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a b s t r a c t

The parameterization of rational Bézier surfaces greatly affects rendering and tessellation results.
The uniformity and orthogonality of iso-parametric curves are two key properties of the optimal
parameterization. The only rational Bézier surfaces with uniform iso-parametric curves are bilinear
surfaces, and the only rational Bézier surfaces with uniform and orthogonal iso-parametric curves are
rectangles. To improve the uniformity and orthogonality of iso-parametric curves for general rational
Bézier surfaces, an optimization algorithm using the rational bilinear reparameterizations is presented,
which can produce a better parameterization with the cost of degree elevation. Examples are given to
show the performance of our algorithm for rendering and tessellation applications.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Freeform surfaces play an increasingly important role in con-
temporary Computer Aided Design (CAD). While the manufactur-
ers are mainly concerned with the final geometric shapes, most
algorithms [1–13] for surface rendering (e.g. texturemapping), tes-
sellation and blending applications are highly dependent on the
surface parameterization. To generate a target geometric shape,
the control points and their weights of the rational Bézier surface
are adjusted by the designer. Such modification may destroy some
desirable properties of the surface parameterization such as the
uniformity and orthogonality of iso-parametric curves (see Fig. 1),
and affect the subsequent surface manipulations such as surface
tessellation and surface rendering (see Fig. 2). As a result, either
the designer is forced tomake a conservativemodification, or some
reparameterization technique has to be introduced to improve the
surface parameterization, which is the aim of our paper.

In the past twenty years, how to achieve optimal parame-
terization of Bézier curves has been studied extensively in the
literature such as [14–24]. Farouki [15] identified arc-length pa-
rameterization as the optimal parameterization of Bézier curves.
By minimizing an integral which measures the deviation from arc-
length parameterization, the optimal representation is obtained by
solving a quadratic equation. Jüttler [16] presented a simplified
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approach to Farouki’s result by using a back substitution in the in-
tegral. Costantini et al. [14] obtained closer approximations to the
arc-length parameterization by applying composite reparameteri-
zations to Bézier curves.

To our knowledge, little attention has been paid to the
Bézier surface reparameterization. The results of rendering and
tessellation applications for Bézier surfaces largely depend on
the parameterization quality. Moreover, a parameterization with
uniform and orthogonal iso-parametric curves will lead to more
robust and stable computations for derivative based algorithms
such as surface intersection, curvature computation, and so
on [1,6,9,11]. To perform texture mappings on a Bézier surface,
the parametric coordinate of the surface is usually reused
as the texture coordinate. If the iso-parametric curves are
far from being uniform and orthogonal, there will be large
distortion of the texture image on the surface (see Fig. 2(b)). To
tessellate a Bézier surface, most existing algorithms [4,7,6] map
a triangulation of the parameter domain onto the surface (see
Fig. 2(c) and (d)). Similar to texture mapping, the final tessellation
results largely depend on the surface parameterization. Yang
et al. [25] presented an algorithm to improve the Bézier surface
parameterization based onMöbius transformations [26,25], which
can change only the distribution of iso-parametric curves,
but not their shape. To obtain more uniform iso-parametric
curves, a rational bilinear reparameterization algorithm was
also presented in [25]. However, only the uniformity of iso-
parametric curves was considered therein. Furthermore, the
rational bilinear reparameterization coefficients are determined
by a trivial interpolation method, which is only suitable for a
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(a) Original surface. (b) Modified surface.

Fig. 1. Surface modification: (a) a rational Bézier surface and its parameterization; (b) the modified Bézier surface and its parameterization after changing several control
points and their weights.
(a) Texture image. (b) Surface texture mapping. (c) Domain triangulation.

(d) Surface tessellation.

