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Abstract
Model Predictive Control (MPC) for buildings has gained a lot of attention recently. It
has been shown that MPC can achieve significant energy savings in the range between
15-30% compared to a conventional control strategy, e.g., to a rule-based controller.
However, there exist several reports showing that the performance of MPC can be
inferior to that of a well-tuned conventional controller. Possible reasons are at hand: i)
minimization is typically not performed over energy but instead over some input quantity
that has a different meaning ii) a model mismatch and inaccuracies in weather predictions
can cause wrong predictions of future behavior which can result in undesirable behavior
of the control signal (e.g. oscillations) and, as a consequence, in increase in energy
consumption. This behavior has been observed when applying one of the widely used
economic MPC formulation to the building of Czech Technical University in Prague.
These oscillations are not an issue for buildings only, but also for every economic MPC
that minimizes the absolute value of the control action. In this paper, we discuss all the
these aspects of the implementation of MPC on a real building, show and analyze data
from MPC operation on the university building and finally propose and validate an MPC
formulation that alleviates the sensitivity to model mismatch and inaccuracies in weather
predictions.
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1. Motivation
It is a well known fact that in developed countries the energy consumption in
buildings accounts for around 40 % of the total final energy and more than half of
this amount is consumed in HVAC (Heating, Ventilation and Air Conditioning)
systems [1]. Therefore, improvements in algorithms for Building Automation
Systems (BAS) can significantly contribute to desired energy savings.

In recent years, there have appeared a lot of simulation or real case studies
evaluating advanced control algorithms applied to BAS showing savings po-
tential of these strategies ranging up to 40 %. One of the intensively studied
control techniques for BAS is the Model Predictive Control (MPC) [2, 3, 4, 5].
The objective of the MPC algorithm is to optimally select control inputs in such
a way that the energy consumption is minimized and, at the same time, com-
fort requirements are met. In the following, we assume basic familiarity with
the MPC control technique (i.e., the notions of objective function, constraints,
decision and slack variables, etc.; for details please refers to, e.g., [6]).



Recently, there has been presented a wide variety of papers dealing with
MPC applied to control of BAS with the following properties: i) The MPC
controller takes disturbance predictions (occupancy, weather etc.) into account,
adjusting control actions appropriately [2, 3]. ii) The thermal mass of the build-
ing can be utilized in a better way compared to conventional control strategies [7].
iii) Thermal comfort indices can be easily included into the formulation of MPC
problem and therefore the performance of MPC can result in a better subjective
thermal comfort [8, 9, 10]. iv) Variable energy prices can easily be included
into the formulation of the optimization problem [11, 12]. v) Minimization of
the energy peaks can be handled by MPC and thus energy loads can be shifted
within certain time frame [3, 13, 14] (beneficial because of both the possibility
of tariff selection and lowering operational costs). In the above-mentioned pa-
pers, the conclusions are usually drawn from numerical simulations on detailed
building models, e.g., EnergyPlus, Trnsys, etc.; however, experimental setups of
MPC have also been reported, showing energy savings potential of up to 30 %
compared to conventional control strategies [3, 15, 16].

The objective of this paper is, however, slightly different from the objective
of the aforementioned ones. Based on the experience from four heating-seasons
of MPC deployment on a real pilot building [15], we point out main challenges
that mar the idealistic world of MPC encountered in most academic studies.
In addition, we propose a new MPC formulation that tries to circumvent these
problems.

2. Problem Description
From the analysis of a long-term behavior, we can point out the following three
main issues that need to be tackled in order to obtain a robust and reliable control
strategy:

Oscillatory behavior: The objective of MPC for buildings is to minimize
energy consumption and thus reduce the energy bill. As the energy cost is
an affine function of energy consumption1, the MPC problem cost function is
typically of the form

