Plastic activity in nanoscratch molecular dynamics simulations of pure aluminum

Till Junge, J.F. Molinari, G. Anciaux

Outline

MD modeling of friction
Brief History of Friction Modeling
MD scratching

Parametric study
General setup
Parameter space

Single phase polycrystals Real polycrystals MD polycrystals

Results

Stored plastic energy $E_{\rm pl}$ Microscopic friction coefficient μ Thermal sensitivity s

Outline

MD modeling of friction
Brief History of Friction Modeling
MD scratching

Parametric study

Single phase polycrystals

Results

Brief History of Friction Modeling

Roughness Hypothesis Leonardo da Vinci (1495), Later Coulomb, Amontons

$$\begin{array}{cc} {\sf Observation} \\ F = \mu N & \forall A_{\rm app} \end{array}$$

Brief History of Friction Modeling

Roughness Hypothesis Leonardo da Vinci (1495), Later Coulomb, Amontons

Brief History of Friction Modeling

Shear Hypothesis Bowden and Tabor (1942)

Observation

 $A_{\rm app} \neq A_{\rm real}(N)$

Contact Area Dieterich et al. (1996)

Brief History of Friction Modeling

Shear Hypothesis Bowden and Tabor (1942)

Observation

 $A_{\rm app} \neq A_{\rm real}(N)$

Continuum Mechanics Solution

Brief History of Friction Modeling

Towards the atomic scale: Luan and Robbins (2005)

Observation

Continuum mechanics break down at contacts

Brief History of Friction Modeling

Towards the atomic scale: Luan and Robbins (2005)

Observation

Continuum mechanics break down at contacts

Continuum Mechanics Solution

? (Scale too small)

Molecular Dynamics Solution

 $m{?}$ (problems too big)

Brief History of Friction Modeling

Involved Mechanisms

- ► Elasticity
- ► Plasticity
- ▶ Heating
- Asperity Locking
- Lattice Vibrations
- ▶

7 / 38

Brief History of Friction Modeling

Involved Mechanisms

- Elasticity
- ► Plasticity
- ▶ Heating
- ▶ Asperity Locking
- Lattice Vibrations
- ▶ ...

Plasticity in friction is

- ► poorly investigated
- ▶ atomic scale

MD scratching

Advantages

- ➤ Very few a priori assumptions (Semi-empirical potentials)
- Deep understanding because of complete knowledge of each atom in the simulation box
- Dislocation nucleation and motion handled accurately

Computation of plastic work $E_{\rm pl}$ — Part I: MD Simulation

Setup

- fixed boundary conditions for bottom atoms
- ightharpoonup prescribed indenter path x(t)

During simulation

- ightharpoonup Evaluate force F(t) acting on the indenter at every time step,
- lacktriangle Save positions $m{r}_i(t)$ and velocities $\dot{m{r}}_i(t)$ periodically

Computation of plastic work $E_{\rm pl}$ — Part II: Energy Balance

Energy influx

$$E_{\mathrm{in}}(t) = \int_0^t \boldsymbol{F}(au) \cdot \boldsymbol{v} \, \mathrm{d} au$$

Computation of plastic work $E_{\rm pl}$ — Part II: Energy Balance

Energy influx

$$E_{\rm in}(t) = \int_0^t \boldsymbol{F}(\tau) \cdot \boldsymbol{v} \, d\tau$$

Stored as

$$E(t) = E[\mathbf{r}_1, \dots, \mathbf{r}_N, \dot{\mathbf{r}}_1, \dots, \dot{\mathbf{r}}_N](t)$$

$$= E_{\text{pot}}[\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \dots](t)$$

$$+ E_{\text{kin}}[\dot{\mathbf{r}}_1, \dot{\mathbf{r}}_2, \dot{\mathbf{r}}_3, \dots](t)$$

Computation of plastic work $E_{\rm pl}$ — Part II: Energy Balance

Stored Energy

$$E = E_{\text{pot}}[\boldsymbol{r}_1, \boldsymbol{r}_2, \boldsymbol{r}_3, \dots] + E_{\text{kin}}[\dot{\boldsymbol{r}}_1, \dot{\boldsymbol{r}}_2, \dot{\boldsymbol{r}}_3, \dots]$$

