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Learning Context Cues for Synapse Segmentation

Carlos Becker, Karim Ali, Graham Knott, and Pascal Fua

Abstract—We present a new approach for the automated
segmentation of synapses in image stacks acquired by Elec-
tron Microscopy (EM) that relies on image features specifically
designed to take spatial context into account. These features
are used to train a classifier that can effectively learn cues
such as the presence of a nearby post-synaptic region. As a
result, our algorithm successfully distinguishes synapses from the
numerous other organelles that appear within an EM volume,
including those whose local textural properties are relatively
similar. Furthermore, as a by-product of the segmentation,
our method flawlessly determines synaptic orientation, a crucial
element in the interpretation of brain circuits. We evaluate our
approach on three different datasets, compare it against the state-
of-the-art in synapse segmentation and demonstrate our ability
to reliably collect shape, density, and orientation statistics over
hundreds of synapses.

Index Terms—Synapse Segmentation, AdaBoost, Pose-

indexing, Electron Microscopy, Connectomics.

I. INTRODUCTION

New imaging technologies have been a key driver of recent
advances in neuroscience. In particular, Focus Ion Beam
Scanning Electron Microscopy (FIBSEM) can now deliver
a dSnm nearly isotropic sampling and produce image stacks
that reveal very fine neuronal structures. Stacks such as the
one depicted in Fig. [T[(a) can be used to analyse a variety of
components that are critical to understanding brain function.
For example, evidence obtained from EM images suggests
that the size, shape and distribution of synapses vary during
the course of normal life but also under specific pathological
conditions [27]. Similarly, EM imaging has provided new
insights into synaptic signaling [21] and its relationship to mi-
tochondrial activity [25] as well as to some neuro-degenerative
diseases [19]], [32].

Currently, analysis is carried out by manually segmenting
the various structures of interest using tools such as Fiji [33]].
This is not only a tedious and time consuming process but also
an error-prone one. Thus, while the growing number of EM
datasets offers a unique opportunity to unlock new concepts
of neuronal function, the required amount of human effort
remains a major bottleneck. There has therefore been great
interest in automating the process.

EM data poses unique challenges for automatic segmen-
tation algorithms in part because the volumes are heavily
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cluttered with structures that exhibit similar textures and are
therefore difficult to distinguish based solely on local image
statistics. The synapse segmentation task is well illustrative
of this difficulty. As shown in Fig. [T{b), a synapse can
only be distinguished from other structures by relying on
contextual clues such as the presence of a nearby cluster
of vesicles. Well-established criteria enable human experts
to identify synapses: densities on the pre-synaptic and post-
synaptic membranes, vesicles in the pre-synaptic axon terminal
and finally a synaptic cleft, as shown in Fig.[I(c). It is therefore
essential for an automatic segmentation method to proceed in
a similar fashion.

Current methods for automated synapse detection either
require first finding cell membranes [28]], or operate on individ-
ual slices [14], thus failing to leverage the 3D structure of the
data. By contrast, the recent method of [20] operates entirely
in 3D. However, the latter does not exploit the contextual
clues that allow human experts to distinguish synaptic clefts
from other membranes exhibiting similar textures such as
myelin sheaths. More generally, though progress has been
made towards the segmentation of various organelles from EM
stacks, context has yet to be exploited in a meaningful way.

In this work, we propose an approach designed to take such
contextual cues into account and emulate the human ability to
distinguish synapses from regions that merely share a similar
texture. Our method is fully automated, processes the data
directly in 3D and is specifically designed to leverage context
cues. We run various filters over the EM stack and compute
our features over arbitrarily sized cubes placed at arbitrary
locations inside an extended neighborhood of the voxel to be
classified. As this generates a feature representation for each
voxel in the order of a hundred thousand, we rely on Boosting
to select the relevant filter channels as well as the relevant
cube locations and sizes. The resulting classifier is thus highly
flexible, able to utilize context from a high variety of regions
in the neighborhood of the voxel of interest.

We apply our classifier to the synapse segmentation task
and compare our results with the state-of-the-art synapse
segmentation method of Kreshuk et al. [20], a fully automated
3D approach which does not utilize context. By honing in
on the presence of pre-synaptic vesicles and post-synaptic
regions in addition to local texture, our method significantly
outperforms the approach of [20]. As an added benefit, our
method also flawlessly identifies synaptic orientation, a key
and hitherto unexplored task.

We validate our method on three datasets obtained from
three different regions of the adult mammalian brain: the
Somatosensory cortex, the Hippocampus, and the Cerebellum.
We demonstrate our ability to automatically process large EM
stacks, reliably collect density, shape and orientation statistics
from hundreds of synapses.
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Importance of context for synapse segmentation. (a) A FIBSEM stack with Snm resolution in all three directions. (b) Two close-ups on regions

containing wide dark structures that could potentially be synaptic clefts. However, only the one at the top really is one, as evidenced by the small spheres
on its right, known as vesicles. These denote the presynaptic region and are missing from the bottom image. The diagram on top of (c) depicts the three
elements that evidence the existence of a synapse, namely the synaptic cleft and the pre-synaptic and post-synaptic regions. The latter are labeled in blue and
red, respectively. (d) The features we use are designed to capture this fact. To classify a voxel (blue), we consider sums over image cubes (shown as yellow
squares) whose respective positions are defined relative to an estimated normal vector n;.