J =
Nu−1

∑
k=0
|Rkuk|1 +

Ny−1

∑
k=0
|Qk(yk− yr

k)|22, (1)

where k is the discrete time, Nu and Ny are the control and prediction horizon
respectively, u ∈ Rm and y ∈ Rp are the vectors of system inputs and outputs
respectively, yr is the vector of the reference trajectories for the output signals
and finally, Rk and Qk are (possibly time-varying) weighting matrices. In this
cost function, 1-norm (i.e., the sum of absolute values) of the input energy
is to be minimized. However, 1-norm MPC, which can be cast as a Linear
Program (LP), always activates some of the constraints as the solution lies on
one of the vertices of the constraint polytope and hence such an optimization
problem results in a bang-bang-type deadbeat or idle control that is undesirable

1The constant term in the affine function represents especially maintenance costs



for buildings [17, 18]. In addition, MPC works in a receding horizon fashion
when at every time-step, a finite-horizon optimal control problem (FHOCP) is
solved and only the first control move is applied to the system. In the following
time step, the next FHOCP is solved with updated measurements, disturbance
predictions and comfort requirements. A small change in these parameters
may cause an abrupt change in the optimal solution. Sensitivity of the optimal
solution to the LP to a parameter change is case-dependent and difficult to
assess a priory. Although in general, this sensitivity is higher for 1-norm control
problems (leading to LPs) than for problems with a quadratic cost function
leading to quadratic programs (QPs). Note that the quadratic norm for the
comfort only does not significantly change the 1-norm-like behavior especially
when there are few comfort violations (the slack variables are not active and the
1-norm-like behavior dominates). On the contrary, weighting of energy using a
quadratic norm leads to a smooth input profile; the problem, of course, is that
the energy bill is not proportional to the square of energy.

Robustness to model inaccuracy and disturbance prediction errors: Build-
ings are complex systems, each is unique and therefore a detailed modeling of
every building where MPC shall be applied is economically unjustifiable. Hence
one has to expect that the model will always be inaccurate. Disturbance predic-
tions are also subject to (sometimes significant) errors. These facts increase the
importance of the two aforementioned issues.

Fig. 1 shows an example of the undesirable behavior recorded during ten
days of a normal operation of MPC on our pilot building. Besides disturbances
and room temperature that is to be kept at a certain comfort level, we can observe
progress of supply water temperature, which is the only manipulated variable
that is being computed by MPC. We can observe undesirable oscillatory behavior
causing higher energy consumption towards the end of the data series. This
behavior happens when a standard 1-norm-like MPC formulation considered in
the majority of academic papers is used.

Recursive feasibility: In the literature, various MPC problem formulations for
buildings have been proposed (a review will be given in Section 3.). Some of
the problem formulations, however, do not guarantee recursive feasibility and
therefore cannot be used as a long-term, reliable control strategy.

Small and high comfort violation: In practice, it is acceptable that BAS
can cause small violation of comfort but major and/or persistent violations
are unacceptable. Freezing occupants are not willing to hear anything about
“inaccurate model” or “infeasible optimization problem”.

During normal building operation, a reasonable tradeoff between energy
consumption and comfort can be found using cost function weighting factors.
However, during some special events, these settings can be inappropriate. An
example of such event is the Christmas holiday that allows for a long-term
setback in the case of university building. At the end of the setback there is a
need for enormous amount of energy that has to be delivered into the building
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Fig. 1: Oscillations of supply water temperature recorded during MPC operation

in order to return to a “normal operation” of the building. Unfortunately, in the
case of our pilot building, the optimal solution that was exercised caused major
comfort violations during the first day after the Christmas holiday. Hence, there
is a need for definition of comfort requirements that have to fulfilled at any cost.

The paper is further structured as follows: i) Section 3. analyzes state-of-the
art, what FHOCP formulations are typically used for buildings. These formu-
lations are assessed from the point of view of recursive feasibility, sensitivity
to oscillations, etc. ii) Section 4. proposes a new FHOCP formulation that ad-
dresses the aforementioned issues. iii) Section 5. presents a case study where the
proposed FHOCP is validated. iv) Finally, Section 6. outlines other directions
for designing practically robust FHOCP.

