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A network of coupled limit cycle oscillators with delayed interactions is considered. The parameters characterizing the oscillator’s
frequency and limit cycle are allowed to self-adapt. Adaptation is due to time-delayed state variables that mutually interact via a net-
work. The self-adaptive mechanisms ultimately drive all coupled oscillators to a consensual cyclostationary state, where the values
of the parameters are identical for all local systems. They are analytically expressible. The interplay between the spectral properties
of the coupling matrix and the time delays determines the conditions for which convergence towards a consensual state takes place.
Once reached, this consensual state subsists even if interactions are removed. In our class of models, the consensual values of the
parameters depend neither on the delays nor on the network’s topologies.

The farther back you can look, the farther forward you are likely to see
Winston Churchill

1. Introduction

Theharmonic excitation of an elementary-damped harmonic
oscillator

�̈�(𝑡) + a�̇�(𝑡) + f𝑥(𝑡)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

system
= r sin(w𝑡)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

environment
(1)

with a, f, r and w > 0 produces the well-known asymptotic
response (c.f. [1]):

𝑥 (𝑡) = k cos (w𝑡 − 𝜗) , (2)

where k and 𝜗 depend on the control parameters a, r,
and w. By construction, the oscillating environment here
materialized by the input r sin(w𝑡) is totally insensitive to
the oscillator 𝑥(𝑡), implying that 𝑥(𝑡) in (1) is slaved by the
external forcing.The next stage of complexity is to replace the
harmonic oscillator in (1) by a Lienard system:

�̈� (𝑡) + R (𝑥 (𝑡) , �̇� (𝑡)) + f𝑥 (𝑡) = r sin (w𝑡) , (3)

where R(𝑥(𝑡), �̇�(𝑡)) is a nonlinear controller. In absence of
external excitation in (3) (i.e., when r = 0), we assume R

to asymptotically drive the orbits towards a stable limit cycle
which is independent of the initial conditions—the paradig-
matic illustration being here the Van der Pol oscillator. When
r ̸= 0 and for a suitably selected range of parameters, the time
asymptotic response of (3) can be qualitatively written as (c.f.
[2, 3])

𝑥 (𝑡) = S (𝑡) (4)

with S(𝑡) being a a synchronized signal with the same
periodicity as the environment (i.e., S(𝑡+ (2𝜋/w)) = S(𝑡)). By
construction, the external forcing r sin(w𝑡) in (3) is, as before,
insensitive to the Lienard oscillator. In the resulting synchro-
nized regime, the oscillator 𝑥(𝑡) is caught by the external
excitation—in other words, the system adjusts itself to the
environment but the environment remains insensible to the
system. Observe that the dynamical response given by (4)
only subsists as long as r sin(w𝑡) acts on the system.That is, as
soon as the environment effect is removed (i.e., r = 0 in (3)),
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the system (i.e., the limit cycle oscillator), after a transient
time, recovers its original behavior—converges towards its
limit cycle.

In our present paper, we will extend the previous classical
system-environment relationship in order to allow more real-
istic situations where mutual interactions permanently affect
both the system and the environment. Such adaptivemecha-
nisms can modify individual dynamics on a permanent basis.
To stylize this new situation, the basic dynamics given by (3)
is modified as
�̈� (𝑡) + R (𝑥 (𝑡) , �̇� (𝑡)) + 𝑓 (𝑡) 𝑥 (𝑡) = r sin (𝜔 (𝑡) 𝑡) ,

̇

𝑓 (𝑡) = A
f
(𝑥 (𝑡) , �̇� (𝑡)) , �̇� (𝑡) = A

w
(𝑥 (𝑡) , �̇� (𝑡)) ,

(5)

where f → 𝑓(𝑡) andw → 𝜔(𝑡) are no longer constant param-
eters but variables of the global dynamics (and hence time
dependent) and the functions Af and Aw capture the mutual
adaptation of the system-environment dipole. Hence, the sys-
tem of (5) has now to be considered globally—the system and
its environment, are allowed to adaptively coevolve.

The particular case of (5) when Af
≡ 0 (i.e., 𝑓(𝑡) := f for

all 𝑡) has been studied in [4, 5].This type of dynamical system
provides a cornerstone of bioinspired robotics where legs (or
arms) of robots may be modeled by damped oscillators as
(1) (i.e., R(𝑥(𝑡), �̇�(𝑡)) = a�̇�(𝑡)). To ensure a maximum leg
stride, the damped oscillators must be excited by r sin(𝜔(𝑡)𝑡)
at the damped oscillator’s resonant frequency (i.e.,𝜔(𝑡) ⋍ √𝑓

for all 𝑡). However, due to structural changes on the robot
(adding load, lengthening legs), the resonant frequency of the
damped oscillator has to be adjusted: f → f. Hence,Aw drives
𝜔(𝑡) towards the value f to systematically guarantee the exci-
tation at resonant frequency and thus maximum leg stride.
Frequency adaptation (as well as amplitude adaption) is also
important in movement assistance (e.g., retrain the ner-
vous system, assist people with movement disorder), where
robots and human beings must work in synchronous. An
example of an exoskeleton for the human elbow was studied
in [6].

The case where neither Af nor Aw is trivial has been
covered in [7, 8], where the authors not only considered two
adaptive coupled limit cycle oscillators, but 𝑛mutually inter-
acting through a network. Here, self-adapting oscillators can
be applied to robot formation modeling. Each individual
robot belonging to a swarm, circulating around a specific
point, adapts its angular velocity in order to lower the amount
of exchanged information to maintain the formation. Self-
adaptation in networks is also considered in [9], where here
the control signals (and not the local systems) of the variables
of the CPG adapt, and this, to quickly react to new situations
and produce several different behavioral patterns.

