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Abstract

First we present Unison, a conceptual music recommender system for groups of people; the

system aims at generating a playlist that takes musical tastes of all the group members into ac-

count. We discuss both theoretical and practical concerns related to such a system. We develop

a model of user preferences and discuss how we can shi� from individual recommendations to

group consensus. In constructing the user preferences model we use an intermediary music

track model that combines user-generated tags with a dimensionality reduction technique to

build a compact spatial embedding of tracks. Secondly we introduce GroupStreamer, a prac-

tical implementation of the system that runs on Android devices. We present the technological

choices that were made along the way.
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1. Introduction

As digital collections of all sorts—books, music, Web sites, holiday packages and many others—

are growing, it becomes increasingly important to provide intelligent ways of navigating them.

From the perspective of a user faced with such a collection the relative number of items that are

of interest is o�en relatively small. Given some initial information about the user’s preferences

it is desirable to be able to �lter the collection such that only personally relevant items are
shown to her. Systems that allow to �lter large collections and provide adaptive, personalized

recommendations to end users are called recommender systems.�ey have attracted a lot of

attention and research e�orts over the last 15 years, e�orts that have been turned into high

pro�le commercial successes. Amazon1, a large online retailer, uses a recommender system

to show related items, driving up sales. Net�ix2, an online movie rental company, uses a

recommender system to propose movies that users are likely to enjoy, a conclusive competitive

advantage.

Both research and applications of recommender systems have traditionally focused on pro-

viding recommendations to single users; the idea can however easily be extended to recom-

mendations to groups of people. Such systems would be useful when a group has to take a
decision from a large set of possibilities and the decision a�ects all the members of the group.

�is arises when people share the same environment, e.g. a family that has to choose which

television program to watch (Mastho� 2004). However extending recommender systems to

groups is not without di�culties, as we will see.

In this work we explore an application of group recommender systems to music. We investigate

issues related to modelling user preferences and choosing a sequence of tracks for the group, as

well as more practical considerations. Our main contribution is an end-to-end implementation

of a system that automatically generates a music playlist for a group of people.

1.1. Scenario

Let us start by describing the scenario of a typical use case. Imagine that you are organizing a

bu�et dinner party and invite a small number of people—friends, family, neighbors. You would

like to play some music, but you do not know everyone’s tastes, so that although you have a

sizeable music library spanning several musical genres you are not sure what to play. Fig. 1.1

shows an schematic example of this scenario: threemembers in a group have somewhat di�erent

tastes in music; a single member plugs her media player—nowadays o�en a smartphone—into

1See: http://www.amazon.com/.
2See: https://www.netflix.com/.
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1. Introduction
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Figure 1.1.: Scenario for a group recommender system applied to music. Members of the group have di�erent
musical tastes, yet they have to �nd a consensus on what music to play.

loudspeakers and plays music for the group. It would be convenient to have a system that would

account for each member’s musical tastes and automatically select the music to be played.�e

system would essentially have two tasks: �rst of all to determine each member’s preferences and

secondly to aggregate them to generate a music playlist that seeks to maximize the enjoyment

of the group as a whole.

In the following we try to build such a system. In order to make it practical, we suppose that

every member of the group has a smartphone that is loaded with music.�is provides us with

music to play, as well as a minimal amount of information about each member’s musical pro�le.

At this point many practical questions arise.

• Exactly what information do we get from each user’s library? How can we infer prefer-

ences based on that limited amount of data?

• How can we compare the preferences of group members?�ey hopefully share some

preferences, however it is possible that their libraries do not intersect, i.e. they do not

necessarily have any track in common.

• Once we can predict for each member of the group how much he likes a song, we still

need to �nd a consensus for the group. How do we go from individual preferences to

group decision?

We try to address these questions—and many more—in this report. �e �rst two chapters

provide a review of selected topics in recommender systems and preference aggregation, as

well as an overview of related work.�is will provide us with key insights on the challenges

we are facing and the techniques used to overcome them. Starting from chapter 4 we turn out

attention to Unison, our recommender system. We describe how it works from a conceptual

point of view, then we discuss the implementation of GroupStreamer, an instantiation of the

system for the Android platform. Finally, we conclude by mentioning possible extensions and

promising research directions.
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2. Music Recommender Systems

�is chapter introduces recommender systems (Konstan et al. 1998; Jannach et al. 2011), in

particular systems that recommend music. First of all we formally de�ne the recommendation

problem and di�erent approaches that can be taken to tackle it. Secondly we focus on recom-

mender systems applied to music by giving and overview of the research that has been done in

the �eld and presenting some commercial systems.

For the scope of this chapter we restrict ourselves to systems that recommend items (e.g. songs)

to a single individual—as opposed to a group. We do it for two reasons: �rstly, because research
on recommender systems has traditionally been focused on single user recommendations

and secondly, because generating recommendations for groups introduces a whole new range

of surprisingly di�erent challenges. Chapter 3 will explicitly focus on group recommender

systems.

2.1. �e recommendation problem

We follow the methodology and notation take by Adomavicius and Tuzhilin (2005) whose

survey provides an excellent summary of various approaches to recommender systems, in

addition to a good formalization of the recommendation problem.

2.1.1. Formalization

Let C be the set of users and S be a (potentially very large) set of items. We de�ne the function
u ∶ C × S → R. u(c, s) to be the utility (or pleasure, or any other measure we would like to
maximize) provided by item s to user c. We would like to �nd for each user c ∈ C the item
s∗c ∈ S that maximizes the user’s utility, which leads us to the following formulation of the
recommendation problem1:

∀c ∈ C , s∗c = argmax
s∈S

u(c, s) (2.1)

At �rst sight, eq. 2.1 seems very simple.�e di�culty lies however in that for a given user c ∈ C
we o�en know the value of u(c, s) only for a small subset Sc ⊂ S. In fact, most of the time we

1�is is one of many ways to formalize the recommendation problem; we use this particular one here because
we think that it gives the essence of the challenges associated to recommender systems.
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2. Music Recommender Systems

are interested in recommending items that the user has not interacted with before.�e problem
can then be decomposed into two subproblems.

1. What is the set Sc , and how do we de�ne the utility function over this set? As an example,
Sc could be the set of items over which user c has given explicit ratings between 1 and 10
and u(c, s), s ∈ Sc the value of the ratings, but there are many other alternatives.

2. How do we compute the missing values of u, i.e. u(c, s), s ∈ S ∖ Sc? Intuitively, we would
like to assign similar utility values to similar items—however it is not immediately clear

how to de�ne this notion of similarity.

�e two subproblems are closely dependent; in particular the de�nition of the utility function

can condition how midding values are computed.�e utility function depends on the speci�c

nature of the problem at hand and on the data that are available. Beyond explicit user feedback

there are a variety of alternatives.

• For an online news recommender system the time spent reading an article can be thought

of as an indicator of a user’s interest, hence of the article’s utility to the user.

• In amusic recommender system, the play count (that is, the number of times as particular

song has been listened to) is probably a good signal of a user’s satisfaction with that song.

• In a physical store, the content of a customer’s trolley gives an indication of her prefer-

ences. In this case the utility is derived from the mere association of an item with the

customer.

2.1.2. Utility Prediction

�e second part of the problem—predicting the utility for items that the user has not interacted

with—is the one that has traditionally gotten more interest from the research community.�e

many di�erent approaches can be categorized into two main classes.

Collaborative Filtering

Collaborative �ltering (see Su and Khoshgo�aar 2009) is a technique that uses a notion of

similarity between users—hence the term collaborative—to compute the estimate of a missing
utility value. A simple example of a collaborative �ltering system is:

u(c, s) = 1

∑c′∈Ĉs
sim(c, c′) ∑c′∈Ĉs

sim(c, c′) × u(c′, s) (2.2)

where Ĉs , s ∈ S is the set of users for which we know the value of utility function for item s, and
sim(c1, c2) ∶ C × C → R+ is a measure of the similarity between users c1 and c2. For example
the similarity between users could be derived from the correlation of utility values over the set

Sc1 ∩ Sc2 .�is is one of many forms of collaborative �ltering; much more re�ned models and
algorithms have been investigated in the literature.
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2.1. �e recommendation problem

Collaborative �ltering has the advantage of being agnostic to the nature of the items under

consideration. It simply leverages the assumption that there will be similar users in the system.

Collaborative �ltering systems tend to be very successful in practice but they need to overcome

several di�culties. We mention two issues below which we think are particularly relevant.

Cold start When a new user enters the systemwe need to collect (either implicitly or explicitly)
su�ciently many utility values in order to compare him to other users.�e exact same

holds for items: when a new item appears, su�ciently many utility values have to be

collected for the item across all users. Generally speaking this problem is related to the

sparsity of utility values across users and items.

Synonymy While collaborative �ltering being agnostic to the nature of the items is one of its
strengths it also means that if an item that has two or more entries in the system they

will be considered as totally independent.�is calls for additional content-aware means

of detecting similarities between items.

�e computational aspect is also a challenge in collaborative �ltering systems. A naive imple-

mentation of Eq. 2.2 above runs in time O(∣S∣ ⋅ ∣C∣), which becomes problematic as the item
space and the user base increases.

It is interesting to note that dimensionality reduction techniques (of both S and C) have been
successfully applied to overcome several of these issues. Goldberg et al. (2001) use principal

component analysis (PCA) to reduce the computational requirements by two orders of magni-

tude. In a later version of their recommender system, they use the same technique to overcome

the sparsity problem (Nathanson et al. 2007). Earlier work by Sarwar et al. (2000) and work

by Hofmann (2004) also show the potential of dimensionality reduction for improving the

performance of collaborative �ltering systems.

