component Analysis (PCA)

over a set of synthetic inextensible meshes generated with

the modelling software Blender [11].

And finally, we assume we know the calibration matrix

A of the camera, although we do not know its pose. As

shown in Fig. 1, this may occur if the reference and input

images were captured with different camera positions.

Given all these initial assumptions, our goal is to simul-

taneously retrieve the pose of the camera –parameterized by

a rotation matrixR and a translation vector t– , the shape of

the mesh x –parameterized by the vector α–, and as many

3D-to-2D correspondences as possible, considering that not

all the 3D points must have a 2D match and viceversa.

Let us consider ũi to be the projection of a point pi given

a pose and shape estimates {R, t,α}:

wi

[

ũi

1

]

= A [R|t]

[

pi

1

]

= AR

3
∑

j=1

aij

(

x
[i]
0j + Q

[i]
j α

)

+ At (3)

where wi is a scalar projective parameter and x
[i]
0j and Q

[i]
j

are the subvector of x0 and submatrix of Q corresponding

to the coordinates of the vertex v
[i]
j . Note that in the second

step we have used Eq. 1 and 2 to write the point pi in terms

of the modal weights.

We can now formulate our problem as an optimization

one, where we seek to retrieve the parameters R, t and α

such that minimize the reprojection error between points pi

projected on the image and their corresponding matches.

This can be written as

minimize
R,t,α

M
X

i=1

Detected (‖ũi − Match(ũi,U)‖) (4)

where Match(ũi,U) returns the 2D point of U that is clos-

est to ũi, and Detected(d)=min(d, T ) is used to penalize

points that are not correctly matched and avoid trivial so-

lutions with just a few, but accurate, matches. In all our

experiments we set T = 10 pixels.

3.2. Estimating Pose and Shape Priors

Trying to minimize Eq. 4 with no other information

besides the deformation modes, becomes computationally

prohibitive, even when using a small number of points. For

example, the approach in [6] is one of the most efficient al-

gorithms in solving pose and correspondences in the rigid

case and has a O(MN2) complexity, which allows to han-

dle problems with about a M ≈ 100 points in a reasonable

amount of time. However, if on top of this complexity one

has to consider the additional nm degrees of freedom intro-

duced by the deformable model, the problem seems to be

unsolvable in practice.

In this paper, we show that using weak priors on the cam-

era pose and on the types of deformations the surface can

have, we can turn our problem into a tractable one. To this

end, we first compute pose and shape priors and parame-

terize them in terms of Gaussian Mixture Models. We then

combine these priors, and using a Kalman filter strategy we

guide the matching process for each 3D point. We show

that the search space for potential 2D candidates is drasti-

cally reduced from the entire image, to a small region. We

can then efficiently explore the space of possible solutions

and keep the solution that minimizes Eq. 4.

3.2.1 Priors Computation

Pose priors are computed following a similar methodology

as in [18]. Given the reference mesh, we initially generate

sample positions on a large region where the camera center

is expected to be. For example, for the 40 × 40 cm mesh

shown in Fig. 2(Left), the region of possible camera posi-

tions we define is a 140 × 140 × 20 cm3 volume above the

mesh. Then, for each camera center sample, we consider a

random direction of the optical axis by allowing the camera

to point anywhere on the reference mesh. We also allow a

random rotation of the camera around its optical axis. All

these pose samples are then represented by 6-dimensional

vectors accounting for the three degrees of freedom of the

rotation and the three of translation. Using Expectation-

Maximization (EM) [8] we model them as a Gaussian Mix-

ture Model, with {ρp
1, . . . ,ρ

p
Gp

} mean poses with associ-

ated 6 × 6 covariances {Σp
1, . . . ,Σ

p
Gp

}, and probabilities

{pp
1, . . . , p

p
Gp

}. Fig. 2(Left) shows the part of the pose pri-
ors corresponding to the camera centers, with their associ-

ated 3 × 3 covariance matrices.

As mentioned above we represent the surface as a lin-

ear combination of nm basis shapes computed by apply-

ing PCA on a large training set of synthetically deformed

meshes. Therefore, each shape is indeed represented by a

nm-vector of weights α. Shape priors are then computed

by applying EM over the weights of all training meshes.

