
Linking Discrete Dislocations and Molecular Dynamics in 3D: a Start

T. Junge G. Anciaux W.A. Curtin J.-F. Molinari T. Nogaret

erc

Outline

MD modelling of friction Advances through atomic force microscopy MD scratching - simplest case MD size restrictions

CADD

Overview Coupling Scheme 3D Difficulties

Test case

Simplest case: no FEM required Simplest template Preliminary results

Outline

MD modelling of friction Advances through atomic force microscopy MD scratching - simplest case MD size restrictions

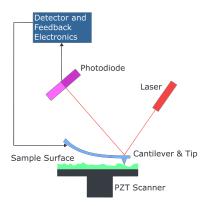
CADD

Test case

(PA

Motivation

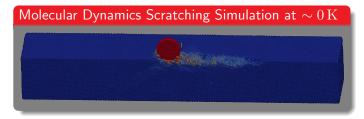
Friction is complex and poorly understood



Questions

- Role of plasticity in friction?
- Proportion of W ending up as $W_{\rm pl}$?

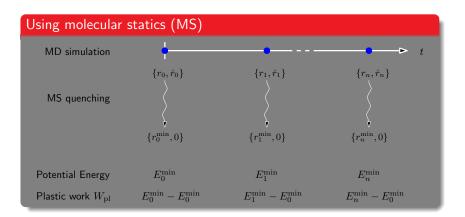
Advances through atomic force microscopy


Atomic scale measurements

Source: Wikipedia

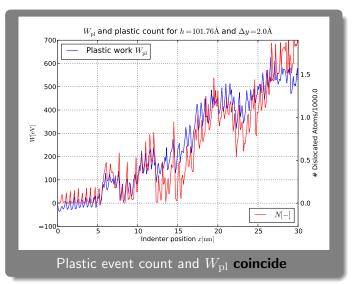
ショック 単同 メロマ メリマ ふうくしゃ

MD scratching - simplest case



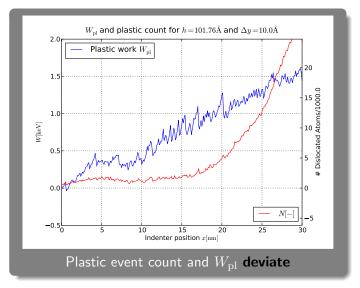
Advantages

- very few a priori assumptions
- deep understanding because of complete knowledge of each atom in the simulation box
- Dislocation nucleation and motion handled accurately



MD scratching - Computation of plastic work $W_{\rm pl}$

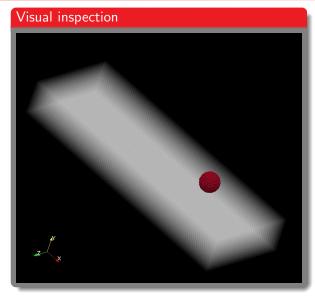
MD size restrictions - small indentation, simulation size sufficient



EPFL

erc

MD size restrictions - deeper indentation, too small simulation box



(PA

erc

MD size restrictions

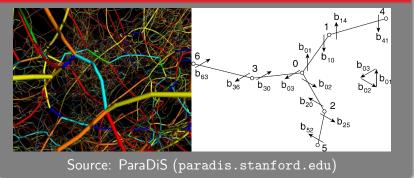
erc

(PAL LSMS

What to do?

Molecular dynamics simulations

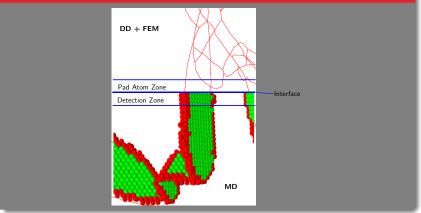
Source: Ziegenhain et al. / J. Mech. Phys. Solids 57 (2009)


Accurate dislocation nucleation, but too small scale

EPH

What to do?

