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Abstract. Decorrelation Theory deals with general adversaries who are
mounting iterated attacks, i.e., attacks in which an adversary is allowed
to make d queries in each iteration with the aim of distinguishing a
random cipher C from the ideal random cipher C∗. A bound for a
non-adaptive iterated distinguisher of order d, who is making plaintext
(resp. ciphertext) queries, against a 2d-decorrelated cipher has already
been derived by Vaudenay at EUROCRYPT ’99. He showed that a 2d-
decorrelated cipher resists against iterated non-adaptive distinguishers of
order d when iterations have almost no common queries. More recently,
Bay et al. settled two open problems arising from Vaudenay’s work at
CRYPTO ’12, yet they only consider non-adaptive iterated attacks.

Hence, a bound for an adaptive iterated adversary of order d, who can
make both plaintext and ciphertext queries, against a 2d-decorrelated
cipher has not been studied yet. In this work, we study the resistance
against this distinguisher and we prove the bound for an adversary who
is making adaptive plaintext and ciphertext queries depending on the
previous queries to an oracle.

1 Introduction

Attempting to provide provable security to block cipher cryptanalysis,
Nyberg [Nyb91] pioneered a new direction where the notion of strength
against differential cryptanalysis is formally examined. Similarly, Chabaud
and Vaudenay [CV94] examined the notion of strength against linear
cryptanalysis. Luby and Rackoff [LR85,LR86] have also considered a Feis-
tel scheme with a random round function and defined the notion of k-wise
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independent hash function families. The caveat with their approach is that
very long secret keys are required. Carter and Wegman [CW79,CW81],
however, require smaller key when measuring the effects of pseudoran-
domness against the adversaries.

Inspired by the notion of k-wise independence of Luby and Rackoff
and the derandomization techniques of Carter and Wegman in sampling
pairwise independent numbers, Vaudenay defined and formalized Decor-
relation Theory [Vau99c,Vau03] to provide provable security for block
ciphers against a wide range of statistical attacks. Indeed perfect decor-
relation of order d is equivalent to the d-wise independence of Luby and
Rackoff while appropriate norms and measures are defined for imperfect
decorrelation in [Vau98a,Vau99a]. Moreover, Decorrelation Theory cov-
ers a variety of statistical attacks such as Differential and Linear Attacks,
Boomerang Attacks, Truncated Differential Attacks, and Impossible Dif-
ferential Attacks. However, the attacks covered in Decorrelation Theory
are generic attacks complying a certain broad criteria in the Luby and
Rackoff model.

Decorrelation Theory considers computationally unbounded attack-
ers who can make d queries in each iteration. When these d queries are
random and independent from one another, the attacker is a d-limited
non-adaptive adversary. In contrast, one can consider adaptive adver-
saries who choose their queries depending on the previous ones. Then, a
distinguisher of order d is trying to distinguish between a random cipher
C and the ideal random cipher C∗ using the aforementioned adversary.

Non-adaptive iterated distinguishers, making plaintext (resp. cipher-
text) queries, have been studied in [Vau98b,Vau99b,Vau99c,Vau98a,BV05]
extensively, and the security of many block ciphers has been proven by
decorrelation techniques, see for example [PV98,Vau03,BF06a,BF06b]. In
particular, Vaudenay [Vau99c,Vau03] finds an upper bound for the advan-
tage of a non-adaptive iterated distinguisher of order d, who is making
plaintext (resp. ciphertext) queries against a 2d-decorrelated cipher. He
shows that a 2d-decorrelated cipher resists against iterated non-adaptive
attacks of order d when iterations have almost no common queries. His
work has been followed by Bay et al. [BMV12] who address two open
problems arising from Vaudenay [Vau99c,Vau03] on non-adaptive iter-
ated attacks. When considering resistance against non-adaptive iterated
adversaries of order d who are making only plaintext (resp. ciphertext)
queries, Bay et al. showed that not only it is sufficient for a cipher to have
decorrelation of order 2d, but this decorrelation order is also necessary.
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Moreover, they proved that repeating a plaintext query in different iter-
ations may provide a significant advantage to a non-adaptive adversary.

