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Abstract
A multilevel Monte Carlo (MLMC) method for mean square stable stochastic

differential equations with multiple scales is proposed. For such problems, that
we call stiff, the performance of MLMC methods based on classical explicit meth-
ods deteriorates because of the time step restriction to resolve the fastest scales
that prevents to exploit all the levels of the MLMC approach. We show that
by switching to explicit stabilized stochastic methods and balancing the stabiliza-
tion procedure simultaneously with the hierarchical sampling strategy of MLMC
methods, the computational cost for stiff systems is significantly reduced, while
keeping the computational algorithm fully explicit and easy to implement. Numer-
ical experiments on linear and nonlinear stochastic differential equations and on a
stochastic partial differential equation illustrate the performance of the stabilized
MLMC method and corroborate our theoretical findings.
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· Stiffness · S-ROCK Method
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1 Introduction
For computing expectations of functionals depending on a stochastic process, Monte
Carlo (MC) methods are an essential tool. In the context of stochastic differential
equations (SDEs), sample paths of the solution are computed by a numerical integrator
and the MC approach consists in approximating the expected value of a given functional
of the solution by the average of the computed samples. Bias and statistical errors are
introduced in such an approximation procedure. The bias of the method is related
to the weak order of convergence of the considered numerical integrator, while the
statistical error scales as the inverse of the square root of the number of samples and
involves the variance of the process. This statistical error is a computational burden
for many applications and many strategies to reduce the computational cost of MC
method have been proposed. We mention the variance reduction techniques such as as
estimators based on control variates or antithetic variates (see e.g. [11]).

A recent approach, originating with Heinrich [13] in the context of numerical quadra-
ture, proposed by Giles [10] for SDEs is the so-called multilevel Monte Carlo (MLMC)
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method that allows to significantly speed up the classical MC method thanks to hier-
archical sampling. The main idea of MLMC methods is to apply the MC method for
a nested sequence of stepsizes while balancing the number of samples according to the
stepsize. Precisely, consider the square root of the mean square error as a measure of
the accuracy, and e.g., the Euler-Maruyama (EM) method [19] as the basic numerical
integrator. Then, the computational cost of O(ε−3) for the MC method is reduced to
O(ε−2(log(ε))2) for the MLMC method to compute the expectation of functionals with
an accuracy of O(ε).

However, this computational saving is obtained assuming that the coarsest levels of
the MLMC method are accessible. But it is well known [14] that for classes of problems,
e.g., stochastic partial differential equations discretized by the method of lines, stability
issues with standard explicit methods can prevent to take coarse stepsizes. Indeed, the
wide range of scales present in the SDEs forces the numerical integrator to resolve the
fastest scale leading to a possible severe stepsize reduction. In this paper we consider
mean square stable stiff systems of SDEs for which standard explicit integrators, e.g.,
the well-known Euler-Maruyama method, face a severe stepsize restriction [14, 25].
Such problems and related computational issues arise in the modeling of many prob-
lems in biology, chemistry, physics or economics [8, 24, 9, 22]. We call these systems
stiff. We emphasize that in the SDE context there exists, besides mean-square stable
problems, various other classes of interesting problems with multiple scales that need
other numerical treatments [28, 4].

To the best of the authors knowledge the issue of applying MLMC method for such
SDEs has not been addressed in the literature. One possible strategy is to use drift-
implicit numerical methods with favorable mean square stability. In such a strategy, a
system of nonlinear equation has to be solved at each step, that can be costly for large
systems. Furthermore, the computational complexity is somehow less transparent than
in the original MLMC method based on explicit integrators as the number of iterations
to solve the nonlinear systems has to be accounted for. Here we explore another avenue
and propose to stabilize the EM method to allow to access the coarse stepsizes of the
MLMC method. For the stabilization procedure, we resort to the S-ROCK methods
of weak order one, a class of explicit Chebyshev methods recently introduced for stiff
stochastic problems [3, 5]. The stabilized MLMC methods remain fully explicit, as
easy to implement as the original MLMC methods based on the EM method but much
more efficient as shown in Section 3.2. The S-ROCK methods consist in a family of
numerical methods indexed by their stage number. This number can in turn vary
to accommodate the required stability requirement. If only one stage is used, the S-
ROCK method coincides with the EM method and for nonstiff problems we recover the
classical MLMC method. We note that a related work extending the MLMC method
for problems with multiple scales in space has recently been proposed in [1] in the
context of numerical homogenization of stochastic elliptic multiscale PDEs.

The paper is organized as follows. In Section 2 the numerical methods used in
this paper to approximate stochastic differential equations are described, the order of
convergence and the stability are discussed. In Section 3 we discuss the issues faced by
the standard MLMC approach in presence of stiffness. We then introduce our stabilized
multilevel MC method and discuss its complexity. Numerical experiments on a one-
dimensional linear SDE, a two-dimensional nonlinear SDE and a large system of SDEs
originating from a SPDE are studied in Section 4 to illustrate the performance of our
new MLMC method.
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2 Preliminaries
In this paper we consider stochastic processes (X(t))t∈[0,T ] on the bounded interval
[0, T ] described by the stochastic differential equation dX(t) = f(X(t))dt+

m∑
r=1

gr(X(t))dWr(t), 0 ≤ t ≤ T,

X(0) = X0 ,

(2.1)

where X(t) is a Rd-valued random variable, f : Rd → Rd is the drift term, gr : Rd →
Rd with r = 1, 2, . . . ,m are the diffusion terms and Wr(t) with r = 1, 2, . . . ,m are
independent one-dimensional standard Brownian motions. For simplicity autonomous
drift and diffusion functions are considered, but emphasize that a general SDE can
always be transformed in such autonomous form. We assume standard Lipschitz and
linear growth conditions on the drift and diffusion functions to ensure the existence of
a strong solution of the SDE (2.1) (see [20, 16, 6]).

