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Thermoelectric effects in microstructured permalloy (Py)/Au wires are investigated using space-

and time-resolved measurements based on scanning focused laser heating. Supported by numerical

simulations of the temperature distribution, we identify two major contributions to the laser-

induced signals: (i) the Seebeck effect due to thermocouples of Py/Au and (ii) the anomalous

Nernst effect (ANE) in Py with a coefficient of NANE � 1:6 lV=K. ANE-based magnetic imaging

of magnetic domains and magnetization reversal is demonstrated with a lateral resolution on the

lm scale. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789974]

Recent advancements in the field of spin caloritronics1

have revealed effects arising from the interaction between

spin and heat currents. A particularly intruiging example is

the spin Seebeck effect2–5 (SSE), originally observed in

permalloy (Py)/platinum hybrid structures via the inverse

spin-Hall effect. It describes the generation of a spin current

when a ferromagnet (FM) is subjected to a temperature

gradient. Here, the precise control of the temperature gradi-

ent is essential to identify and avoid spurious thermoelectric

effects, in particular, in the transverse SSE configuration.6–9

Using laser-heating of a yttrium-iron garnet/platinum

hybrid structure in the longitudinal SSE configuration,

Weiler et al. reported spatially resolved measurements of

both the anomalous Nernst effect (ANE) and the SSE.10 In

lateral FM/normal metal (NM) structures similar to the trans-

verse SSE geometry, the effect of local temperature gra-

dients have only been studied using Joule heating.11 A

detailed quantitative characterization of laser-induced tem-

perature distributions and the resulting thermovoltages in

FM/NM structures is lacking. A quantitative understanding

is relevant however for spin caloritronics1 and the recently

reported thermoelectric detection of spin waves,12 where an

interplay of thermogalvanic and spin-related effects occurs.

In this letter, we study in detail laser-induced thermovol-

tages in lateral Py/Au wire structures. The choice of materi-

als and film thicknesses excludes the SSE so as to focus on

thermovoltages. Large Seebeck and ANE voltages are

observed. Both effects are found to depend differently on the

laser position and exhibit different time evolution, which can

be accounted for by numerical modelling. We use the

observed local character of the ANE to perform magnetic

imaging on the lm length scale. Importantly, we show that

time-dependent experiments are powerful to discriminate

between the different thermovoltages.

Py wires, 4–10 lm wide and 22 nm thick, crossed by

2 pairs of 2 lm wide and 50 nm thick Au wires [Fig. 1(a)]

were prepared on single crystalline MgO substrates using a

2-step lift-off process and electron beam evaporation. Laser-

heating experiments were conducted using a linearly polar-

ized laser beam from either a solid state laser at k ¼ 532 nm

or a laser diode (LD) (see Fig. 3(a)) at k ¼ 660 nm. We

focused the laser light by a microscope objective (Mitutoyo

M Plan Apo, 20�) to a minimum spot size of s � 2:6 lm

(1=e2 intensity criterion) on the sample. The spot position

was controlled using an x-y-z translation stage. Reflectivity

and thermovoltage images were obtained by scanning the

laser spot across the sample surface while simultaneously

measuring the reflected intensity and the voltage drop

between one pair of wires. We go beyond Weiler et al.10 in

that we perform both steady state and time-resolved readout

of the thermovoltages. Finite element method (FEM)

FIG. 1. Spatially resolved measurements of the Seebeck effect using

scanning laser heating (spot size s � 4 lm; laser power P � 8 mW; k ¼
660 nm). (a) Reflectivity image of the structure. (b) Voltage measured

between adjacent Au wires [as indicated in (a)] as a function of laser spot

position. (c) Thermovoltage profile (circles: experimental data, solid line:

simulation data) of Py wire along the dashed line shown in (b). (d) Reflectiv-

ity image and (e) and (f) thermovoltages (smaller scan area) when measuring

the voltage drop along the Py wire [as indicated in (d)].a)jean-philippe.ansermet@epfl.ch.
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simulations of the laser-induced temperature distribution

were performed using the COMSOL MULTIPHYSICS software

package13 with material parameters taken from the material

database and Refs. 11 and 14.