II. RELATED WORK

Prior work on segmenting neuronal structures from EM
volumes has covered a range of approaches from early at-
tempts at full manual tracing [26], [11], [10] to semi-automatic
methods requiring user initialization [7], [22], and lately fully-
automated methods [23], [16].

Manual segmentation has clear and well understood limi-
tations for the analysis of EM stacks. One notable example
can be found in [37], where the successful segmentation of
the nervous system of a nematode worm, containing only 302
neurons, necessitated a sustained effort over a ten year period.
The need for expert knowledge and the growing size of EM
datasets render manual segmentation impractical and highlight
the need for automation.

Semi-automated methods based on active contours and level
sets [41, 221, [7], [310, [17], [24] as well as graphcuts [29]
have achieved some measure of success on EM images.
However, these methods require careful manual initialization
of each object to be segmented, which is done by supplying
seed points and tuning various parameters. Though active
interactions and feedback may in the long term prove essential
to the successful large-scale segmentation of EM stacks, the
amount of user input required by these methods remains
prohibitively high. Ultimately, when applied to large EM data
sets containing millions or even billions of structures, these
semi-automatic segmentation methods suffer from the same
intractability issue as their manual counterparts.

Recent research has focused on methods relying on machine
learning, requiring little to no user interaction. Among those,
several follow the same methodology by performing a segmen-
tation in individual 2D EM slices before linking the segmented
regions across slices in 3D. For instance, in [28]], a perceptron
operating on Hessian ridge was shown to provide promising

results in segmenting membranes. However, in addition to the
post-processing required to link membranes across the various
2D slices, this method also suffers from the need to remove
internal sub-cellular structures from the segmentation result.
In [36] a Boosted classifier operating on Gabor filter-based
features is used to segment mitochondria in 2D slices while
a connected component analysis generates the desired 3D
segmentation. In [30], 2D mitochondria segmentation followed
by simple 3D interpolation is obtained from a number of
classifiers including Adaboost, Support Vector Machines and
Nearest Neighbor trained on Texton features. Finally, in [18]], a
random forest classifier trained with Haar-like features is used
to detect membranes in individual EM slices, while a graph
cut optimization is used to enforce perceptual grouping and
3D continuity constraints.

While slice-by-slice methods have been shown to provide
both reasonable segmentation results and computational sav-
ings, they fail to leverage the consistency of the structures
in all three dimensions. This situation arises in part from
the fact these approaches were designed for anisotropic EM
modalities, such as transmission electron microscopy (TEM).
Though the reduced resolution in the z-direction makes slice-
by-slice approaches a reasonable choice, recent works [16],
(150, 30, have demonstrated the benefits of processing
the data directly in 3D even in highly anisotropic image
stacks. More generally, the appearance of objects in 2D slices
can be significantly altered depending on the 3D orientation
of the object with respect to the stack axes. Given that
such variability is far less pronounced when observing the
objects in 3D, processing EM stacks slice by slice significantly
complexifies the segmentation task and can prove exceedingly
detrimental when compared to direct 3D processing. Such a
strategy is clearly foolhardy in the case of 2D images, where
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the analogue would consist of a column by column or a row
by row processing.

For these reasons, a number of works have addressed the
segmentation of various neuronal structures directly in 3D.
For example, [[16l] uses a multilayer convolutional artificial
neural network (ANN) to segment neuronal membranes. By
employing a convolutional ANN, [16] removes the need to
hand design features and instead learns the necessary filters
directly from the data. Andres et al. [3]] propose a bottom-
up hierarchical segmentation framework that uses a Random
Forest classifier and watersheds to segment neural tissue.
Though both of these methods produce excellent membrane
segmentation results, they are designed for datasets prepared
with an extra-cellular stain which highlights cell membranes
while suppressing the various intracellular structures. In [34],
an affinity graph that can be paired with standard partitioning
algorithms is generated using a convolutional ANN. Much as
in [16], this method learns both the features as well as the
decision function directly from the data.

Even though progress has been made towards the automatic
segmentation of neural structures, none of the aforementioned
methods, whether operating in 2D or in 3D, can reliably
segment objects such as synapses, which are characterized by
specific arrangements of structures in addition to local textural
cues. Though current algorithms generally compute features
in a neighborhood around the voxel of interest, they do not
exploit context in a meaningful way: features are either pooled
into global histograms [23[], [30], are computed in regions
centered around the voxel of interest [36], [16], [3)], [IL&I],
or operate on a limited neighborhood around the voxel of
interest [[16]], [34]]. The resulting classifiers are therefore unable
to hone in on arbitrary localized context cues.

