Non-convex optimization for robust multi-view imaging
G. Puy and P. Vandergheynst

Institute of Electrical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Problem formulation

- A scene $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$ is observed from l viewpoints, providing l noisy measurement vectors $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{l} \in \mathbb{R}^{m}, m \leqslant n$.
- The scene is partly occluded by some objects $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l} \in \mathbb{R}^{n}$.
- The scene undergoes geometric transformations that depend on the position of the observer. We assume that they can be represented by p parameters: $\theta_{j} \in \mathbb{R}^{p}, \forall j \in\{1, \ldots, l\}$.
- The transformed images are estimated using interpolation matrices $\mathrm{S}\left(\theta_{j}\right) \in \mathbb{R}^{n \times n}, j=1, \ldots, l$, built using, e.g., bicubic splines.
- Observation processes are modeled by $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{l} \in \mathbb{R}^{m \times n}$.
- Our goal is to reconstruct $\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{l}$, and estimate $\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{l}$, using $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{l}$ as sole information.

Optimization method

- The measurement model satisfies

- Find a solution to this ill-posed inverse problem by minimizing

$$
L(\boldsymbol{x}, \boldsymbol{\theta})=f(\boldsymbol{x})+\kappa\|\mathrm{A}(\boldsymbol{\theta}) \boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}+i_{\Theta}(\boldsymbol{\theta}) .
$$

Prior on \boldsymbol{x}, e.g., ℓ_{1}, TV. Parameters belong to a convex set Θ.

- We use an alternate minimization method inspired by [2], [3].

Generate a sequence of estimates $\left(\boldsymbol{x}^{k}, \boldsymbol{\theta}^{k}\right)_{k \in \mathbb{N}}$ converging to a critical point $\left(\boldsymbol{x}^{*}, \boldsymbol{\theta}^{*}\right)$ of L [4].

- Start from $\boldsymbol{x}^{0}=\mathbf{0} \in \mathbb{R}^{(l+1) n}$ and $\boldsymbol{\theta}^{0} \in \Theta$.
- Step 1: update of the images. Wavelet tight-frame \searrow Coarse-to-fine ${ }_{k+k+1} \quad \boldsymbol{x}^{k+1} \leftarrow \underset{\boldsymbol{x}}{\operatorname{argmin}} L\left(\boldsymbol{x}, \boldsymbol{\theta}^{k}\right)+\frac{\lambda_{\boldsymbol{x}}^{k}}{2} \underbrace{h_{\mu}\left(\Psi^{\boldsymbol{\top}}\left(\boldsymbol{x}-\boldsymbol{x}^{k}\right)\right)}$. $\begin{gathered}\boldsymbol{\gamma} \text { reconst } \\ \text { scales }\end{gathered}$
- Step 2: update of the parameters.
$\left\|\mathrm{A}(\boldsymbol{\theta}) \boldsymbol{x}^{k+1}-\boldsymbol{y}\right\|_{2}^{2}=\sum_{1 \leqslant j \leqslant l}\left\|\mathrm{~A}_{j} \mathrm{~S}\left(\boldsymbol{\theta}_{j}\right) \boldsymbol{x}_{0}^{k+1}+\mathrm{A}_{j} \boldsymbol{x}_{j}^{k+1}-\boldsymbol{y}_{j}\right\|_{2}^{2}=\sum_{1 \leqslant j \leqslant l} Q_{j}\left(\boldsymbol{\theta}_{j}\right)$.
For $j=1, \ldots, l$, minimize a quadratic approx. of Q_{j} at $\boldsymbol{\theta}_{j}^{k}$: $\boldsymbol{\theta}_{j}^{k+1} \leftarrow \underset{\boldsymbol{\theta}_{j} \in \Theta_{j}}{\operatorname{argmin}} P_{j}\left(\boldsymbol{\theta}_{j}\right)=\nabla Q_{j}\left(\boldsymbol{\theta}_{j}^{k}\right)^{\top}\left(\boldsymbol{\theta}_{j}-\boldsymbol{\theta}_{j}^{k}\right)+\left(\boldsymbol{\theta}_{j}-\boldsymbol{\theta}_{j}^{k}\right)^{\top}\left[\frac{H_{j}^{k}+2^{i} \lambda_{\boldsymbol{\theta}} \boldsymbol{l}}{2}\right]\left(\boldsymbol{\theta}_{j}-\boldsymbol{\theta}_{j}^{k}\right)$, where i is the smallest integer such that:

$$
Q_{j}\left(\boldsymbol{\theta}_{j}^{k+1}\right)+\lambda_{\boldsymbol{\theta}} / 2\left\|\boldsymbol{\theta}_{j}^{k+1}-\boldsymbol{\theta}_{j}^{k}\right\|_{2}^{2} \leqslant Q_{j}\left(\boldsymbol{\theta}_{j}^{k}\right)+P_{j}\left(\boldsymbol{\theta}_{j}^{k+1}\right) .
$$

"Sufficient" decrease condition of the objective function [4] Puy et al, STAM J. on Imaging Sciences, submitted, 2012 .

Applications

Robust image alignment

Super-resolution
Impus 16 Low resontition images of the semmo object.

Compressed sensing

Results using proposed method - Transformation model: homography.
Reconstructed images $\mathrm{S}\left(\boldsymbol{\theta}_{1}^{*}\right) \boldsymbol{x}_{0}^{*}+\boldsymbol{x}_{1}^{*}, \ldots, \mathrm{~S}\left(\boldsymbol{\theta}_{5}^{*}\right) \boldsymbol{x}_{0}^{*}+\boldsymbol{x}_{5}^{*}$.

Free breathing coronary MRI
Goal: obtain a high-resolution image of the heart.

Conclusion

- The method jointly reconstructs misaligned images, while estimating the transformation between them. - Extension to more challenging scene structures thanks to the use of parametric elastic transformations.