To approximate numerically the solution of (2.1) we consider the discrete map

Xn+1 = Ψ(Xn, h, ξn), (2.2)

where Ψ(·, h, ξn) : Rd → Rd, Xn ∈ Rd for n ≥ 0, h denotes the stepsize, and ξn denotes
a random vector. We recall two concepts of accuracy and stability for the numerical
integration of SDEs. A numerical approximation (2.2), starting from the exact initial
condition X0 of (2.1) is said to have strong order of convergence rs if

∃C ∈ R+ such that max
0≤n≤T/h

(
E
[
|Xn −X(τn)|2

])1/2
≤ Chrs , (2.3)

where τn = nh ∈ [0, T ] with h small enough and where C is a constant independent of
h. A numerical method is said to converge with weak order of convergence rw if for all
functions φ : Rd → R ∈ C2(γ+1)

P (Rd,R)

∃C ∈ R+ such that |E[φ(Xn)]− E[φ(X(τn)]| ≤ Chrw (2.4)

for any τn = nh ∈ [0, T ] fixed and h small enough. Here CγP (Rd,R) denotes the space of
γ times continuously differentiable functions Rd → R with all partial derivatives with
polynomial growth.

The simplest method to approximate solutions to (2.1) is a generalization of the
Euler method for ordinary differential equation (ODEs), the Euler-Maruyama method.
Taking a uniform stepsize h, the method is defined by

Xn+1 = Xn + hf(Xn) +
m∑
r=1

gr(Xn)∆Wn,r, (2.5)

where ∆Wn,r ∼ N (0, h), r = 1, . . .m are independent Wiener increments. This method
has strong order 1

2 and weak order 1 in general for a system of Itô SDEs [19]. As we
will see in Section 2.1, the method (2.5) requires a stepsize restriction when applied to
stiff stochastic problems.

Stabilized explicit numerical integrators, that are efficient for stiff problems, are
given by the so-called S-ROCK methods. S-ROCK methods are explicit orthogonal
Runge-Kutta Chebyshev methods with an extended mean square stability domain (see
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Section 2.1). These methods have first been introduced for Stratonovich stochastic
differential equations in [2, 3] and they have been extended to Itô SDEs in [5]. Here we
will focus on the latter. In this paper we consider the s-stage Itô S-ROCK method of
weak order 1 and strong order 1

2 (see [5]). For all integer s ≥ 2 we define the s-stage
Itô S-ROCK method as follows:

K0 = Xn−1

K1 = Xn−1 + hω1
ω0
f (K0)

Ki = 2hω1
Ti−1(ω0)
Ti(ω0) f (Ki−1) + 2ω0

Ti−1(ω0)
Ti(ω0) Ki−1 − Ti−2(ω0)

Ti(ω0) Ki−2, i = 2, 3, . . . , s− 1,

Ks = 2hω1
Ts−1(ω0)
Ts(ω0) f (Ks−1) + 2ω0

Ts−1(ω0)
Ts(ω0) Ks−1 − Ts−2(ω0)

Ts(ω0) Ks−2 +
m∑
r=1

gr (Ks−1) ∆Wn,r,

where ω0 = 1 + η
s2 , ω1 = Ts(ω0)

T ′s(ω0) and ∆Wn,r = Wr (τn)−Wr (τn−1) and we set Xn = Ks.
Note that (Ti(x))i≥0 are the orthogonal Chebyshev polynomials, which are recursively
given by

T0(x) = 1, T1(x) = x, Ti(x) = 2xTi−1(x)− Ti−2(x) for i ≥ 2, x ∈ R.

The parameter η is known as the damping parameter and is used to enlarge the width
of the stability domain in the direction of the noise. The value of η can be chosen to
optimize the stability (in the mean square sense) of the method (see [5]). We note that
in the absence of noise, the S-ROCK method coincides with the Chebyshev method
introduced in [27]. We note also that for s = 1 we take the Euler-Maruyama method
(2.5) so that the s-stage Itô S-ROCK method is defined for all s ≥ 1.

2.1 Stability of Numerical Methods

The efficiency of an approximation does not only depend on the order of convergence
but also on its stability that is essential to correctly capture the long time behavior of
the exact solution.

Definition 2.1. A stochastic process (X(t))t≥0 is said to be mean square stable if and
only if

lim
t→∞

E
[
X(t)2

]
= 0.