However, a bound for the advantage of an adaptive iterated distin-
guisher of order d, who can make both plaintext and ciphertext queries
has not been computed yet. The significance of studying general distin-
guishers who can make adaptive queries is not hidden to anyone. Hence,
it is important to study adaptive distinguishers. Allowing the adversary
to make both plaintext and ciphertext queries strengthens the security
results and has already appeared in the literature. Indeed, the Boomerang
attack [Wag99] is an example of such an adversary. Studying these gen-
eral distinguishers making adaptive plaintext-ciphertext queries allows
us to, for example, interpret Wagner’s Boomerang attack [Wag99] on
COCONUT98 [Vau98b,Vau03], a perfect 2-decorrelated block cipher and
provably secure against differential and linear cryptanalyses and iterated
attacks of order 1. Indeed, it could have resisted to Wagner’s attack with
a decorrelation of order 8.

In this paper, we are going to focus on adaptive iterated distinguishers
who can make plaintext and ciphertext queries. We first define a generic
adaptive plaintext-ciphertext d-limited distinguisher with an adversary
who is making adaptive plaintext queries and ciphertext queries to the
oracle depending on the previous queries. We, then, extend this definition
to a generic adaptive plaintext-ciphertext iterated distinguisher of order
d. We prove the bound for the advantage of adaptive iterated distinguisher
of order d against a 2d-decorrelated cipher. The appropriate metric for
computing the advantage of this kind of adversary was defined by Vaude-
nay in [Vau99a]. It comes with no surprise that using this metric, we get
a looser, i.e., higher, upper bound for adaptive distinguishers than that
for non-adaptive distinguishers.

The rest of this paper is organized as follows. Some background re-
sults, notations, and definitions are summarized in Section 2. Section
3 defines generic adaptive plaintext-ciphertext iterated distinguishers of
order d and Section 4 computes the bound for such adversaries, encapsu-
lating the main contribution of the paper. Appendix A and Appendix B
give the details the proof of Theorem 7. Appendix C reminds linear and
differential distinguishers.

2 Preliminaries

Vaudenay defines Decorrelation Theory based on the Luby-Rackoff Model
[LR85] in which the adversary is unbounded in terms of computational
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power, but bounded in the number of d plaintext-ciphertext queries that
he can make. In this model, there is an oracle Ω implementing either an
instance of a random function (resp. permutation) drawn from all consid-
ered functions (resp. permutations) or an instance of a random function
(resp. permutation) drawn uniformly at random from all random func-
tions (resp. permutations). The aim of the adversary A is to guess which
of two distributions the oracle Ω selects. There are two main types of ad-
versaries: when the adversary makes his d queries at the same time and
this is called a d-limited non-adaptive distinguisher; when the adversary
makes queries depending on answers to previous queries and this is called
a d-limited adaptive distinguisher.

Throughout the paper, F denotes a random function (or equivalently
a function set up with a random key) from a set M1 to a set M2 while
F ∗ denotes an ideal random function from M1 to M2 drawn uniformly
at random from all |M2||M1| random functions. In addition, C denotes
a random cipher (or equivalently the encryption function set up with a
random key) over a message space M and C∗ denotes an ideal random
cipher over M drawn uniformly at random from all |M|! permutations
of M. Note that F ∗ and C∗ are also denoted as a perfect function and a
perfect cipher, respectively. In Table 1, we provide some notations to be
used throughout the paper.

Table 1. Notations

|S|: number of elements in S

Md: set of all sequences of d tuples over the set M
[F ]d: d-wise distribution matrix of a random function F
AdvANA(d)

: advantage of the d-limited non-adaptive distinguisher ANA(d)

AdvAA(d)
: advantage of the d-limited adaptive distinguisher AA(d)

AdvANAI(d)
: advantage of the non-adaptive iterated distinguisher ANAI(d) of order d

AdvAAI(d)
: advantage of the adaptive iterated distinguisher AAI(d) of order d

E(X): expected value of a random variable X
V (X): variance of a random variable X
⊕: addition modulo 2

Decorrelation Theory has a link with Linear and Differential Crypt-
analyses (see Appendix C) which are the essential cryptanalysis methods
of both block ciphers and pseudorandom functions. Both methods have
iterative analysis of an instance of a block cipher and refer to the set of at-
tacks called iterated attacks. More explicitly, iterated attacks are defined
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as iterations of d-limited distinguishers. When d-limited non-adaptive dis-
tinguishers are iterated, we obtain non-adaptive iterated distinguishers
of order d. When d-limited adaptive distinguishers are iterated, we get
adaptive iterated distinguishers of order d. A generic non-adaptive iter-
ated distinguisher of order d is illustrated in Figure 1. Briefly, a test T
generates the binary output Ti of each iteration i, and then the accep-
tance set Acc produces the decision of the distinguisher based on the
tuple (T1, . . . , Tn).