Content-based

Instead of looking at the users, content-based approaches to recommender systems (Pazzani

and Billsus 2007) aim at modelling items in such a ways that—in light of a small quantity of

information about the user’s preferences—we can predict utility values by comparing items.

Content-based recommender systems can generally be described through answers to two

classes of questions.

1. How are items represented? What are the item features and how many of them are used?

�e choice of features is crucial as it conditions the performance.

2. How do we model and learn user preferences over the space of items?�is can be seen

as a classical machine learning problem, opening the door to both general o�-the-shelf

techniques as well as �nely cra�er application-speci�c models.

�ese two aspects, once again, are closely dependent. We may indeed ask ourselves: what is a

good item representation? A meaningful and e�ective set of features is simply one that allows

an algorithm to precisely characterize the relation between the features and the item’s utility

for a user.
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2. Music Recommender Systems

An important distinction between content-based systems and collaborative �ltering is the fact

that content-based approaches are inherently domain speci�c: they depend on the particular

type of items to be recommended as well as on the data at hand2.

It is worth noting that content-based recommender systems do not su�er from the issues

mentioned above for collaborative �ltering systems: synonymy for example is rarely a problem.

However they also need to overcome certain di�culties.

Intelligence Without human intervention it is sometimes hard to characterize some essential
qualities of the items. Consider the following example in the case of a text recommender

system: it is probably very di�cult for an algorithm to distinguish (only from the text)

between a good, seminal research paper and a minor one.

Diversity It might be di�cult for content-based recommender systems to go beyond recom-
mending items that are similar, content-wise, to the ones the user already likes. In many

recommendation scenarios it is critical to be able to help the user to discover items that

are di�erent from those he already knows, yet are still expected to be of high utility.

2.2. �e case of music

Music has always been a popular application of recommender systems, arguably because of its

universality—everyone listens to music—and the sheer number and diversity of artists and

musical pieces. Recommender systems can be a great tool to discover new music. In this

section we provide an overview of music information retrieval, the science of analyzing and

organizing music and of di�erent approaches that to buliding music recommender systems.

Let us begin by reviewing a few important characteristics of music.

• �e number of distinct musical pieces is very large.�e Echo Nest, a leading company

in providing and organizing music information reports a catalog of 30 million tracks3;

�is lower bound gives a clear indication of the scale of the problem.

• It is not always clear how to de�ne and separate musical items. Consider a musical piece:

do we consider two di�erent (possibly lossy, e.g. when usingMP3) encodings to represent

the same item? What about a third version which has been recorded on the radio? What

about a live performance recording? See Bertin-Mahieux (2012) for a more thorough

treatment of this issue. Wemention this characteristic because it can become problematic

for some recommender systems—especially ones using collaborative �ltering.

• Analyzing and describing music is hard in comparison to other types of data such as

text.�e models and tools developped so far are comparatively less powerful. We do not

know whether this is due to the nature of the data or not.

2Note that in content-based recommender systems the utility values can be predicted using solely the user’s
data—to the point where a content-based recommender system could be built for a single user! In certain
cases however models are learned over several users, blurring the lines between collaborative �ltering and
content-based systems.

3See: http://the.echonest.com/company/jobs/.
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Discrete Fourier 

Transform

audio 

samples
logarithm of 

DFT's magnitude

Mel scaling
Discrete Cosine 

Transform

Mel-frequency 

cepstral 

coefficients

Figure 2.1.: Diagram showing the steps used to compute mel-frequency cepstral coe�cients (MFCCs) for a
stationary digital sound. MFCCs have been shown to provide a compact representation of a sound’s timbre as

perceived by humans.

2.2.1. Music Information Retrieval

Music information retrieval (MIR) is the �eld of research concerned with analyzing, organizing

and retrieving information frommusic (Casey et al. 2008; Li et al. 2012). It has seen tremendous

developments over the last 15 years, as the formation of large digital music libraries has created

the need for automatic organization and classi�cation capabilities. Part of the research in the

MIR community relates to audio processing and how to extract audio features that characterize

music tracks.

In a seminal paper Tzanetakis and Cook (2002) showed that a small set of features over a

few seconds of audio signal could categorize a track into one of 10 musical genres with high

accuracy. Important audio features include tempo, beats, key and timbre; for example the

mel-frequency cepstrum (Logan 2000) is a compact representation of our percpetion of the

timbre of a sound. Its computation is shown in �g. 2.1.

Also of special interest in the case of recommender systems are music similarity measures
(Aucouturier and Pachet 2002; Pachet and Aucouturier 2004) which provide a way of musically

comparing two tracks based on the audio signal. �ere are readily available open-source

so�ware packages that can be used to extract features and compute the similarity of audio

�les (Tzanetakis and Cook 1999; Pampalk 2006). We note however that these algorithms o�en

require non-trivial computational resources, if only to decode and process the millions of

samples of a digital audio �le.

2.2.2. Research Landscape

In the following we brie�y present some of the academic literature related to music recom-

mender systems.
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2. Music Recommender Systems

Content-Based

�ere have been several attempts at building systems based on audio features. Among them

we mention Cano et al. (2005) who developed a music recommender system working without

any metadata. Lloyd (2009) developed a system that automatically generates a playlist based

on timbral similarity. Interestingly he also investigated a 2-dimensional spatial embedding of

tracks.

�e second large class of content-based music recommender systems use additional metadata

such as musical genre. Platt et al. (2002) propose a system that generates a playlist based on

very few seed songs by estimating a preference function over the genres. Nevertheless simple

metadata-based approaches o�en lack the ability to �nely di�erentiate between tracks.

Collaborative �ltering

Despite recent advances, it remains di�cult to characterize music based exclusively on intrinsic

content. It is therefore natural to turn to collaborative �ltering approaches4. Early mentions of

music recommender systems in the literature—e.g. (Alvira et al. 2001) indeed leverage similar

users to �nd recommendations.

Collaborative �ltering systems have to be bootstrapped somehow; In an interesting recent work

Aizenberg et al. (2012) investigate the use of radio playlists as providers of human signals about

music.

To conclude this brief overview of the research lanscape let us mention Yoshii et al. (2008) who

propose a music recommender that combines both a content-based approach and collaborative

�ltering.�is hybrid system can overcome issues related to both classes of recommenders: when
an item does not yet have enough users content-based features are used, while the collaborative

aspect helps tayloring highly accurate and diverse recommendations.

2.2.3. Commercial products

Looking at some of the commercial products related to music recommendation will allow us to

get a feel, beyond research prototypes, of what type of technical solutions have been successful

in practice.�e companies and products we describe below are what we consider to be today’s

major contenders; as the young age of some of them attests the space is still evolving very

quickly.

4Remains, of course, the fact that the set of items is very large, which is rather a disadvantage for collaborative
�ltering systems because of sparsity-related issues.
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2.2. �e case of music

Last.fm

Last.fm5 is an online social network around music. At the heart of Last.fm is Audioscrobbler6,
a small piece of so�ware that records the artist and title of every track its users listen to. It

is available on a wide range on platforms and compatible with many media players. Users

can then get statistics about their listening habits and they can listen to virtual radio stations

taylored to their tastes. Last.fm is a textbook example of a collaborative �ltering recommender

system: recommendations are generated by looking at what similar users listen to.

Pandora

On Pandora Internet Radio7 the playlist is generated by a seed such as a genre, an artist, or

the user’s listening history. As opposed to Last.fm Pandora uses a content-based approach to

recommendation: underlying its recommender technology is theMusicGenomeProject, amusic
annotation system using several hundreds of attributes8. Attributes re�ect many characteristics

of the music9 such as structure, rhythm, feel, tonality, lyrical content, instrumentation, etc. It is

interesting to point out that tracks are manually annotated, which we believe is the reason why

its music database is much smaller than that of its competitors.

�e Echo Nest

�e Echo Nest10, a company founded in 2005, is a bit di�erent as it does not properly speaking

provide an end-user product; rather, it advertises itself as a music intelligence platform. We
mention it in our survey because a signi�cant part of their music information seems to be

collected from the analysis of the audio signal.�eir database powers several music recom-

mendation products such as Nokia Mix Radio11, a personalized radio station available on the

latest Nokia smartphones.

Spotify

Spotify12 is a music streaming that started in 2008 but only fairly recently became available

in a wide range of countries. It is not properly speaking a music recommender system but

rather a media player featuring millions of tracks; it is nevertheless clear that music discovery

and recommendation play an important role in such a large library. Spotify takes yet another

approach by tightly integrating its product with Facebook13, an online social network. Music is

5See: http://last.fm/.
6See http://www.audioscrobbler.net/.
7See: http://www.pandora.com/. Currently, Pandora is only available in the United States.
8See: http://www.pandora.com/about/mgp.
9For a partial list of attributes, please refer to: http://en.wikipedia.org/wiki/List_of_Music_
Genome_Project_attributes.

10See: http://the.echonest.com/.
11See: http://goo.gl/QVeAE.
12See: http://www.spotify.com/.
13See: http://www.facebook.com/.
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2. Music Recommender Systems

therefore discovered and shared primarily through the user’s own social network. Spotify also

allows third-party developers to build extensions that can be embedded in the application. We

found several extensions for music recommendation, some of which are based on�e Echo

Nest’s platform.
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3. Recommendations to Groups

A�er presenting recommender systems for individuals we move our attention to group rec-
ommender systems. As already hinted at before, the di�culty of the additional challenges
arising when shi�ing from individuals to groups is surpisingly big. In this chapter we focus

our discussion on the issue of providing a satisfactory way of combining preferences of poten-

tially very di�erent individuals and reach a consensus for the group. A�er a more theoretical

considerations we will turn to actual implementations of group recommender systems.