Fig. 2. Texture mapping and tessellation results of the rational Bézier surface in Fig. 1(b): (a) texture image; (b) texture mapping result; (c) triangulation of the parameter
domain; (d) tessellation result by mapping triangles in (c) onto the surface.
special surface case. Different from the curve cases, a surface
parameterization with only uniform iso-parametric curves is
usually not enough for CAD applications. Besides the uniformity
of iso-parametric curves, orthogonality is also considered as
an important factor in these applications [1–11]. A surface
parameterization with uniform and orthogonal iso-parametric
curves not only preserves the appearance of texture, but also
avoids degenerate elements for the tessellation application. From
our point of view, the lack of satisfying parameterizations
with both uniform and orthogonal iso-parametric curves is the
bottleneck for Bézier surface rendering and tessellation algorithms
to achieve better quality results.
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In this paper, we first study the differential geometry of ra-
tional Bézier surfaces and try to find out the surfaces with uni-
form and orthogonal iso-parametric curves. We conclude that the
only rational Bézier surface with uniform iso-parametric curves is
a bilinear surface, and the only rational Bézier surface with both
uniform and orthogonal iso-parametric curves is a rectangle. As
a general surface has no parameterizations with completely uni-
form and orthogonal iso-parametric curves, we then present an
optimization algorithm to improve the uniformity and orthogo-
nality of iso-parametric curves based on the rational bilinear repa-
rameterizations. In the optimization procedure, a nonlinear energy
measuring the uniformity and orthogonality deviations is formu-
lated. To minimize the uniformity and orthogonality deviations, a
discrete version of the formulated energy is presented and then
minimizednumerically. The examples indicate that, in practice, the
algorithmproduces significantlymore uniformandorthogonal iso-
parametric curves across the rational Bézier surfaces.

The paper is organized as follows. Section 2 discusses the ra-
tional Bézier surfaces with uniform and orthogonal iso-parametric
curves and shows how to use the rational bilinear reparameter-
izations to achieve more uniform and orthogonal iso-parametric
curves across the rational Bézier surfaces. In Section 3, three ex-
amples are given to show the performance of our algorithm and
Section 4 concludes the paper.

2. An optimization method for minimizing uniformity and
orthogonality energies

In this section, we first try to find the surfaces with uniform and
orthogonal iso-parametric curves. Then an optimization algorithm
based on rational bilinear reparameterizations is presented to
improve the uniformity and orthogonality of iso-parametric curves
for general rational Bézier surfaces.

2.1. Differential geometry of rational Bézier surfaces

A rational Bézier surface can be represented in the following
form

X(u, v) =

m
i=0

n
j=0

Bm
i (u)B

n
j (v)ωi,jPi,j

m
i=0

n
j=0

Bm
i (u)B

n
j (v)ωi,j

,

u ∈ [0, 1] and v ∈ [0, 1], (1)
where Pi,j and ωi,j are the control points and their weights, Bm

i (u)
and Bn

j (v) are the Bernstein polynomials. The parameterization in
Eq. (1) is characterized by its first fundamental form [27]
ds2 = Xu · Xu(du)2 + 2Xu · Xvdudv + Xv · Xv(dv)2,
where Xu =

∂X
∂u and Xv =

∂X
∂v

are the two partial derivative vectors
of the surface X. The first fundamental form describes a metric on
the surface X. Let
E = Xu · Xu, F = Xu · Xv, G = Xv · Xv,
and rewrite the coefficients in a symmetric matrix

I =


E F
F G


,

where E and G give the square length of the two partial derivatives
and F measures the orthogonality of the two partial derivatives.
Then, we have

ds2 = (du dv)I

du
dv


.

Here we are interested in the uniformity and orthogonality of
iso-parametric curves, which are analyzed and summarized in the
next subsection.
2.2. Rational Bézier surfaces with uniform and orthogonal iso-
parametric curves

A rational Bézier surface has uniform iso-parametric curves if
and only if

Eu =
∂(Xu · Xu)

∂u
= 0,

Gv =
∂(Xv · Xv)