The importance of context for the purposes of segmentation
has been highlighted by a few attempts to leveraging ad-hoc
and heuristic contextual cues to improve segmentation. For
instance, [36] uses vesicle detection cues to suppress false
alarms on vesicle clusters that can interfere with mitochondria
segmentation, while [17]], [35] propose to sample features in
a 2D stencil neighborhood around the pixel of interest. By
allowing the classifier to measure features computed at various
locations in addition to the pixel of interest, [17)], [35] are
able to identify membranes at regions of minor discontinuities.
However, by relying on a pre-determined set of locations from
which features can be sampled, these approaches strongly
restrict the use of context. By contrast, our approach learns the
relevant context automatically, overcoming these limitations.

Closest to our work is the state-of-the-art method of
Kreshuk et al. [20], specifically targeted to synapse seg-
mentation in isotropic image stacks. This approach relies on
voxel-wise classification, training a Random Forest classifier
that employs a set of pre-defined features such as smoothed
gradient magnitudes, Laplacian of Gaussians and Hessian and
Structure Tensor eigenvalues, evaluated at the voxel of interest.
Therefore, context can only be captured through the isotropic
Gaussian filters applied to the image stack, ignoring the
presence of the asymmetric and localized context information
generated by the pre-synaptic and post-synaptic regions.

III. PROPOSED APPROACH

We describe here our approach, which was first introduced
in [5]. Let € X = [0,1]W*H*D be an EM volume of
width W, height H and depth D. Voxels are indexed by
i € {1,....,W x H x D}, and the location of each voxel is
designated £; € N3. Our goal is to find a function ¢(z, £;) € R
that yields high scores at locations ¢; in the volume that are
part of synaptic tissue, and lower score values at those that
are not.

As shown in Fig. [I{b), it can be difficult to distinguish
synapses from other structures based solely on local texture.
Human experts confirm their presence by looking nearby for
post-synaptic densities and vesicles. This protocol cannot be
emulated simply by measuring filter responses at the target
voxel [20], pooling features into a global histogram [23]], [30]]
or relying on hand-determined locations for feature extrac-
tion [[17]], [35].

To emulate the human ability to identify synapses, we de-
sign features, termed context cues, that can be extracted in any
cube contained within a large volume centered on the voxel to
be classified at £;, as depicted in Fig. [2(b). They are computed
in several image channels using a number of Gaussian kernels,
as shown in Fig. 3] As will be discussed in Sec. this
yields more than 100, 000 potential features. We therefore rely
on AdaBoost [13] to select the most discriminative ones.

Given that synapses have arbitrary 3D orientations, we en-
sure that our context cues are computed at consistent locations
across differently oriented synapses. We rely on the pose-
indexing framework of [12], [2] to enforce this consistency.

In the remainder of this section, we describe briefly the
main structure of our context features. Their implementation
is discussed in more detail later in §

A. Context Cue Location

Let us consider a voxel located at £; and an associated unit
vector n; € R?, as in Fig. a). This unit vector is computed
so that it is normal to the synaptic cleft. Let

c, €ER? p=1,....P (1)

denote a set of P locations expressed in the common z,, ¥,, 2o
reference frame shown at the center of Fig. [J(a). These
locations are translated and rotated to occur at consistent
locations relative to a target voxel by defining,

Cf;i =¥; + R(EZ)CP 2)

where R(¢;) is a 3 x 3 rotation matrix such that

R(Zl)(070, 1)T =n;.

B. Context Cue Features

Given the cf;i locations of Eq. our goal now is to

compute image statistics inside cubic neighborhoods Nr(cf;i)
of edge length 2r centered around these locations, such as
those depicted in Fig. 2|b).

To this end, we process the original EM volume by con-
volving it with a number of different filters as depicted in
Fig. 3] Each of the resulting data cubes, in addition to the
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Fig. 2. Context cues representation: (a) context cue locations ¢, in the global coordinate system o, yo, 2o are rotated according to the orientation estimate

of the voxel of interest n; to yield locations cﬁi that are consistent. (b) At each of these locations, image channels are summed over cubes of radius r around
their center. Our approach employs AdaBoost to select the most discriminative features for synapse segmentation.

Fig. 3.

Image channels. The image is convolved with different filters and features are computed within the yellow rectangles whose coordinates are expressed

with respect to the location of the voxel to be classified and the local orientation vector n. Each H; line depicts a specific channel designed to capture

different statistical characteristics.

original one, is treated as a data channel m, and is smoothed
using several isotropic Gaussian kernels with variance o, .
We denote the gray levels in the resulting data volumes as

Hmo,, (v,2) € X, 3)

where z is the original EM volume and z represents the 3D
location. We take context cue features to be

fcp,m,onm,r (.’E,EZ) = Z Hm,anm (.’E, Z) . (4)
z €N, (cf,i)
In other words, we sum the smoothed channel output over the

cubic boxes centered at all cf;‘ for all possible values of m,

oy, and 7. This yields a set of K features, which we will
denote for simplicity
fk(l’,fi), k:].,

and which we use for classification purposes as explained next.

K ®)

C. Contextual Classifier

Given the context features fj, we create decision stumps by
simple thresholding and combine these stumps via a standard

AdaBoost procedure into a strong learner of the form

T

@ (x,4;) = Z Qi g, (0)>pe} - (6)
t=1

AdaBoost solves for Eq. @ in a stage-wise manner,

building it one term at a time by greedy minimization of

an empirical exponential loss. Our resulting classifier is pose-

indexed as its constituent features translate and rotate accord-

ing to ¢; and R(¥;) respectively.