Building onwhat has been done in previous contributions
[4, 5, 7, 8], we here consider a network of limit cycle oscil-
lators interaction with time-delayed state variables. The
general form of our dynamical system in the phase-radius
coordinates (i.e., polar coordinates 𝜙𝑘 and 𝑟𝑘) is

̇

𝜙𝑘 (𝑡) = P (𝜙𝑘 (𝑡) , 𝑟𝑘 (𝑡) ; Ω𝑘)

− c𝑘
𝜕V

𝜕𝜙𝑘

(𝜙 (𝑡 − t) , 𝑟 (𝑡 − t)) , 𝑘 = 1, . . . , 𝑛,

̇𝑟𝑘 (𝑡) = R (𝜙𝑘 (𝑡) , 𝑟𝑘 (𝑡) ; Ω𝑘)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

local dynamics

− c𝑘
𝜕V

𝜕𝑟𝑘

(𝜙 (𝑡 − t) , 𝑟 (𝑡 − t))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

coupling dynamics

, 𝑘 = 1, . . . , 𝑛,

(6)

where P and R govern the local dynamics, 𝜙 = (𝜙1, . . . , 𝜙𝑛)

and 𝑟 = (𝑟1, . . . , 𝑟𝑛) are the state variables, Ω𝑘 is a parameter
set determining the local characteristics and c𝑘 > 0 are
coupling strengths. The coupling dynamics is the gradient of
a potential V depending on state variables with time delay t.
Adaptation of the local dynamics is accomplished by letting
the constant parameters Ω𝑘 become time-dependent (i.e.,
Ω𝑘 → Ω𝑘(𝑡)) with their own dynamics given by adaptive
mechanisms A𝑘. Delays being ubiquitous in applications,
their influence on adaptive processes is worth to be investi-
gated, and so the general formalization is

̇

𝜙𝑘 (𝑡) = P (𝜙𝑘 (𝑡) , 𝑟𝑘 (𝑡) , Ω𝑘 (𝑡))

− c𝑘
𝜕V

𝜕𝜙𝑘

(𝜙 (𝑡 − t) , 𝑟 (𝑡 − t)) , 𝑘 = 1, . . . , 𝑛

̇𝑟𝑘 (𝑡) = R (𝜙𝑘 (𝑡) , 𝑟𝑘 (𝑡) , Ω𝑘 (𝑡))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

local dynamics

− c𝑘
𝜕V

𝜕𝑟𝑘

(𝜙 (𝑡 − t) , 𝑟 (𝑡 − t))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

coupling dynamics

, 𝑘 = 1, . . . , 𝑛

̇

Ω𝑘 (𝑡) = A𝑘 (𝜙 (𝑡 − t) , 𝑟 (𝑡 − t))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

adaptive mechanism

, 𝑘 = 1, . . . , 𝑛.

(7)

We therefore confer to Ω𝑘 the status of variables of the
whole dynamical system. Let us remark that in this present
contribution, adaptation occurs in the local systems. Note
that in [10], the authors introduce, with the help of the speed-
gradient method, an adaptive mechanism on the coupling
constant that multiplies the delayed interactions.

This paper is organized as follows: in Section 2 we define
the three components that together form the global system.
We then discuss the dynamics of our model in Section 3. An
application is presented in Section 4 which is then followed
by some numerical experiments in Section 5. Finally, we
conclude in Section 6.

2. Networks of Hopf Oscillators with
Adaptive Mechanisms

We now present explicitly the local and coupling dynamics as
well as the adaptive mechanisms on which we will focus.

2.1. Local Dynamics. Each node of the network is equipped
with a local dynamical system. In this contribution, a local
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system is a Hopf oscillator presented here in its polar coor-
dinates:

P (𝜙𝑘, 𝑟𝑘; Ω𝑘) = w𝑘 , 𝑘 = 1, . . . , 𝑛,

R (𝜙𝑘, 𝑟𝑘; Ω𝑘) = − (𝑟

2

𝑘
− r𝑘) 𝑟𝑘, 𝑘 = 1, . . . , 𝑛.

(8)

The state variables are (𝜙𝑘, 𝑟𝑘) and Ω𝑘 = {𝜔𝑘, r𝑘} are, for the
time being, fixed and constant parameters.The parameterw𝑘
controls the frequency of the 𝑘th oscillator given by the phase
dynamics P. The radial dynamics R produces a stable circular
limit cycle with radius

√
r𝑘.

2.2. Coupling Dynamics. Associated to an 𝑛 vertex connected
and undirected network, denote by𝐴 the weighted adjacency
matrix with positive entries 𝑎𝑘,𝑗 ⩾ 0. Let 𝐿 be the correspond-
ing Laplacian matrix (𝐿 := 𝐷 − 𝐴, where 𝐷 is the diagonal
matrix with 𝑑𝑘,𝑘 := ∑

𝑛

𝑗=1
𝑎𝑘,𝑗).The coupling dynamics is given

by the gradient of the positive semidefinite function

V (𝜙, 𝑟) :=

1

2

⟨𝑟 | 𝐿cos𝑟⟩

=

1

2

𝑛

∑

𝑘=1

𝑟𝑘

𝑛

∑

𝑗=1

𝑙𝑘,𝑗𝑟𝑗 cos (𝜙𝑘 − 𝜙𝑗) ⩾ 0

(9)

with 𝜙 = (𝜙1, . . . , 𝜙𝑛) and 𝑟 = (𝑟1, . . . , 𝑟𝑛) and where the
matrix 𝐿cos has entries 𝑙𝑘,𝑗 cos(𝜙𝑘 − 𝜙𝑗). This matrix is posi-
tive semidefinite since all its eigenvalues are positive (i.e. non-
negative). This is a direct application of Gershgorin’s circle
theorem [11]: for any eigenvalue 𝜁cos of𝐿cos, there exists 𝑘 such
that









𝜁cos − 𝑙𝑘,𝑘









⩽

𝑛

∑

𝑗 ̸= 𝑘











𝑙𝑘,𝑗 cos (𝜙𝑘 − 𝜙𝑗)











(10)

and so |𝜁cos−𝑙𝑘,𝑘| ⩽ ∑

𝑛

𝑗 ̸= 𝑘
|𝑙𝑘,𝑗 cos(𝜙𝑘−𝜙𝑗)| ⩽ ∑

𝑛

𝑗 ̸= 𝑘
|𝑙𝑘,𝑗| = 𝑙𝑘,𝑘.