This results in Gs mean shape vectors {ρs
1, . . . ,ρ

s
Gs

} with

associated nm ×nm covariances {Σs
1, . . . ,Σ

s
Gs

} and prob-
abilities {ps

1, . . . , p
s
Gs

}. Fig. 2(Middle) shows the region



Figure 2. Left: Pose Priors. The small green dots are the samples of camera centers we use to compute the pose priors. The ellipsoids

represent the covariance of the priors on the translational space. We obtain similar covariances for the three-dimensional rotational space,

although we do not plot them here. Middle-Right: Shape Priors. We represent the shape by a 30-dimensional vector of modal weights,

and compute the shape priors in this space. The blue shaded area represents the region where shape samples are generated and the meshes

on the right side are four of such samples. Expectation-Maximization is then applied over these samples to compute the shape priors. The

color lines in the middle image represent the mean vector for three of these priors.

of the shape space where samples were generated and the

mean vectors of three shape priors.

It is worth to mention that the kind of priors on the modal

weights we use are more restrictive than the regularization

terms introduced by current techniques to penalize the less

meaningful modes. This lets us to retrieve the shape with-

out imposing the additional constraints that these methods

consider, based on local inextensibility [7, 21, 22, 23] or

shading information [19].

3.2.2 Weighting Joint Priors

In the next subsection we will use different combinations

of pose and shape priors to simultaneously solve for the

correspondences while pose and shape are refined. We

could, in principle, explore all possible combinations of

{(ρp
i ,Σ

p
i ), (ρ

s
j ,Σ

s
j)} for i = 1, . . . , Gp and j = 1, . . . , Gs.

However, we prefer not doing so because this has a high

computational cost, and to avoid having to explore all the

Gp · Gs prior combinations, the algorithm will be stopped

when Eq. 4 drops below a certain threshold. In order to

further accelerate this convergence we will not explore the

joint priors following a random ordering. Instead, we will

explore them according to the ordering determined by a

weight computed as follows.

Given the 2D image points U , a combination of the i-th
pose and j-th shape priors will be assigned a weight propor-
tional to the joint probability

p(i, j|U) ∝ p(U|i, j)pp
i p

s
j (5)

where p(U|i, j) is computed by projecting the points

{p1, . . . ,pM} onto the image assuming a pose ρ
p
i and a

shape ρ
s
j , and comparing these projected points with the

actual distribution U . The comparison is done in terms of

point cloud Hausdorff distance and, since 3D-to-2D corre-

spondences are not explicitly solved, it can be computed

very fast. Although this is just an approximate measure-

ment, in the Results Section we will show that this ordering

lets us to terminate the algorithm when only a small per-

centage of the joint priors are explored.

3.3. Using Priors to Simultaneously Solve for Pose,
Shape and Correspondences

We will now use the joint priors to guide the 3D-to-2D

matching process while pose and shape are progressively re-

fined. Starting with the pair of priors {(ρp,Σp), (ρs,Σs)}
that was scored the most probable according to Eq. 5, our

method is based on the following iterative algorithm.

3.3.1 Computing initial set of potential matches

We denote by ρ
p,s = [ρp⊤,ρs⊤]⊤ the initial value of our

state vector accounting for pose and shape. Given this initial

estimate we use Eq. 3 to project the set of 3D points P , rep-

resented by their barycentric coordinates A, onto the image

plane at positions Ũ = {ũ1, . . . , ũM}.
In order to define a search region for each point ũi in the

image plane, we propagate the covariance matrices accord-

ing to

Σu

i = J(ai)Σ
p,sJ(ai)

⊤ (6)

where J(ai) is the 2 × (6 + nm) Jacobian of Eq. 3 with

respect to the 2D coordinates evaluated on the barycentric

coordinates of the point pi, and Σp,s is the (6 + nm) ×
(6 + nm) block diagonal covariance matrix, in which the

diagonal elements are Σp and Σs.

We can then define an elliptical search region on the im-

age plane by considering the potential matches for ũi, as

the uj ∈ U such that

(uj − ũi)
⊤(Σu

i )−1(uj − ũi) ≤ M2 (7)

where M is a threshold chosen to guarantee a specified

level of confidence, and its value can be computed using

the cumulative chi-squared distribution. In our experiments

we set M = 3 to achieve a 99% degree of confidence.