IV. IMPLEMENTATION DETAILS

In what follows, the specifics of our implementation are pro-
vided. We follow the same notation as in §III] and summarize
all algorithm parameters in Table [I}

A. Image Channels

We broadly follow the methodology employed by [20] and
process each EM volume with several different filters, resulting
in different data channels such as those of Fig. [3] More
specifically, we use:

o The identity (original stack)
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TABLE 1
ALGORITHM PARAMETERS AND DEFAULT VALUES.

Parameter Symbol Default value
AdaBoost iterations T 2000

. . . . N,
Weighting-by-resampling ratio M= 7= 2

pos

Number of weak learners explored per iteration 2 4000
Context cue maximum distance |lep || max 40 voxels
Context cue distance quantization steps Qe 6
Context cue maximum box size Tmax 20 voxels
Context cue box size quantization steps Qr 11
Context cue ¢ quantization steps Qe 9
Context cue 6 quantization steps Qo 9
Supervoxel seed size SV, 2 voxels
Supervoxel cubeness SVin 16
Hessian scale for orientation estimation OHo = 2“\’;5 18 nm

¢ Gradient Magnitude,
o Structure Tensor Eigenvalues

The Gradient Magnitude channels are computed by first
smoothing the image with isotropic Gaussian filters of
oam = {1.0,1.6,3.5,5.0}. On the other hand, structure tensor
eigenvalues are computed at pst = {1.0,1.6,3.5,5.0} with
ost = 2. No smoothing is applied to the identity channel.
Given that there are three eigenvalues per structure tensor,
this results in a total of 17 different filtered versions of the
original EM volume, which are available to construct the weak
learners.

Note that, in contrast with our first approach [S] and with
the work of [20], we opted for a reduced set of channels.
An important observation regarding our framework lies in the
fact that our features sum the response of a filter inside a box:
In the case of linear filters and boxes larger than a single
voxel, these sums can be directly computed in the original
image channel, up to a scale factor and additional negligible
filter border effects. We were therefore able to eliminate
the Gaussian smoothing over the original image as well
as the Laplacian of Gaussian channels. Several experiments
confirmed this observation, showing no performance loss when
using the reduced set of channels w.r.t. the full set used
in [5]. Further experiments allowed us to eliminate the Hessian
Eigenvalue channel, which was found to be uninformative for
our framework as well.

B. Context Cue Parametrization

Context cue locations c¢,,p = 1,...,P in the common
reference frame are parametrized in spherical coordinates as

¢ = (llcgll o5y sin by, [yl i 2y sin By, ey | cos )

with 0 < ||cp]] < [lepllmax, 0 < 0, < mand 0 < ¢, < 27. The
parameter space is quantized uniformly in Qc, Qs and Q,
bins respectively. This is also applied to the cube edge length
2r, which is quantized in @), steps with % <7 < Tmax-

To compute our context cue features of Eq. [ efficiently,
we employ 3D integral images for each channel H,, . This

allows us to compute the sum of any channel inside an arbi-
trary cube in constant time. Note that to allow for maximum
consistency across the differently oriented synapses, the cubes
over which sums of image channel values are computed should
also be pose-indexed and hence rotate according to R(¥;).
However, this would either impose a heavy memory burden if
rotated integral volumes were used or a large computational
cost otherwise. For this reason, we do not pose-index the
cubes and restrict the boxes over which channel voxels are
summed to be axis-aligned, as shown in Fig. ka). Note that,
in practice, the axis-aligned cubes overlap significantly with
their rotated counterparts and therefore provide a fairly good
approximation.

C. Estimating Synaptic Cleft Orientation

The context cues defined above are located relative to a
normal estimate n;, which induces the rotation matrix R.(¥;)
of Eq. 2 such that

R(£:)(0,0,1)T = n, (7)

Let {&1(€;),82(€:),&3(€;)} be the Eigenvectors of the Hes-
sian matrix at the voxel of interest, ordered by increasing
magnitude of their respective eigenvalues. Hence, £5(£;) = n;
corresponds to the eigenvector with the highest-magnitude
eigenvalue, and is perpendicular to the synaptic cleft, assuming
there is one at £;. We write

R(¢;) = (wl () wa(l;) ws (4‘)) ®)
with
w3 (€;) &5(4s) )
w2 (fz) = sign [D&(gb)(ez)] 62 (El) (10)
wl(fi) = (U3(£i) X w2(£i) (11)

where Dy (x) is the directional derivative of the image along
u at location x. As shown in Fig. 4] introducing Eq.[T0|makes
wo(£;) point towards the outside of the synaptic cleft when £;
is close to the border of the synapse. The motivation behind
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the latter is that R(€;) in Eq. [7|is only defined up to a rotation
in the wy (¢;) /w2 (£;) plane. However, it is preferable to define
a rotation matrix that is consistent, particularly at £; close to
the edge of the synapses. Towards the center of the synaptic
cleft, there exists a rotational ambiguity in the wq(£;)/w2(£;)
plane which can in fact be ignored due to the symmetry of
synaptic structures there. Both the Hessian and the derivatives
Dy (x) are computed at scale oy, = -2 where w; is the
average synaptic cleft width, estimated once per EM volume
from a single slice.