In particular, the coupling dynamics is

c𝑘
𝜕V

𝜕𝜙𝑘

(𝜙, 𝑟) = −c𝑘

𝑛

∑

𝑗=1

𝑙𝑘,𝑗𝑟𝑘𝑟𝑗 sin (𝜙𝑘 − 𝜙𝑗) , 𝑘 = 1, . . . , 𝑛,

c𝑘
𝜕V

𝜕𝑟𝑘

(𝜙, 𝑟) = c𝑘

𝑛

∑

𝑗=1

𝑙𝑘,𝑗𝑟𝑗 cos (𝜙𝑘 − 𝜙𝑗) , 𝑘 = 1, . . . , 𝑛,

(11)

where c𝑘 > 0 are coupling strengths.

2.3. Adaptive Mechanisms. In this section, we now allow the
fixed and constant parameters w𝑘 and r𝑘 to

(I) become time dependent, that is, Ω𝑘 = {w𝑘, r𝑘} 

(𝜔𝑘(𝑡), 𝜌𝑘(𝑡)) = Ω𝑘(𝑡), for 𝑘 = 1, . . . , 𝑛,
(II) and each of them have their own dynamics, depend-

ing solely on the state variables 𝜙 and 𝑟, that is,

A𝑘 (𝜙, 𝑟) = (A
w
𝑘
(𝜙, 𝑟) ,A

r
𝑘
(𝜙, 𝑟)) for 𝑘 = 1, . . . , 𝑛. (12)

Among the numerous variants for changing the values of the
parameter, we focus on those presented in [7, 8, 12], that is,

A
w
𝑘
(𝜙, 𝑟) = s𝑘

𝑛

∑

𝑗=1

𝑙𝑘,𝑗𝑟𝑘𝑟𝑗 sin (𝜙𝑘 − 𝜙𝑗) , 𝑘 = 1, . . . , 𝑛,

A
r
𝑘
(𝜙, 𝑟) = −s𝑘

𝑛

∑

𝑗=1

𝑙𝑘,𝑗𝑟
2

𝑗
, 𝑘 = 1, . . . , 𝑛,

(13)

where 𝑙𝑘,𝑗 are the entries of 𝐿 and s𝑘 are “susceptibility con-
stants”: the larger s𝑘 is, the stronger the influence on 𝜔𝑘 and
𝜌𝑘 is. Conversely, oscillators with small s𝑘 are reluctant to
modify their frequency and their limit cycle radius.

3. Network’s Dynamical System with Delay

We now discuss the resulting dynamics in the presence of a
time delay t ⩾ 0 affecting both the coupling dynamics and the
adaptive mechanisms. We hence consider

̇

𝜙𝑘 (𝑡) = 𝜔𝑘 (𝑡) + c𝑘

𝑛

∑

𝑗=1

𝑙𝑘,𝑗𝑟𝑘 (𝑡 − t) 𝑟𝑗 (𝑡 − t)

× sin (𝜙𝑘 (𝑡 − t) − 𝜙𝑗 (𝑡 − t)) ,

̇𝑟𝑘 (𝑡) = − (𝑟𝑘(𝑡)
2
− 𝜌𝑘 (𝑡)) 𝑟𝑘 (𝑡)

− c𝑘

𝑛

∑

𝑗=1

𝑙𝑘,𝑗𝑟𝑗 (𝑡 − t) cos (𝜙𝑘 (𝑡 − t) − 𝜙𝑗 (𝑡 − t)) ,

�̇�𝑘 (𝑡) = s𝑘

𝑛

∑

𝑗=1

𝑙𝑘,𝑗𝑟𝑘 (𝑡 − t) 𝑟𝑗 (𝑡 − t) sin (𝜙𝑘 (𝑡 − t) − 𝜙𝑗 (𝑡 − t)) ,

̇𝜌𝑘 (𝑡) = −s𝑘

𝑛

∑

𝑗=1

𝑙𝑘,𝑗𝑟j(𝑡 − t)
2
,

(14)

for 𝑘 = 1, . . . , 𝑛. For (14), we have the following.

Two Constants of Motion. The functions

J (𝜔) =

𝑛

∑

𝑗=1

𝜔𝑗

s𝑗
, K (𝜌) =

𝑛

∑

𝑗=1

𝜌𝑗

s𝑗
(15)

are constants of motion: in other words, if 𝜔(𝑡) = (𝜔1(𝑡), . . . ,

𝜔𝑛(𝑡)) and 𝜌(𝑡) = (𝜌1(𝑡), . . . , 𝜌𝑛(𝑡)) are orbits of (14), then

d [J (𝜔 (𝑡))]

d𝑡
= ⟨∇J (𝜔 (𝑡)) | �̇� (𝑡)⟩

=

d [K (𝜌 (𝑡))]

d𝑡
= ⟨∇K (𝜌 (𝑡)) | ̇𝜌 (𝑡)⟩ = 0.

(16)
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Existence of a Consensual Oscillatory State. We can explicitly
exhibit a consensual oscillatory state. Indeed, for given𝜔𝑐 and
𝜌𝑐 > 0,

(𝜙𝑘 (𝑡) , 𝑟𝑘 (𝑡) , 𝜔𝑘 (𝑡) , 𝜌𝑘 (𝑡)) := (𝜔𝑐𝑡, √𝜌𝑐, 𝜔𝑐, 𝜌𝑐) (17)

for all 𝑡 ∈ [−t, 0] ∪R⩾0 is a consensual orbit of (14).
Observe that in absence of the radial component 𝑟𝑘

and without adaptation, (14) yields the famous Kuramoto
model with delays [13, 14]. In these contributions, the authors
considered the coupling dynamics with delay of the form:
∑

𝑛

𝑗=1
𝑙𝑘,𝑗 sin(𝜙𝑘(𝑡) − 𝜙𝑗(𝑡 − t)), that is, delays concern the

“exterior” variables 𝜙𝑗 and not the “local” variable 𝜙𝑘. This
can be done here for the coupling dynamics but not for the
adaptive mechanism on 𝜔𝑘, if we require J to be a constant of
motion J.