Ground Truth Iteration #0 Iteration #3 Iteration #6 Iteration #9 Error

Figure 3. Shape Convergence. When correct matches are iteratively assigned the shape estimated by the Kalman Filter converges to the

ground truth solution. Observe that at iteration #9 only slight differences remain between the estimated shape and the ground truth one.

3.3.2 Iteratively refining pose and shape

Given the set of 3D points and their potential 2D candi-

dates, we could now follow a RANSAC-based approach and

hypothesize sets of 3D-to-2D correspondences and validate

them with any of the current techniques to retrieve shape

from such correspondences [7, 19, 21, 22, 23]. However,

these methods are based on a relatively large number of cor-

respondences –about nm–, which would require from an ex-

cessively large number of hypotheses to guarantee retriev-

ing a correct solution.

More specifically, let us assume that all the 3D points

have the same number n << N of potential 2D matches. If

pd is the probability that a 3D point is detected and is not an

outlier, the probability of nm correct matches is (pd/n)nm .

Hence, the number of hypotheses-and-validations that are

needed to ensure with a probability R that at least one of

them is correct will be:

Number Trials
Constant Search Region

=

(

n

pd

)nm

log

(

1

1 − R

)

(8)

In our experiments we use nm = 30 deformation modes,

and hence, even for relatively small search regions yielding

only a few 2D potential candidates n for each 3D point, the

number of trials would become prohibitive.

In order to reduce this theoretical high number of trials,

we will use a Kalman filter formulation, where correspon-

dences are progressively done for different 3D points, and

after each match the number of potential 2D candidates for

the rest of 3D points is reduced.

We start considering the 3D point with less potential can-

didates. Let ũi ∈ Ũ be the image projection of such a point,

and uj ∈ U the 2D point closest to ũi in terms of the Ma-

halanobis distance of Eq. 7. By establishing an hypotheti-

cal match between ũi and uj , we can use the Kalman filter

equations to update the state vector ρ
p,s and reduce the co-

variance matrix Σp,s in the pose-shape space:

ρ
p,s+ = ρ

p,s + K(uj − ũi) (9)

Σp,s+ = (I − KJ(ai))Σ
p,s (10)

whereK is the Kalman gain and I is the (6+nm)×(6+nm)
identity matrix.

The new pose, shape and covariance matrices are used

to project again the 3D points onto the image, with the re-

newed search regions which are considerably smaller than

those in the previous iteration. This allows to reduce the

number n of potential 2D matches that can be associated to

each 3D point. A second match is then established and the

Kalman update equations applied again. After a few itera-

tions –less than 10 in practice– of repeating this process the

Kalman filter converges to a solution, although we do not

know yet if it corresponds to the correct one.

To assess the accuracy of the solution we match the re-

maining 3D points. For that, we project them onto the im-

age plane and match to their nearest neighbor from U . We

then compute the error of Eq. 4, and if it is below a given

threshold the algorithm is stopped. Otherwise we repeat

the whole process of establishing correspondences and up-

dating shape and pose with different combinations of the

potential candidates, and by iterating over the various pose

and shape joint priors according to the ordering determined

in Section 3.2.2. Fig. 3 shows how the shape estimation

converges to the true solution when correct matches are es-

tablished.

Let us now analyze the computational complexity of the

solution we propose. If we denote by nit << nm the

number of iterations until convergence of the Kalman fil-

ter, and by Shrink( ) a monotonically decreasing function

accounting for the reduction of the search region size, we

can rewrite Eq. 8 by

Number Trials
Shrunk Search Region

=

„
Qnit

i=1
Shrink(i) · n

p
nm

d

«

log

„

1

1−R

«

(11)

Since the number of iterations nit ≈ 10 is considerably

smaller than the number of modes nm = 30 and the product

Shrink(i) · n rapidly drops to 1, the final amount of theoret-

ical trials that our approach requires is much smaller than

when considering search regions of constant size.

However, still one critical element remains in Eq. 11,

which is the increase in complexity produced by the num-

ber of outliers, represented by the percentage pd of detected

3D points. For example, if we had 20% of outliers, that

is pd = 0.8, the term (1/pd)nm would represent having to

evaluate 870 times more hypotheses than when all the points

are detected. And for pd = 0.6, this factor would grow up

to 4.5 × 106.