Potential Energy

- empirical interatomic potential function
- ► e.g., EAM:

$$E_{\text{pot}_{i}} = \frac{1}{2} \sum_{i \neq j} V(r_{ij}) + \sum_{i} \Phi\left(\sum_{i \neq j} \rho(r_{ij})\right)$$

Kinetic Energy

Classical mechanics:

$$E_{kin_i} = \frac{1}{2} m_i \dot{\boldsymbol{r}}_i^2$$

summed over all atoms

Computation of plastic work $E_{\rm pl}$ — Part II: Energy Balance

Stored Energy

$$E = E_{\text{pot}}\left[\boldsymbol{r}_1, \boldsymbol{r}_2, \boldsymbol{r}_3, \dots\right] + E_{\text{kin}}\left[\dot{\boldsymbol{r}}_1, \dot{\boldsymbol{r}}_2, \dot{\boldsymbol{r}}_3, \dots\right]$$

Potential Energy

- empirical interatomic potential function
- ► e.g., EAM:

$$E_{\text{pot}_{i}} = \frac{1}{2} \sum_{i \neq j} V(r_{ij}) + \sum_{i} \Phi\left(\sum_{i \neq j} \rho(r_{ij})\right)$$

Kinetic Energy

Classical mechanics:

$$E_{kin_i} = \frac{1}{2} m_i \dot{\boldsymbol{r}}_i^2$$

summed over all atoms

But we won't use this!

Computation of plastic work $E_{\rm pl}$ — Part III: Minimizing Potential Energy

Main Idea

Monitor variation of potential energy at $0\,\mathrm{K}$: $\Delta E_\mathrm{pot}(0\,\mathrm{K}) = E_\mathrm{pl}$

Problem

MD snapshots $\{m{r}_i, m{\dot{r}}_i\}$ (t) are **close** to static equilibrium $(\sim 0\,\mathrm{K})$

Computation of plastic work $E_{\rm pl}$ — Part III: Minimizing Potential Energy

Main Idea

Monitor variation of potential energy at $0\,\mathrm{K}$: $\Delta E_\mathrm{pot}(0\,\mathrm{K}) = E_\mathrm{pl}$

Problem

MD snapshots $\{m{r}_i, m{\dot{r}}_i\}$ (t) are **close** to static equilibrium $(\sim 0\,\mathrm{K})$

Solution

Molecular Statics:

$$E_{\text{pot}}^{\min}(t) = \min_{\boldsymbol{R} = (\boldsymbol{r}_1, \dots, \boldsymbol{r}_N)} E_{\text{pot}}(\boldsymbol{R}(t))$$

$$E_{\rm pl}(t) = E_{\rm pot}^{\rm min}(t) - E_{\rm pot}^{\rm min}(0)$$

Computation of plastic work $E_{\rm pl}$

Paper in review

T. Junge et al., *Plastic activity in nanoscratch molecular dynamics simulations of pure aluminium*, submitted for publication

Computation of plastic work $E_{
m pl}$

Compare:

B. Luan, Ph.D. thesis, Johns Hopkins University (2006)

Outline

MD modeling of friction

Parametric study General setup Parameter space

Single phase polycrystals

Results

Parametric study

General setup

Setup

- fixed boundary conditions for bottom atoms
- ightharpoonup prescribed indenter path x(t)

During simulation

- ightharpoonup Evaluate force F(t) acting on the indenter at every time step,
- lacktriangle Save positions $m{r}_i(t)$ and velocities $\dot{m{r}}_i(t)$ periodically

Parametric study

Parameter space

Space is split in three groups

In common:

- substrate thickness and width
- scratch path length
- every scratch performed at the same five indentation depths:

$$\Delta y \in \{0, 1, 2, 5, 10\}$$
 Å

- rigid indenter
- Mendelev EAMAluminum potential

Substrate thickness

 $h \in \{22.9, 45.8, 91.5, 183.1, 366.1\} \text{ Å at } v = 10 \text{ m/s}$

Scratch speed

 $v \in \{2.5, 5, 10, 20, 40, 80, 1000\} \ \mathrm{m/s}$ at $h = 45.8 \ \mathrm{\mathring{A}}$

Microstructure

- ▶ 40 or 200 grains
- ► 2 different random seeds
- h = 91.5 Å, v = 10 m/s

M. I. Mendelev et al., Philosophical Magazine 88 (12), 1723-1750

Outline

MD modeling of friction

Parametric study

Single phase polycrystals Real polycrystals MD polycrystals

Results

Real polycrystals

Sources:

- T. Quested, DolTPoMS, Micrograph 712
- K. M. Döbrich et al., Metall. Trans. A 35, 1953-1961, (2004).