To carry out a stability analysis, the one-dimensional scalar linear SDE specified
through {

dX(t) = λX(t)dt+ µX(t)dW (t), 0 ≤ t, λ ∈ C, µ ∈ C,
X(0) = 1 , (2.6)

is widely used in the literature as test problem (see e.g. [16]). This SDE admits an
exact solution given by X(t) = X0 exp{

(
λ− µ2/2

)
t + µW (t)} (see [17]) and it can be

shown that the exact solution is mean square stable if and only if

R{λ}+ 1
2 |µ|

2 < 0,
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where R{·} denotes the real part of a complex number. This defines the stability
domain of the test problem (2.6):

Sexact :=
{

(λ, µ) ∈ C2 | R{λ}+ 1
2 |µ|

2 < 0
}
. (2.7)

To avoid stability issues, i.e., restrictions on the stepsize, the aim of numerical methods
is to cover as much as possible of this stability domain.
Some comments on the linear scalar test equation. We note that the justification
of the test equation (2.7) is delicate for multi-dimensional systems. Indeed the extension
of the stability analysis of numerical methods for SDEs already for multidimensional
linear systems dX = AXdt +

∑m
r=1BrXdWr(t), where A,Br are d × d matrices and

dWr are independent one-dimensional Wiener processes is difficult in general as such
systems cannot be simultaneously diagonalized if A and Br, r = 1, 2, . . . ,m do not
commute. Attempts to study numerical stability on linear systems have been carried
out in [26, 23] but these studies do not allow for an easy characterization of stability
criterion. Another attempt to generalize the linear test equation has been proposed in
[7] using the theory of stochastic stabilization and destabilization [18]. Two sets of test
equations with d = m = 2 and d = m = 3 have been considered. It turns out that the
stability behavior for the Euler-Maruyama method (or its generalization obtained by
using the θ method for the drift term) applied to these more general test equations is
essentially captured by the the linear test equation (2.6). Finally we mention that for
non normal drift (2.6) can indeed fail to characterize the stability property (at least in
the pre-asymptotic regime) of numerical methods [15, 7]. This is already the case in
the deterministic setting for the test equation y′ = λy (see [12, IV.11]).

Definition 2.2. A numerical method is said to be mean square stable if and only if

lim
n→∞

E
[
X2
n

]
= 0.

For the Euler-Maruyama method we have a stability domain given by

SEM :=
{

(p, q) ∈ C2 | |1 + p|2 + q2 < 1
}
, (2.8)

where (p, q) = (hλ,
√
h|µ|) (see [16]). Choosing (λ, µ) ∈ R2 such that the linear SDE

(2.6) is mean square stable, it can be shown that the stepsize h of the EM method has
to satisfy

ρEMh := |λ|2

2|λ| − |µ|2h < 1 ⇔ h <
1

ρEM
(2.9)

to guarantee stability of the numerical scheme. In particular, for µ = 0 (deterministic
case), ρEM = |λ|

2 and ρEM →∞ for |µ|2 → 2|λ|.
To define the stability domain of S-ROCK methods we first consider

SSDE,a =
{

(p, q) ∈ [−a, 0]× R | |q| ≤
√
−2p

}
,

a portion of the true stability region.I Furthermore, we define

a∗ = sup {a > 0 | SSDE,a ⊂ Snum} ,
IWhen we restrict the stability domain to real parameters (p, q) we will call this stability domain

stability region.
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where Snum denotes the stability domain of the numerical approximation scheme (see
[5]). In [5] it is shown that S-ROCK methods have stability domains with large a∗ and
that the growth of the portion of the true stability region increases as a∗s ≈ cSRs2 with
cSR ≥ 0.33, where s is the number of stages of the S-ROCK method.

Remark 2.3. A crucial property for the S-ROCK methods is that a∗s grows quadrati-
cally with the stage number s, whereas the number of function evaluations only increases
linearly with s.
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Figure 1: Stability regions (dark gray) for the Euler-Maruyama method (left-hand side) and
the S-ROCK method with stage number s = 10 and damping parameter η = 5.9 (right-hand
side). The dashed line delimits the stability region (light gray) of the test problem (2.7).

Figure 1 illustrates for instance on the right-hand side the stability region (dark
gray) of the S-ROCK method with s = 10 stages and damping parameter η = 5.9.
For comparison Figure 1 shows on the left-hand side the stability region of the Euler-
Maruyama scheme (2.8), which is given by the area in dark gray. The interior part
(light gray) of the dashed lines represents the stability region of the true solution. We
see that the S-ROCK methods cover a significantly larger region than the EM method.
By varying s, any portion of the true stability region can be covered [5]. Similar to
(2.9), for (λ, µ) ∈ R2 such that the test problem (2.6) is stable, by choosing a∗ = |λ|
and the stage number s such that

cSRs
2 := a∗h with 0.33 ≤ cSR ≤ 1.01 (2.10)

the S-ROCK method is mean square stable for any stepsize h. It is worth noting that
condition (2.10) is independent of the diffusion term µ, and we will define ρSR := |λ|.

3 Multilevel Monte Carlo for Stiff SDEs
The idea of the multilevel Monte Carlo method [10] is to apply the Monte Carlo method
for several nested levels of stepsizes and to compute different numbers of paths on each
level, from a few paths when the stepsize is small to many paths when the stepsize is
large. By choosing the right balance between the stepsizes and the number of simulated
trajectories at each level it is possible to reduce the computational complexity compared
to that of the standard Monte Carlo method for a given mean square accuracy.

In the following we use the terms computational cost and computational complexity
synonymously to represent the work of a numerical method defined as the number
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of function evaluations of a numerical discretization per sample path times the total
number of sample paths. This measure of the complexity of numerical algorithms will
be used when we compare the performance of various methods.

In this section we discuss the multilevel Monte Carlo method for stiff stochastic dif-
ferential equations. In the following we first briefly recall the standard MLMC method
and show why stability issues restrict this approach for stiff problems. We then present
a stabilized multilevel Monte Carlo method using the S-ROCK method.