In order to handle this situation, we consider that each

point ũi can be either matched to any of its potential
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Figure 4. Convergence ratios in the synthetic experiments.

matches within the search region of Eq. 7, or it can be an

outlier. Since correspondences are iteratively established

while pose and shape are refined, the probability that O
consecutive 3D points are considered as outliers, decreases

with O. Thus, we limit the maximum number nco of con-

secutive 3D points labelled as “outliers”. In all our exper-

iments we fixed this maximum value to nco = 0.25Mpd.

For M = 50 3D points, and pd = 0.6 this would mean

that we only should have to evaluate (1/pd)nco = 46 times

more hypotheses than for the case pd = 1.

4. Results

We now present the results on both synthetic and real

data. In the synthetic results we compare our approach

to [18], which we denote by BPnP. As discussed in Sec-

tion 2 this work uses priors on the camera pose to simulta-

neously retrieve pose and correspondences for rigid objects.

4.1. Synthetic Experiments

Using the Blender software [11], we synthesized 25
frames of a deforming 40 × 40 cm flag approximated by

a 32 × 32 mesh such as the one shown in Fig. 3(Left). In

order to generate the input data we randomly distributedM
3D points on the surface of a reference planar mesh. As-

suming a virtual camera placed approximately 70 cm upon

the reference mesh, a percentage pd of the 3D points –

accounting for the number of detected points– were pro-

jected onto the input image of a deformed mesh. A 2 pixel

variance Gaussian noise was added to these projections.

Furthermore, to account for clutter, a percentage pc of 2D

points were added at random positions in the image plane.

Fig. 2 shows the kind of priors we used. For the pose, we

generated Gp=20 Gaussian priors distributed in a relatively

large volume over the mesh. The shape priors were approx-

imated by Gs = 5 Gaussian distributions in the nm = 30-
dimensional space of the modal weights.

In order to evaluate our approach we proceeded similarly

as in [18]. For each one of the 25 meshes, we performed

several experiments by changing the number of 3D model

points M = {30, 40, 50, 60}, the fraction pd = {0.8, 0.6}
of detected points –corresponding to 20% and 40% oc-

clusion rates, respectively–, and the percentage of clutter

pc = {0.2, 0.4, 0.6, 0.8}. In addition, we did 10 different

trials for each combination of these parameters, yielding a

total of 25 × 4 × 2 × 4 × 10=8000 experiments.

We report the accuracy of our method in terms of a

convergence ratio we define by comparing the pose and

shape we retrieve with their ground truth values. More

specifically, let ρ
p
true, ρ

s
true be the true pose and shape,

and let ρ
p, ρ

s be our respective estimates. We computed

the relative errors by Ep = ‖ρp
true − ρ

p‖/‖ρp
true‖ and

Es = ‖ρs
true − ρ

s‖/‖ρs
true‖, and considered a solution

did converge if both Ep and Es were below 0.1. The con-
vergence of the BPnP was computed by just considering the

percentage of error in the pose.

The results of all experiments are summarized in Fig. 4.

Each graph plots the mean convergence as a function of

M , pc and pd. Observe that for most experimental con-

ditions our approach guarantees a convergence ratio above

0.8. Only slightly lower values are obtained for large per-

centages of clutter and occlusions.

In Fig. 5 we compare the performance of our approach

to that of the BPnP, in two meshes with different levels of

deformation. As shown in the left column of Fig. 5, when

the deformation of the input mesh is relatively similar to the

planar reference configuration, BPnP still yields valid solu-

tions with large percentages of convergence, almost com-

parable to those obtained with our approach. However, as

shown in the right column of Fig. 5, when dealing with

meshes whose deformation significantly differs from that

of the reference configuration, the accuracy of the BPnP

rapidly deteriorates, while we still obtain good results.

In terms of computation time our approach needs ap-

proximately 10, 15, 20 and 25minutes per frame to compute

a solution for M = 30, 40, 50 and 60 model points, respec-

tively, when all the joint priors on pose and shape need to be

explored. This is about 10 times more than the time required

by BPnP, although this was indeed expected because we are

seeking the solution in a space of much higher dimensional-

ity and we are considering a much larger number of priors.