Input: an integer n, a set X, a distribution X on X, a test T , a set Acc
Oracle: the oracle Ω implementing a permutation c

for i = 1 to n do
pick x = (x1, . . . , xd) at random from X
get y = (Ω(x1), . . . , Ω(xd))
set Ti = 0 or 1 such that Ti = T (x, y)

end for
if (T1, . . . , Tn) ∈ Acc then

output 1
else

output 0
end if

Fig. 1. A generic non-adaptive iterated distinguisher of order d

The success of an adversary is often estimated by a measure called
advantage defined as follows.

Definition 1. Let F0 and F1 be two random functions. The advantage
of an adversary A distinguishing F0 from F1 is defined by

AdvA(F0, F1) =
∣∣Pr[A(F0) = 1]− Pr[A(F1) = 1]

∣∣.
When we consider all adversaries distinguishing between F0 and F1 and
take the maximum of the advantage over all these adversaries in a class
ζ, we get the best advantage of the distinguisher which is formulated as
follows.

BestAdvζ(F0, F1) = max
A∈ζ

AdvA.

For example, ζ can consist of all non-adaptive adversaries or adaptive
adversaries. Note that in the rest of the paper, when we mention the
advantage of an adversary, we mean his best advantage. We now recall
Decorrelation Theory by first giving the definition of the d-wise distribu-
tion matrix.
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Definition 2. [Vau03] Let F be a random function fromM1 toM2. The
d-wise distribution matrix [F ]d of F is a |M1|d × |M2|d-matrix which is
defined by [F ]d(x1,...,xd),(y1,...,yd) = PrF [F (x1) = y1, . . . , F (xd) = yd], where

x = (x1, . . . , xd) ∈Md
1 and y = (y1, . . . , yd) ∈Md

2.

There are two main notions of matrix-norms used in this theory and
recalled in the following definition.

Definition 3. [Vau03] Let M ∈ R|M1|d×|M2|d be a matrix. Then, two
matrix-norms are defined by

‖M‖∞ = max
x1,...,xd

∑
y1,...,yd

|M(x1,...,xd),(y1,...,yd)|,

‖M‖A = max
x1

∑
y1

· · ·max
xd

∑
yd

|M(x1,...,xd),(y1,...,yd)|.

Vaudenay [Vau03] defines the decorrelation of order d for a random
function F as the distance between its d-wise distribution matrix and
the d-wise distribution matrix of the ideal random function F ∗, namely
D([F ]d, [F ∗]d), where D denotes one of the measures of distance given
above. Deciding which matrix-norm to use depends on the type of distin-
guisher envisaged. While ‖ · ‖∞ is used for non-adaptive distinguishers,
‖ · ‖A is used for adaptive distinguishers. When D([F ]d, [F ∗]d) = 0, F is
called a perfect d-decorrelated function. Now, the following lemma relates
the best advantage of a distinguisher with the decorrelation distance.

Theorem 4 (Theorems 10 and 11 in [Vau03]). Let F and F ∗ be
a random function and the ideal random function, respectively. The re-
spective advantages of the best d-limited non-adaptive and adaptive dis-
tinguishers, ANA(d) and AA(d), are

AdvANA(d)
(F, F ∗) =

1

2
‖[F ]d − [F ∗]d‖∞

and,

AdvAA(d)
(F, F ∗) =

1

2
‖[F ]d − [F ∗]d‖A.

We recall one of the main theorems of this theory proving that if
a cipher has decorrelation of order 2d, then it is secure against a non-
adaptive iterated attack of order d.

Theorem 5 (Theorem 18 in [Vau03]). Let C be a random cipher on
a message space M of size M such that ‖[C]2d − [C∗]2d‖∞ ≤ ε, for some
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given d ≤ M/2, where C∗ is the ideal random cipher. Let us consider a
non-adaptive iterated distinguisher of order d between C and C∗ with n
iterations. We assume that the distinguisher generates sets of d plaintexts
of independent and identically distributed in all iterations. Then, we can
bound the advantage of the adversary as

AdvANAI(d)
≤ 5

3

√(
2δ +

5d2

2M
+

3ε

2

)
n2 + nε,

where δ is the probability that any two different iterations send at least
one query in common.