Discrete dislocation dynamics simulations



Larger scale, but problematic dislocation nucleation

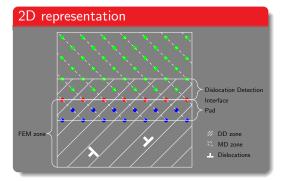
A combined approach

Coupled atomistics and discrete dislocations (CADD)

Pioneered by Shilkrot, Curtin / J. Mech. Phys. Solids 50 (2002) (in 2D)

erc

(PH


CADD Overview Coupling Scheme 3D Difficulties

Test case

CADD

Overview

Shilkrot, Curtin / J. Mech. Phys. Solids 50 (2002)

- 1. Interface atoms (red) are FEM boundary conditions
- 2. Pad atoms (blue) are MD boundary conditions
- DD are driven by FEM stress in continuum and by detection in atomistics

erc

EPEL

MD

- DD
- 1. move atoms
- 2. detect disls \rightarrow DD
- 1. move dislocations
- 2. adjust pad atoms \rightarrow MD

FEM

- 1. move elements
- 2. adjust pad atoms \rightarrow MD

erc

(PAL LSMS

MD

- 1. move atoms
- 2. detect disls \rightarrow DD
- 3. set interface \rightarrow FEM

DD

- 1. move dislocations
- 2. adjust pad atoms \rightarrow MD
- 3. set image forces \rightarrow FEM

FEM

- 1. move elements
- 2. adjust pad atoms \rightarrow MD
- 3. set stresses \rightarrow DD

erc

(PAL LSMS

MD

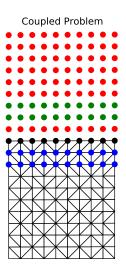
- 1. move atoms
- 2. detect disls \rightarrow DD
- 3. set interface \rightarrow FEM
- 4. return to 1

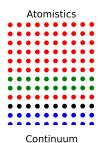
DD

- 1. move dislocations
- 2. adjust pad atoms \rightarrow MD
- 3. set image forces \rightarrow FEM
- 4. return to 1

FEM

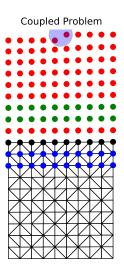
- 1. move elements
- 2. adjust pad atoms \rightarrow MD
- 3. set stresses \rightarrow DD

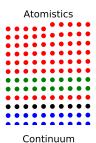

erc


(PAL LSMS

 $4. \ \ \text{return to} \ 1$

CADD CADD in 2D

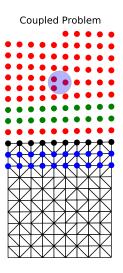


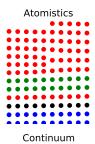

erc

(PAL LSMS

▲□▶ ▲□▶ ▲目▼ ▲目▼ 少々で

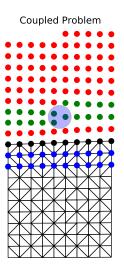
CADD CADD in 2D

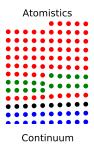



erc

(PAL LSMS

CADD in 2D

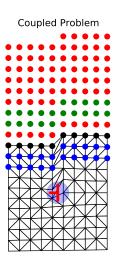


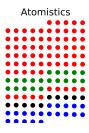

erc

(PAL LSMS

▲□▶ ▲□▶ ▲□▼ ▲□▼ ④へ⊙

CADD CADD in 2D

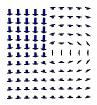




erc

(PAL LSMS

CADD CADD in 2D



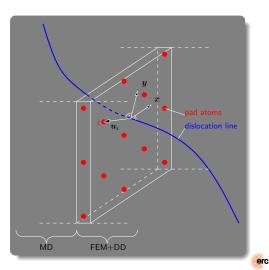
Continuum

+ Discrete Dislocation

CADD Simplifications obsolete in 3D

2D Dislocations are point entities
 Dislocations always in either the MD or the FEM+DD zone

 2D Dislocations never touch the interface High energy (and non-linear) cores don't interfere with interface