∂v
= 0,

for all (u, v) ∈ [0, 1] × [0, 1], (2)

which describes the uniform distribution of iso-parametric curves
across the surface. For such a surface satisfying Eq. (2), each iso-
parametric curve is arc-length parameterized. Each iso-parametric
curve of a rational Bézier surface is obviously a rational Bézier
curve [8]. From Farouki’s result in [28], the only arc-length
parameterized rational Bézier curve is a straight line. Thus the
four boundaries as well as the inner iso-parametric curves of the
surface are straight lines, from which we can conclude that it
is a bilinear surface (see Fig. 3). Furthermore, for this bilinear
surface to have orthogonal iso-parametric curves, the boundary
curves must intersect orthogonally at the four corner points,
which means that it is a rectangle. Therefore, we conclude that
the only rational Bézier surfaces with uniform and orthogonal
iso-parametric curves are rectangles (see Fig. 3(b)). As a general
rational Bézier surface has no parameterization with uniform and
orthogonal iso-parametric curves, we will present an optimization
algorithm to improve the uniformity and orthogonality of iso-
parametric curves for a general rational Bézier surface in the
following subsections.

2.3. Rational bilinear reparameterizations of rational Bézier surfaces

In a rational bilinear reparameterization (u, v) = ψ(s, t) of
a rational Bézier surface, the parameters are subjected to the
following transformations

u = u(s, t) =
(α − 1)s

2αs − s − α
, α ∈ (0, 1), (3)

and

v = v(s, t) =
(β − 1)t

2βt − t − β
, β ∈ (0, 1), (4)

where

α = α1t + α2(1 − t) and β = β1s + β2(1 − s),

α1, α2, β1, β2 ∈ (0, 1). (5)

α in Eq. (3) is defined as a linear function of t , with coefficients
α1 and α2, and β in Eq. (4) is defined as a linear function of
s, with coefficients β1 and β2. Applying the rational bilinear
transformations (3)–(5) to surface in Eq. (1) results in a rational
Bézier surface

X(s, t) =

m+n
k1=0

m+n
k2=0

Bm+n
k1

(s)Bm+n
k2

(t)ωk1,k2Qk1,k2

m+n
k1=0

m+n
k2=0

Bm+n
k1

(s)Bm+n
k2

(t)ωk1,k2

, s, t ∈ [0, 1].

The new surface is of degree (m+ n)× (m+ n)wherem and n are
the degrees of the original Bézier surface in the u-direction and v-
direction, respectively. The control points Qk1,k2 and their weightsωk1,k2 of the reparameterized surface are as follows

Qk1,k2 =

min(k1,m)
i=max(k1−m,0)

min(k2,n)
j=max(k2−n,0)

ck2−j,idk1−i,jRi,jωi,jPi,j

min(k1,m)
i=max(k1−m,0)

min(k2,n)
j=max(k2−n,0)

ck2−j,idk1−i,jRi,jωi,j

,
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(a) A general surface. (b) A rectangle.

Fig. 3. Two examples of a bilinear Bézier surface (where each iso-parametric curve is a straight line): (a) a general surface whose four corner points are not lying in a same
plane; (b) a rectangle.
and

ωk1,k2 =

min(k1,m)
i=max(k1−m,0)

min(k2,n)
j=max(k2−n,0)

ck2−j,idk1−i,jRi,jωi,j,

where

Ri,j =


m
i

 
n
j



m + n
k1

 
m + n
k2

 ,
cl,k =

min(k,l)
e=max(0,k+l−m)

(−1)m−k

k
e


× (α1 − 1)e(α2 − 1)k−e


m − k
l − e


αl−e
1 αm−k−l+e

2

and

dl,k =

min(k,l)
e=max(0,k+l−n)

(−1)n−k

k
e


(β1 − 1)e(β2 − 1)k−e

×


n − k
l − e


β l−e
1 βn−k−l+e

2 .