W2

Fig. 4. Coordinate system versors (unit vectors) computed for R(¢;) at
different locations of a simulated synapse. w1 (€;), w2(€;), w3 (€;) shown
in blue, green and red respectively. Note that w2 (€;) (green) always points
towards the outside of the synapse, which comes as a consequence of Eq.[T0]

D. Learning Method

To make training computationally tractable, we specialize
the AdaBoost learning procedure [13] as follows:

1) Weighting-by-sampling: Denote W = {wj...wxn} and
Y = {yi..yn} the weights and labels for each training
sample, with 1 < ¢ < N. Assume that the weights have been
normalized such that Zf\il w; = 1. At each AdaBoost itera-
tion, instead of searching for the weak learner that minimizes
the weighted error over all N training samples, we employ
the weighting-by-sampling scheme [12f], [2] to approximate
the distribution 1. This is done by finding the weak learner
that minimizes a weighted error computed on a subset S of
the training data, formally

S ={Sp,Sn} 12)

where Sp comprises all the positive samples and Sy is a
subset of the negative samples, obtained by weighted sampling
with replacement according to the weights W. The weight of
each sample in Sp is its respective weight in W, while the

_qwi

samples in Sy are assigned a constant weight ZyHTH
In situations where the amount of negative samples outnum-
bers the number of positives, approaches such as weighting-
by- samFlln% can reduce training time significantly. We call
Er the ratio between the number of negative and
positive samples selected by weighting-by-sampling, which is
a parameter for our algorithm. In our experiments we have
observed that segmentation performance is robust against the
value of M. We set M = 2, which yields faster training
without decreasing the performance of the final classifier.

2) Random Weak Learner Search: Due to the large num-
ber of possible weak learners fi(x,€;),k = 1,...,K, it is
impractical to explore them all at each AdaBoost iteration.
Instead, we only explore a subset of size (2, obtained by
randomly sampling, at each Boosting iteration, from the pool
of K possible weak learners. This also speeds up training
significantly. We have experimented with different values
of ) and observed that segmentation performance is fairly
independent of its value. For all the results presented here we
used 2 = 4000.

E. Pose Indexing

1) Pose Annotations: Learning our pose-indexed classifier
requires annotated training data. Since our contextual features
are computed both for a given location and orientation, our
training data must include both. While the location of synaptic
voxels is manually specified by user annotation, synaptic
orientation ws(£;) is automatically extracted as explained in
§IV-C| using eigen analysis on the Hessian matrix computed at
L; Unfortunately, the obtained w3 (£;) vector is only defined
up to a polarity, which is insufficient given that the pre-
synaptic and post-synaptic regions are starkly different in
appearance. We therefore follow the standard pose-indexing
methodology [12] by labeling the polarity of the ws(£;) vector
during training. Note that the orientation labeling procedure
in training is extremely efficient, requiring a single user click
per synapse to consistently direct all ws(€;) vectors to the
pre-synaptic region. During testing, our learned contextual
classifier () is evaluated for both polarities of the extracted
w3 (£;) vector and the maximum response retained.

2) Sampling Negatives: Under the pose-indexing frame-
work [[12], [2]], samples that do not exhibit the same pose (loca-
tion and orientation) as positive samples should be considered
as negative during training. However, in practice, samples
that are too close in pose-space to the positives should be
excluded from training, as their appearance can be similar to
that of positives and their inclusion can therefore deteriorate
performance.

For example, following [12], any voxel lying on the synaptic
cleft with an incorrect orientation should be treated as a
negative sample. Likewise, a voxel that is immediately next to
a synaptic cleft should also be considered a negative sample.
However, given the overlap in appearance, it is difficult for
the learning method to disambiguate such voxels from the
positive set. Thus, as is commonly done in object detection [2],
we setup conservative training exclusion zones in pose-space
around our positive examples and sample negative examples
outside these exclusion zones. In particular, we do not use
positive voxels with the wrong orientation as negatives, as
discussed above. Moreover, we also exclude voxels that are
outside the synaptic cleft and less than 10 voxels away from
a positive-labeled voxel.

F. Supervoxels

Our entire algorithm including feature extraction, train-
ing and testing is designed and implemented to operate on
individual voxels of the EM volumes. However, significant
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TABLE II
DATASET DESCRIPTION.
Train Test
Dataset Voxel Size Size (voxels) Labeled synapses Size (voxels) Labeled synapses
(A) Somatosensory cortex 6.8 nm 750 x 564 x 750 9 (some) 655 x 429 x 250 28 (all)
. 1024 x 883 x 165
(B) Hippocampus 5 nm 1024 x 653 x 165 20 (all) 1024 x 1536 x 200 79 (all)
(C) Cerebellum 5 nm 1398 x 1343 x 299 7 (some) 1966 x 1343 x 200 56 (all)
Fig. 5.  Slice cut of a region from the hippocampus dataset. Synapses
indicated with circles. Labeling voxels close to the synaptic boundary is an
ill-posed problems.
dt]
Y (c) Exclusion zone (d) Overlapped voxels in
d~ | Inner ignore zone
black
Outer ignore zone
Fig. 7. Example of exclusion zone with d* = 4 and d~ = 1.6 voxels.