In the absence of time delay (i.e., t = 0) and under appro-
priate conditions (c.f. [12] for details), the adaptive mecha-
nisms tune the value of frequencies 𝜔𝑘 and the radii 𝜌𝑘 of the
attractors so that the global dynamical system is driven into
a consensual oscillatory state. In other words, we have the
following limit:

lim
𝑡→∞









(𝜙𝑘 (𝑡) , 𝑟𝑘 (𝑡) , 𝜔𝑘 (𝑡) , 𝜌𝑘 (𝑡)) − (𝜔𝑐𝑡, √𝜌𝑐, 𝜔𝑐, 𝜌𝑐)








= 0 ∀𝑘,

(18)

with constants𝜔𝑐 and 𝜌𝑐 andwhere ‖⋅‖ is the Euclidean norm.
The consensual state is permanent (i.e., even if interactions
are switched off, all local dynamics still oscillate with the
same frequency and same amplitude). Let us now discuss
the conditions for which Limit (18) holds when the global
dynamics is affected by a time delay (i.e., t > 0).

Convergence towards a Consensual Oscillatory State. The
Limit (18) raises two issues: (1) the existence itself and (2) the
limit values𝜔𝑐 and 𝜌𝑐. For expository reasons, we first discuss
the limit values and then the convergence conditions.

Limit Values. Thanks to the constant of motions in (15), we
have

J (𝜔 (0)) = J (𝜔 (𝑡)) ∀𝑡, K (𝜌 (0)) = K (𝜌 (𝑡)) ∀𝑡,

(19)

with 𝜔(𝑡) = (𝜔1(𝑡), . . . , 𝜔𝑛(𝑡)) and 𝜌(𝑡) = (𝜌1(𝑡), . . . , 𝜌𝑛(𝑡))

orbits of (14) with given initial conditions. Supposing that
Limit (18) holds, we hence have

J (𝜔 (0)) = lim
𝑡→∞

J (𝜔 (𝑡)) = 𝜔𝑐

𝑛

∑

𝑗=1

1

s𝑗
,

K (𝜌 (0)) = lim
𝑡→∞

K (𝜌 (𝑡)) = 𝜌𝑐

𝑛

∑

𝑗=1

1

s𝑗
,

(20)

and so the asymptotic values are analytically expressed as

𝜔𝑐 =

∑

𝑛

𝑗=1
(𝜔𝑗 (0) /s𝑗)

∑

𝑛

𝑗=1
(1/s𝑗)

, 𝜌𝑐 =

∑

𝑛

𝑗=1
(𝜌𝑗 (0) /s𝑗)

∑

𝑛

𝑗=1
(1/s𝑗)

. (21)

It is important to emphasize that the consensual values𝜔𝑐 and
𝜌𝑐 do not depend on the network topology (i.e., not on 𝐿),
nor on the initial conditions of the state variables (i.e., not on
(𝜙𝑘(0), 𝑟𝑘(0)) nor on the time delay (i.e., not on t).

Convergence Conditions. To this aim we study the first-order
approximation of (14) in the vicinity of Solution (17) and
assume that linear stability analysis is sufficient to infer con-
vergence conditions for the nonlinear system. Accordingly,
we study the asymptotic behavior of the small perturbations
𝜖𝜙𝑘

(𝑡), 𝜖𝑟𝑘
(𝑡), 𝜖𝜔𝑘

(𝑡), and 𝜖𝜌𝑘(𝑡) and write

(𝜙𝑘 (𝑡) , 𝑟𝑘 (𝑡) , 𝜔𝑘 (𝑡) , 𝜌𝑘 (𝑡))

= (𝜔𝑐𝑡 + 𝜖𝜙𝑘
(𝑡) , √

𝜌𝑐 + 𝜖𝑟𝑘
(𝑡) , 𝜔𝑐 + 𝜖𝜔𝑘

(𝑡) , 𝜌𝑐 + 𝜖𝜌𝑘
(𝑡)) .

(22)

Taking into account the constant of motions, we impose that

𝑛

∑

𝑗=1

𝜖𝜔𝑗
(0)

s𝑗
= 0,

𝑛

∑

𝑗=1

𝜖𝜌𝑗
(0)

s𝑗
= 0. (23)

First Order Approximation.Rearranging the variables (i.e., the
first 𝑛 are the 𝜙𝑘, the second 𝑛 are the 𝑟𝑘, the third 𝑛 are the𝜔𝑘,
and finally the last 𝑛 are the 𝜌𝑘), the first-order approximation
of (14) is

(

̇𝜖𝜙

̇𝜖𝑟

̇𝜖𝜔

̇𝜖𝜌

) = (

0 0 𝐼𝑑 0
0 −2𝜌𝑐𝐼𝑑 0

√
𝜌𝑐𝐼𝑑

0 0 0 0
0 0 0 0

)(

𝜖𝜙

𝜖𝑟

𝜖𝜔

𝜖𝜌

)

+(

−𝜌𝑐 [c] 𝐿 0 0 0
0 − [c] 𝐿 0 0

−𝜌𝑐 [s] 𝐿 0 0 0
0 −2

√
𝜌𝑐 [s] 𝐿 0 0

)(

̌𝜖𝜙

̌𝜖𝑟

̌𝜖𝜔

̌𝜖𝜌

),

(24)

with the 𝑛 × 𝑛 identity matrix 𝐼𝑑, diagonal matrices [c] and
[s] with, respectively, the coupling strengths and the suscep-
tibility constants as entries and 𝜖𝜙 := (𝜖𝜙1

, . . . , 𝜖𝜙𝑛
), 𝜖𝑟 := (𝜖𝑟1

,

. . . , 𝜖𝑟𝑛
), 𝜖𝜔 := (𝜖𝜔1

, . . . , 𝜖𝜔𝑛
) and 𝜖𝜌 := (𝜖𝜌1

, . . . , 𝜖𝜌𝑛
), and where

the delayed perturbations are ̌𝜖𝜙 = 𝜖𝜙(𝑡 − t), ̌𝜖𝑟 = 𝜖𝑟(𝑡 − t),
̌𝜖𝜔 = 𝜖𝜔(𝑡 − t) ̌𝜖𝜌 = 𝜖𝜌(𝑡 − t).