We gave a detailed deduction of the rational bilinear reparame-
terization for Bézier surfaces in [25], where the coefficients cl,k and
dl,k of the control points are deduced only for Bézier surfaces of
degree 2 × 2 and 3 × 3. Explicit representations of cl,k and dl,k for
Bézier surfaces of any degree are given in [12]. It should be men-
tioned that the explicit representation of rational bilinear reparam-
eterizations for rational Bézier surfaces is first given in this paper.
For the rational bilinear reparameterization, each iso-parametric
curve is transformed by a Möbius transformation, which is a linear
interpolation of the Möbius transformations imposed on the two
corresponding opposite boundary curves. Moreover, for the repa-
rameterized surface, the control points and their weights are ex-
pressed as linear interpolations of the original control points and
weights, whose linear scaling factors are determined by the ratio-
nal bilinear reparameterization coefficients α1, α2, β1 and β2. To
give a better understanding of how the parameterization changes
in a rational bilinear reparameterization, an example is given
in Fig. 4.
2.4. An optimization method using rational bilinear reparameteriza-
tions

Given a rational Bézier surface, this subsection presents an op-
timization algorithm to improve the uniformity and orthogonality
of iso-parametric curves using a rational bilinear reparameteriza-
tion. Let l1(s) and l2(t) denote the curve length of the s and t iso-
parametric curves, respectively, i.e.,

l1(s) =

 1

0
∥Xt(s, t)∥dt, l2(t) =

 1

0
∥Xs(s, t)∥ds.

To measure the deviation of the current parameterization from
parameterizations with uniform and orthogonal iso-parametric
curves, the following integral function is adopted

J(α1, α2, β1, β2) = λJorth + (1 − λ)Junif, λ ∈ [0, 1], (6)

where

Jorth =

 1

0

 1

0
F 2(s, t)dsdt,

Junif =

 1

0

 1

0
(E(s, t)− l22(t))

2dsdt

+

 1

0

 1

0
(G(s, t)− l21(s))

2dtds,

and

E(s, t) = Xs · Xs, F(s, t) = Xs · Xt , G(s, t) = Xt · Xt .

Jorth measures the deviation of the current parameterization from
parameterizations with orthogonal iso-parametric curves, while
Junif measures the deviation of the current parameterization from
parameterizations with uniform iso-parametric curves. To make
both weights λ and 1 − λ non-negative, λ is restricted to lie
in [0, 1]. λ represents the tradeoff between the improvements
of the two desirable properties of the surface parameterization.
The desirable value of λ depends on specific requirements of
applications.Whenλ goes to zero, itwill lead to a parameterization
withmore uniform iso-parametric curves.When λ goes to 1, it will
lead to a parameterization with more orthogonal iso-parametric
curves. For a general purpose,we canuseλ = 0.5 trying to improve
the uniformity and orthogonality of iso-parametric curves at the
same time. The target function can also be written in the following
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(a) The original surface. (b) The reparameterized surface.

Fig. 4. A rational bilinear reparameterization of a rational Bézier surface: (a) the original Bézier surface and its parameterization; (b) the reparameterized Bézier surface
and its parameterization with the reparameterization coefficients α1 = 0.69, α2 = 0.34, β1 = 0.36 and β2 = 0.40.
Fig. 5. Three different views of the first surface and its parameterization.
matrix form

J =

 1

0

 1

0




√
1 − λE(s, t)


λ

2
F(s, t)

λ

2
F(s, t)

√
1 − λG(s, t)



−

√
1 − λl22(t) 0

0
√
1 − λl21(s)

 
2

dsdt,

where ∥ · ∥ is the Frobenius norm. In other words, J measures the
difference between the weighted first fundamental form matrix
of X(s, t) and the weighted first fundamental form matrix of
the surface parameterization with uniform and orthogonal iso-
parametric curves. In general, Eq. (6) is highly nonlinear, and there
is no closed-form solution for α1, α2, β1 and β2. Thus we solve this
optimization problem using the following discrete method. First
we sample a grid of (ι + 1) × (κ + 1) points at X(si, tj), i =