Fig. 6. Diagram showing inner (d~) and outer (d¥) exclusion zones on
synthetic synapse ground truth (blue). Voxels within the exclusion zone are
ignored during evaluation.

computational savings can be achieved by grouping voxels into
supervoxels [T]] for specific operations for training and testing.
Thus, during training, instead of using every voxel as a positive
or negative data sample, we restrict our method to training only
on voxels corresponding to centers of super-voxels. In effect,
this amounts to a spatially-driven sampling of the training
data which significantly speeds up training while maintaining
performance. Likewise, during testing, instead of evaluating
our learned contextual classifier ¢(-) on every voxel in the EM
test volume, we only evaluate (-) on voxels corresponding
to super-voxel centers while off-center voxels are assigned a
response equal to that of the center.

V. EXPERIMENTS

We evaluated our method on three different EM stacks
acquired from different regions of the adult rat brain El We
assessed performance both in terms of voxel-wise segmenta-
tion and synapse detection.

In this section, we first describe these datasets and our
training and evaluation methodology. We then use our datasets
to evaluate both the voxel-wise precision of our method and its
accuracy in terms of how many entire synapses are correctly
detected. We use the method of [20] as a baseline against

ISource code available at http://cvlab.epfl.ch/software/synapse

Overlap between ground truth and exclusion zone shown in black in (d). Note
the labeling ambiguity in (b) for the voxels close to the vesicles.

which we compare our results. Finally, we show that our
method can be used to compute biologically relevant statistics
and discuss computational complexity issues.

A. Datasets and Evaluation Methodology

We used three different datasets from (A) the Somatosen-
sory Cortex, (B) Hippocampus, and (C) Cerebellum of an adult
rat. Example slice cuts of each dataset are shown in Fig. [§]

The amounts of training and test data for each dataset are
summarized in Table [l The volumes were annotated in a
voxel-wise fashion using Fiji [33]. Note that testing volumes
were fully annotated, each voxel being assigned a synapse or
a non synapse label, in order to generate as large as possible a
test set and report meaningful results. Training volumes on the
other hand, in particular for the large datasets A and C, were
only partially annotated in order to reduce labeling cost. In
those cases, an approach similar to what was used in [20] was
followed, labeling a fraction of the voxels inside the volume as
positive or negative, leaving most of the voxels un-annotated
and therefore not used for training. In the case of Dataset B,
two test subvolumes were extracted from different regions of
the Hippocampus.

1) Data Annotation: Synapse labeling is an ill-posed prob-
lem because boundaries are generally blurry, as shown in

Fig.
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Ground Truth

Baseline Our approach

Somatosensory Cortex

Ground Truth

Baseline

Cerebellum

Fig. 8.

For training purposes, we adopted a conservative labeling
policy whereby voxels are labeled positive only if experts are
highly confident. This yields a ground truth volume whose
positive samples are mainly located at the center of synapses.

For testing purposes, the behavior of a method on ambigu-
ous voxels may be of particular interest to the practitioner.
Thus, we adopted a different procedure for the annotation of
test volumes. Experts were given more freedom in deciding
whether or not a specific voxel lies on a synaptic cleft while
our evaluation procedure, explained next, was designed to
study the behavior of our detector at synaptic boundaries.

2) Evaluation Methodology: Voxel-wise evaluation is es-
sential to assess and compare the performance of different
segmentation methods. However, such an evaluation must take
into account the aforementioned boundary issue to provide

Qualitative results (slice cuts) for the three different datasets after thresholding. Threshold set at best VOC. Note that our approach yields more
accurate segmentation results as well as reducing the amount of false positives.

meaningful performance measures.

Much as we defined a training exclusion zone, we define a
testing exclusion zone about the labeled border of the synapse
with an exterior radius of d* and an interior radius of d-, as
depicted in Fig. [6] Voxels within the exclusion zone, shown
in blue in Fig. [/(c), are ignored during evaluation.

Rather than arbitrarily fixing the values of d* and d~, we
propose to assess performance as a function of their values. We
plot precision-recall (PR) curves at different exclusion zone
sizes, and the value of the Jaccard Index [9]], [23]], also known
as the VOC Score, as a function of d+ and d~. The VOC
score measures the segmentation quality when ground-truth
data is available. It is computed as the ratio of the area of the
intersection between what has been segmented and the ground
truth, and of the area of the union of these two regions.
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Fig. 9. Precision-recall curves for each dataset for different values of d. Our approach always yields better performance than the baseline of [20].

dt

To facilitate interpretation, we fix the ratio 7 o= and
plot the performance measure as a function of d = d*. In
our experiments we considered 0 < d < 5 voxels and fixed
17 = 2.5 so that the maximum d~ is 2 voxels. Limiting d~
is essential to confine the exclusion zone to boundary voxels
only, thus preserving most of the labeled synaptic voxels
such that the evaluation remains meaningful. In practice, the
exclusion zone is found by pre-computing a chamfer distance
volume w.r.t. the synaptic boundaries in the ground truth.