Diagonalization. Suppose now that [s] = q[c] for some pos-
itive constant q and let 𝑂 denote an orthogonal matrix (i.e.,
𝑂

⊤
𝑂 = 𝑂𝑂

⊤
= 𝐼𝑑) with real entries such that 𝑂⊤[c]1/2𝐿

[c]
1/2

𝑂 = [𝜁], with [𝜁] being a diagonalmatrixwith the eigen-
values of the symmetric matrix [c]1/2𝐿[c]1/2 on its diagonal.
The signs of these coincide with those of the eigenvalues of 𝐿:
they are all strictly positive except for one, that is, zero.Hence,
without loss of generality, one takes 𝜁1 = 0 and 𝜁𝑘 > 0 for
𝑘 = 2, . . . , 𝑛.

Changing the basis of System (24) with a 4×4 blocmatrix
(each bloc of size 𝑛 × 𝑛) with 𝑂

⊤
[c]
−1/2 on its diagonal, we
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can decompose the original system into 2𝑛 2-dimensional
systems of the form

(

̇𝜀𝜙𝑘

̇𝜀𝜔𝑘

) = (

0 1

0 0

)(

𝜀𝜙𝑘

𝜀𝜔𝑘

) + (

−𝜌𝑐𝜁𝑘 0

−𝜌𝑐q𝜁𝑘 0

)(

̌𝜀𝜙𝑘

̌𝜀𝜔𝑘

) , (25a)

(

̇𝜀𝑟𝑘

̇𝜀𝜌𝑘

) = (

−2𝜌𝑐 √
𝜌𝑐

0 0

)(

𝜀𝑟𝑘

𝜀𝜌𝑘

) + (

−𝜁𝑘 0

−2
√
𝜌𝑐q𝜁𝑘 0

)(

̌𝜀𝑟𝑘

̌𝜀𝜌𝑘

) ,

(25b)

with 𝜀𝜙 := 𝑂

⊤
[c]
−1/2

𝜖𝜙 (resp., for 𝜖𝑟, 𝜖𝜔, 𝜖𝜌) and ̌𝜀𝜙 :=

𝑂

T
[c]
−1/2

̌𝜖𝜙 (resp. for ̌𝜖𝑟,
̌𝜖𝜔,

̌𝜖𝜌) for delayed perturbations
obtained after the change of basis.

The case 𝑘 = 1 is worked out in the appendix. For 𝑘 ̸= 1,
let us focus on the 2-dimensional systems and we rewrite
(25a)-(25b) as linear second-order time delayed differential
equations

̈𝜀𝜙𝑘
(𝑡) + 𝜌𝑐𝜁𝑘

̇𝜀𝜙𝑘
(𝑡 − t) + 𝜌𝑐q𝜁𝑘𝜀𝜙𝑘 (𝑡 − t) = 0,

̈𝜀𝑟𝑘
(𝑡) + 2𝜌𝑐

̇𝜀𝑟𝑘
(𝑡) + 𝜁𝑘

̇𝜀𝑟𝑘
(𝑡 − t) + 2𝜌𝑐q𝜁𝑘𝜀𝑟𝑘 (𝑡 − t) = 0.

(26)

The convergence towards a consensual state is hence deter-
mined by the asymptotic stability of the zero solution of (26).
Stability follows if, and only if, all roots of the corresponding
characteristic equations have strictly negative real parts (c.f.
[15] for details). For (25a), one can apply Theorem 3.3
in [16] which states that in this case the zero solution is
asymptotically stable if and only if

(I)

t𝜌𝑐𝜁𝑘 <
𝜋

2

, (27a)

(II)

t2𝜌𝑐q𝜁𝑘

𝑧

2
< cos (𝑧) ,where 𝑧 is the unique solution in

]0,

𝜋

2

[ of sin (𝑧) =
t𝜌𝑐𝜁𝑘

𝑧

,

(27b)

for 𝑘 = 2, . . . , 𝑛. We emphasize that the consensual value 𝜌𝑐
influences the condition for convergence whereas it is not the
case for 𝜔𝑐. This leads to the idea that shaping the attractor is
more delicate than tuning the angular velocity. This has been
observed in [17].

Adaptation only on 𝜔𝑘. If there is no adaptation on the radii
(i.e., 𝜌𝑘(𝑡) := r for all 𝑘 and 𝑡), then (25b) reduced to

̇𝜀𝑟𝑘
(𝑡) = −2r𝜀𝑟𝑘 (𝑡) − 𝜁𝑘𝜀𝑟𝑘

(𝑡 − t) (28)

for which the zero solution is asymptotically stable provided
(c.f. [18] for details)

4r
2
< 𝜁

2

𝑘
, t < ̌t with ̌t =

cot−1 (−2r/√𝜁

2

𝑘
− 4r2)

√𝜁

2

𝑘
− 4r2

.

(29)

The zero solution is unstable when t > ̌t. Note that stability is
guaranteed for any t when 𝜁

2

𝑘
< 4r2 or 𝜁2

𝑘
= 4r2 ̸= 0.