First, we address the laser-induced voltages for zero

magnetic field. Due to the different Seebeck coefficients

of Py and Au (SAu ¼ 1:7 lV=K; SPy ¼ �20 lV=K),11 each

of the Py/Au interfaces forms a thermocouple (TC). Their

common cold junction temperature Tc is given by the temper-

ature of the bonding pads, which remains unaffected by the

local laser heating. The voltage measured between any pair of

Py/Au wires is therefore a direct measure of the average tem-

perature rise of the corresponding Au/Py interface above room

temperature. Figure 1(b) shows the thermovoltage measured

between two adjacent Au wires as a function of laser spot posi-

tion. The voltage reaches a local maximum/minimum (depend-

ing on the polarity of the TC) when directly heating one of the

contacted TCs, indicating that the measured voltage in fact

depends on the Py/Au interface temperature. Further confirma-

tion is provided by the agreement between FEM simulations

and experimental data for the line scan along the middle of the

Py wire [Fig. 1(c)]. Here, the simulated average temperature

rise of the TC interfaces is converted into a corresponding See-

beck voltage using DS ¼ SAu � SPy ¼ 21:7 lV=K. Remaining

discrepancies are attributed to imperfections in the real sample

geometry (rough edges) and a non-ideal laser beam profile

(i.e., not purely Gaussian).

Slightly reduced Seebeck voltages occur when meas-

uring the voltage drop along the Py wire [Figs. 1(d)–1(f)].

Due to differences in electrical conductivity, the Au layer

dominates the effective Seebeck coefficient in regions where

it covers the Py wire (Seff ¼ ðrAuSAu þ rPySPyÞ=ðrAu þ rPyÞ
� 0:26 lV=K). Hence, the configuration depicted in Fig.

1(d) can be approximated by an alternating series of wire

sections with coefficients SPy and Seff . Temperature differen-

ces between left and right edges of the Au wire thus give rise

to a Seebeck voltage, which results in the pattern shown in

Fig. 1(e). The agreement between simulation data and exper-

imental data [Fig. 1(f)] confirms this explanation.

Second, we address magnetization-dependent data. For

this, we apply an in-plane magnetic field H as sketched in

Fig. 2(a) and measure voltages Vx and Vy with and without a

DC current IDC. The magnetoresistance data shown in Fig.

2(b) are consistent with the anisotropic magnetoresistance

(AMR) effect and indicate a reversal field of Hc � 40 Oe for

the wire section between the inner Au wire pair [see Fig.

2(a)]. Magnetothermal voltages are measured for two fixed

positions of the laser spot [see Fig. 2(a)]. Both spot positions

are chosen such that the offset voltage due to the Seebeck

effect [see Fig. 1] is minimized. Due to the presence of the

substrate, the laser-generated temperature gradient rT has a

strong component along z.

The magnetization-dependent voltage due to the ANE

follows EANE ¼ �NANE m� $T, with reduced magnetiza-

tion m ¼M=jMj and Nernst coefficient NANE. When m

is aligned with the wire, i.e., the x-direction, a voltage

Vy;ANE / mx is generated along its width, as shown by the

hysteresis loop in Fig. 2(c) for spot position (1). The voltage

Vy follows an almost squared hysteresis loop with an abrupt

variation near jHcj � 40 Oe.

During magnetization reversal, m rotates and magnetic

domains with non-zero my appear. This gives rise to a volt-

age Vx;ANE / my along the wire. In Fig. 2(d), we observe

field-dependent voltage signals for 0 � jHj � Hc. Outside

these intervals, i.e., jHj > Hc, the voltage Vx is nearly con-

stant at �5 lV. At H � Hc, the maximum voltage Vx;ANE is

observed, indicating a large my-component in the wire at the

reversal field. The significant difference in peak-to-peak sig-

nal (DVx;ANE � 11:5 lV vs. DVy;ANE � 0:55 lV) is attributed

to the reduced heating power at position (1) due to a higher

reflectivity of Au and the Au layer shunting the Py wire. The

voltages Vx and Vy exhibit a remaining offset as the Seebeck

voltage is small (compare Fig. 1) but not exactly zero.