B. Voxel-wise Accuracy

We evaluate the voxel-wise segmentation performance of
our approach and compare ourselves to [20] in terms of
precision-recall (PR) curves and Jaccard index values, also
known as VOC scores [23]],

Precision-recall curves at different exclusion zone sizes d
are shown in Fig. [0l Our approach clearly outperforms the
baseline for all recall values as well as exclusion zone sizes

d. We also show the value of the highest Jaccard index
obtained at different values of d in Fig. which manifests
the same behavior. Overall, our results indicate a significant
improvement in segmentation performance for both border and
center voxels.

Importance of contextual information: To demonstrate
that improved performance comes from using context, we
also evaluate the performance of a degenerate version of our
approach that relies only on local information and ignores
context. To this end, we set the parameter ||cp||max of Sec. [[V-B]
to 0. This means that post-synaptic and pre-synaptic context is
not exploited and only local statistics are leveraged. We plot
the corresponding curves in Figs. [9] and labeled as Our
approach: local only. It can be seen that our full approach
utilizing context does systematically and significantly better
than the degenerate version which ignores context, highlight-
ing the importance of contextual information for synapse
segmentation.
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Fig. 11. Comparison of our approach (diamonds) with a degenerate version of our method (circles) that uses a fixed orientation estimate for all voxels,

where R.(£;) is set to identity matrix for all voxels £;. The latter results in a considerable performance loss, motivating the use of contextual cues that rotate

to be consistent with the orientation estimate of each voxel £;.

We note that the relative performance between [20] and
the degenerate version of our algorithm is somewhat variable.
Both these methods ignore context and rely solely on local
image statistics. We believe the difference in performance
between the two has to do with our degenerate version relying
on decision stumps with a reduced feature set, while [20] relies
on decision trees with a richer feature set.

Consistency of Contextual Cues: Context cue locations
are rotated according to the orientation estimate at each voxel
of interest £;, which allows us to exploit synaptic context in
a meaningful way. Therefore, it is interesting to observe the
effects of setting the orientation estimate of all voxels to a
fixed value. To do so, we have fixed R(¢;) to the identity
matrix for all locations £;, which makes w3 (€;) point in the
z direction. This is equivalent to our approach without pose-
indexing, similar to the method proposed in [16], [34]. We call
this particular implementation Our approach: fixed orientation
estimate, and a comparison with our full method is presented
in Fig. [TT} As expected, performance drops significantly since
context is relative to the orientation of the synaptic cleft, and
fixing R(¢;) to an identity transformation yields inconsistent
contextual cues, highlighting once again the importance of
contextual information for synapse segmentation.

C. Selected Features

Our approach lets AdaBoost pick the most discriminative
features for synapse segmentation at every boosting step. To

observe how our method exploits context, we plot the pixel
locations over which channel values Hm,,,nm are summed in
Fig. @ To ease visualization, context cue locations c, are
projected on the z, axis (see Fig {a)).

When, according to AdaBoost, a higher value of f (x,£;)
contributes to the voxel in the center being a synapse, its
corresponding o (Eq. () is added to the maps in Fig. 12
On the other hand, when the label is negatively correlated with
fr (x,£;), its ay value is subtracted.

It can be seen that the raw image (Fig. [[2Ja)) provides
important clues, particularly at the voxel of interest (center)
but in its surroundings as well, especially at the post-synaptic
region, where the classifier expects an average high image
value to vote for a synapse. Another interesting channel is the
lowest magnitude structure tensor, shown in Fig. fl_T[c), which
signals the presence of vesicles in the pre-synaptic region,
which is a strong clue used by experts to evidence the presence
of a synapse.

D. Detection Accuracy

So far, we have evaluated the different approaches for voxel-
wise segmentation. However, it is also interesting to evaluate
synapse detection performance, that is if a synapse as a whole
is detected by the algorithm or not. We measure detection
performance by clustering thresholded score volumes. This can
be summarized as:



IEEE TRANSACTIONS ON MEDICAL IMAGING

(a) Raw stack

(b) Gradient Magnitude ¢ = 3.5

.

(d) Highest magnitude Structure Tensor, ¢ = 0.8, p = 1.6

Fig. 12. Some of the features selected by AdaBoost on four different channels
for the Somatosensory Cortex dataset. The left column shows the voting map
(see text for detailed description) and the right column shows an example
synapse and its context.

1) Threshold the score volume at the value that yields the
best VOC score for all d.

2) Run connected component analysis on the resulting
binary volume.

3) Remove detected clusters with less than 1000 voxels, as
in [20].

4) Count the number of missed and false-positive clus-
ters/detections.

False-positive detections are clusters of positive-predicted
voxels which do not intersect with the ground truth, while
missed (false-negative) detections are ground truth clusters that
do not intersect with the predicted score volume after step 3
above.