No Time Delay in the Coupling Dynamics. If there is no time
delay in the coupling dynamics (i.e., the coupling dynamics
is defined as in (11) with no delay), then (26) becomes, for
𝑘 = 2, . . . , 𝑛,

̈𝜀𝜙𝑘
(𝑡) + 𝜌𝑐𝜁𝑘

̇𝜀𝜙𝑘
(𝑡) + 𝜌𝑐q𝜁𝑘𝜀𝜙𝑘 (𝑡 − t) = 0, (30a)

̈𝜀𝑟𝑘
(𝑡) + (2𝜌𝑐 + 𝜁𝑘)

̇𝜀𝑟𝑘
(𝑡) + 2𝜌𝑐q𝜁𝑘𝜀𝑟𝑘 (𝑡 − t) = 0. (30b)

InvokingTheorem 3.5 in [16], the zero solution for (30a) and
(30b) is asymptotically stable if and only if.

For (30a)

t
2
𝜌𝑐q𝜁𝑘 + (𝑧

2
+ t
2
(𝜌𝑐𝜁𝑘)

2
) cos (𝑧) > 0,where 𝑧 is the

unique solution in ]0, 𝜋
2

[ of 𝑧 sin (𝑧) = t𝜌𝑐𝜁𝑘 cos (𝑧) ,
(31)

for (30b)

− 2t
2
𝜌𝑐q𝜁𝑘+(𝑧

2
+ t
2
(2𝜌𝑐 + 𝜁𝑘)

2
) cos (𝑧) > 0, where 𝑧 is

the unique solution in ]0,

𝜋

2

[ of 𝑧 sin (𝑧)

= t (2𝜌𝑐 + 𝜁𝑘) cos (𝑧) ,
(32)

for 𝑘 = 2, . . . , 𝑛.

Summary. For a network (with arbitrary topology but with
symmetric, positive entries adjacencymatrix) ofHopf oscilla-
tors (as defined in Section 2.1 by (8)) interacting through time
delayed Kuramoto type coupling (as defined in Section 2.2 by
(11)) and with time-delay adaptive mechanisms (as defined
in Section 2.3 by (13)) on the frequencies and amplitudes
of the local systems—in other words, for (14), we have the
following.

(I) two constants of motions (c.f. (15)),
(II) the existence of a consensual oscillatory state (c.f.

(17)),
(III) the consensual oscillatory state is linearly (i.e., locally)

stable if all the roots of characteristic equations
corresponding to (26) have strictly negative real parts,

(IV) if there is no adaptation on the radii, the consensual
oscillatory state is linearly (i.e., locally) stable if (27a),
(27b), and (29) hold,

(V) if there is no delay in the coupling dynamics, the
consensual oscillatory state is linearly (i.e., locally)
stable if (31), and (32) hold.

3.1. Miscellaneous Remark: Delayed Stabilization Mechanism.
In this section we discuss the particular case arising when the
delay is introduced only in the stabilization mechanism (i.e.,
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dissipative part) of the local dynamics.The dynamical system
is

̇

𝜙𝑘 (𝑡) = 𝜔𝑘 (𝑡) + c𝑘

𝑛

∑

𝑗=1

𝑙𝑘,𝑗𝑟𝑘 (𝑡) 𝑟𝑗 (𝑡) sin (𝜙𝑘 (𝑡) − 𝜙𝑗 (𝑡)) ,

𝑘 = 1, . . . , 𝑛,

̇𝑟𝑘 (𝑡) = −𝑟𝑘 ((𝑡 − t)
2
− 𝜌𝑘 (𝑡)) 𝑟𝑘 (𝑡)

− c𝑘

𝑛

∑

𝑗=1

𝑙𝑘,𝑗𝑟𝑗 (𝑡) cos (𝜙𝑘 (𝑡) − 𝜙𝑗 (𝑡)) , 𝑘 = 1, . . . , 𝑛,

�̇�𝑘 (𝑡) = s𝑘

𝑛

∑

𝑗=1

𝑙𝑘,𝑗𝑟𝑘 (𝑡) 𝑟𝑗 (𝑡) sin(𝜙𝑘(𝑡) − 𝜙𝑗(𝑡)) , 𝑘 = 1, . . . , 𝑛,

̇𝜌𝑘 (𝑡) = −s𝑘

𝑛

∑

𝑗=1

𝑙𝑘,𝑗𝑟𝑗(𝑡)
2
, 𝑘 = 1, . . . , 𝑛.

(33)

Equations (33) still admit the existence of a consensual
oscillatory state and two constants of motion as in (15) and in
(17), respectively. Linear stability analysis of the consensual
state reduces to the study of

̈𝜀𝜙𝑘
(𝑡) + 𝜌𝑐𝜁𝑘

̇𝜀𝜙𝑘
(𝑡) + 𝜌𝑐q𝜁𝑘𝜀𝜙𝑘 (𝑡) = 0, (34a)

̈𝜀𝑟𝑘
(𝑡) + 2𝜌𝑐

̇𝜀𝑟𝑘
(𝑡 − t) + 2𝜌𝑐q𝜁𝑘𝜀𝑟𝑘 (𝑡) = 0, (34b)

for 𝑘 = 2, . . . , 𝑛. The zero solution for (34a) is asymptotically
stable. For (34b), we apply Theorem 3.4 in [16] which states
that in this case the zero solution is asymptotically stable if
and only if

(I)

∃𝑧 ∈ Z≥0 := {0, 1, 2, . . .} such that

(2𝑧 − 1) 𝜋 + (

𝜋

2

) < t√2𝜌𝑐q𝜁𝑘

< 2𝑧𝜋 + (

𝜋

2

)

(35)

(II)

0 > −2t𝜌𝑐 > max{ (2𝑧 − 1) 𝜋 + (

𝜋

2

)

− (

2t2𝜌𝑐q𝜁𝑘

(2𝑧 − 1) 𝜋 + (𝜋/2)

) ,

− (2𝑧𝜋 + (

𝜋

2

))

+(

2t2𝜌𝑐q𝜁𝑘

(2𝑧𝜋 + (𝜋/2))

)} ,

(36)

for 𝑘 = 2, . . . , 𝑛.