3.1. Aggregating Preferences

Let us consider the group of users represented by the set G (we do not impose any particular
restriction on the size of the group). At this point we assume that for all c ∈ G and for all s ∈ S
the utility u(c, s) is known, either explicitly from the user, implicitly or by predicting it. For
most of our discussion we will not actually consider the utility values directly but only keep

the relative order between items (e�ectively discarding part of the information). Our goal is to

�nd a good way to combine these individual orderings to form an ordering for the group.

De�nition (preference aggregation function). Let RS be the set of all total orders on the set S
of items. A preference aggregation function for the group G is a function aggr ∶ R∣G∣S → RS that
maps any combination of user preferences to a single ordering of the items.

Preference aggregation functions have been studied in economics, political science, multi-

agent systems and social choice theory; the latter, which is concerned with the transition from

individual interests to societal decisions is especially relevant. In the following we present a

well-known result stemming out of this �eld1.

3.1.1. General Impossibility�eorem

At �rst sight we could simply hope to �nd a good preference aggregation function and use it to

form an indisputable ordering of items for the group. We would like this function to satisfy the

following properties.

1Traditionally, the concepts presented here use a very particular vocabulary due to their roots in social choice
theory. For example, items become social states, and the preference aggregation function becomes the social
welfare function. However in this section we try to remain consistent with the terminology introduced in
chapter 2.
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3. Recommendations to Groups

Universality �e function should be de�ned over any set of orderings.�is means that users
should not be restricted in the way they choose their preferences.

Pareto e�ciency If for a given vector of user preferences r ∈ R∣G∣S we can �nd items s1, s2 ∈ S
such that for all individual preferences rc, s1 ≥rc s2, then r̂ = aggr(r) should also satisfy
s1 ≥r̂ s2.�is means that if an item s1 is preferred to another item s2 unanimously by all
the users, it should also be preferred in the aggregated preferences.

Monotonicity Let r = aggr(r). If any user c ∈ G updates her preferences by promoting an
item s ∈ S higher in her preferences resulting in a new vector of preferences r′, then
r′ = aggr(r′) should rank s at the same position or higher in r′ than in r.

Independence of irrelevant alternatives When looking at a subset of items S′ ⊂ S, the relative
ordering of S′ should not depend on the ordering of S ∖ S′ in the users’ preferences2.

Non-dicatorship �e preference aggregation function should take into account the preferences

of everyone.�ere should not be a single user that dictates the outcome of the aggregation.

Unfortunately even these simple properties make the problem impossible, a result shown by

Arrow (1963).

�eorem (general impossibility). For ∣S∣ > 2 there exists no preference aggregation function
which satis�es the �ve properties listed above.

One might wonder what happens in the case where ∣S∣ = 2. Arrow showed that in this case
majority voting (i.e. choosing the item which is preferred by a majority of the users) is the
only function that satis�es the above properties.3. It is also interesting to consider some

relaxations.

• Although it is impossible it �nd a complete ordering of the item set, what happens if we
just want the top-N items (e.g. with N = 1)? It turns out that the situation does not
improve by much (Sen 1986).

• �emost promising approach is restricting universality: by imposing additional structure
on the users’ individual orderings it is possible to �ndwell-behaved aggregation functions.

�is is the case with single-peaked preferences, i.e. when the items’ rank is a concave
function of some uni-dimensional embedding of the item set S.

To sum up, the gist of Arrow’s theorem is that there is no clearly good aggregation function in
the general case. Among the many designs we can come up with there will necessarily be some

trade-o�s involved.

2�is is arguably the least intuitive property in this list. Without trying to fully justify the inclusion of this
property, let us point out that an aggregation function without this property is more easily subject to strategic
manipulation.

3�is also raises the question of whether one might construct an aggregation function based on pairwise
majority voting. As it turns out, these types of constructions do not even satisfy Pareto e�ciency in general.
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3.1. Aggregating Preferences

3.1.2. Rank-based Aggregation Strategies

Rank-based aggregation functions are based on ordinal measures of utility, meaning that we

discard the absolute utility values and consider only the relative ordering of items.�ere are

two main motivations behind that: First of all it might be di�cult to compare absolute utility

values across several users—utility might not be cardinal to begin with. Secondly we can greatly

simplify the analysis of the aggregation function.

Plurality voting

Plurality voting is the extension of majority voting for ∣S∣ > 2. Users cast a single vote and the
item with the highest number of votes wins. In order to get a sequence, the winning item is

removed from the set and the procedure is applied iteratively until no more items remains.

�is system is frequently used in political elections. We note that plurality voting does not

satisfy the independence of irrelevant alternatives property4.

Borda Count

Each item’s Borda count is the sum of its rank over all users’ ranking. Items are then ordered

by increasing Borda count to form a sequence. It is di�erent from plurality voting in that the

item with the highest aggregated ranking does not necessarily have rank 1 in any of the user’s

ordering. Just like plurality voting Borda count does not satisfy the independence of irrelevant
alternatives property.

3.1.3. Utility-Based Aggregation Strategies

Considering the cardinal utility values allows more �exibility in the design of an aggregation

function. Some care must however be taken to ensure that utility values are indeed comparable

across users; in practice it is o�en necessary to normalize and center the values—especially

when they were explicitly given by the users themselves.

Utilitarianism

Utilitarian approaches seek to maximize the average utility. For each item we compute its mean
utility over all users, and we rank the items in decreasing order. Traditionally, the arithmetic

mean is used to compute the average, but an alternative approach is to take the geometric mean.

�e latter solution is equivalent to taking the arithmetic mean of the logarithm of the utilities,

with the e�ect of penalizing items with higher utility variance across the users.

4A spectacular demonstration of this is called the Spoiler e�ect and is well-known by politicians. It happens
when a popular candidate has her votes diverted by a similar candidate and loses the election at the expense
of a third, very di�erent candidate.
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3. Recommendations to Groups

Least Misery

Some people might object that maximizing the average utility is unfair in the sense that there

might be users which will be signi�cantly worse o�. Indeed, if there is a minority of users

whose preferences are di�erent they will likely be ignored in favor of the majority. A fair
aggregation strategy would try to narrow the gap between the utility across users. One solution

is to optimize for the user that is the worst o�, which can be achieved by iteratively choosing

the items for which the minimum utility is maximal.�is method does not scale well with the

number of users: a change in a single user’s preferences can dramatically change the outcome

of the aggregation5.

�ere are a number of variants of the above strategies; we mention average without misery
where the an average utilitarian approach is used but items with very low utility values are

excluded from the sequence.

3.1.4. Beyond Preference Aggregation

So far we have discussed how to aggregate a set of individual preferences in order to pick the
best sequence of items for a group. As there are no de�nitive solutions emerging from this we

might wonder if there are alternative approaches.�is is particularly relevant in the context of

recommender systems as most of the utility values are not directly available and need to be

predicted. A natural question that arises is: can there be a way to model the group’s preferences

directly, bypassing individual utility prediction? Although we will not explore this approach

further we mention that several recommender systems take this alternative path (Jameson and

Smyth 2007). Some of them build a group model directly, while others construct intermediate

individual or subgroup models before combining them.

3.2. Group Recommender Systems

Group recommender systems have seen relatively little research e�orts until recently, especially

when compared to the wealth of the literature on individual recommender systems. Both

Mastho� (2011) and Jameson and Smyth (2007) provide an excellent survey of the state of the

art and the speci�c challenges related to making recommendations to groups.

Mastho� (2004) looks at several preference aggregation functions in the case of a television

recommendation systems that produces a sequence of items TV programs. Two questions she

raises are of particular interest:

1. How do we, humans, aggregate a set of preferences? Do we consistently follow a speci�c
strategy? If yes, which one?

2. Beyond average utility, how satis�ed are we with di�erent aggregation strategies? Does

the order of the sequence have an in�uence?

5Informally, it does not always lead to satisfactory outcomes—as perceived by humans—either.
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3.2. Group Recommender Systems

Experimental results tend to show that while we do not all follow a single consistent strategy,

we use a mix of average utilitarian strategy and fairness considerations6. As for the satisfaction,

among other �ndings we seem to put great importance on having our preferred item in

the sequence; also, the �rst and last elements seem to matter particularly—a �nding that is

reminiscent of the primacy and recency cognitive biases.

In recent years the interest around group recommender systems appears to have caught up.

Baltrunas et al. (2010) evaluate the performance of a group recommender system that aggregates

the output of individual recommendations generated by a collaborative �ltering system using

di�erent rank aggregation strategies. Berkovsky and Freyne (2010) also evaluate the accuracy

of di�erent aggregation strategies on a system that recommends recipe to families.

3.2.1. Music Recommender Systems

An interesting line of work is MusicFX (McCarthy and Anagnost 1998; Prasad and McCarthy

1999), which is to the best of our knowledge the �rst group recommender system related to

music.�e system is designed for a �tness room, it automatically decides of a musical genre to

play a depending on the people currently working out. Users give their preferences explicitly

by �lling out a form and ratings for each genre are stored on a scale of -2 to 2. In the �rst

version of the system, the aggregation follows a strategy that is roughly equivalent to average
without misery except that high user ratings have an increased weight.�e system enforces
some fairness in that it does not play any music genre for which one of the users has a rating of

-2. An original aspect of MusicFX is that the aggregation function does not directly output the

items to be played; instead it de�nes a probability distribution over the items so as to provide

some variety even when the group does not change.�e authors report that the individual

preference threshold under which it would not play a given musical genre was soon discovered

by some users who found out that it was essentially possible to dictate the genre to be played

by manipulating their own preferences. In a second version of the recommender system, they

compare the utilitarian strategy to a new algorithm that simulates a market economy. Members

of the group are represented by agents that bid on music genres; this gives yet another trade-

o� between average utility and fairness, but perhaps more importantly avoids the strategic

manipulation issues of the �rst version.