3.1 Standard Multilevel Monte Carlo

Here we present briefly the standard multilevel Monte Carlo approach introduced in
[10]. Consider the diffusion process (X(t))t∈[0,T ] (with T a fixed positive number)
solution of the SDE (2.1) and a Lipschitz continuous function φ : Rd → R. Our aim is
to estimate the expectation E [φ(X(T ))], which we denote by E, from many realizations
of the numerical solution of (2.1). Let an integer k ≥ 2 be the refinement factor and
let an integer L be the total number of levels. The nested stepsizes of the multilevel
Monte Carlo method are given by

hl = T

Ml
, l = 0, 1, . . . , L, (3.1)

where Ml = kl indicates the number of time steps in the discretization over the time
interval [0, T ] at level l. Let φl := φ(XMl

) ≈ φ(X(T )) be an approximation of φ(X(T ))
using a numerical scheme withMl discretization steps of size hl. Applying the telescopic
sum yields

φL =
L∑
l=0

(φl − φl−1) with φ−1 ≡ 0.

The multilevel Monte Carlo estimator is defined by

E∗ :=
L∑
l=0

E∗l with E∗l := 1
Nl

Nl∑
i=1

(
φ

(i)
l − φ

(i)
l−1

)

a sample average over Nl independent samples. We emphasize that the estimates φ(i)
l

and φ(i)
l−1 are based on the same diffusion path, i.e., the same Brownian motion path.

The mean square error, a measure of accuracy for estimators (see e.g. [11]), of E∗ can
be decomposed as

MSE (E∗) = E
[
(E∗ − E)2

]
= E

[
(E∗ − E [E∗])2

]
+ (E [E∗]− E)2

= Var (E∗) + (bias (E∗))2 .
(3.2)

Considering a numerical integrator with weak order of convergence 1, it can be shown

bias (E∗) = E [E∗]− E = E [φL]− E = O
(
k−L

)
and using in addition the strong order 1

2 we have

Var (E∗) =
L∑
l=0

Var (φl − φl−1)
Nl

= C
L∑
l=0

k−l

Nl
, (3.3)
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where C is a positive constant. Assuming now a mean square accuracy of MSE (E∗) =
O
(
ε2) yields ε = k−L. Inspired by (3.3) the number of simulations per level l is chosen

such thatNl = k2Lk−lL, which guarantees that Var (E∗) = O
(
ε2) as L tends to infinity.

It is straightforward to show that the corresponding computational complexity of E∗
is given by

Cost (E∗) =
L∑
l=0

NlMl(1 +m) = O
(
ε−2(log ε)2

)
,

which is a significant improvement over the standard Monte Carlo method with a
computational complexity of O

(
ε−3). However, one has to be careful when applying

the standard MLMC approach for stiff systems as we show in the next section.

3.1.1 Multilevel Monte Carlo for Stiff SDEs using Euler-Maruyama

Assume a mean square stable problem for which a standard numerical method is only
mean square stable for a stepsize smaller than a certain threshold. In such a case the
multilevel Monte Carlo method cannot be applied at the levels whose stepsize is larger
than this threshold. Inspired by the mean square stable one-dimensional scalar linear
SDE (2.6) the following stability constraint is assumed:

k−lEMρ ≤ 1, (3.4)

where lEM corresponds to the largest possible stepsize hlEM
such that the Euler-

Maruyama method is stable for a given stiffness parameter denoted by ρ. For example,
for the test problem (2.6), ρ = ρEM = |λ|2

2|λ|−|µ|2 (see (2.9)). Suppose a mean square
accuracy of k−2L = ε2 is desired. We distinguish two cases.

(a) No MLMC: lEM > L

If lEM is larger than L, then all the stepsize hl (with l ∈ {0, 1, . . . , L}) are too large
to account for stability. Thus, the multilevel Monte Carlo approach cannot be applied
and standard Monte Carlo has to be used instead with MlEM

time steps. Therefore,
in this case a mean square accuracy of O

(
ε2
MC

)
with εMC = k−lEM is achieved and

a computational cost of O
(
ε−3
MC

)
is necessary. We emphasize that εMC = k−lEM is

smaller than the required accuracy ε = k−L and in turnO
(
ε−3
MC

)
is larger thanO

(
ε−3).

(b) MLMC: 0 < lEM ≤ L

If lEM lies between 0 and L, only the levels lEM , lEM + 1, . . . , L satisfy the stabil-
ity constraint (3.4), and thus, the multilevel Monte Carlo estimator using the Euler-
Maruyama scheme is defined by

Ẽ :=
L∑

l=lEM

Ẽl with Ẽl := 1
Nl

Nl∑
i=1

(
φ

(i)
l − φ

(i)
l−1

)
a sample average over Nl independent samples, where φlEM−1 ≡ 0. As in (3.2) the
mean square error of Ẽ can be divided into bias and variance:

MSE
(
Ẽ
)

= Var
(
Ẽ
)

+
(
bias

(
Ẽ
))2

.
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Taking into account the weak order of convergence 1 of the Euler-Maruyama scheme
(see Section 2), the bias of Ẽ is of order k−L, i.e., bias

(
Ẽ
)

= O
(
k−L

)
. Using the inde-

pendence of the samples, φ being Lipschitz continuous and strong order of convergence
1
2 of the Euler-Maruyama method, the variance of Ẽ satisfies

Var
(
Ẽ
)

=
L∑

l=lEM +1

Var (φl − φl−1)
Nl

+ Var (φlEM
)

NlEM

= C
L∑

l=lEM +1

k−l

Nl
+ Var (φlEM

)
NlEM

, (3.5)

where C is a positive constant. Recall that a mean square accuracy of k−2L = ε2 is
wanted. Inspired by (3.5), the number of simulations per level is chosen such that

Nl =
{
k2Lk−l (L− (lEM + 1)) if l ∈ {lEM + 1, lEM + 2, . . . , L},
k2L if l = lEM .