Lastly, we will remind the notion of indicator function.

Definition 6. Let S be the sample space and E ⊆ S be an event. The
indicator function of the event E, denoted by 1E, is a random variable
defined as

1E(s) =

{
1, if s ∈ E,
0, if s /∈ E.

The indicator function can shortly be denoted as 1E instead of 1E(s).
In the sequel, we define more general distinguishers, namely adaptive
plaintext-ciphertext iterated distinguishers of order d.

3 Adaptive Plaintext-Ciphertext Iterated Distinguishers
of Order d

In this section, we recall two generic distinguishers, namely an adaptive
plaintext-ciphertext d-limited distinguisher (see Figure 2) and an adaptive
plaintext-ciphertext iterated distinguisher of order d (see Figure 3). Both
distinguishers are adaptive in a way that the adversary adaptively asks
for both encryption and decryption of the queries. Herein we formalize
these distinguishers.

We first define a compact function G to be distinguished. The goal
of defining this function is to specify the input to the oracle to be ei-
ther encrypted or decrypted (as the adversary makes either the plaintext
queries or the ciphertext queries in a specific order depending on his type
of attack).

Let G be the set of functions G such that G : M × {0, 1} → M
satisfying G(G(x, 0), 1) = x and G(G(x, 1), 0) = x, for all x. We denote
G0(x) = G(x, 0) and G1(x) = G(x, 1) and point out G−11 = G0 and
G−10 = G1. In what follows, G denotes a random element of G and G∗ is
a uniformly distributed element of G.
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Input: a function F , a test T , a distribution R on {0, 1}∗
Oracle: the oracle Ω implementing either an instance of G or an instance of G∗

Pick r ∈ {0, 1}∗ at random from R
Set u1 = (a1, b1)← F(·; r)
Set v1 = Ω(u1)
Set u2 = (a2, b2)← F(v1; r)
Set v2 = Ω(u2)
. . .
Set ud = (ad, bd)← F(v1, . . . , vd−1; r)
Set vd = Ω(ud)

Output T (v1, . . . , vd; r)

Fig. 2. A generic adaptive plaintext-ciphertext d-limited distinguisher

An adaptive d-limited distinguisher. The adversary AA(d) detailed in Fig-
ure 2 has access to an oracle Ω which implements either an instance of
G or an instance of G∗, such that G0 and G1 perform encryption and
decryption, respectively. He picks a random coin r from {0, 1}∗ according
to a given distribution R and queries a function F which is fed with r and
the output of the previous queries (v1, v2, . . . , vi−1), where vk = Ω(uk) for
all k ∈ {1, 2, . . . , i− 1}, and 1 ≤ i ≤ d. He then receives a new query ui.
He sends this input ui to the oracle to receive the output vi, where –as
explained– vi = Ω(ui). Finally, using a test T , he outputs a decision bit
“1” if he guesses that Ω implements an instance of the random function
G or “0” if he guesses that Ω implements an instance of the ideal random
function G∗.

Input: an integer n, a function F , a test T , a set Acc, a distribution R on {0, 1}∗
Oracle: the oracle Ω implementing a function G or G∗

for k = 1 to n

Set Tk (with independent coins) ← output of Distinguisher in Figure 2

end for
Output 1Acc(T1, . . . , Tn)

Fig. 3. A generic adaptive plaintext-ciphertext iterated distinguisher of order d

An adaptive iterated distinguisher of order d. The iterated distinguisher
given in Figure 3 is simply the iteration of the d-limited distinguisher (see
Figure 2) in a way that the adversary AAI(d) repeats the distinguisher n
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times, then he checks whether the output of n iterations are accepted or
not with respect to a set Acc. This gives his final decision.