Among other group recommenders related to music, we mention Chao et al. (2005) which

highlights the importance of learning what users don’t like (i.e. their negative preferences) as
opposed to what they like.

6It is worth noting that the scenario was involving a group of 3 people only.
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4. UnisonRecommender System

�is chapter gives a high-level conceptual presentation of Unison, our group music recom-

mender system. In particular we discuss the practical challenges faced while trying to build a

recommender system that works with real music libraries and in a mobile environment. We

introduce the di�erent models and techniques that were used to generate the recommendations,

as well practical choices that that were made to get the system up and running.

4.1. Challenges

Let us start by mentioning a few considerations that were made during the early stages of out

system in order to give a rough idea of the challenges and constraints it will have to overcome.

As will be discussed further in chapter 5 we chose to target the Android mobile platform, which

has some important implications on the recommender system. We will also draw from a few

informal observations we made with respect to real-worldmusic libraries.

Accessing the music library Android handles media items (music, but also videos, pictures,
etc.) through a centralized service that is part of the operating system. Users typically

load their media by connecting the device to their computer and copying the �les to

the device; by default, there is no synchronization with a desktop media player. When

developping an application for Android we can get access to the media through a content
provider1 (see Mednieks et al. 2011, chap. 12).

Media metadata Given that the media library is based o� of simple �les copied over to the
device the breadth of metadata available is restricted and their quality rather poor.

�rough the content provider we get access to the metadata embedded in the audio �le

(generally through ID3 tags2) and to the �le path. First of all we observed that the �le

path o�en carries little information. Secondly, even though ID3 tags provide ways of

embedding a rich variety of metadata in the �le we observed that these tags are not used

consistently enough to be of any use, with the exception of artist and title information

which seem to be the only �elds that are more or less consistently maintained by users.

User preferences Just like the rest of the metadata we do not get more information about a
user’s preferences other than the mere presence of a �le in the music library. We intially

hoped to leverage the PCNT (play count) ID3 tag, but it fell short of our expectations.

1In this case the MediaStore content provider: http://developer.android.com/reference/android/
provider/MediaStore.html.

2See http://www.id3.org/.
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4. Unison Recommender System

Alternativelywe could ask the user to give explicit ratings on hermusic, but it is unrealistic

to ask for ratings on thousands of tracks—a typical size for a music library.

Computation & interaction In parallel to challenges related to the scarcity of metadata and
other information we have to be particularly considerate with respect to computational

requirements, both in terms of processing and in terms of memory. Furthermore the

small size of the screen prohibits limits the complexity of interfaces; something to be

kept in mind when requiring user interaction.

Opportunities Despite these constraints we mention that a mobile environment also brings
positive opportunities. We have for example access to a wide range of sensors (micro-

phone, GPS, camera, etc.), the connectivity (Wi-Fi, Bluetooth, near �eld communication)

is generally rich and most screen nowadays are touch-sensitive. We might �nd a way to

leverage these additional capabilities to improve the system.

4.2. Modelling Tracks

We can now turn out attention to the task of modelling tracks. We �rst give a brief overview of

some of the approaches we investigated before focusing on the latent semantic model we use

in the current version of Unison.

4.2.1. Approaches Considered

Before opting for the latent semantic model described below we considered two alternative

solutions; we mention them because they both have advantages over our main solution. How-

ever we estimated that they would either be too di�cult to implement as a �rst step or that

they would not produce signi�cantly better results.

Collaborative Filtering

Putting collaborative �ltering under track modelling is a bit of a misnomer as collaborative
�ltering usually sidesteps the need for an explicit model of the item set altogether. We mention

it here because it was an obvious contender in the design of our recommender system.�e

main issue we are facing with collaborative �ltering is the cold start problem mentioned in
chapter 2. It is particularly hitting us because, once again, the space of music tracks is large and

we do not want to put any restriction to the music our system can deal with.

One way to alleviate this kind of problem is to use an existing dataset, e.g. of user ratings, which

we unfortunately did not �nd3. In light of this we directed our e�orts towards a content-based

approach, while keeping in ming that we would be able to integrate collaborative aspects later

on.

3Yahoo! Music provides a dataset (available at http://webscope.sandbox.yahoo.com/) with more than
700M ratings from 1.8M users. While very interesting at �rst sight unfortunately artists and titles of tracks
are anonymized making it worthless for our bootstrapping purpose.

18

http://webscope.sandbox.yahoo.com/


4.2. Modelling Tracks

Audio Analysis

We also considered borrowing techniques from music information retrieval (section 2.2.1),

either to automatically determine the genre of the music or to derive a similarity measure

between tracks.�is approach has the signi�cant advantage of working on literally any music

�le, even ones that do not have any associated metadata. It is however delicate to implement

on a mobile device as it requires signi�cant computational resources4—even though we found

some e�cient implementations of similarity measures (see e.g. Pampalk 2006). Although we

did not investigate this approach further it remains an interesting option as a fallback when

there is no metadata.

4.2.2. Latent Semantic Model

As pure collaborative �ltering was not an option and metadata very limited, we started looking

for external data sources that could be taken advantage of to extract track features. We ended

up using an approach that leverages user-generate tags to model tracks.

Millison Song Dataset & Last.fm API

�e Million Song Dataset (Bertin-Mahieux et al. 2011) is a recent initiative from LabROSA at

Columbia University in collaboration with several industrial partners that aims at facilitating

large-scale research on music information retrieval. It actually consists of several datasets, all

of them referring to the same set of about a million popular music tracks. We list some of the

available data.

1. Complete metadata including artist, title, genre, album name, year of release, etc. as well

many audio features including tempo, energy, loudness and timbre for each segment of

the track.�ese data are provided by�e Echo Nest.

2. �e Echo Nest also provides user listening pro�les for more than a million users and

about 400,000 tracks. We the play count for each (user, track) pair5.

3. User annotations in the form of tags, provided by Last.fm. More exactly, there are 505,216

tracks with at least one tag, 522,366 unique tags and over 8 million associations between

a tag and a track.

We are particularly interested by the last dataset; �g. 4.1 gives a few examples of what the data

look like. We mention some informal observations we made on the data.

4Alternatively we could send the audio �le to a third-party server that does the analysis itself, but that would
create unreasonable requirements on the bandwidth

5Note that this could have helped us in bootstrapping a collaborative recommender system.
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gospel (100), Traditional Gospel 
(40), rise up singing (40), easy 

listening (20), fun (20), upbeat (20), 
Favourites (20), female vocalists 
(20), catchy (20), mahalia jackson 
(20), down by the riverside (20), 

songs that are bouncy (20), 
elizabeth house (20), gittis (20), 

sunday morning2010 (0)

Artist: Mahalia Jackson
Title: Down By The Riverside

alternative (100), alternative rock 
(85), rock (66), radiohead (55), indie 

(44), 90s (29), british (27), 
experimental (18), indie rock (15), 
britpop (12), electronic (12), epic 

(11), favorites (10), Progressive rock 
(10), melancholic (9), beautiful (7), 

psychedelic (5), ...

Artist: Radiohead
Title: Paranoid Android

folk (100), classic rock (82), 60s 
(78), oldies (56), singer-songwriter 
(41), rock (23), Simon and Garfunkel 
(21), folk rock (21), acoustic (16), 
pop (14), Mellow (12), melancholy 
(10), beautiful (10), classic (8), 70s 
(7), Soundtrack (7), The sound of 

silence (7), easy listening (6), 
favorites (6), male vocalists (6), ...

Artist: Simon & Garfunkel
Title: The Sound of Silence

Figure 4.1.:�e tags provided by Last.fm for three di�erent tracks. �e numbers in parentheses are the tag’s count,
an additional attribute that is available for each tag.

• For each track and each tag we get an additional attribute called count.�is count is an
integer between 0 an 100 and seems to indicate the relative importance of the tag with

respect to the track.�e dataset does not give any documentation on this attribute but

we hypothesize that it might be a normalized indication of how many users used this

particular tag to annotate the track.

• At most 100 tags are given for any track (a limit that is shared by the Last.fm API, as will

be explained below). With 8 million (track, tag) pairs and more than 500,000 tracks the
average number of tags is a little more than 16 tags per track.�e distribution, however,

is not uniform6.

• We observed that the distribution of the tags themselves follows a power law distribution

(the plot of the number of occurences of each tag, not shown here, exhibits a typical

heavy tail).�e tags occurring most o�en are respectively rock, pop, alternative and indie.
Out of the 522,366 tags about 75,000 appear in at least 10 tracks.

• �e content of the tags is very diverse and goes far beyond genre information. Even

among the tags that are occuring the most o�en, we �nd keywords related to emotion

(e.g. beautiful, awesome) time (80s, 00s) and even personal relations to the music (seen
live).

�e exact same data can be queried for tracks that are not part of the Million Song Dataset by

using a web service provided by Last.fm7.�is free, HTTP-based API allows us to leverage

Last.fm’s huge music catalog and get tags for most of the popular music. Using both the Million

Song Dataset and the API, we observed that in practice we could retrieve tags for about 75% of

real user libraries.�is number is in our opinion quite high: poor metadata (e.g. tracks whose

title is Track 01) and non-music audio �les (podcasts, radio streams, sounds) account for a
signi�cant portion of the 25% of untagged music.

6Unfortunately, we did not have time to gather more precise statistics about this distribution.
7See: http://www.last.fm/api.
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Latent Semantic Analysis

At this point we can represent a track by a list of tags and for each tag we also have an integer

indicating its relative importance. We have in a sense created a textual representation of
the track: our representation is indeed closely related to the bag-of-words model, a popular
document model where only the words and their frequencies are kept. We can also think of

a track as a huge vector whose components indicate, for each distinct tag, whether the tag is

associated with the track or not; or—more interestingly—take the tag’s count attribute into

account as well. �is is also related to a text information retrieval technique known as the

vector space model.�ese high-dimensional vectors can however be di�cult to deal with and
lead sometimes to poor results. Furthermore the dimension of the vectors does not necessarily

re�ect the true dimensionality of the information because synonymy (e.g the tags disco and
disco in�uences) or noise (e.g. the tags strangeromanticdeadrockcave, v3dd3r).