0, . . . , ι and j = 0, . . . , κ . After the coefficients of the rational
bilinear reparameterization are determined, the corresponding
parameter values ui and vj in the parameter domain of the original
surface can be computed from Eqs. (3) and (4) directly. We
introduce auxiliary variables e = {e0, . . . , eκ} and g = {g0, . . . , gι}
to represent the squares of the length of specific iso-parametric
curves, i.e.,

ej = l22(tj), j = 0, . . . , κ,

gi = l21(si), i = 0, . . . , ι.
The energy function in Eq. (6) is then discretized asJ(α1, α2, β1, β2, e, g) = λJorth + (1 − λ)Junif, λ ∈ [0, 1], (7)

where

Jorth =

ι
i=0

κ
j=0

F 2(si, tj),

Junif =

ι
i=0

κ
j=0

(E(si, tj)− ej)2 +

ι
i=0

κ
j=0

(G(si, tj)− gi)2.

This leads to the following optimization problem

min
α1,α2,β1,β2,e,g

J s.t. 0 < α1, α2, β1, β2 < 1, (8)

which is a constrained nonlinear least squares problem. This
target function can be minimized numerically using the Leven-
berg–Marquardt method [29], which enjoys robust global con-
vergence property to a local minimum. Each iteration of the
Levenberg–Marquardt method needs to evaluate the gradient of
functions F(si, tj), E(si, tj)−ej,G(si, tj)−gi with respect to variables
α1, α2, β1, β2, e, g. The most involved part of the gradient evalua-
tion is to compute the derivatives of F(si, tj), E(si, tj) and G(si, tj)
with respect to α1, α2, β1, β2. These derivatives can be computed
as follows. According to the chain rule, the partial derivatives Xs
and Xt are

Xs = Xu · us + Xv · vs

Xt = Xu · ut + Xv · vt .
(9)



Y.-J. Yang et al. / Computer-Aided Design 45 (2013) 628–638 633
(a) The original surface.

(b) The resulting surface optimized for better uniformity (λ = 0).

(c) The resulting surface optimized for better orthogonality (λ = 1).

(d) The resulting surface optimized for better uniformity and orthogonality (λ = 0.5).

Fig. 6. Optimization for a rational Bézier surface of degree 3 × 3.
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Fig. 7. Three different views of the second surface and its parameterization.
Let

I =

E FF G

, S =


us
vs


and T =


ut
vt


, (10)

whereE = Xu · Xu, F = Xu · Xv, G = Xv · Xv.

Then the first fundamental form terms E, F and G can be expressed
as

E = STIS, F = STIT, G = TTIT.
For a variable γ ∈ {α1, α2, β1, β2}, we can compute the derivatives
of E, F ,Gwith respect to γ as

∂E
∂γ

= 2STγIS + STIγ S,
∂F
∂γ

= STγIT + STITγ + STIγ T, (11)

∂G
∂γ

= 2TT
γ
IT + TTIγ T,

where

Iγ =


∂E
∂γ

∂F
∂γ

∂F
∂γ

∂G
∂γ

 , Sγ =


∂us

∂γ
∂vs

∂γ

 and

Tγ =


∂ut

∂γ
∂vt

∂γ

 .
Matrices Sγ , Tγ can be obtained easily from Eqs. (3) and (4) of the
rational bilinear reparameterization. The entries of matrixIγ can
be computed as

∂E
∂γ

= 2Xu ·
∂Xu

∂γ
,

∂F
∂γ

=
∂Xu

∂γ
· Xv + Xu ·

∂Xv
∂γ

,

∂G
∂γ

= 2Xv ·
∂Xv
∂γ

.

The gradient of the target functionJ can be obtained from Eqs. (7)
and (11). For numerical optimization, it is advisable to start froman
initial point which is not far away from a localminimum. For initial
Table 1
Optimization results for the rational Bézier surface given in Fig. 6.

Original surface λ = 0 λ = 1 λ = 0.5

α1 – 0.69 0.81 0.69
α2 – 0.29 0.45 0.30
β1 – 0.38 0.41 0.38
β2 – 0.41 0.41 0.40
Orthogonality energy 25.17 4.21 3.13 4.05
Uniformity energy 241.85 9.22 249.99 9.29

Table 2
Optimization results for the surface in Fig. 8.