Next, we demonstrate time-resolved measurements that

are found to distinguish unequivocally Seebeck and Nernst

voltages induced by laser heating. As shown in Fig. 3(a), the

voltage is measured along x (along the Py wire) and across

one Py/Au TC. A field of jHj � 350 Oe aligns m along 45�

with respect to the wire axis. Laser pulses with a rise time of

about 3 ns [at modulation frequency (TTL) f¼ 10 kHz with

50% duty cycle] locally heat the Py wire at a distance d from

the Au wire. The resulting voltage is amplified and then

recorded by a digital storage oscilloscope (nominal amplifi-

cation factor is 20). Figure 3(b) shows the time-evolution of

the amplified laser-induced voltage Vamp with respect to the

rising edge of the laser pulse (t¼ 0 ls) for d¼ 4, 10, and

15 lm and both field orientations �H and þH. From the

time-dependent signals, we extract two contributions with

different time evolution: (i) a slowly growing increase,

which dominates the overall voltage for small d and saturates

for large t (on the order of 50 ls) and (ii) a fast-rising

magnetization-dependent offset of constant magnitude. The

m-independent part ðVþH þ V�HÞ=2 [Fig. 3(c)] varies signifi-

cantly with increasing d: while the rise time increases

(15.4 ls, 21.3 ls, and 25.8 ls), the overall signal strength

FIG. 2. AMR and ANE measured on a 4 lm wide Py wire using Vx and Vy.

(a) Measurement geometry with laser spot positions used in (c) and (d) (spot

size s � 6 lm; P � 11:7 mW; k ¼ 532 nm). (b) DR ¼ ðRðHÞ � Rð100 OeÞÞ=
Rð100 OeÞ in the absence of laser heating, derived from Vx measured at

IDC ¼ 200 lA as a function of applied field H [Rð100 OeÞ ¼ 128:9 X], indi-

cating magnetization reversal at Hc � 40 Oe. (c) ANE signal Vy / mx and

(d) Vx / my as a function of H taken at IDC ¼ 0. Small black arrows indicate

the sweep direction.
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decreases. This behavior is reproduced qualitatively by FEM

simulations of the Seebeck voltages deduced from the rise of

the temperature at the Py/Au interface [symbols in Fig. 3(c)],

confirming the Seebeck effect as the origin of this position-

dependent signal. The d-dependent rise time reflects the heat

flow process between the laser spot and the TC.

In contrast to that, the m-dependent component ðVþH

�V�HÞ=2 [Fig. 3(d)] does not exhibit a significant depend-

ence on d (as expected from the ANE) and shows a much

faster rise time of trise � 1:3 ls. As trise is setup-limited (the

pre-amp bandwidth is 1 MHz), we assume the generation of

the voltage to be instantaneous on the ls-timescale addressed

here. We therefore conclude that the ANE voltage is locally

generated at the position of the laser spot by the out-of-plane

temperature gradient. These results highlight that the two

effects can be unambiguously identified using time-resolved

measurements.

The local character of the ANE signal now allows us to

image magnetic domains on the lm scale. We use the config-

uration of Fig. 2(d) where the voltage is measured along the

Py wire (i.e., Vx;ANE / my) [Fig. 4(a)]. The data are taken

about 500 lm away from the TCs to avoid Seebeck-induced

voltages. The field is applied at an angle a � 45� [Fig. 4(b)].

The ANE voltage maps in Figs. 4(c) and 4(d) illustrate the

spatial distribution of my for selected magnetic fields (scan

size 50� 15 lm2, step size 500 nm). In order to start from a

homogeneously magnetized wire, the magnetization is “set”

by applying a field of jHj � 500 Oe prior to recording images.

In agreement with the direction of the applied field, a positive

(negative) VANE indicates a positive (negative) component of

m along y. This is confirmed by the top and bottom images in

Figs. 4(c) and 4(d) that show uniformly magnetized states of

the wire (indicated by black arrows). Assuming m k H at

large jHj, we estimate the Nernst coefficient according to10

NANE �
VANE

sinðaÞ �
w

s2 p
8
ðrzTÞmax

;

with wire width w¼ 10 lm and spot size s � 2:6 lm.