We would therefore like to �nd a smaller space where each dimension corresponds to a concept
that can encompass many tags;�is latent space should be carefully built such as to maximize
the information we get out of each dimension. A well-known technique stemming out of the

text information retrieval community is latent semantic analysiswhic addresses exactly this kind
of problems. It uses a standard matrix factorization technique (singular value decomposition)

to uncover the hidden correlations between tracks represented as tag vectors and projects both

tags and tracks into a lower-dimensional space. For more details on this technique, please refer

to appendix A.

In order to build a latent semantixc space we used data from the Million Song Dataset. We

retained all tags that appeared in at least 10 tracks—which amounts to about 75,000 tags.

Eliminating tracks that did not have any of these tags reduced the number of tracks to slightly

less than 500,000.�is resulted in a 74916 × 471545 tag-track matrix, where each entry in the
matrix is copmuted using the Log-Entropy weighting scheme (Dumais 1992). We computed a

partial singular value decomposition up to the �rst 1000 singular values / singular vectors.�is

could be reasonably fast by using SVDLIBC8, a program that takes advantage of the sparsity

of the matrix (5,427,682 non-zero entries, or a density of about 0.02%). Fig. 4.2 shows the

magnitude of the �rst 1000 singular values; the magnitude of the nth singular value can be

thought of as the amount of information the nth dimension carries about the data. We see

that the knee of the curve lies around the 70th singular value. We store the singular vectors

associated to the tags, i.e. representation of the tags in the latent space in a database. From this

database it is trivial to embed any track in the latent space, even one that was not part of the

original tag-track matrix. Fig. 4.3 summarizes the process of embedding a track into the latent

semantic space starting from its title and artist name.

4.2.3. Classi�cation Experiment

We report on a small experiment that was conducted to get a feel of the quality and relevance

of our latent space. In the following we use the 50-dimensional latent space obtained from the

rank 50 restriction of the singular value decomposition.

8SVDLIBC is developed by Doug Rohde; see http://tedlab.mit.edu/~dr/SVDLIBC/.
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Figure 4.2.:�e magnitude of the 1000 �rst singular values of the tag-track matrix when using the Log-Entropy
weighting scheme

We discovered that the Last.fm API could also be used to retrieve information about its users;

in particular we can retrieve the list of tracks each user loved or banned by clicking on a button
while listening to one of Last.fm personalized radio streams9. We retrieved these two sets for

about 30,000 users but only considered a random sample of 11 users having at least 1000 tracks

in both list. We kept the same proportion of loved and banned tracks: exactly 1000 of each.

Our goal was to classify tracks into two classes, loved and banned, based on their latent space
representation. A high classi�cation accuracy would give us con�dence in the fact that the

latent space is capable of capturing user preferences. Among the di�erent types of classi�ers

we tried, we report on the one that consistently gave the best performance: a support vector

machine classi�er with a radial basis function kernel, a simple non-linear kernel that gives

good results on many datasets (Hsu et al. 2003). We �rst used a grid search to �nd the optimal

values for the two model parameters C and γ.�en, for each user, we evaluated the classi�er’s
performance over 100 runs. For each run we picked a random sample of 20% of the user’s

tracks. Fig. 4.4 shows the average performance for each user.

• �e performance varies signi�cantly between users. For some users we have a little more

than 80% prediction accuracy, while for others we barely beat a random guess. At �rst

sight there might radically di�erent shapes of preferences—some of which do not seem

to be e�ectively captured by our track model.

9See: http://www.last.fm/api/show/user.getLovedTracks for example.
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4.3. Modelling User Preferences

Last.fm API
track.gettoptags

tag 
features 

DB

Artist: The Who
Title: Won't Get 

Fooled Again

Tags
classic rock (100), rock (76), 
70s (39), british (31), hard 

rock (30), the who (20), 60s 
(12), csi miami (5), epic (4), 

guitar (3), favorites (3), 
oldies (3), Awesome Guitar 

Jams (3), ...

Linear combination 
Latent space 

representation

Figure 4.3.: Flow chart showing how a new track is embedded in the latent semantic space. A track is represented
as a linear combination of its tags’ latent space embedding.

• One has to keep in mind the characteristics of the data; it is not the opinion of 11 users on

a random sample of songs.�e songs are coming from the Last.fm radio personalized

streams which already only play recommended music.

• Finally, it is worth noting that only a very small minority of users had a large number of

banned tracks: less than 100 users out of our 30,000 sample banned at least 1000 tracks.
We might therefore deal with outliers, either music-lovers whose very sharp musical

tastes we fail to capture, or users who possibly found an alternative purpose for the love

and ban buttons (e.g. as a simple way of bookmarking songs).

Overall this experiment was rather inconclusive. We still take some comfort in observing that

we could capture the music preferences of part of the users.

4.3. Modelling User Preferences

We now turn our attention to the next logical step: modelling user preferences.�e whole point

of modelling tracks was indeed to provide means to the end that is predicting user preferences.

Here, the di�culty lies in the fact that we cannot ask too much explicit feedback (e.g. ratings)

up front; to make Unison as accessible as possible to a new user we decided to look for an
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Figure 4.4.: Performance of a non-linear support vector machine (SVM) classi�er trained with the tracks’
projection onto the 50 �rst dimensions of the latent space for 11 users. We indicate the average performance and

the standard error over 100 runs. �e blue line indicates the performance of a random predictor.

implicit way of estimating the user’s preferences, one that would not need any user interaction.

We make two important assumptions that greatly simplify the problem:

1. Users’ utility for a given music track is proportional to the amount of music of the same

kind present in their music library, i.e. to the number of tracks that are close in some
sense.�is assumption is arguably not always true, as musical tastes can evolve but users

rarely remove music from their library.

2. Users’ preferences are static, i.e. they do not depend on external parameters such as

location, time andmood.�is is clearly a disputable assumption aswe do not always listen

to the same type of music. However it is extremely helpful in reducing the complexity of

the problem.

4.3.1. GaussianMixture Model

If we represent tracks in an L-dimensional latent space such as the one presented before, a
user’s musical library can be considered as a cloud of points. We could hope that these points
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Figure 4.5.: A set of tracks in the 3-dimensional latent semantic space. Black points represent tracks that were
manually identi�ed as jazz music while red points were identi�ed as rock music

can be divided into clusters that represent di�erent kinds of music, as shown in �g. 4.5.�e

�rst assumption listed above would mean that the relative density of points in a certain region
of the latent space is proportional to the user’s utility for the kind of music it represents. We

leverage this last observation in order to build our preference model, which simply amounts to

estimating this density from the cloud of points.

We use a Gaussian mixture (Bishop 2006, chap. 9) to model the density; that is, we use a

weighted linear combination of K multivariate Gaussian random variables, where K is a model
parameter. Gaussian mixtures are known to be good probability density functions approxima-

tors, and are very convenient to use. We can think of a library’s latent space representation as

samples from a gaussian mixture random variable; our task can then simply be thought of as

retro�tting a probability distribution onto our cloud of points. In the case of a Gaussianmixture

we can search for the maximum likelihood model using the expectation-maximization algo-

rithm (Moon 1996). Fig. 4.6 gives an example of a Gaussian mixture model with 3 components

in the 2-dimensional latent space.

Choosing L and K

�e dimension L of the latent space as well as the number K of Gaussians in the mixture are
two parameters that need to be manually chosen.

25
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Figure 4.6.: A real music library of about 3500 tracks embedded in the 2-dimensional latent semantic space. We
overlay the centers and an indication of the variances of the best gaussian mixture model with 3 components.

�e dimension of the latent space is directly linked to the number of concepts we think are
necessary to model the breadth of user preferences. With a small L, we risk losing some
resolution power and not be able to �nely di�erentiate between di�erent preference pro�les.

In �g. 4.6 we could clearly observe that some regions of the space were corresponding to

a certain type of music, but the huge cluster around the origin contains a melting-pot of

many di�erent types of music that we would hopefully be able to separate with additional

dimensions. However, when increasing the dimensionality we expose ourselves to several

problems collectively known under the expression curse of dimensionality. Particularly relevant
to our clustering problem is the fact that the notion of distance in a high dimension Euclidean

space tends to become less meaningful, as most points become equidistant from each other.

�e choice of the dimensionality is also in�uenced by the typical size of libraries on which we

operate. We decided to choose L = 5 as a starting point for several reasons.

1. As we want to be able to easily compare user preferences we need to set L as a �xed
parameter shared by all users. We also want to be able to work with small libraries, we

thus need a conservative choice.

2. By starting with a smaller dimension it is easier to get an intuitive feeling of the e�ects at

play. We felt that it was still more or less feasible to understand a 5-dimensional space
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but that additional dimensions would make it very hard.

3. �ere are probably more than 5 distinct important dimensions in music. However, it is

still interesting to see howmuch we canmodel with such a limited number of dimensions.

As opposed to L, we can make the number of Gaussian components in the mixture K a user-
dependent parameter. It makes intuitive sense when considering the broad range of user
preferences: some might have very eclectic tastes spanning a wide range of music, while others

might prefer one or two narrow genres. We decided to impose an upper-bound of N/2L (where
N is the size of the user’s library) to force the choice of simpler models when the size of library
is limited. We also impose a hard upper bound of 10 to avoid edge-cases10. Although these

decisions were made without any strong backing we felt that they were necessary to ensure

a predictable behavior of the system; we will re-evaluate these decisions when we have more

data. To determine K for each user we successively consider the best model for all values of
K ranging from 1 to Kmax as determined by the upper bound described above. We use the

Bayesian information criterion (Schwarz 1978), a well-known �tness test to select the �nal

value of K among the candidates. Very broadly speaking, the criterion considers the likelihood
of the data under the model but penalizes for the model’s complexity. We refer the reader to

Bishop (2006, chap. 4) for further information on this model selection method; Burnham and

Anderson (2004) also provide insightful explanations on the topic.