MD polycrystals

Voronoi tessellation

- Voronoi nuclei randomly positioned
- ► Periodic boundary conditions in all directions
- ► Random lattice orientation assigned to each cell

MD polycrystals

Similar:

H. van Swygenhoven, Acta Materialia 54 (7), 1975, (2006)

MD polycrystals

Final structure

- > split microstructure, insert indenter
- ► fix bottom layer and indenter
- constrained minimisation of potential energy

Outline

MD modeling of friction

Parametric study

Single phase polycrystals

Results

Stored plastic energy $E_{\rm pl}$ Microscopic friction coefficient μ Thermal sensitivity s

Microscopic friction coefficient μ

Macroscopic friction model

$$\mu \equiv \frac{\mathrm{d}F}{\mathrm{d}N} \Leftrightarrow F(N; \mu, f_{\mathrm{a}}) = f_{\mathrm{a}} + \mu N$$

Microscopic translation

Large fluctuations at nano-scale \Rightarrow window-average forces:

$$\langle F \rangle_i = \frac{1}{N_{\rm w}} \sum_{j}^{N_{\rm w}} F(t_{i+j})$$

Least-squares-fit the coefficient

$$\mu = \underbrace{\arg\min}_{\hat{\boldsymbol{\mu}}} \left(\left[F(\langle \boldsymbol{N} \rangle, \hat{\mu}) - \langle \boldsymbol{F} \rangle \right]^2 \right)$$

◆□▶ ◆⑤▶ ◆壹▶ ◆壹▶ 瓊|〒 夕久@

Microscopic friction coefficient μ

Microscopic friction coefficient μ

- ► Linearity!
- Coefficient large by continuum standards
- ► No simulation box size dependence for thick substrates
- \blacktriangleright Suppressed plasticity for thin substrate leads to lower μ

Microscopic friction coefficient μ

- ▶ Bell shape with trailing plateau:
 - ► Found in nano-machining sims P. A. Romero et al. Modelling Simul. Mater. Sci. Eng. 20 (2012)
 - ► Found in steel friction experiments

 S. Philippon et al. Wear 257 (7-8) (2004)
 - ► Analytically explained

 A. Molinari et al. Journal of

 Tribology 121/35 (1999)
- Suppressed plasticity for high speeds leads to same effect as thin substrate

Microscopic friction coefficient μ

 Coefficient not explained by the grain size

Not enough grains to average orientation effects?

Microscopic friction coefficient μ

- Coefficient not explained by the grain size
 - Not enough grains to average orientation effects?
- Consistently lower friction for polycrystal

Thermal sensitivity s

Sensitivity s – vertical centrosymmetry distribution

Coarsening of microstructure -10-20-30depth in [Å] -40-50-60-70-801.5 0.0 0.5 2.5 3.0 Time t in [ns]

Grain boundary energy is released

Darker means higher disorder

1.) Computation of $E_{\rm pl}$

► Novel method to analyze and quantify MD friction simulations

1.) Computation of $E_{\rm pl}$

- ▶ Novel method to analyze and quantify MD friction simulations
- Showed clear negative rate correlation for high speeds, none for low

1.) Computation of $E_{\rm pl}$

- Novel method to analyze and quantify MD friction simulations
- ➤ Showed clear negative rate correlation for high speeds, none for low
- ► Polycrystals can **release** stored plastic energy during scratching

2.) Regression-based computation of μ

► Recovered simple linear continuum friction model

2.) Regression-based computation of μ

- ► Recovered simple linear continuum friction model
- Recovered bell-shaped speed dependence observed in machining

37 / 38

2.) Regression-based computation of μ

- ► Recovered simple linear continuum friction model
- Recovered bell-shaped speed dependence observed in machining
- lacktriangle Apparent strong link between $E_{
 m pl}$ and μ

2.) Regression-based computation of μ

- Recovered simple linear continuum friction model
- Recovered bell-shaped speed dependence observed in machining
- lacktriangle Apparent strong link between $E_{
 m pl}$ and μ
- ➤ Sim box size independent for thick substrates Plastic zones not resolved!

Outlook

Appendix

MD Polycrystals