ðrzTÞmax � 17 K=lm is the average out-of-plane tempera-

ture gradient at the center of the laser spot as deduced from

FEM simulations. The factor of p=8 arises from the approxi-

mation of the Gaussian distribution of ðrzTÞ by an equiva-

lent square profile of width s. VANE � 7:3 lV is the

maximum of the offset-corrected absolute voltage in the cen-

ter of the wire. The factor 1=sinðaÞ accounts for the fact that

FIG. 3. Time-resolved measurement of ANE and Seebeck effect. (a) Measurement setup (spot size s � 5:6 lm; Ppeak � 39:5 mW; k ¼ 660 nm). (b) Voltage

drop Vamp for d ¼ f4; 10; 15g lm for field orientations þH and �H [see (a)]. For clarity, the curves are offset by 2 mV. Field-independent (c) and field-

dependent (d) part of the data shown in (b). Symbols in (c) show the simulated temperature rise at the Py/Au thermocouple (data are fitted to the experimental

data using one common scaling factor).

FIG. 4. ANE-based magnetic imaging of magnetization reversal in a 10 lm

wide Py wire (spot size s � 2:6 lm; P � 7:8 mW; k ¼ 532 nm). (a) Reflec-

tivity image (50� 20 lm2). VANE is measured along the Py wire as a func-

tion of laser spot position. (b) Field orientation (a � 45�) and laser spot scan

direction. (c) and (d) Sequence of VANE images with V / my [see Fig. 2(c)]

for both sweep directions of the magnetic field, illustrating the magnetiza-

tion reversal.
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only the voltage component along x is measured. We obtain

a coefficient of NANE � 1:6 lV=K. This is close to what has

been reported for Py (2.6 lV/K),11 and significantly higher

than the value for Ni (0.06 lV/K) reported in Ref. 10.

As expected for a 10 lm wide wire,15 the magnetization

reversal proceeds via the formation and growth of magnetic

domains of reversed magnetization (see pronounced domain

patterns at 67.1 Oe). Interestingly, the patterns during the re-

versal process are found to be reproducible instead of ran-

domly generated in each measurement. This is illustrated in

Figs. 5(a) and 5(b), where we plot 20 lm long line-scans

taken along the center of the Py wire as a function of mag-

netic field for two different heating powers (P � 3:9 mW

and 39 mW). The x-positions where the reversed domains

start to appear (blue regions) are consistently the same. The

increased heating power, however, causes the reversal field

to decrease by 1.3 Oe due to thermally assisted domain wall

propagation and annihilation (see dashed horizontal lines).

Local hysteresis loops are depicted in Figs. 5(c) and 5(d),

which show VANE vs. H for two selected positions [indicated

by vertical dashed lines in Fig. 5(a)]. The reversal fields of

about 3 Oe and 8 Oe agree with the values in Fig. 5(a). We

attribute the self-similar behavior of domain formation to

imperfections in the shape of the wire, giving rise to nuclea-

tion sites and partial pinning of magnetic domains. Our

results demonstrate that ANE-based magnetic imaging can

be employed to analyze local details of the reversal mecha-

nism on the lm scale. Focussing the laser down to the diffrac-

tion limit further enhances the spatial resolution. The

technique is thus complementary to magneto-optical Kerr

effect microscopy by which the functionality of Py nanowires

for, e.g., racetrack-memory type devices has been studied.16

Here, ANE-based microscopy is expected to be versatile by

avoiding the polarization analysis of the reflected laser light.

In conclusion, we demonstrated that time-resolved meas-

urements are key to identify and separate Seebeck and Nernst

contributions to the thermovoltages in lateral Py/Au struc-

tures. Our results can be accounted for by numerical simula-

tions of the temperature profiles obtained by laser-induced

heating. Furthermore, magnetic imaging based on the anoma-

lous Nernst effect was shown to be a viable imaging tech-

nique for the characterization of the magnetization structure

on the lm length scale. The method is illustrated by analyz-

ing the magnetic reversal behavior of a narrow Py wire.
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FIG. 5. (a) and (b) Field-dependent line scans: horizontal lines represent the

ANE voltage as a function of laser spot position (scanned along the center of

a Py wire) for different magnetic fields H (y-axis) close to the reversal field.

(b) Same measurement with increased laser power. (c) and (d) Local hyster-

esis loops reflecting my measured at positions c and d indicated in (a).
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