Input: an integer n, a set X, differences ∆ and ∇
Oracle: the oracle Ω implementing a permutation c

for k = 1 to n
Pick x1 uniformly at random from the set X
Set x2 = x1 ⊕∆
Set y1 = c(x1), y2 = c(x2)
Set y3 = y1 ⊕∇, y4 = y2 ⊕∇
Set x3 = c−1(y3), x4 = c−1(y4)
Set Tk = 1x3⊕x4=∆

end for
if T1 + · · ·+ Tn 6= 0 then

Output 1
else

Output 0

Fig. 4. Boomerang Distinguisher

The Boomerang Attack [Wag99] defined in Figure 4 is an example
for an adaptive plaintext-ciphertext iterated distinguisher of order d (see
Figure 3) for the case d = 4. The adversary queries two (chosen) plain-
texts and receives their corresponding ciphertexts, he then constructs two
ciphertexts depending on the previous ciphertexts and asks for their de-
cryption. The adaptively chosen queries to the oracle in each iteration
of the Boomerang Attack [Wag99] can be written as (u1, u2, u3, u4) =
((x1, 0), (x1 ⊕ ∆, 0), (c(x1) ⊕ ∇, 1), (c(x1 ⊕ ∆) ⊕ ∇, 1)), where x1 is se-
lected uniformly at random over the set X, and ∆ and ∇ denote non-zero
differences.

4 Advantage of Adaptive Plaintext-Ciphertext Iterated
Distinguishers of Order d

Vaudenay [Vau03] found a bound for the advantage of non-adaptive it-
erated distinguishers of order d, which is not apposite for the adaptive
adversaries. We extend his result and provide a bound for the advan-
tage of adaptive plaintext-ciphertext iterated distinguishers of order d.
Strictly speaking, we compute the maximum success of the adversary who
is making d adaptive queries to the oracle in each iteration to distinguish
a random cipher 2d-decorrelated upon using the ‖ · ‖A norm.
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Theorem 7. Let G ∈ G be a random function from M× {0, 1} to M
such that ||[G]2d− [G∗]2d||A ≤ ε, for some given d ≤M/2, where G∗ is the
ideal random cipher and |M| = M . Let us consider an adaptive iterated
distinguisher of order d AAI(d) who is trying to distinguish G from G∗ by
performing n iterations (see Figure 3). Then, the advantage AdvAAI(d)

of
AAI(d) is bounded as

AdvAAI(d)
≤ 5

3

√(
2θ + e8d2/M +

2d2

M
+

3ε

2
− 1
)
n2 + nε,

where θ is the expected value of the probability that any two different
iterations send at least one query in common for a given G.

Proof. Let one iteration consist of the input queries u = (u1, u2, . . . , ud)
and the output queries v = (v1, v2, . . . , vd), where ui = (ai, bi) and vi =
Ω(ui), for 1 ≤ i ≤ d.

We first make two observations about the adaptive adversary.

Observation 1: Inner-collisions in input queries, i.e., ui 6= uj , are not
allowed, since calling the same query twice in the same iteration will
not give any advantage to the adversary.

Observation 2: Let (ui = (ai, bi), vi) and (uj = (aj , bj), vj) be two
queries in the same iteration. Cross inner-collisions are not allowed,
that is, we never have ai = vj and bi 6= bj . Getting the same informa-
tion will not give any advantage to the adversary.

Notice that these aforementioned observations do not hold between dif-
ferent iterations.

We begin similarly to the proof of Theorem 5 provided in [Vau03]. We
first define T (g) to be the probability that the test function T outputs 1
when G = g (resp. G∗ = g), i.e.,

T (g) = Er[T (v1, . . . , vd; r)|G = g].

We let p (resp. p∗) be the probability of the distinguisher outputting 1,
let Acc be the acceptance set, and Tk(G) (resp. Tk(G

∗)) be the output of
iteration k. Then we have

p = PrG[(T1(G), . . . , Tn(G)) ∈ Acc].

Notice that all Tk(G)’s are pairwise independent except that all are only
dependent on G, and Tk(G) = T (G). Hence, we obtain

p = EG

[ ∑
(t1,...,tn)∈Acc

T (G)t1+···+tn(1− T (G))n−(t1+···+tn)

]
.
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Then, p can be rewritten as

p =
n∑
k=0

akEG[T (G)k(1− T (G))n−k],

for some integers ak such that 0 ≤ ak ≤
(
n
k

)
. Similarly, we have the same

argument for p∗, i.e., p∗ =
∑n

k=0 akEG∗ [T (G∗)k(1− T (G∗))n−k].

The advantage of the distinguisher, |p− p∗|, is maximal when all ak’s
are either 0 or

(
n
k

)
depending on the distributions T (G) and T (G∗). Hence,

we assume that Acc of the best distinguisher is of the form

Acc =

{
(t1, . . . , tn)

∣∣∣ n∑
k=1

tk ∈ B

}
,

for some set B ⊆ {0, . . . , n}. Thus, we rewrite p = EG[s(T (G))], where
s(x) =

∑
k∈B

(
n
k

)
xk(1− x)n−k.