Now that we can get for any user and for any track a density value that we interpret as a

predicted utility, the last piece missing in our system is a way of aggregating these values across

users and form a sequence of tracks for the group.

4.4. Preference Aggregation

In chapter 3 we saw that going from recommendations for single users to recommendations

for groups is fundamentally hard, and that there is no correct or incorrect way to aggregate

preferences.�erefore we simply present the technique we used to go from the vector of user

ratings over a set of track to the order of the sequence in the �nal playlist. From a practical

perspective we would like to achieve two goals:

High average satisfaction intuitively, we want to make users on average as happy as possible.
�is can be seen as a global property: individually, users might be more or less satis�ed.

Fairness �e counterpart to average satisfaction is trying to ensure that no one is too much
penalized, even if for the group’s good.�is is in some sense a local property—making

sure that every user is at least somewhat satis�ed.

Maximizing average satisfactionwhilemaking sure everyone is treated equally is a contradictory

goal. At the one end while the solution is optimal on average a minority of users might be bad

o�. At the other end optimizing for the user that is the worst o� does not necessarily lead to

acceptable outcomes either. As an initial practical solution for Unison we looked for a middle

10In practice on the data we observed so far we did not seem to need this upper bound very o�en; but it is here
just in case.
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ground; we chose the multiplicative utilitarian approach described in section 3.1.3, also known

as proportional fairness in the resource allocation literature11.�e aggregate utility or aggregate
score for item s ∈ S is computed as follows:

ugroup(s) =∏
c∈G

u(c, s) (4.1)

�is is equivalent to taking the (unnormalized) geometric mean of the users’ utilities, or max-
imizing the arithmetic average of the logarithm of the utilities. Taking the log has the e�ect
of gradually lessening the weight of high utility values with respect to lower ones, e�ectively

enforcing some level fairness into the choice of the sequence.

We get the �nal playlist by selecting items iteratively in decreasing order of utility.

11A caveat: the choice of proportional fairness is usually justi�ed by the law of diminishing marginal returns.
We do not have any information that would enable us to claim that the true utility (as perceived by the users)
based o� of our predicted utility values e�ectively follows this law. Hence we do not have a strong theoretical
backing in our choice of using proportional fairness.
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Whereas the last chapter was a fairly high-level discussion on how the recommender system

works from a conceptual point of view, this chapter will dicuss the implementation of the
recommender system as seen and manipulated by end users. As such it is much more focused

on the technical aspects of the system. We describe the �nal user-facing product—the Group-

Streamer application for Android—and present the technological choices that were made for

various components of the system1.

5.1. Overview

Let us start with some historical context: as the project started, we were considering several

directions. One of the earlier motivations for this project was to build a non-trivial application

for opportunistic networks; hence we �rst envisioned a distributed recommender system. As
these types of networks are not yet well supported by all mobile platforms, we decided to

target Android: it is arguably the platform on which it is the easiest to experiment—mostly

due to the fact that both hardware and so�ware can be tweaked at will. In particular, we were

considering using AllJoyn2, an ad-hoc networking a framework developed by Qualcomm. As
the project went forward we decided to slightly narrow the scope and focus on building a

practical recommender system, and although it did not yield any particular advantage anymore
the choice of Android stuck.

�e �nal implementation of the recommender system, GroupStreamer, follows a classical

client-server model with a central remote server accessed through the Internet.�e system

can be decomposed into 3 components, each one of which we will discuss more thoroughly in

the subsequent sections.

1. �e Android application constitutes the user-facing part of the recommender system. It

is relatively lightweight: it listens to changes in the user’s music library, plays music and

communicates with the remote server, but does not do any other processing.

2. �e remote server (publicly accessible through the Internet) does all the computations

that generate the recommendations. It stores the information about the libraries of all

users. Centralizing these tasks has obvious advantages.

1Although in this report we separate the two, concept and implementation are obvisouly deeply intertwined—
technological opportunities and limitations were very in�uential in the design of the Unison recommender
system.

2See: https://www.alljoyn.org/.

29

https://www.alljoyn.org/


5. GroupStreamer Application

3. �e communication between client application and remote server is done through the

Unison API, a simple API over HTTP.

5.1.1. Development Process

Generally speaking the three components were developped in parallel, which is rather unsur-

prising. However, the design of the API—which lies at the interface between the Android

application and the back-end and forms the narrow waist of GroupStreamer—had to be crys-

tallized quickly. We use Git3 as version control so�ware.�e codebase is split across two repos-

itories; unison-recsys contains the code related to the back-end while unison-android
contains code related to the Android application (names are kept for historical reasons).�e

two code repositories are publicly available for online consultation4.

5.2. Android Application

Android is an operating system and application framework primarily targetting mobile devices.

It is developped by the Open Handset Alliance, a group of many organizations of which Google

is the clear leader. It runs on a wide array of devices ranging from simple mobile phones to

tablets and television set-top boxes. It very open and �exible, sometimes at the expense of

uniformity. Android applications run on Dalvik, a virtual machine that executes Java bytecode5.

�e primary developement language on Android is Java, although alternatives exist and it is

even possible to run native code the Java Native Interface (JNI). Without going into much

detail about Android development, let us mention a few basic characteristics.

• Unlike tradition desktop applications, Android applications tend to blend much more

into one another and into the system. Applications are loosely coupled and can call each

other through intents; several functionalities are readily provided by the system, such as
a media library, user preferences storage, etc.

• As applications run on devices where computational resources are scarce and battery life

is constrained, many low-level events cannot be abstracted away from the application

developer. Parts of the application can be destroyed at any moment to free system

resources; this results in a particularly defensive programming style.

We refer the reader to Mednieks et al. (2011) for a good overview of the possibilities of the

Android platform and some philosophical insights into Android development.

3See: http://git-scm.com/.
4See: https://github.com/lucasmaystre/.
5Dalvik is one of the core components of the Android platform, and is a mobile-optimized alternative to the
traditional Oracle JVM, HotSpot. Actually, Java bytecode is �rst transformed into a Dalvik executable .dex
�le before being run in the virtual machine.
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Version Codename API Levels Distribution
1.5 Cupcake 3 0.3%

1.6 Donut 4 0.6%

2.1 Eclair 7 5.2%

2.2 Froyo 8 19.1%

2.3 Gingerbread 9, 10 65.0%

3.1 Honeycomb 12, 13 2.7%

4.0 Ice Cream Sandwich 14, 15 7.1%

Table 5.1.:Market share of di�erent versions of the Android OS. By only using functionalities introduced at the
API level 8 or earlier we reach 93.9% of Android devices.

5.2.1. Implementation Highlights

Since the �rst release of Android in 2007 many new versions have appeared, each one intro-

ducing new features or improvements to existing ones. Table 5.1 gives an overview of the

market share of di�erent versions of Android. From an application developer’s perspective the

choice of a particular version conditions the compatibility with older devices; features available

through the bundled libraries are annotated with a so-called API level that indicates when they
were introduced in the framework6. By using features available down to a certain API level

we ensure that the application works also on older devices. In the case of GroupStreamer

we managed to target API level 8, which makes it compatible with almost 95% of the Android

devices in use. Besides the bundled libraries we use three additional third-party libraries.

ActionBarSherlock �e latest release of Android, codenamed Ice Cream Sandwich introduces
important improvements to the user interface. In particular it includes a new design

pattern called the action bar which provides a much leaner way to navigate in the
application. ActionBarSherlock7 is an open-source third-party library that brings the

action bar to earlier versions of Android.

Support Library Android provides additional optional libraries that retro�t some of the newer
features into earlier versions of the framework. We use it here mainly because it is a

dependency for ActionBarSherlock.

Google Gson �e last third-party library that we rely upon is a JSON serialization library.

JSON is the format we use for exchanging data through the Unison API, and Gson8

allows to easily map Java objects to JSON representations and vice-versa.

5.2.2. User Interface

One of the goals of GroupStreamer’s design was to make the application intuitive and easy to

use, and the user interface as simple and streamlined as possible; as such we tried to ensure that

6For example, near �eld communication (NFC) libraries were introduced in API level 9, and support of Wi-Fi
Direct was introduced in API level 14

7See: http://actionbarsherlock.com/.
8See: http://code.google.com/p/google-gson/.

31

http://actionbarsherlock.com/
http://code.google.com/p/google-gson/


5. GroupStreamer Application

Figure 5.1.: Screenshots of GroupStreamer. On the le�, the groups screen lists the nearby groups. On the right,
the main screen shows the track currently being played. Non-DJ users do not see the media bar shown here.

there were not too many di�erent screens that the user would be faced with. In this section, we

focus on the two most important important screens that the user is interacting with: the list of

groups and the music player, both displayed in �g. 5.1.

One important concept to keep in mind is that the GroupStreamer application essentially

provides views on resources stored on the remote server through HTTP requests.�is means
that the user has to be connected to the Internet in order to use the application. It also means

that the information displayed is in some sense only loosely consistent. Requests for fresh

information are sent to the server either automatically every few seconds, or manually by

hitting the refresh button.