Original surface λ = 0 λ = 1 λ = 0.5

α1 – 0.04 0.05 0.04
α2 – 0.43 0.5 0.45
β1 – 0.36 0.5 0.42
β2 – 0.96 0.95 0.95
Orthogonality energy 780 1.36 1.5×10−11 1.03
Uniformity energy 1.6 × 106 3.98 113 4.25

Table 3
Optimization results for the surface in Fig. 10.

Original surface λ = 0 λ = 1 λ = 0.5

α1 – 0.57 0.27 0.55
α2 – 0.54 0.74 0.56
β1 – 0.38 0.52 0.35
β2 – 0.77 0.58 0.81
Orthogonality energy 226.34 127.38 63.19 107.21
Uniformity energy 316.46 23.90 1908 30.99

values of coefficients α1, α2, β1, β2, we sample the coefficient
space

(α1 = i/η, α2 = j/η, β1 = k/η, β2 = l/η),
i, j, k, l = 1, . . . , η − 1, (12)

uniformly and select the coefficients with the minimal energy. To
handle the bound constraints in (8), we solve the minimization
problem (8) using the levmar package [30], which implements the
Levenberg–Marquardt algorithm with bound constraints handled
according to [31].

The Levenberg–Marquardt algorithm is a popular method for
nonlinear least squares optimization. It is more robust than the
Gauss–Newton algorithm, and is guaranteed to converge to a local
minimum [29]. There is no guarantee that it will converge to a
global minimum. To find the global minima, we need to use global
optimization algorithms, which require a global search approach
and are usually time-consuming [32]. Instead, our method selects
a good initial point for the Levenberg–Marquardt algorithm, so that
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(a) The original surface.

(b) The resulting surface optimized for better uniformity (λ = 0).

(c) The resulting surface optimized for better orthogonality (λ = 1).

Fig. 8. Optimization for a rational Bézier surface of degree 4 × 4.
it can converge to a local minimum nearby. Such a strategy has
been successfully applied to other geometric modeling problems
involving nonlinear least squares optimization [33,34]. In our
method, the quality of the initial point can be improved by
increasing the sample density factor η in Eq. (12).We suggest using
η ≥ 10 for a good optimization result.

3. Experimental results

Our algorithm is implemented on a PC with an Intel 3.06 GHZ
CPU, 2G Memory and Microsoft Visual Studio 2008. To show the
performance of our algorithm, some examples are given below. In
all examples, we perform the optimization using 11 × 11 sample
points, and three different orthogonality weights λ = 0, 1, 0.5.
Fig. 6 illustrates the optimization results of a rational Bézier
surface of degree 3×3 shown in Fig. 5. To compare different results,
each surface is illustrated using three methods: iso-parametric
curves, texture mapping, and color-coding of angles between
partial derivative vectors. In the color-coding images, we measure
for a parameterization X(δ, ζ ) the angle (in degrees) between the
partial derivative vectors Xδ and Xζ , and use colors to illustrate
the absolute value of the difference between this angle and 90°.
In other words, the color-coding images illustrate the following
function across the surface

θ(δ, ζ ) =

arccos
Xδ · Xζ

∥Xδ∥ ∥Xζ∥


·
180
π

− 90


iso-parametric curves of surface X(δ, ζ ) are orthogonal at a point
(δ, ζ ) if and only if θ(δ, ζ ) = 0.



636 Y.-J. Yang et al. / Computer-Aided Design 45 (2013) 628–638
(d) The resulting surface optimized for better uniformity and orthogonality (λ = 0.5).