Now, consider the derivative of s which can be written as

s′(x) =
∑
k∈B

(
n

k

)
k − nx
x(1− x)

xk(1− x)n−k.

Notice that since the sum over all k, such that 0 ≤ k ≤ n, is the
derivative of (x+ (1− x))n, then the total sum is zero. Hence, we obtain

|s′(x)| ≤
∑

nx≤k≤n

(
n

k

)
k − nx
x(1− x)

xk(1−x)n−k ≤ n

x

∑
nx≤k≤n

(
n

k

)
xk(1−x)n−k,

since nx ≤ k ≤ n. We note that when x ≥ 1/2, we have |s′(x)| ≤ 2n.
Similarly, when x < 1/2, we have |s′(x)| ≤ 2n. Hence, we get |s′(x)| ≤ 2n,
for every x. So, according to the Mean Value Theorem, we have

|s(T (G))− s(T (G∗))| ≤ 2n|T (G)− T (G∗)|.

Furthermore, Theorem 4 gives the exact advantage for the best adap-
tive d-limited distinguisher. Hence, |EG[T (G)] − EG∗ [T (G∗)]| ≤ ε/2 is
obtained. We here notice that in Vaudenay’s proof for Theorem 5, the
non-adaptive case was considered which leads the same result.

We now define a new random variable T 2(G) which is the output of
another test with 2d entries, that is,

T (v1, . . . , vd; r)× T (v′1, . . . , v
′
d; r
′).
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Thanks to Theorem 4, we have |EG[T 2(G)] − EG∗ [T 2(G∗)]| ≤ ε/2.
Hence, we get |V (T (G)) − V (T (G∗))| ≤ 3ε/2 (obtained by combining
|EG[T (G)] − EG∗ [T (G∗)]| ≤ ε/2 and |EG[T 2(G)] − EG∗ [T 2(G∗)]| ≤ ε/2).
More precisely, we have

|V (T (G))− V (T (G∗))|
= |EG[T 2(G)]− E2

G[T (G)]− EG∗ [T 2(G∗)] + E2
G∗ [T (G∗)]|

≤ |EG[T 2(G)]− EG∗ [T 2(G∗)]|+ |E2
G[T (G)]− E2

G∗ [T (G∗)]|

≤ 3ε

2
. (1)

In 1, we use |EG[T (G)] + EG∗ [T (G∗)]| ≤ 2, since 0 ≤ T (G), T (G∗) ≤ 1.
Afterwards, the advantage of the distinguisher is

|p− p∗| = |EG[s(T (G))]−EG∗ [s(T (G∗))]| ≤ EG,G∗ [|s(T (G))− s(T (G∗))|].

By using Tchebichev’s inequality, i.e., Pr[|T (G) − EG[T (G)]| > λ] ≤
V (T (G))/λ2 and Pr[|T (G∗) − EG∗ [T (G∗)]| > λ] ≤ V (T (G∗))/λ2 for any
λ > 0, we have

|p− p∗| ≤ 5
3

√(
2V (T (G∗)) +

3ε

2

)
n2 + nε, (2)

when λ = 3
√

(2V (T (G∗)) + (3ε/2))/n.
So far, everything works similarly to [Vau03]. However, the rest is

different since the function implemented in the oracle has new properties.
For further details of the proof up to now, refer to [Vau03]. Now, it is left
to bound V (T (G∗)).

Bounding V (T (G∗)). We now bound V (T (G∗)) by expanding it as

V (T (G∗)) =∑
S

Pr
R

[r] Pr
R

[r′]
(

Pr
G∗

[
(u, u′)

G∗−−→ (v, v′)
]
− Pr

G∗
[u

G∗−−→ v] Pr
G∗

[u′
G∗−−→ v′]

)
, (3)

where S = {(v, r), (v′, r′) ∈ T } and u (resp. u′) is defined by both r and
v (resp. r′ and v′). For the sake of simplicity, we denote the expression

PrR[r] PrR[r′]
(

PrG∗
[
(u, u′)

G∗−−→ (v, v′)
]
− PrG∗ [u

G∗−−→ v] PrG∗ [u
′ G∗−−→ v′]

)
as P .