(3.6)

Hence, for the variance of our estimator Var
(
Ẽ
)

= O
(
ε2) holds and the mean square

error is indeed MSE
(
Ẽ
)

= O
(
ε2). We compute now the computational complexity

that is necessary to achieve such a mean square accuracy. Taking the choice of Nl in
(3.6) into consideration, we obtain a computational complexity of

Cost
(
Ẽ
)

=
L∑

l=lEM +1
NlMl(1 +m) +NlEM

MlEM
(1 +m)

=
L∑

l=lEM +1
k2L−l (L− (lEM + 1)) kl(1 +m) + k2LklEM (1 +m)

= k2L(1 +m)
[
(L− (lEM + 1)) (L− lEM ) + klEM

]

= ε−2(1 +m)
[(

log(εlEM /L)−log(ε)
log(k) − 1

)(
log(εlEM /L)−log(ε)

log(k)

)
+ ε−lEM/L

]
.

≤ ε−2(1 +m)
[
C
(

log(ε)
log(k)

)2
+ ε−lEM/L

]
= O

(
ε−2

(
(log(ε))2 + ε−lEM/L

))
,

where C is a positive constant.

Remark 3.1. Note that as lEM tends to L, the computational cost of Ẽ tends to
O
(
ε−3), the computational cost of the standard Monte Carlo approach. If lEM tends

to zero, the computational cost tends to O
(
ε−2 (log (ε))2

)
, which is the computational

cost of the multilevel Monte Carlo method for nonstiff SDEs. Indeed in that case, there
is no stepsize restriction for the EM method.

3.2 Stabilized Multilevel Monte Carlo

We describe now a stabilized multilevel Monte Carlo method, which enables us to use all
the levels of the MLMC approach even in presence of stiffness. As numerical integrator
we use the S-ROCK method presented in Section 2. The following stability constraint
is taken into account: (for sl ≥ 2)

k−lρ

cSRs2
l

≤ 1, (3.7)
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where the stiffness parameter ρ and cSR are two positive constants. For the test problem
(2.6), ρ = ρSR = |λ|. In other words, the number of stages at level l satisfies sl ≥
max

(√
ρ
cSR

k−l/2, 2
)
.

Remark 3.2. The value of cSR depends on sl, but it can be estimated numerically for
any sl ≥ 2 (see [5]). It lies between 0.33 and 1.01.

Using the same notation as above, the stabilized multilevel Monte Carlo estimator is
given by

Ê :=
L∑
l=0

Êl with Êl := 1
Nl

Nl∑
i=1

(
φ

(i)
l − φ

(i)
l−1

)
a sample average over Nl independent samples. Again we emphasize that the estimates
φ

(i)
l and φ(i)

l−1 are based on the same Brownian motion path. The mean square error of
the stabilized estimator Ê can be decomposed as in (3.2)

MSE
(
Ê
)

= Var
(
Ê
)

+
(
bias

(
Ê
))2

. (3.8)

By the weak order of convergence 1 of the S-ROCK scheme (see Section 2), for the bias
the following holds:

bias
(
Ê
)

= E
[
Ê
]
− E = E [φL]− E = O

(
k−L

)
.

For the variance of Ê we obtain

Var
(
Ê
)

=
L∑
l=0

Var (φl − φl−1)
Nl

= C
L∑
l=0

k−l

Nl
(3.9)

with C a positive constant. To establish this we have used the independence of the
samples, φ being Lipschitz continuous and strong order of convergence 1

2 of the S-ROCK
method (see Section 2). Suppose now that a mean square accuracy of MSE

(
Ê
)

=
O
(
ε2) with ε = k−L is desired. Inspired by (3.9), we set the number of simulations per

level l to Nl = k2Lk−lL such that Var
(
Ê
)

= Ck−2L
(
1 + 1

L

)
, and thus, MSE

(
Ê
)

=
O
(
ε2). The computational complexity to achieve such a mean square accuracy is given

by

Cost
(
Ê
)

=
L∑
l=0

NlMl(sl +m) = k2LL

(√
ρ

cSR

L∑
l=0

k−l/2 +m(L+ 1)
)

= k2LL
(√

ρ
cSR

√
k−k−L/2
√
k−1 +m(L+ 1)

)
= ε−2

(
− log(ε)

log(k)

) (√
ρ
cSR

√
k−ε1/2
√
k−1 +m

(
− log(ε)

log(k) + 1
))

≤ Cε−2 (|log(ε)| √ρ+m(log(ε))2) = O
(
ε−2 (log(ε))2

(
1 +

√
ρ

| log(ε)|

))
,

(3.10)
where C is a positive constant. Note that we recover the result for nonstiff problems
up to a factor √ρ. It is also worth noting that using MLMC with Euler-Maruyama
for stiff SDEs only standard Monte Carlo can be applied in the case lEM > L, see
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Section 3.1.1. The resulting computational complexity is given by O
(
ε−3
MC

)
. Taking

into account that ε = k−L > k−lEM = εMC , one observes that the computational cost
for stabilized MLMC is significantly smaller.
Remark 3.3. If lEM ≤ L, then the Euler-Maruyama method can be applied from level
lEM up to level L. The variance (3.9) can be decomposed as

Var
(
Ê
)

=
lEM−1∑
l=0

Var (φl − φl−1)
Nl

+
L∑

l=lEM

Var (φl − φl−1)
Nl

.