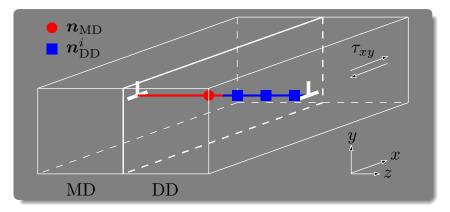


CADD Simplifications obsolete in 3D

- 2D Dislocations are point entities
 Dislocations always in either the MD or the FEM+DD zone
- **3D Dislocations are loops**Dislocation may be partly in the MD and the FEM+DD zone
- 2D Dislocations never touch the interface High energy (and non-linear) cores don't interfere with interface
- **!!** 3D Dislocations can cross the interface

For each Dislocation line

Apply displacement $oldsymbol{u}_i = oldsymbol{u}(x - x_{ ext{core}}, y - y_{ ext{core}})$ to each pad atom i

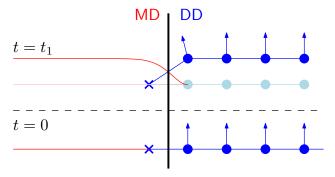


CADD

Test case Simplest case: no FEM required Simplest template Preliminary results

Simplest case: no FEM required

Simplification

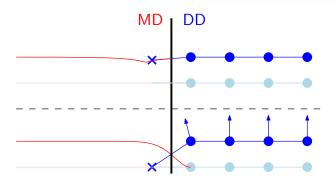

No out-of-plane displacement \Rightarrow no need for solving elasticity

erc

Revisit coupling scheme

erc

(PAL LSMS


Revisit coupling scheme

MD

- 1. move atoms
- 2. detect dislocations \rightarrow DD

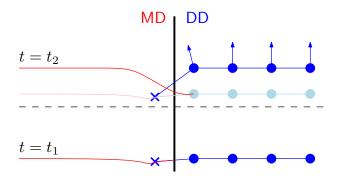
DD

- 1. move dislocations
- 2. adjust pad atoms \rightarrow MD

Revisit coupling scheme

MD

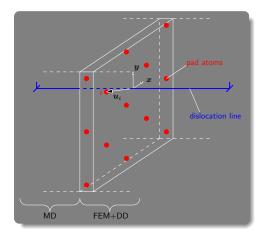
- 1. move atoms
- 2. detect dislocations \rightarrow DD
- 3. return to 1


DD

- 1. move dislocations
- 2. adjust pad atoms \rightarrow MD

erc

(PAL LSMS


3. return to 1

Simplest case: simple template

$\boldsymbol{u}_z = 0$

Straight edge dislocation \perp interface The template is a 2D **Problem**

erc

HH LSMS

Simplest template

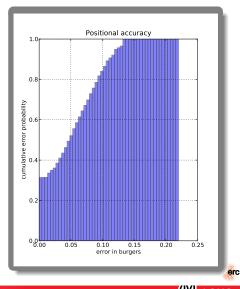
isotropic linear elastic displacement field

$$\begin{split} u_x(\bar{x},\bar{y}) &= \frac{b}{2\pi} \left(\arctan \frac{\bar{x}}{\bar{y}} + \frac{\bar{x}\bar{y}}{2(1-\nu)(\bar{x}^2 + \bar{y}^2)} \right), \\ u_y(\bar{x},\bar{y}) &= -\frac{b}{2\pi} \left(\frac{1-2\nu}{1(1-\nu)} \ln(\bar{x}^2 + \bar{y}^2) + \frac{\bar{x}^2 - \bar{y}^2}{4(1-\nu)(\bar{x}^2 + \bar{y}^2)} \right), \\ \text{where } \bar{x} &= \frac{x}{b}, \quad \bar{y} = \frac{y}{b} \end{split}$$

Trivial core tracking

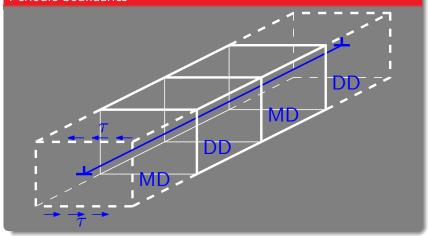
The slip plane of the dislocation is known!