List of Groups

�e �rst screen users are presented with is a list of groups. In the current version of Group-

Streamer users join and leave groups explicitly. Typically, a user creates a new group, gives it

a name and asks people around her to join. Users join a group simply by touching the corre-

sponding row in the list of groups. When creating a new group the geographic coordinates

(latitude and longitude) of the user who created the group are sent to the server.�e user’s

coordinates are also sent when querying for the list of groups, which allows the server to �lter

the them according to the distance to the user.�e list shows 10 groups that are closest to the
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user; in the case where we location information is unavailable9 we display the most recently

created groups as a fallback.

Music Player

�e second main screen is the music player. It contains basic metadata (i.e. the name of the

artist and the title) about the track that is currently being played, and an image—usually the

album cover art. At this point it is important to mention that within a group only a single

user (called the DJ) can request a playlist and start playing music.�is restriction allows us

to broadcast information about the single track that is being played to all the members of the

group, such that they all have the title, artist and album cover. Any user can become the group’s

DJ; requests for the DJ spot are handled in a �rst-come, �rst-served fashion. Furthermore, the
spot has to be explicitly released by the current holder before another user can take it.�is

limited design has the advantage of keeping things simple. In addition to the information

displayed to all users the DJ also sees a control bar with classic media controls. Last but not

least let us mention that the playlist request is sent as soon as the user becomes the DJ so that

the playback can start the instant the play button is pressed (we recall that only music that is
locally stored on the DJ’s device can be played).

5.3. Back-End Services

�e second component of the recommender system is the remote server. It plays a very

important role as most of the di�erent tasks required by the system—such as embedding

tracks in the latent space, modelling user preferences and generating a playlist for the DJ—are

delegated to the server. It is itself composed of several parts, including a relational database, a

Web front-end, di�erent maintenance scripts and other services.�e con�guration is managed

in a single YAML10 �le used across the di�erent parts. We use Python11 for most of the back-

end code, essentially as a thin binding layer across many third-party libraries and so�ware

components.

5.3.1. Central Database

�e database has three roles. First of all it is used to store elementary data needed by the rec-

ommender system—that is: information about the users and about the music tracks. Secondly

it also stores the information needed for the operation of the system in the short term: which

user belongs to which group, who is the DJ, which tracks have been played, etc.�irdly we

want to be able to inspect the history of the recommender system’s activity in such a way that

we can essentially replay everything that happened. We chose PostgreSQL12, an open-source

9�is can happen for a variety of reasons. Users can disable geolocation in their device’s settings, or even when
geolocation is enabled the location might not have been found yet.

10See: http://yaml.org/.
11See: http://www.python.org/.
12See: http://www.postgresql.org/.
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relational database management system.

Table user Contains the data relevant to an end-user of the system, notably e-mail address
and password hash. It also contains a reference to the group the user is currently in (or

NULL if he is not using the system). For performance reasons we also store the serialized
representation of the user’s gaussian mixture model in this table.

Table group A group is characterized by its unique ID but also has a name, geographic co-
ordinates (latitude and longitude) and a reference to the user who is currently the DJ.

A group can also be set to be inactive so that it will not be shown in the application
anymore.

Table track Contains the information relative to music tracks. A track is uniquely identi�ed
by its (artist, title) pair. For each track, we store several data obtained from Last.fm such
as a URL to the track’s image and its tags. For performance reasons, we also persist the

latent space representation of the track.

Table lib_entry Contains the library entries, i.e. mappings between tracks and users. If the
track is present on the user’s Android device, we also keep a pointer to its location on

the device to be able to play it back. We never remove entries from this table so as to

keep a history of the evolution of a user’s library, but rows can be invalidated.

Table group_event A log of all the important events that happened in a group. Events can
be:

• playing a track�e group’s master informs the server every time he starts playing a
new track.�is information is then relayed to the other members of the group.

• skipping a track�is event is created when the group’s master hits the skip button
in the application.

• joining / leaving a group�ese events allow us to record how the group’s composition
changes over time.

• change of DJ Keeps a history of the group’s successive DJs.

• instant rating Created when users rate a track that is currently being played in the
group.

�ese events do not only leave a precious trail of the the group’s history, they could also be

used as additional signals by a future version of GroupStreamer that takes the group’s

dynamics into account.

To access the database from various parts of the back-end we use Storm13, an object-relational

mapper developed by Canonical. It allows easy manipulation of the database through an

object-oriented interface.

It is also worth mentioning that PostgreSQL has a high-quality spatial database extension,

PostGIS14, which allows to e�ciently store, index and compare geometrical attributes. We

13See: https://storm.canonical.com/.
14See: http://postgis.refractions.net/.
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Central 
DB

Last.fm fetcher 
service

Web front-end

Web front-end

Web front-end

Message queue

= Last.fm job (e.g. retrieve tags)

Figure 5.2.: Requests to Last.fm such as fetching the tags for a new track are sent to a queue. A separate
process—the fetcher service—then executes the requests asynchronously and sequentially.

could use it to speed up the query of the groups that are nearest to a location—for now, we

compute the distance to every single group.

5.3.2. Requests to Last.fm

As discussed in chapter 4, we use the API provided by Last.fm to collect the tags for each new

track. We use it for other information as well, such as to get the cover art; currently each new

track requires two HTTP requests to Last.fm’s servers. Not only do these take a signi�cant

amount of time, the rate at which they can be done is also limited by the server to one per

second15. When a new user arrives and uploads a library with several hundreds to thousands

of tracks, it is unthinkable to delay the response for such a long period of time.�erefore we

decided to develop a separate, stand-alone service dedicated to the interaction with Last.fm.

When a new task involving the Last.fm API arises in any part of the application we send a

message to the Last.fm queue.�e fetcher service then processes thesemessages asynchronously.
Fig. 5.2 summarizes this process.

To manage the message queue we use RabbitMQ16, an open-source implementation of the

Advanced Message Queueing Protocol. Note that our use case is extremely basic: we use

RabbitMQ as a simple bu�er. In the process of building the fetcher service, we also developed

our own Python wrapper to facilitate interaction with to the Last.fm API, liblfm.

5.3.3. Playlist Generation

For the computations related to modelling and aggregating user preferences as well as for

other smaller parts of the system we make heavy use of Python’s great numerical analysis

and computation libraries: NumPy, SciPy and matplotlib17. We also use the excellent Python

machine learning library scikit-learn18 to compute and compare Gaussian mixture models.

15In theory and also in practice, as we soon experienced!
16See: http://www.rabbitmq.com/.
17See e.g. http://scipy.org/Getting_Started for a short introduction.
18See: http://scikit-learn.org/.
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HTTPMethod Resource Description
GET /groups List all groups.

POST /group Create a new group.

GET /groups/18 Get information about group 18.

PUT /users/3/group Make user 3 join a group.

DELETE /users/3/group Make user 3 leave her group.

Table 5.2.: A subset of the methods provided by the Unison API. Standard HTTP methods are used to create,
read, update or delete resources. Additional data in the HTTP request can be used as arguments to the method.

5.4. UnisonAPI

�e Unison API is the binding between the user-facing Android application and the remote

server. It is for the most part an interface for storing and retrieving information in the central

database except for a few methods that also invoke the recommendation engine. We built it as

simple Web service; we use therefore HTTP as our transport layer, a solution that has several

advantages over using raw network sockets.

• HTTP readily provides many functionalities that would need to be reimplemented if

starting from scratch, e.g. user authentication.

• Many platforms have great HTTP client libraries. In particular, Android makes it easy to

perform HTTP requests in the application code.

• �ere are plenty of production ready HTTP servers that we can use on the back-end

without much additional e�ort. It is also arguably easier to scale, as requests can be

distributed over many machines.

• Using stateless, client-initiated requests instead of bi-directional persistent connection

simpli�es the design and the operation of the API.�is is especially true in the case of a

mobile environment, where network connectivity might be intermittent and persistent

connections are fragile.

We considered alternative designs as well, e.g. using a specialized RPC stack such as Apache

�ri�19. A key point of the Unison API is that it tries to embrace some of the REST principles

(Fielding 2000). In practice it means that we try to map URLs to database resources and that

we try to stay consistent with the semantics of the HTTP methods we use, especially with

respect to the requests’ side-e�ects on the server. In total, there are about 20 di�erent methods;

table 5.2 shows a subset of them.

Weuse JSON20 to serialize data between client and server. JSONcan represent loosely structured

data consisting of arrays, dictionnaries and a few primary data types; it is well supported across

a wide variety of languages, in particuar in Python and—thanks to Gson—in Java.

We enforce the use of HTTPS—the secure variant of HTTP—in order to provide server au-

thentication and communication secrecy. Client authentication is done with HTTP’s basic

19See http://thrift.apache.org/.
20See: http://www.json.org/.
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1 @app.route(’/groups/<int:gid >’, methods =[’GET’])
2 @authenticate () # Require authentication
3 def group_info(gid):
4 # Get the group from the database.
5 group = store.get(Group , gid)
6 if group is None:
7 raise BadRequest(’group not found ’)
8 # Return a JSON response: {"name": "..."}.
9 return jsonify(name=group.name)

Figure 5.3.: Implementation of an API method. �e Flask Python package maps URLs to Python functions and
provides many helpers (such as serializing data to the JSON format).

access authentication method21. �e user’s e-mail address and password are sent as part of

every request’s HTTP headers. Although not optimal from a security standpoint, it has the

merit of not necessitating any additional round trip.

5.4.1. Back-End

On the back-end we use the Apache HTTP server22 together with mod_wsgi23, which is more
or less the de facto standard for calling Python applications through Apache. We also use
Flask24, a minimalistic Python web framework. Fig. 5.3 shows a simpli�ed implementation of

the API method which returns information associated with a group.�e group is identi�ed

through the gid parameter; if it is found we return a JSON response with its name.

5.4.2. Front-End

In the front-end application code any interaction with the Unison API goes through an

intermediate library providing asynchronous Java bindings. As requests can take up to minutes

to complete they cannot be performed on the main application thread, as it would block any

kind of user interaction; hence the use of a small wrapper presenting a non-blocking interface.