Using the strong convergence of order 1/2 of the numerical schemes yields Var
(
Ê
)

=

C

lEM−1∑
l=0

k−l

Nl
+

L∑
l=lEM

k−l

Nl

 . Inspired by this decomposition, the number of simulations

per level is chosen according to Nl = k2Lk−l(lEM − 1) for l ∈ {0, 1, . . . , lEM − 1} and
Nl = k2Lk−l(L− lEM ) for l ∈ {lEM , lEM + 1, . . . , L} such that MSE

(
Ê
)

= O
(
ε2) with

ε = k−L. The resulting computational cost is similar.

3.2.1 Stabilized Multilevel Monte Carlo versus Stabilized Single-Level Monte
Carlo

In the previous section we have seen that the multilevel Monte Carlo method with S-
ROCK as numerical integrator requires a computational cost of Cost

(
Ê
)
, as specified

in (3.10), to achieve a mean square accuracy of MSE
(
Ê
)

= O
(
ε2). It is straightforward

to show that the computational cost for the standard Monte Carlo method, using the
same numerical method and the same mean square accuracy, is given by

Cost
(
ÊMC

)
= O

(
ε−5/2√ρ

)
. (3.11)

Note that the stability criterion (3.7) has been used to determine the number of stages
of the S-ROCK method.

Figure 2 compares the computational cost of the stabilized MLMC method and the
standard MC method using S-ROCK as a basic integrator against the finest stepsize hL
for k = 2, m = 1 and different values of the stiffness parameter ρ with ρ ∈ {1, 1000}.
Recall that ε = k−L = hL, and thus, as hL decreases the accuracy increases. One
observes that for any stiffness ρ, as hL decreases the stabilized multilevel Monte Carlo
method prevails over the Monte Carlo method based on S-ROCK. For instance, in Fig.
2 (b) for ρ = 1000, at hL = 2−20 the computational cost of Monte Carlo is about 103

times larger than the computational cost of multilevel Monte Carlo.
Note that as the stiffness ρ increases, the number of stages per level sl increases,

and thus, the computational complexity. Since the standard Monte Carlo method only
uses sL stages, whereas the MLMC method uses at each level l sl stages, the number of
function evaluations for standard MC is smaller than for MLMC for small values of L.
However, as L increases, the MLMC approach significantly reduces the computational
cost compared to the MC approach.

4 Numerical Examples
In this section we study the multilevel Monte Carlo method for stiff stochastic dif-
ferential equations numerically. Comparisons of the MLMC method for SDEs using

11
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Figure 2: Computational cost of the stabilized multilevel Monte Carlo and the standard Monte
Carlo method (using S-ROCK), respectively, against the finest stepsize hL for different values
of the stiffness parameter ρ.

S-ROCK and Euler-Maruyama, respectively, are carried out first on a one-dimensional
linear SDE, followed by a two-dimensional nonlinear SDE and finally on a stochastic
partial differential equation. In the following we use a refinement factor of k = 2.

4.1 Linear SDE

The first stiff problem taken into account is the scalar linear test problem (2.6) with
t ∈ [0, 1]. To test numerically how well the stabilized MLMC method using S-ROCK
performs compared to the MLMC method using Euler-Maruyama, we count the number
of function evaluations (adding the number of drift and diffusion evaluations) using a
total number of levels L, where L ∈ {1, 2, . . . , 15}. We consider first a fixed drift term
λ = −1 and we vary the diffusion term µ =

√
−2λ− δ with 0 < δ ≤ 2. The parameters

(λ, µ) lie in the stability region of the test problem (2.7). Figure 3 illustrates the stability
regions of the EM method (left-hand side) and the S-ROCK method with s = 2 (right-
hand side). In addition, straight lines of slope -1.5 (dashed) and -1 (dotted) are plotted.
The slope of these lines correspond to −µ2, with δ = 0.5 and δ = 1, and show how small
h has to be chosen, such that the numerical schemes fall into the stability region. For
S-ROCK with s = 2, a stepsize smaller than about 4 has to be chosen in both cases.
This upper bound increases as s increases. For EM the restriction is a lot more severe.
For δ = 1, h ≤ 1 and for δ = 0.5, h ≤ 0.5, hence the time step restriction increases with
decreasing δ. Figure 4 (a)-(c) shows the number of function evaluations required for
the stabilized MLMC method and the MLMC method using EM, respectively, against
the finest stepsize hL. The diffusion is chosen such that δ = 0.1 (Fig. 4 (a)), δ = 0.01
(Fig. 4 (b)) and δ = 0.0001 (Fig. 4 (c)). As expected, the stabilized MLMC method
prevails over the MLMC method using Euler-Maruyama. The latter is subject to a
stepsize restriction which becomes more severe for decreasing δ.