In order to find an upper bound for V (T (G∗)), we first divide Expres-
sion (3) into two disjoint sums depending on whether or not u and u′ are
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colliding, i.e., if there exist i and j such that ui = u′j . In detail, we have

S = S1 ∪ S2 such that S1 =
{

(v, r), (v′, r′) ∈ T | ∃i, j s.t. ui = u′j

}
and

S2 =
{

(v, r), (v′, r′) ∈ T | ∀i, j s.t. ui 6= u′j

}
. Thus, we write

∑
S

P =
∑
S1

P +
∑
S2

P.

We now bound each sum separately.
The sum over S1,

∑
S1
P , is bounded as∑

S1

P ≤
∑
v,v′

∑
r,r′

Pr
R

[r] Pr
R

[r′] Pr
G∗

[
(u, u′)

G∗−−→ (v, v′)
]

1S1

=
∑
g

Pr[G∗ = g]
∑
v,v′

∑
r,r′

Pr
R

[r] Pr
R

[r′] 1
(u,u′)

g−→(v,v′)
1S1

= EG∗ [Pr
r,r′

[∃i, j s.t. ui = u′j | G]]

def
= θ,

where we denote EG∗ [Prr,r′ [∃i, j s.t. ui = u′j | G]] by θ. This can be inter-
preted as the expected value of the probability that any two iterations
have at least one query in common for given G.

Now, we provide a bound for the sum over S2,
∑

S2
P , which is for

non-colliding inputs u and u′. We first note that since both G∗0 and G∗1
are fromM toM, and, hence, bijective, they are indeed the ideal cipher
C∗, i.e., G∗0 = G∗1 = C∗. Therefore, their distribution matrices will be
the same as the distribution matrix of the ideal cipher C∗. We define
x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) as

xi =

{
ai, if bi = 0,

vi, if bi = 1,
and yi =

{
vi, if bi = 0,

ai, if bi = 1,

where u = ((a1, b1), (a2, b2), . . . , (ad, bd)), with bi ∈ {0, 1}, is the input
tuple and v = (v1, v2, . . . , vd) is its corresponding output tuple. This is
basically collecting the plaintexts and ciphertexts into two separate tu-
ples. Now, the sum over S2 can be rewritten into three disjoint sums
as

∑
S2

A =
∑
S3

A+
∑
S4

A+
∑
S5

A.
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Here, S3, S4 and S5 are the three partitions of S2, i.e., S2 = S3 ∪S4 ∪S5,
S3 =

{
(v, r), (v′, r′) ∈ T | ∀i, j, k,m, e, f ui 6= u′j , xk 6= x′m, ye 6= y′f

}
,

S4 =
{

(v, r), (v′, r′) ∈ T | (∀i, j, k,m ui 6= u′j , xk 6= x′m) ∧ (∃e, f ye = y′f )
}

,

S5 =
{

(v, r), (v′, r′) ∈ T |(∀i, j ui 6= u′j) ∧ (∃k,m xk = x′m)
}

, and A is

PrR[r] PrR[r′]
(

PrG∗0
[
(x, x′)

G∗0−−→ (y, y′)
]
−PrG∗0 [x

G∗0−−→ y] PrG∗0 [x′
G∗0−−→ y′]

)
.

We now deal with these three sums.

The sum over S3 (all non-colliding u’s and u′’s, all non-colliding x’s
and x′’s, and all non-colliding y’s and y′’s),

∑
S3
A, can be rewritten as

∑
S3

A ≤ 1

2

∑
v,v′

∑
r,r′

A× 1S3 =

1

2

∣∣∣Pr
G∗0

[
(x, x′)

G∗0−−→ (y, y′)
]
− Pr

G∗0
[x

G∗0−−→ y] Pr
G∗0

[x′
G∗0−−→ y′]

∣∣∣∑
v,v′

∑
r,r′

Pr
R

[r] Pr
R

[r′] 1S3 .

(4)

Here, since
∣∣∣PrG∗0

[
(x, x′)

G∗0−−→ (y, y′)
]
− PrG∗0 [x

G∗0−−→ y] PrG∗0 [x′
G∗0−−→ y′]

∣∣∣ is

constant when there is no collision between x and x′ and between y and
y′, in Equality (4), we take it out from the sum. Afterwards, since we
never have ai = vj and bi 6= bj according to Observation 2, there will not
be any inner-collisions in x.