Fig. 8. (continued)
Fig. 9. Three different views of the third surface and its parameterization.
As shown in Fig. 6, iso-parametric curves of the original surface
parameterization are neither uniform nor orthogonal. With λ =

0, only the uniformity property of the surface parameterization
is considered in the optimization. Iso-parametric curves of the
optimized surface are more uniform than the original ones. With
λ = 1, only the orthogonality of the iso-parametric curves is
considered in the optimization. The color-coding image shows
that the new iso-parametric curves are more orthogonal than
the original ones. Finally with λ = 0.5, both the uniformity
and orthogonality of iso-parametric curves are considered in
the optimization. We obtain a parameterization where both the
uniformity and orthogonality are improved over the original
one. The rational bilinear reparameterization coefficients and the
energies are given in Table 1.

Another example is given in Fig. 8, where we optimize
a rational Bézier surface shown in Fig. 7. The input surface
is obtained by reparameterizing a Bézier surface where the
original iso-parametric curves are orthogonal. The rational bilinear
reparameterization coefficients and the corresponding energies
are given in Table 2. The orthogonality energy values indicate
that we recover the orthogonality of the iso-parametric curves
with λ = 1. Even when λ = 0, we significantly improve the
orthogonality.

In Fig. 10, a rational Bézier surface of degree 3 × 3 shown
in Fig. 9 is optimized. The rational bilinear reparameterization
coefficients and the energies are given in Table 3. Note that
we cannot improve the orthogonality of iso-parametric curves
at the four corner points. This is because our rational bilinear
reparameterization always maps the iso-parametric lines s = 0,
s = 1, t = 0 and t = 1 to the boundary curves of the surface. So
the angles between partial derivative vectors at the corner points
X(0, 0),X(0, 1),X(1, 0),X(1, 1)will remain unchanged.

The above examples show that our method can improve the
surface parameterization according to the given weights. For some
cases, the optimizations for the uniformity and orthogonality
coincide (orthogonality is improved even if λ = 0). For some
other cases, the optimization for these two properties conflicts
with each other, and the user should determine the orthogonality
weight more carefully. Sometimes, the parameterization can only
be improved to a limited degree. The reason is as follows. First
of all, with rational bilinear reparameterizations, the additional
degrees of freedom that we gain may still be not enough. Besides,
we cannot improve the orthogonality of iso-parametric curves at
the four corner points. In order to achieve better results, we may
compute another rational Bézier surface patch X which has the
desirable parameterization, and contains the original surface X.
Then the reparameterization of X can be obtained by trimming the
larger patch X using the boundary curves of X (see Fig. 11).

4. Conclusions and future work

In this paper, we conclude that the only rational Bézier surfaces
with uniform iso-parametric curves are bilinear surfaces, and
the only rational Bézier surfaces with uniform and orthogonal
iso-parametric curves are rectangles. Moreover, to improve the
uniformity and orthogonality of iso-parametric curves for general
rational Bézier surfaces, an optimization algorithm using the
rational bilinear reparameterizations is presented. The coefficients
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(a) The original surface.

(b) The resulting surface optimized for better uniformity (λ = 0).

(c) The resulting surface optimized for better orthogonality (λ = 1).

(d) The resulting surface optimized for better uniformity and orthogonality (λ = 0.5).

Fig. 10. Optimization for a rational Bézier surface of degree 3 × 3.
of the rational bilinear reparameterization are obtained by
minimizing a discrete nonlinear energy measuring the deviation
of the current parameterization from parameterizations with
uniform and orthogonal iso-parametric curves. The examples
indicate that, in practice, the algorithm produces significantly
more uniform and orthogonal iso-parametric curves across the
rational Bézier surfaces, which is indispensable for many CAD
applications such as rendering, tessellation and surface blending.
The rational bilinear reparameterizations presented in this pa-
per can be applied to the whole NURBS surface and its paramet-
ric continuity is preserved automatically. A more challenging and
meaningful task is to reparameterize each patch of aNURBS surface
with different rational bilinear transformations and still preserve
the parametric continuity, which could produce better results than
reparameterizations with only one rational bilinear transforma-
tion. This is left as our future work.
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Fig. 11. A rational Bézier surface X (with purple boundary curves) contained
in another rational Bézier surface X (with yellow boundary curves). The
reparameterization of X can be done by trimming a parameterization of X using the
boundary curves of X. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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