3. Existing Model Predictive Control Formulations for Buildings
In this section, we present some of the typical optimal control problem formu-
lations for buildings. We restrict ourselves to deterministic, non-hybrid and
centralized MPC formulations because such formulations are the most widely
used ones in practice. More advanced variants of MPC (e.g. stochastic or dis-
tributed) are far more complex to analyze and are left for future investigations.

We assume that the models of the buildings are linear time invariant (LTI)
with heat fluxes as inputs and zone temperatures as outputs. The models have
the following form:

xk+1 = Axk +Buk +V vk, yk =Cxk +Duk +Wvk, (2)
where vk ∈ Rs is the vector of disturbances, yk ∈ Rp is the vector of system
outputs and , xk ∈Rn is the vector of system states. Real matrices A,B,C,D,V,W
are so called system matrices and are of appropriate dimensions.



We will start from the formulations that have appeared in the literature. Pros
and cons for each of the formulation will be given. Each formulation eliminates
some drawbacks of the previous one. In the next section, we then present a
new formulation that we deem to be so far the most suitable formulation for
buildings (both from the point of view of the quantities being optimized and a
practical viewpoint).

Minimization of delivered energy and satisfaction of the constraints: This
formulation was reported by [19, 20, 5, 21]. The cost function contains a single
term standing for the minimization of the delivered energy while the thermal
comfort is guaranteed by means of hard constraints on the system outputs, i.e.
zone temperatures.

min
u

Nu−1

∑
k=0
|Rkuk|1 (MPC1)

subject to: linear dynamics Eq. (2), x0 = xinit ,

Gkuk ≤ h, rk ≤ yk ≤ rk.
The matrices Gk,hk define time varying polytopic constraints on system inputs
and states, while rk and rk stand for the time varying reference trajectory for
the system outputs. Initial state xinit is a parameter of the optimization and is
provided by means of Kalman filter or full state measurement at each time-step.

Although the presented control strategy was advertised as a “new control
strategy suitable for MPC for buildings” [20], from our experience, this optimal
control problem formulation as is cannot be used in the practice. The most
obvious drawback is the lack of recursive feasibility: if the initial state implies
any comfort violation, then the optimization problem will be infeasible and the
controller cannot work anymore. Feasibility issues are usually handled with the
aid of the so-called slack variables on system states and system outputs. Hard
constraints are imposed only on the system inputs.

Trade-off between energy consumption and set-point tracking error: An
alternative simple MPC formulation that tackles feasibility issues was presented
in [4, 9, 22, 23, 24, 14] and has following form2:

min
Nu−1

∑
k=0
|Rkuk|1 +

Ny−1

∑
k=0
|Qk(yk− rk)|22 (MPC2)

subject to: linear dynamics Eq. (2), x0 = xinit , Gkuk ≤ h,
Here, r is the set-point which is to be tracked. Although this formulation has the
form that is typically used in process industry [6], it is not suitable for buildings.
According to standards defining indoor thermal comfort, operative temperature3

should lie within certain temperature range. Forcing the temperature to follow

2Some authors use without any reasoning quadratic norm for penalization of input energy instead
of one norm

3Operative temperature is defined as the average of the air temperature and the mean radiant
temperature (i.e. usually computed as area weighted mean temperature of the surrounding surfaces)



a single set-point curtails the freedom of the controller and may result in a
higher energy consumption. In addition, typical effects of MPC regulation like a
night-time pre-cooling or pre-heating are suppressed. A similar formulation with
the aid of slack variables can add the desired freedom to the MPC controller.