Next we consider a varying drift term with λ ∈ {−1,−100,−10000} and a diffusion
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Figure 3: One-dimensional linear SDE: Stability regions of the test problem (2.6) (light gray),
the EM method (dark gray, left-hand side) and the S-ROCK method with s = 2 (dark gray,
right-hand side). Straight lines of slope −1.5 (dashed) and −1 (dotted), respectively.
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Figure 4: One-dimensional linear SDE: Function evaluations against finest stepsize hL com-
paring the MLMC method using S-ROCK with the MLMC method using Euler-Maruyama for
different values of λ and µ.
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term given by µ = |λ|1/2. In any case the parameters (λ, µ) lie in the stability region of
the test problem (2.7). In Figure 4 (d)-(f) the results for the stabilized MLMC method
and the MLMC method using EM are given. One observes that as |λ| increases, the EM
approach can only be used from a certain stepsize on, whereas the S-ROCK approach
can be used for any stepsize.

4.2 Nonlinear SDE

The second stiff numerical experiment that we consider here is a two-dimensional non-
commutative stiff SDE given by

d
(
X1(t)
X2(t)

)
=

(
α(X2(t)− 1)− λ1X1(t)(1−X1(t))

−λ2X2(t)(1−X2(t))

)
dt

+
(
−µ1X1(t)(1−X1(t))
−µ2X2(t)(1−X2(t))

)
dW1(t)

+
(
−µ2(1−X1(t))

0

)
dW2(t), 0 ≤ t ≤ T,(

X1(0)
X2(0)

)
given ,

(4.1)

where (W1(t))t∈[0,T ] and (W2(t))t∈[0,T ] represent two independent standard Brownian
motions. This model is inspired by the one-dimensional population dynamic model (see
[21]). One can observe that (X1(t), X2(t)) = (1, 1) ∀t ∈ [0, T ] represents a stationary
solution of (4.1). We carry out a similar numerical experiment as in Section 4.1 by
comparing the MLMC method using S-ROCK and Euler-Maruyama, respectively. As
parameter we choose T = 1, L ∈ {1, 2, . . . , 10}, α = 2, λ2 = −1, µ2 = 0.5 with (λ1, µ1)
the same as (λ, µ) in the previous section. As initial condition we pick (X1(0), X2(0)) =
(0.95, 0.95). Note that the two sets of parameters (λ1, µ1) and (λ2, µ2) both lie in the
stability domain with (λ1, µ1) governing the stiffness of the SDE.

Figure 5 illustrates the number of function evaluations against the finest stepsize
for the two-dimensional nonlinear noncommutative SDE given in (4.1). The results are
similar to the ones of the scalar linear SDE. Note that stability of the approximations
has been checked by looking at the second moment at the time end point T = 1.
The S-ROCK approach can be applied under any choice of the finest stepsize hL,
whereas the Euler-Maruyama approach has some severe stepsize restrictions. Again
this corroborates our theoretical findings and illustrates the significant improvement of
the stabilized MLMC over the standard MLMC method.

We next study the error behavior of the multilevel Monte Carlo method using
S-ROCK applied to the two-dimensional noncommutative nonlinear SDE (4.1). We

focus again on the second moment of the stochastic process
(
X1(t)
X2(t)

)
at the time

end point T = 1. Since an exact solution of the second moment is not known, a
reference solution is computed using standard Monte Carlo with Euler-Maruyama and
a stepsize of h = 2−12. In total 224 Monte Carlo simulations are carried out. Figure
6 illustrates an approximation of the root mean square error of the second moment of
X1(t) and X2(t), respectively, at t = 1 against the finest stepsize hL, approximating
the expectation by taking a sample average (over 10 samples). We take into account a
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Figure 5: Two-dimensional nonlinear noncommutative stiff SDE: Function evaluations against
finest stepsize hL comparing the MLMC method using S-ROCK with the MLMC method using
Euler-Maruyama for different values of λ1 and µ1.

nonstiff problem with (λ1 = −1, µ1 =
√
−2λ1 − 2) (see Fig. 6(a)) and a stiff problem

with (λ1 = −100, µ1 =
√
−2λ1 − 2) (see Fig. 6(b)). The other parameters have been

chosen as above. One observes that in both cases, stiff or nonstiff, the behavior of the
RMSE is as expected roughly linear and of slope 1.

4.3 Space-discretized Stochastic Partial Differential Equation

The last problem we consider is a stochastic partial differential equation (SPDE) ob-
tained by adding multiplicative noise to the heat equation. The SPDE is specified
through 

∂u(t,x)
∂t = ∂2u(t,x)

∂x2 + σu(t, x)Ẇ (t, x), (t, x) ∈ [0, T ]× [0, 1],

u(0, x) = 1, x ∈ [0, 1],

u(t, 0) = 5, t ∈ [0, T ], ∂u(t,1)
∂x = 0, t ∈ [0, T ],

(4.2)
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Figure 6: Two-dimensional nonlinear noncommutative stiff SDE: Error behavior of the MLMC
method using S-ROCK applied to (4.1) in a nonstiff (a) and a stiff (b) context. The first
and second component correspond to the RMSE of the second moment of X1(1) and X2(1),
respectively.

where Ẇ is a space-time white noise and σ a noise parameter. Discretizing in space by
using the method of lines yields

dui = ui+1 − 2ui + ui−1
∆x2 dt+ σ

ui√
∆x

dWi, i = 1, 2, . . . , 1
∆x = M,

where ui ≈ u(t, xi) with xi = i∆x. By the boundary conditions we have u0 = 5
and uM+1 = uM . Note that W1,W2, . . . ,WM are M independent standard Brownian
motions and Itô noise has been considered. In the following we use T = 1 and σ = 10−2.
Figure 7 shows one trajectory of the heat equation with noise (4.2) using a space stepsize
of ∆x = 1/40 and a time stepsize of ∆t = 1/40.