Nevertheless, when exploring the priors combination fol-

lowing the ordering defined in Section 3.2.2, in many of the

experiments we obtained a good solution without having to

consider all of the joint priors. This let us terminate the al-

gorithm much faster. Fig. 6 plots a histogram of the number

of joint priors explored in 200 experiments with Gp = 20
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Figure 5. Comparing the convergence rate of our approach and

BPnP [18]. Left Column: Results over a mesh with small de-

formation compared to a planar reference shape. Right Column:

Results over a mesh with large deformation.

and Gs = 5. Note that although this yields a total of 100
possible joint priors, for most of the experiments the algo-

rithm converged to a solution after exploring less than 20 of

them.

4.2. Real Experiments

We also evaluated our approach on a real 150 frames-

sequence of the 16×16 cm bending paper already introduced

in Fig. 1, which is textured with repetitive patterns of mu-

sical notes. This is a clear example where texture is not a

reliable cue for establishing matches, and we can take ad-

vantage of a technique like ours that uses geometry alone.

We initially acquired a reference image under a planar

configuration, as shown in the top-left image of Fig. 1, and

using SIFT [14] we detected a set of interest points, and

computed their 3D barycentric coordinates with respect to

the mesh vertices. For each input image the set of 2D points

was computed using the same detector. Since SIFT usu-

ally returns several hundreds of interest points per image

but our algorithm only can handle in a reasonable amount

of time aboutM = 60model points, we just kept those with

larger gradient values. Note however, that this is the typi-

cal amount of points that state-of-the-art algorithms solv-

ing the simultaneous pose and correspondence problem for

rigid objects can handle.

Pose priors were defined in a region of about 1m3 above

the mesh, large enough to ensure it contained the real

camera pose. Shape priors, were computed applying the

methodology explained in Section 3.2.1 over synthetic se-

quences of meshes resembling paper deformations.

Figure 7 shows the reconstruction obtained in several

frames of the sequence. Observe that with the proposed

approach we are able to retrieve shape in situations where
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Figure 6. Number of Joint Priors Explored. If the combination of

pose and shape priors are evaluated following the ordering defined

in Section 3.2.2, our algorithm converges to a solution without

having to explore all of the joint priors. The figure plots the distri-

bution of number of explored priors over a maximum of 100, for
200 different experiments.

non-rigid deformations and repetitive patterns, might lead

to failure the algorithms that just rely on texture for estab-

lishing correspondences.

Finally, we also applied our approach to simultaneously

estimate the camera pose and shape of a sail. Fig. 8-Left

shows the priors we used on the translational component of

the pose. Fig. 8-Right shows the results obtained in two

different frames, where the camera pose we retrieve is rep-

resented on a coordinate system fixed on the sail.

5. Conclusion

Many recent approaches to monocular 3D shape recon-

struction rely on the fact that point correspondences can be

readily established between the input image and a reference

image in which the shape and pose are known. However,

there are cases where it is difficult to compute such matches,

for example, when the surface deformation in the input im-

age highly differs from that in the reference one, or when the

surface texture contains repetitive patterns. Furthermore,

the camera may move, and hence, its pose can no longer be

considered to be known.

In such cases it is necessary to simultaneously estimate

the camera pose, shape and correspondences, which is a

computationally prohibitive problem unless additional con-

straints are considered. In this paper we have presented

an approach to turn this problem into a tractable one, by

using weak priors on both pose and shape, and modelling

them using Gaussian Mixture Models. We have shown that

using a Kalman filter strategy such priors can be progres-

sively refined while solving for the correspondences to an

ever smaller number of possible matches.

In future work, we plan to integrate additional sources

of information, such as texture and motion. For instance,

although we have shown that texture may be in some oc-

casions an unreliable cue, we could nevertheless use its in-

formation as additional prior with an associated uncertainty.

We believe that this would drastically reduce the number of

potential 2D matches for each 3D point, yielding faster and

more accurate solutions.



Figure 7. Reconstruction of a bending paper. Top: Mesh recovered using the proposed approach overlaid on the original image. Botton:

Reconstructed mesh seen from a different viewpoint.
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Figure 8. Reconstructing a sail and retrieving the camera pose. Left: Pose priors placed all around the mean shape. Right: Detection of the

sail and the camera pose. For each pair of images we plot the recovered mesh overlaid on the original image and a 3D plot of the retrieved

shape and the estimated camera pose.
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