Trade-off between energy consumption and comfort range violations: Slack
variables are additional decision variables that are weighted only in situations
when some quantity, which the slack variable is imposed on, reaches certain
bound. They are useful especially in situations when the objective is to keep
system outputs within a certain range and the slacks penalize the violation of
the range. The following formulation was presented in [15, 16, 25, 2, 26].

min
Nu−1

∑
k=0
|Rkuk|1 +

Ny−1

∑
k=0
|Qk(yk− zk)|22 (MPC3)

subject to: linear dynamics Eq. (2), x0 = xinit ,

Gkuk ≤ h, rk ≤ zk ≤ rk
In this optimal control problem setup zk ∈ Rp is the slack variable on the
zone temperature. The advantages of such a formulation has already been
discussed; however, the use of the 1-norm to weight the system inputs is a major
disadvantage. As it is well known, the solution of a linear program lies on a
vertex of the polytopic constraint set. If the constraints are not very tight, a bang-
bang control profile is obtained. This behavior is undesirable in closed loop
operation in the presence of model mismatch because then the control actions
can lead to a highly oscillatory behavior (see Fig. 1). Unpleasant oscillations can
be suppressed by introducing hard constraints on the maximum rate of change of
the input signals. But what if, accidentally, there is a strong need to heat up the
building and to use the maximum capacity of the heating system immediately?
This problem as well as other aforementioned issues are handled in the optimal
control problem formulation given in the following section.

4. Practical Aspects Motivated Formulation
In this section, we introduce a new MPC formulation that is motivated by practi-
cal aspects. The aims of this formulation are (i) suppress oscillation appearing
in receding horizon due to minimization of the 1-norm of the input signal,
(ii) minimize sensitivity of the controller to the model mismatch and imper-
fect disturbance predictions while making use of minimal additional energy,
(iii) guarantee recursive feasibility, (iv) respect thermal comfort limits defined
by standard norms e.g. ISO 7730 and guarantee that significant comfort range
violations do not occur, (v) does not increase the numerical complexity of the
problem significantly.

The proposed formulation has the following form:

min
Nu−1

∑
k=0

(|Rkuk|1 +δ smooth(k))+
Ny−1

∑
k=0

(
|Qk(yk− zk)|22 + |Qc

k(yk− zc
k)|22

)
(MPC4)



subject to: linear dynamics Eq. (2), x0 = xinit , ulast = {u−1,u−2, . . .}
Gkuk ≤ h, rk ≤ zk ≤ rk, rc

k ≤ zc
k ≤ rc

k
Here, zk ∈ Rp and zc

k ∈ Rp are slack variables and together with rk,rk define
comfort constraints that can be violated from time-to-time, while rc

k,r
c
k define

comfort constraints that cannot be violated at any cost. These comfort constraints
give the MPC controller sufficient freedom to operate the building in an energy-
efficient way.

It is expected that system inputs and outputs are scaled to a similar range of
values and that max(Rk,δk,Qk)� Qc

k.
Recursive feasibility of this formulation is guaranteed as there are no hard

constraints imposed on system states nor system outputs.
Finally, the objective of the smoothing term is to suppress oscillations in

receding horizon as well as on prediction horizon. Here it is important that
there is the term ulast holding information about past system inputs that were
computed by MPC. Based on these values, we can easily smooth the receding
horizon progress of the input signal. We propose following variants of smoothing
terms:

• MPC4a: smooth(k) = |Zuk|22, i.e. the problem is regularized in such a way
that not only the one norm of the input signal is minimized, but also quadratic
norm is minimized. Here, Z is an appropriate weighting matrix.
• MPC4b: smooth(k) = |uk−uk−1− pk|22 and one additional constraint is
introduced ∆u≤ pk≤∆u for k= 1 . . .Nu. Here ∆u,∆u are minimum/maximum
values allowed for the input change not to be penalized, p is a slack variable
and thus the square of the inner term regularizes the optimization task.
• MPC4c: smooth(k) = |uk−2−2uk−1 +uk|22, i.e. minimization of curvature
of the input signal. Here, it is required to know two of the past inputs.

In the following section, we will compare the three proposed smoothing
terms to the presented MPC formulations without any smoothing term.

5. Case Study: Validation of the Proposed MPC Formulation
For validation of the proposed MPC formulation, we will use a TRNSYS
simulation environment. Schematically, the simulation setup is depicted in
Fig. 2a. In the core, there is a detailed TRNSYS model sharing the same
disturbance profiles (occupancy and weather for Prague, Czech Republic) as
the MPC part which is composed of an optimization block that uses linear time-
invariant (LTI) model for performing the numerical optimization. Time-varying
parameters (e.g. variable energy price or reference trajectories etc.) are required
by the MPC block. The setup is designed in such a way that the problems with
model mismatch causing oscillations may appear. Disturbance prediction errors
are not considered here.