Figure 8 illustrates the number of function evaluations of the stabilized multilevel
Monte Carlo method and the standard Monte Carlo method using S-ROCK as numer-
ical integrator. The space stepsize is set to ∆x = 1/40 and the finest time stepsize
varies between 2−7 and 2−20. It can be observed that for small time stepsizes hL the
stabilized MLMC method reduces the computational cost significantly compared to the
standard MC method.

In Figure 9 the mean of u(t, x) is approximated at t = 1 using stabilized multilevel
Monte Carlo. The finest time stepsize is chosen as hL = 2−10. For the space discretiza-
tion ∆x = 1/40 (see Fig. 9(a)) and ∆x = 1/80 (see Fig. 9(b)) are used, respectively.
In addition, on each plot a single trajectory of u(t, x) at t = 1 using S-ROCK and
h = 2−10 is added. Note that an approximation of the mean of u(t, x) using the stan-
dard Monte Carlo method with Euler-Maruyama would require in the case ∆x = 1/40
a time stepsize smaller than 3.1 × 10−4 and a computational cost of approximately
2.6×1012 function evaluations. In the case ∆x = 1/80, the time stepsize would have to
be smaller than 7.8× 10−5 and the corresponding computational cost would be about
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Figure 7: Stochastic partial differential equation: Numerical approximation of the heat equa-
tion with multiplicative noise (4.2) using ∆x = 1/40 and ∆t = 1/40.
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Figure 8: Stochastic partial differential equation: Number of function evaluations for the
stabilized multilevel Monte Carlo method and the stabilized single-level Monte Carlo method,
respectively, using ∆x = 1/40 and hL ∈ {2−7, 2−8, . . . , 2−20}.

3.4× 1014 function evaluations.
Figure 10 illustrates an approximation of the second moment of u(t, x) at t = 1 using

the stabilized multilevel Monte Carlo method with finest time stepsize hL = 2−10 and
space discretization ∆x = 1/40 and ∆x = 1/80, respectively. Furthermore, a dotted
line represents a single trajectory of the approximation of u(1, xi)2 using S-ROCK with
h = 2−10.
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Figure 9: Stochastic partial differential equation: Approximation of E [u(1, xi)], the mean of
u(t, x) at t = 1, using the stabilized MLMC method with L = 10, ∆x = 1/40 (see (a)) and
∆x = 1/80 (see (b)), respectively. The dotted lines represent a single trajectory at t = 1 using
S-ROCK with h = 2−10.
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Figure 10: Stochastic partial differential equation: Approximation of E
[
u(1, xi)2], the second

moment of u(t, x) at t = 1, using the stabilized MLMC method with L = 10, ∆x = 1/40 (see
(a)) and ∆x = 1/80 (see (b)), respectively. The dotted lines represent a single trajectory at
t = 1 using S-ROCK with h = 2−10.

In Figure 11 approximations of E [u(t, xi)u(t, xj)] at t = 1 with i, j ∈ {0, 1, . . . , 1/∆x}
are shown. As approximation procedure the stabilized MLMC method with L = 10 and
space discretization ∆x = 1/40 and ∆x = 1/80, respectively, is used. Single trajectories
of S-ROCK approximations of u(t, xi)u(t, xj) at t = 1 are illustrated in Figure 12.
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Figure 11: Stochastic partial differential equation: Approximation of E [u(t, xi)u(t, xj)] at
t = 1 using the stabilized MLMC method with L = 10, ∆x = 1/40 (see (a)) and ∆x = 1/80
(see (b)), respectively.
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Figure 12: Stochastic partial differential equation: Single trajectory of u(t, xi)u(t, xj) at t = 1
using S-ROCK with h = 2−10, ∆x = 1/40 (see (a)) and ∆x = 1/80 (see (b)), respectively.

5 Conclusion
We have presented a new stabilized multilevel Monte Carlo method for mean square
stable SDEs with multiple scales. We have shown that the standard MLMC method
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fails to achieve the optimal computational complexity O(ε−2(log(ε))2) to compute the
expectation of functionals with an accuracy of O(ε) as some or all the sequence of
stepsizes needed in the MLMC method are not accessible due to stepsize restriction.
In the worst case, only a standard Monte Carlo method can be used and the computa-
tional complexity can deteriorate to O(ε−3

MC), where εMC is smaller than ε, the desired
accuracy. We have then shown that using the S-ROCK methods, a family of stabilized
methods based on the Euler-Maruyama scheme, it is possible to define a stabilized
MLMC method that is applicable for stiff mean square stable problems. By an optimal
choice of the stabilization procedure, varying from the coarse to the fine MLMC levels,
we showed that it is possible to recover the optimal complexity of the MLMC for non-
stiff problems up to a factor involving the square root of a quantity called the stiffness
parameter. Even though our stability analysis rely on the usual linear scalar SDE used
to characterize mean square-stability of numerical integrators, we have shown through
numerical experiments on multidimensional nonlinear noncommutative stiff SDEs and
on a system of SDEs obtained from a space-discretized SPDE that our new stabilized
MLMC method is efficient also for more general problems.
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