4. Applications

Conceptually, the problem of reliably distributing time and
frequency among several spatial remote locations is a “leit-
motiv” in applications ranging from basic metrology, naviga-
tion and position determination, signal processing, computer
communications, energy distribution networks, swarms
robotics, bioengineering, multiagents systems, life sciences,
acoustics, and musical art to give but only a highly non-
exhaustive list. Presently, a strong research impetus is devoted
to complex interacting oscillating systems able to exhibit
self-adaptive capabilities leading to a resilient consensual
dynamic. Whatever the configurations under study, commu-
nication delays between the collection of interacting subparts
of the global systems are physically unavoidable. Depending
on the underlying time scales, delays do strongly affect the
resulting dynamics. Our class of models explicitly study the
influence of delays and in particular their destabilizing effects,
that modify the instantaneous behavior. By an appropriate
tuning of control parameters (e.g., susceptibility constants),
our class ofmodels offer, via a unique formalism, the possibil-
ity to continuously explore interacting configurations ranging
from slave-master (i.e., system-environment relationship) to
fully decentralized regimes.

Alternatively, wemay view this problematic in the context
of soft-controlled systems which presently receive a sustain
attention [19]. Here, a swarm of agents is infiltrated by a lure
agent (sometimes called a shill in economy). While the lure
exhibits all the features of any ordinary agent, it can be exter-
nally controlled by an operator. As the interactions between
the lure and any agent of the swarm remain unaffected (i.e.,
the lure remains incognito to ordinary agents), the external
control of the lure can ultimately drive the whole population
to a specific configuration. In our class of dynamics, a suitable
choice of the susceptibility constant of a given local system
(i.e., oscillator) may convert it into a shill. Indeed, in view of
(21), the ultimate consensual values 𝜔𝑐 and 𝜌𝑐 are weighted
averages. Such weighted averages can be made to be strongly
dependent on a very insensitive shill-stubborn to any external
influence (i.e., with a very low susceptibility constant).

In absence of time delays, convergence towards a consen-
sual state is observed even for large heterogeneities (widely
dispersed initial frequencies and radii and large discrepancies
among the susceptibility constants). Hence, a shill agent can
be easily introduced. However, our present study shows, that
time delays restrict the conditions for convergence towards
a consensual state. As a consequence, the implementation
of a lure is more delicate matter (i.e., here, the dynamics is
far more sensitive to the value taken by the susceptibility
constants).

5. Numerical Simulations

Adaptation on 𝜔𝑘 and 𝜌𝑘. We consider four Hopf oscillators
interacting on a network with topology as in Figure 1. We
choose the coupling strengths and susceptibility constants
as {c1, . . . , c4} = {0.1, 2, 5, 3} and s𝑘 = 0.8c𝑘 for 𝑘 = 1, . . . , 4

(i.e., q = 0.8). The time delay is t = 0.1. The initial function
(i.e., history) is (𝜙𝑘(𝑡), 𝑟𝑘(𝑡), 𝜔𝑘(𝑡), 𝜌𝑘(𝑡)) = (𝑡, 1, 1, 1) for
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Figure 1: Network topology.
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Figure 2: Time evolution of𝜔𝑘 (Figure 2(a)) and 𝜌𝑘 (Figure 2(b)) for
fourHopf oscillators, interacting through the network in Figure 1. In
both figures, all variables converge towards a constant and common
consensual value.

𝑡 ∈ [−t, 0[, having a jump at 𝑡 = 0 with values (𝜙𝑘(0), 𝑟𝑘(0),
𝜔𝑘(0), 𝜌𝑘(0)) that are randomly uniformly drawn from ]−0.1,

0.1[ × ]0.9, 1.1[ × ]0.9, 201.1[ × ]0.9, 1.1[ with the exception
for 𝜔1(0) = 0.9. The 𝜌𝑘(0) are rescaled such that the con-
sensual value 𝜌𝑐 is one.

The resulting dynamics is shown in Figure 2. With the
same initial conditions, we carry out another numerical sim-
ulation with here t = 0.12. This violates Condition (27b) for
𝑘 = 4 and hence the network does not converge towards a
consensual state. This is shown in Figure 3.

Note that in Figure 2(a), the 𝜔𝑘(0) converge close to 0.9,
that is, close to the initial value 𝜔1(0). This because the first
oscillator’s susceptibility is “small” and hence it is this local
system that acts as a shill. It interacts with its neighbor in the
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Figure 3: Time evolution of𝜔𝑘 (Figure 3(a)) and 𝜌𝑘 (Figure 3(b)) for
fourHopf oscillators, interacting through the network in Figure 1. In
both figures, no common consensual value is reached.

same way as they act with it. It can control the behavior of the
network and this without being connected to all other local
systems.

In the extreme case, when s𝑘 = 0 for all 𝑘 (i.e., no adap-
tation), (14) describe the dynamics of coupled oscillators
with different limit cycles and frequencies and delayed inter-
actions. For small frequency and attractor’s shape hetero-
geneities, the network is able to synchronize. In this case (i.e.,
without adaptive mechanisms for 𝜔𝑘 and 𝜌𝑘), several numer-
ical simulations show that for delayed time t = 0.1175

synchronization is not systematically attained (i.e., it depends
on the initial conditions)—whereas it is attained in the
absence of the time delay (i.e., t = 0). On the other hand,
when the adaptive mechanisms are switched on (i.e., s𝑘 =

0.8c𝑘 > 0 for all 𝑘), a consensual state is reached—the linear
stability criteria are still satisfied with t = 0.1175. Summariz-
ing, here adaptation enhances the syntonization capability of
the network.