The building under investigation, schematically outlined in Fig. 2b, was
constructed in TRNSYS environment using Type56. It is a medium weight
office building with two zones separated by a concrete wall and with thermo-
active building systems (TABS) controlled separately. Both zones have the same
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Fig. 2: Simulation setup

Table 1: Performance comparison of MPC formulations. In relative comparisons,
the results are always compared to the MPC3.

Delivered energy [kWh/month] Comfort violations [Kh/month]

Aboslute Relative Absolute Relative

MPC1 – – – –
MPC2 5555 -111 % 0 -100 %
MPC3 2631 0 % 3.22 0 %
MPC4a 1946 26 % 3.43 6 %
MPC4b 2355 10 % 4.61 43 %
MPC4c 1885 28 % 4.45 38 %

dimensions (5× 5× 3m) and the south oriented walls of the zones include a
window (3.75m2). A detailed description of the building is given in [27].

The LTI model Eq. (2) of the system was identified using grey box technique
adopted from [15, Section 3.1.2] and verification of its accuracy is given in [27].

The performance of the presented MPC formulations were validated on
one month simulations within the simulation environment. For evaluation of
thermal comfort, ISO 7730 class B was used. The results of all formulations are
summarized in Table 1 and Fig. 3.

As already noted, MPC1 does not guarantee recursive feasibility. This was
confirmed by a simulation that crashed at simulation time Ts = 16 h. The state
of the LTI model ended up out of the allowed range, and hence the optimization
problem became infeasible.

The objective of MPC2 is to track a set point – in our case, the average of
the lower and upper comfort limits. This fact caused a significant increase in
energy consumption. In addition, oscillations described above were observed
(due to space limitation, simulation results for MPC2 are not reported in Fig. 3).

Formulation MPC3 is taken as a baseline for all comparisons in the Table 1.
From Fig. 3, it can be seen that the oscillations occurring on the CTU building
appears also here and especially over the weekend (1/7 and 1/8) when there is
a long setback. In such a situation, solution is either to heat at the maximum



possible level or to do nothing. Such behavior naturally increases the long-term
energy consumption.
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Fig. 3: Comparison of timeseries

On the contrary, MPC4 in all variants achieves better results in terms of
energy consumption with comparable amount of comfort violations. MPC4b
reaches a slightly higher consumption than the other formulations with smooth-
ing terms. In this case, the amplitude of the oscillations is suppressed, not the
oscillations as such.

6. Conclusions and Remarks
In this paper, we analyzed existing MPC problem formulations for buildings.
We mentioned pros and cons for each of them and based on this analysis and
past experience we proposed a new MPC formulation that (i) is not oscillatory
(in both open- and closed-loop operation) due to smoothing terms introduced in
the cost function, (ii) is sufficiently robust to disturbance predictions and model
inaccuracies, (iii) guarantees recursive feasibility of the optimization problem,
(iv) respects user-defined comfort limits in such a way that it is high probable
that high comfort violations do not occur, (v) does not increase significantly
the energy consumption, (vi) does not increase the numerical complexity of
the problem significantly – the problem stays in the same class of convex
optimization problems, (vii) is able to capture small and high comfort violations,
thereby ensuring that high comfort violations do not occur at any cost. A
disadvantage of the proposed algorithm is the increased number of tuning
parameters. Typically, there are two weighting coefficients (the matrices Q and
R); the proposed formulation has three. Tuning of the third, smoothing, variable
is essential for achieving the benefits described above; an improperly tuned
smoothing term can either lead to too oscillatory or too smooth (and hence
energy-inefficient) behavior.

Finally, the proposed MPC problem formulations were validated within a
TRNSYS simulation environment, showing that the introduced smoothing terms



can significantly contribute to the robustness of the MPC for buildings.
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