API calls are then sent to a separate thread and upon completion a callback is executed. Fig.

5.4 shows the front-end counterpart to �g. 5.3.�e class UnisonAPI performs the appropriate
HTTP request and takes care of serializing and deserializing the necessary data.

21See: http://tools.ietf.org/html/rfc2617.
22See: http://httpd.apache.org/.
23See: http://code.google.com/p/modwsgi/.
24See: http://flask.pocoo.org/.
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1 UnisonAPI api = new UnisonAPI(email , password );
2 api.getGroupInfo(groupId , new Handler <GroupInfo >() {
3 public void callback(GroupInfo info) {
4 // Update the UI with the information we got.
5 updateInterface(info);
6 }
7
8 public void onError(Error error) {
9 // What a Terrible Failure.

10 Log.wtf("example", error.toString ());
11 }
12 });

Figure 5.4.: Typical usage of the Java library that interfaces the Unison API.�e calls are non-blocking: we
provide asynchronous callbacks that are trigggered upon receiving a response or when an error arises.
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We have presented Unison, a system that recommends music to groups of people and Group-

Streamer, a practical implementation of the system available for the Android platform. To

conclude this report we list some ideas le� for future work. In addition we identify two

promising directions for which our work could a starting point.

First of all, as we gather data from real users of the system, we hope to be able to provide some

insights on the performance of our system. Especially, we hope to be able to justify some of

our choices and to compare preferences aggregation strategies.

Individual preferences Given enough explicit user ratings, we could start to compare our
preference model with true user ratings to get a better sense of the predictive power of
the preference model we developed in chapter 4.

Aggregation strategies If we start to have a su�cient number of users, we could start testing
di�erent preference aggregation strategies. �is would require a way to measure the

group’s satisfaction with the playlist—we could for example measure the average length

of a session on GroupStreamer.

�e application itself could bene�t from several improvements; we list here a selection of

enhancements that we feel would greatly bene�t the application from a user’s perspective.

Missing metadata �e quantity of tracks for which we cannot retrieve tags through Last.fm is

non-negligible. Currently we simply ignore these tracks when generating the playlist,

which is unfortunate. It would be interesting to be able to have a fallback for these

situations, e.g. by generating tags from the audio signal (Eck et al. 2008).

Single-user mode At the moment, GroupStreamer is designed to be used only in a group
setting. To improve the attractiveness and popularity of the application, we think it

would be worthwhile to leverage some of the infrastructure we already have to build a

single-user music recommender system.

Automatic group formation Automating the detection of nearby users and the formation of
groups would further simplify the user interaction, as well as provide a distinctive wow
e�ect to the application.

DJ position As hinted at in chapter 5, we would like to �nd a more elegant solution for the
attribution of the DJ position, currently done in a �rst-come, �rst-served fashion. We
have several ideas on how to improve this, ranging from letting users vote to letting the

system decide which user has the best music for the group.
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�ere are also interesting alternatives to be explored for the recommender system at the

algorithmic level.

Topic models Beyond latent semantic anaylsis newer dimensionality reduction techniques
have been explored recently. Among them are probabilistic topic models (Blei 2011).

It would be interesting to replace LSA by a simple topic model such as latent Dirichlet

allocation (Blei et al. 2003).

Collaborative �ltering Aswe start collecting user pro�leswe could start blending collaborative
�ltering aspects in the rating predictions and in the recommendations.

Exceeding the scope of our music recommender system, we additionally identi�ed two broad

directions that we think are of particular interest for further research.

Contextual Recommendations We recall that our recommender system models preferences
statically by analyzing the user’s library. It seems however fairly reasonable to think that

preferences are actually modulated by the context in which the user �nds herself in.

A simple way to extend our user model to take the context into consideration would

to parameterize the weights assigned to the components of the Gaussian mixture (see

section 4.3.1). Generally speaking, taking into account contextual information seems to

be an very interesting extension of classical recommender systems.

Group Recommenders �e topic of generating recommendations for groups is still a widely
open research area that could potentially have many applications. For example, auto-

matically adapting the environment goes way beyond music—one could apply the same

kind of system for the room temperature or one of the many other decisions a�ecting

groups of people. In this report we mainly saw group recommendation as an additional

di�culty on top of individual recommendation. We wonder however if we could not get

bene�ts from recommending to groups, e.g. in terms of privacy: a decision for the group
might emerge without any of its member giving too much personal information.
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A. Latent Semantic Analysis

�is appendix gives a short overview of latent semantic analysis (Manning et al. 2008, chap. 18),

also known as latent semantic indexing. It is a text information retrieval technique originally
developped by Deerwester et al. (1990). What seems to be at �rst simply an optimal way of

reducing the dimensionality of a vector space model actually turns out to be have much a

deeper meaning: Landauer and Dumais (1997) showed that it could be seen as a general model

of how humans learn and represent knowledge. At its core we �nd singular value decompisition,
a well-known matrix factorization technique.

A.1. Term-Document Matrix

Consider a collection of N text documents containing words chosen from a dictionary ofM
distinct terms. Let T = {ti}1≤i≤M be the set of terms and D = {d j}1≤ j≤N the set of documents.
Using the bag-of-wordsmodel we can represent each document as anM-dimensional (column)
vector dj where the i th component (denoted di j) corresponds to the weight of term ti for
document d j. A naive way of choosing a value for the weight would be to use the number

of occurences of the term, or even just an indicator function. It turns out that slightly more

complex weighting schemes work better in practice, although there is no general consensus on

which weighting functions works best.�ese functions can however o�en be factored into two

terms:

di j = gwi ⋅ lwi j (A.1)

where gwi is the global weight of term ti and does not depend on the document (but rather
on the term’s distribution across documents) and lwi j is a local weight that depends on the
document.

A.1.1. TF-IDFWeighting

�e TF-IDF weighting scheme is probably the most popular one—not only with latent semantic

analysis but with vector space models in general. Let t fi j, the term frequency simply be the
number of occurences of term ti in document t j (a local weight). We de�ne the inverse document
frequencency for the term ti as:
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id fi =
1

log∑N
j=0 1{ti ∈ d j}

(A.2)

where by ti ∈ d j we mean that term ti appears at least once in document d j.�is means that

the weight decreases when the term is shared by many documents. Indeed, a term appearing
in every document does not bring much information; the inverse document frequency can

therefore be seen as indicating the resolving power of the term.�e total weight then simply

becomes di j = t fi j ⋅ id fi .

A.1.2. Log-EntropyWeighting

Log-Entropy is an alternative weighting scheme empirically shown to work well with latent

semantic analysis (Dumais 1992). We �rst de�ne the (empirical) distribution of the documents

conditioned on the term:

pi j =
t fi j

∑N
j=0 t fi j

(A.3)

�e weights are then computed as follows:

di j = log t fi j ⋅
⎛
⎝
1 −

N

∑
j=0

pi j log pi j
logN

⎞
⎠

(A.4)

�e local weight is just the logarithm of the term frequency.�e global weight is much more

interesting; upon closer inspection it turns out to be one minus the empirical conditional

entropy of the document given the term, normalized between 0 and 1. If the entropy is close to

1, the term tends to be uniformly distributed over all the documents and has thus a limited

resolving power. On the other hand if the entropy is low the term is good at reducing the

uncertainty on the document.

Once we have chosen our weigthing scheme, we can combine the document vectors dj into the

M × N matrix A = [d1⋯dN].�is matrix is referred to as the term-document matrix.

A.2. Singular Value Decomposition

Consider (without loss of generality) the case whereM ≤ N .�e singular value decomposition
theorem then states that any realM × N matrix A can be factored in the following way:

A = U ⋅ Σ ⋅ V⊺ (A.5)

where Σ is a M ×M diagonal matrix of decreasing real values, U is an M ×M unitary real
matrix and V is an N ×M real matrix such that V⊺ ⋅ V = IM . the diagonal elements of Σ are
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called singular values and the columns ofU andV are called the le� (respectively right) singular
vectors.

Let 1 ≤ k ≤ M. We de�ne the M × N matrix Ak = Uk ⋅ Σk ⋅ V⊺
k where Uk is the k ×M matrix

obtained by restricting U to the k �rst rows, Vk is the N × k matrix obtained by restricting V
to the k �rst rows, and Σk is the k × k matrix similarly obtained by restricting Σ to the k �rst
rows and columns. It has been shown that the matrix Ak is the best rank-k approximation of A
in the least squares sense.

Let us come back to our term-document matrix. We remember that the columns of A are the

document vectors of dimension M = the number of distinct terms. When considering the
singular value decomposition A = U ⋅ Σ ⋅ V⊺ we interpret the matrices as follows1:

• �e rows of U can be roughly thought of as the representation of the terms in the new
basis.

• �e elements of S indicate the importance of each dimension in accurately re�ecting the
original matrix.

• �e rows of V can be roughly thought of as the representation of the documents in the
new basis.

By taking the rank-k restriction of the decomposition we embed the terms and documents
into a k-dimensional vector space that represents the best projection of the data (in the least
squares sense) on k dimensions. We call this vector space the latent semantic space. Also, we
call the elements of its basis the concepts; terms and documents can then be simply seen as a
mixture (linear combination) of k concepts.

To conclude, we observe that it is very easy to embed a new document in the latent space.

Given a new document represented by its term vector dN+1 it is easy to see that the the linear
combination of the terms’ representation in the latent space:

vk,N+1 =
N

∑
i=1

di,N+1 ⋅ uk,i (A.6)

where by uk,i we denote the i th row of matrix Uk, is indeed the latent space embedding of

document dN+1.

1�e interpretations given here are not necessarily very precise, but we think they give the correct intuition.
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