Adaptation only on 𝜔𝑘. Two Hopf oscillators, both having
the same radius for the attractor (i.e., 𝜌𝑘 = r = 0.1 for 𝑘 =

1, 2), are coupled with coupling strengths and susceptibility
constants as {c1, c2} = {1, 14} and s𝑘 = c𝑘 for 𝑘 = 1, 2 (i.e.,
q = 1). The time delay is t = 0.1057. The initial function
(i.e., history) is (𝜙𝑘(𝑡), 𝑟𝑘(𝑡), 𝜔𝑘(𝑡)) = (𝑡,

√
0.1, 1) for 𝑡 ∈

[−t, 0[, having a jump at 𝑡 = 0 with values (𝜙𝑘(0), 𝑟𝑘(0),

𝜔𝑘(0)) that are randomly uniformly drawn from ] − 0.1,

0.1[ × ]
√
0.1−0.05, √0.1+0.05[ × ]0.9, 1.1[. Under this con-

figuration, Conditions (27a)-(27b) are satisfied (hence
the zero solution of (25a) is asymptotically stable) but
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Figure 4: Time evolution of 𝑟𝑘 (Figure 4(a)) and 𝜔𝑘 (Figure 4(b))
for two Hopf oscillators. The two oscillators manage to adapt
their frequencies while their radii do not converge towards their
respective attractor.

not Condition (29)—the time delay is too large. Figure 4
displays the resulting dynamics. Observe that the radii do
not converge towards their attractor. However, the oscillators
still adapt their frequencies.

6. Conclusion

It is more the rule than the exception that parameter adap-
tation in dynamical systems can be achieved via delayed
mechanisms. This therefore converts ordinary differential
equations arising in absence of delay to functional differential
equations. Stability issues become more difficult to discuss
since, dealing with functional differential equations, an infi-
nite number of degrees of freedom is introduced into the
dynamics. For the class of oscillatory networks with paramet-
ric adaptation we here considered, we are able to observe how
the time delay affects the adaptation mechanisms. While it is
intuitively expected, that large delays are likely to destabilize
the dynamics, we are here able to analytically quantify the
underlying critical delays. The analytical linear stability dis-
cussion is made possible since, for our class of dynamics,
stability issues can be reduced to the study of two linear
second order functional differential equations for which
suitable theorems can be found. Finally, we emphasize that
numerical simulations show that adaptationmay enhance the
emergence of commondynamical patternwhereas in classical
synchronization, time delays may be too large for synchro-
nous motion to be attained.

Appendix

Assuming that all perturbations 𝜀𝜙𝑘
, 𝜀𝑟𝑘

, 𝜀𝜔𝑘
, 𝜀𝜌𝑘

, ̌𝜀𝜙𝑘
, ̌𝜀𝑟𝑘

, ̌𝜀𝜔𝑘

and ̌𝜀𝜌𝑘
for 𝑘 = 2, . . . , 𝑛 converge to zero, let us now study the

case for 𝑘 = 1. Here, 𝜁1 = 0 and so

̇𝜀𝜙1
= 𝜀𝜔1

, ̇𝜀𝜔1
= 0,

̇𝜀𝑟1
= −2𝜌𝑐𝜀𝑟1

+
√
𝜌𝑐𝜀𝜌1

, ̇𝜀𝜌1
= 0,

(A.1)

and therefore 𝜀𝜔1(𝑡) = 𝜀𝜔1
(0) and 𝜀𝜌1(𝑡) = 𝜀𝜌1

(0) for all 𝑡. Both
of these constants 𝜀𝜔1(0) and 𝜀𝜌1

(0) are zero. This is because
the first orthonormal base vector (i.e., the normalized eigen-
vector for the eigenvalue 𝜁1 = 0) is C(1/

√
c1, . . . , 1/√c𝑛)

(with C := (∑

𝑛

𝑗=1
(1/c𝑗))

−1/2) and the first coordinate of
𝑂

⊤
[c]
−1/2

𝜖𝜔 and 𝑂
⊤
[c]
−1/2

𝜖𝜌 is, respectively,

𝜀𝜔1
(0) = C

𝑛

∑

𝑗=1

𝜖𝜔𝑗
(0)

c𝑗
= Cq

𝑛

∑

𝑗=1

𝜖𝜔𝑗
(0)

s𝑗
,

𝜀𝜌1
(0) = C

𝑛

∑

𝑗=1

𝜖𝜌𝑗
(0)

c𝑗
= Cq

𝑛

∑

𝑗=1

𝜖𝜌𝑗
(0)

s𝑗
,

(A.2)

since we supposed that s𝑗 = qc𝑗 for all 𝑗. These two sums
are zero according to (23). Therefore, ̇𝜀𝑟1

= −2𝜌𝑐𝜀𝑟1
(i.e.,

lim𝑡→∞𝜀𝑟1(𝑡) = 0) and 𝜀𝜙1
(𝑡) = 𝜀𝜙1

(0) for all 𝑡. This allows
one to conclude that all perturbations 𝜀𝑟𝑘 , 𝜀𝜌𝑘 , and 𝜀𝜔𝑘

decay
for all 𝑘. We now need to study how the perturbations on the
phases evolve. Since 𝜖𝜙 = [c]

1/2
𝑂𝜖𝜙, then

lim
𝑡→∞

𝜖𝜙𝑘
(𝑡) = lim
𝑡→∞

√c𝑘

𝑛

∑

𝑗=1

𝑜𝑘,𝑗𝜀𝜙𝑗
(𝑡) = √c𝑘𝑜𝑘,1 lim

𝑡→∞
𝜀𝜙1

(𝑡)

= C𝜀𝜙1 (0) = C
2

𝑛

∑

𝑗=1

𝜖𝜙𝑗
(0)

c𝑗
=

∑

𝑛

𝑗=1
(𝜖𝜙𝑗

(0) /c𝑗)

∑

𝑛

𝑗=1
(1/c𝑗)

,

(A.3)

since lim𝑡→∞𝜀𝜙𝑘(𝑡) = 0 for 𝑘 = 2, . . . , 𝑛, 𝑜𝑘,1 = C1/
√
c𝑘 (𝑘 =

1, . . . , 𝑛) and the first coordinate of the product𝑂⊤[c]−1/2𝜖𝜙 is
𝜀𝜙1

(0) = C∑

𝑛

𝑗=1
(𝜖𝜙𝑗

(0)/c𝑗). Hence, all perturbations converge
towards zero except those on the phase that all converge
towards a constant (i.e., average phase perturbation). This
corresponds to a phase shift.
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