Baseline Our approach

Ground truth

Raw slice

Fig. 13. Examples of detected synaptic voxels thresholding for the best
Jaccard index. Synapses are detected by both methods, but the baseline method
yields poor results from a segmentation perspective.

As shown in Fig. [[4] our approach yields a significant
reduction in the number of false positives when compared
to the baseline, obtaining perfect detection on the first two
datasets. Furthermore, because our method yields much better
voxel-wise accuracy, the shape of the recovered synapses is
much closer to the ground-truth, as depicted in Fig. [I3] This
is important when computing biologically relevant statistics
such as synapse shape and size, as discussed below.

E. Biological Statistics

We applied the classifier trained on the Somatosensory
Cortex data to a large volume consisting of 1500x1125x750
voxels or 9.8 x 7.4 x 4.9 pum. This is the original volume from
which the train and test sub-volumes were extracted.

The resulting score volume was smoothed with a Gaussian
filter with unit variance and thresholded at the value that
corresponds to the maximum VOC score in the test volume.
Afterwards, clusters of positive detections of less than 1000
voxels were discarded, as in [20] and @ This resulted in
a total of 405 clusters of voxels that our approach labeled as
synapses.

Finally, an expert went through the resulting segmentation
volume, discarding 31 false positive synapses, obtaining a total
of 374 verified synapses. This number is in agreement with the
expected synapse density in the Somatosensory Cortex region
(layer 1II) [8]

A 3D visualization of the detected synapses is shown in
Fig. It is interesting to observe the large variation in
synapse shape and size, which is evidenced in the histograms
of synapse size and synapse flatness Fig. [T6(a) and Fig. [T6|b).

Another interesting observation comes from Fig. [I6]c),
which is a scatter plot of synapse volume and flatness. There is
a strong correlation between synapse volume and flatness. This
occurs because synapses are membrane-like structures and
the synaptic cleft width is constant across different synapses,
independently of their size. Therefore, larger synapses are
flatter than smaller ones, which is evidenced in Fig. ﬂz)'kc).

In addition to generating segmentation results, our approach
can also be used to determine the location of the post-
synaptic and pre-synaptic regions. This can be highly relevant
in practice to determine the location of the axons and dendrites
relative to a given synapse, helping reveal neural circuit
connectivity.
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Detection performance on the three datasets, after thresholding and clustering voxels labeled as synapses by our approach and [20], at different

thresholds. Our method yields less false-positive detections than [20], obtaining perfect detection performance in the first two datasets.

Fig. 15. Examples of polarity prediction. Images have been aligned such
that the horizontal axis travels from the pre- to post-synaptic region from left
to right. Our approach achieved 100% accuracy for this task.

As discussed Sec. [[V-E] our technique evaluates two differ-
ent scores for location £; at test time, one for each possible
orientation polarity. The polarity with the highest score can
be employed as a polarity estimate. Once the score image is
thresholded, majority voting can be used to determine the most
likely polarity.

We applied this technique to the predicted scores for the
three datasets and observed 100% accuracy at predicting
synapse polarity. Examples are shown in Fig. [T5] where the
synapse normal has been aligned to the horizontal axis. This
is also an indication that our approach is exploiting context
information.

F. Computational Complexity

In terms of computational cost, our approach is faster in
both training and testing than [20]. Training time is reduced
with the techniques mentioned in Using stumps as
weak learners is also an important advantage at test time, in
contrast to Random Forest’s trees which are built with as many
splits as necessary to separate training data perfectly.

Another speed up is obtained by using supervoxels to
oversegment the EM volumes. The chosen seed size of 2
voxels translates in an average supervoxel size of 2x2x2 = 23
voxels [1]], which yields a 8x speed factor since only super-
voxel centers are classified.

Table summarizes timings obtained for both methods.
The number of trees in the Random Forest classifier was
set to 500. To make comparison fair, we have modified the
Random Forest implementation used by Kreshuk et al. [20]

to use multiple threads, speeding up training and testing
substantiallyﬂ Note that, in the case of using the default
Vigra implementation, the timings for the baseline method in
Table [lIT] would be an order of magnitude higher.

The parameters used for our approach are the default ones
described in Table[l] Note that the test timings for our approach
already consider evaluating the two possible polarities for each
location ;.

If further speed up was needed, soft cascades [6] could be
employed to stop early during the evaluation of the boosted
classifier. This is likely to provide a considerable speed up
since most background voxels can be discarded with a simple
intensity check, given that synapses appear as dark structures.

VI. CONCLUSION

We presented a novel approach to synapse segmentation. It
relies on a large set of image features, specifically designed to
take spatial context into account, which are selected, weighed
and combined using AdaBoost. We used three different EM
datasets to demonstrate that our algorithm effectively distin-
guishes true synapses from other organelles that exhibit the
same local texture.

Even though our approach was designed for synapse seg-
mentation, we believe that it can be applied to segment other
types of tissue where context plays an important role, such
as mitochondria membranes. Another potential extension is to
handle anisotropic volumes by scaling our features differently
in the isotropic and anisotropic axes.
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