- 1. discretise the detection zone in bins
- 2. compute for each bin $\Delta u_x = \max(u_x) \min(u_x)$
- 3. check for which bin Δu_x is closest to b/2


erc

Accuracy of the template

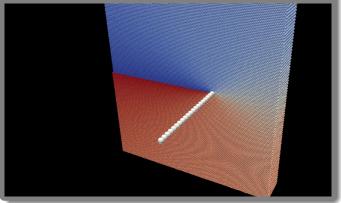
Material sytem


- Magnesium (hcp, MEAM
 [1])
- Prismatic edge dislocation
- Very compact core
- Good accuracy of linear elastic approximation

 M.I. Mendelev, M. Asta, M.J. Rahman and J.J. Hoyt, Phil. Mag. 89, 3269-3285 (2009)

Preliminary results- setup

Periodic boundaries



erc

Preliminary results

A sample movie

Preliminary results

Observations

- Detection and pad work
 The dislocation information is accurately communicated between the domains
- Dislocation line stays straight
 Same dislocation velocity in MD and DD
- No apparent artificial pinning The elastic solution is a good enough template for this case

Outlook - FEM coupling

$\mathsf{FEM} \Leftarrow \mathsf{MD}$

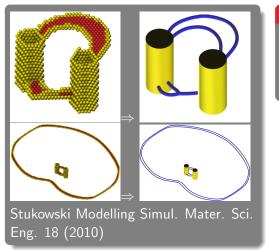
Interface atoms serve as FEM displacement boundary condition

$\mathsf{FEM} \Rightarrow \mathsf{MD}$

FEM computes **elastic** contribution to pad atom displacement

$\mathsf{FEM} \Leftarrow \mathsf{DD}$

Image forces serve as FEM traction boundary condition


$\mathsf{FEM} \Rightarrow \mathsf{DD}$

FEM computes stresses on DD node positions

(PH

Outlook - Dislocation detection

Stukowski 2010

Method based on burgers circuits, parallel, on the fly implementation.

Conclusions

1.

MD insufficient to treat friction problems of meaningful size

(PAL L

Conclusions

 $\mathsf{MD}\xspace$ insufficient to treat friction problems of meaningful size

Conclusions

MD insufficient to treat friction problems of meaningful size

The 3D CADD method is functional

3.

2.

The 3D CADD method is a promising candidate to work out the size problem in atomic scale contact.

(14)

Conclusions

MD insufficient to treat friction problems of meaningful size

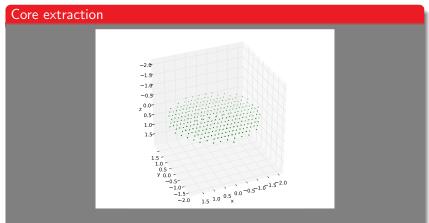
The 3D CADD method is functional

3.

2.

The 3D CADD method is a promising candidate to work out the size problem in atomic scale contact.

4.


CADD also applicable to many other problems such as

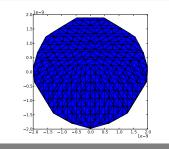
- Fracture, crack propagation
- Dislocation interaction with grain boundaries

erc

Appendix – Core templates

Using real core data

- generate a dislocation core (MS)
- filter out low energy atoms


erc

(PAL LSMS

Appendix – Core templates

Using real core data

Generating a core mesh

- Triangulate core using projected atoms as nodes
- compute displacement and interpolation shape functions S_u and S_x for each element:

$$oldsymbol{u}(oldsymbol{x}) = oldsymbol{S}_u \; S_x^{-1} \; oldsymbol{x}$$

erc