Now, we bound Equality (4) as

1

2

∣∣∣Pr
G∗0

[
(x, x′)

G∗0−−→ (y, y′)
]
− Pr

G∗0
[x

G∗0−−→ y] Pr
G∗0

[x′
G∗0−−→ y′]

∣∣∣∑
v,v′

∑
r,r′

Pr
R

[r] Pr
R

[r′] 1S3

≤ 1

2

(
1

M(M − 1) · · · (M − 2d+ 1)
− 1

M2(M − 1)2 · · · (M − d+ 1)2

)
M2d

(5)

≤ e8d
2/M

2
− d(d− 1)

2M
− 1

2
. (6)

Note that Inequality (5) is due to fact that the sum in (4) is bounded
by the total number of v and v′ which is M2d and P1 ≥ P 2

2 . The way to
obtain Inequality (6) is shown in Appendix A.

On the other hand, the sum over S4,
∑

S4
A, will be the sum over all

colliding y’s and y′’s, all non-colliding x’s and x′’s, and all non-colliding
u’s and u′’s. When x and x′ are non-colliding, it is not possible to have
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colliding y and y′. Hence, we have PrG∗0
[
(x, x′)

G∗0−−→ (y, y′)
]

= 0. Therefore,
the sum over S4 will be negative, i.e.,

∑
S4
A ≤ 0.

Finally, we provide a bound for the sum S5,
∑

S5
A, as∑

S5

A ≤
∑
v,v′

∑
r,r′

Pr
R

[r] Pr
R

[r′] Pr
G∗

[
(u, u′)

G∗−−→ (v, v′)
]

1S5

=
∑
g

Pr[G∗ = g]
∑
r,r′

Pr
R

[r] Pr
R

[r′] 1S5 (7)

= EG∗ [Pr
r,r′

[∃i, j s.t. xi = x′j | ∀k,m s.t. uk 6= u′m and G]]

def
= γ

≤ d2

M
.

Here, we define γ = EG∗ [Prr,r′ [∃i, j s.t. xi = x′j | ∀k,m s.t. uk 6= u′m andG]]
as the expected value of the probability that x and x′ collide when G is
given and there is no collision between u and u′. We get γ ≤ d2/M which
is proved in Appendix B. Notice that Equality (7) gives the probability
γ explicitly.

Now, if we sum up all the results, then we have

V (T (G∗)) ≤ θ +
e8d

2/M

2
+
d2

M
− 1

2

by setting d/2M ≤ d2/2M .
When we substitute V (T (G∗)) in (2), then we have

|p− p∗| ≤ 5
3

√(
2θ + e8d2/M +

2d2

M
+

3ε

2
− 1
)
n2 + nε.

ut

Allowing θ ≈ δ to compare Theorem 5 with Theorem 7, we ob-
serve that the bound for adaptive attacks is higher than the bound for
non-adaptive attacks. This fact comes with no surprise. Adaptive adver-
saries are stronger than non-adaptive adversaries, in general, and adaptive
queries can provide the adversary with some advantage.

5 Conclusion and Final Remarks

In this work, we study the resistance against adaptive plaintext-ciphertext
iterated distinguishers of order d which has not been explored before. We
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prove the bound for this distinguisher in which the adversary is making
adaptive plaintext and ciphertext queries to the oracle depending on the
previous queries. This work contributes to proving the security of previous
and future designs based on Decorrelation Theory since previously there
was no clue with adaptive iterated adversaries in this context.

It is worth mentioning that Theorem 7, provided in this paper, poses
two questions. The theorem proves that decorrelation of order 2d is suffi-
cient for a cipher to resist an iterated attack of order d. The first question
asks whether or not this condition is necessary. The second question is as
follows: can the probability θ of having the same query in different itera-
tions increase the advantage of our adaptive adversary? Not surprisingly,
similar questions were posed by Theorem 5. Bay et al. [BMV12] have re-
cently answered these questions by providing two counterexamples that
are not intuitive. Namely, Bay et al. proceeded as follows for the questions
in Theorem 5.

– The first question is answered by showing that the decorrelation of
order 2d is necessary. They provide a 3-round Feistel construction
decorrelated to the order 2d − 1, that is ‖[C]2d−1 − [C∗]2d−1‖A ≤
2(2d− 1)2/q, where q is the cardinality of the finite field GF(q). They
then perform a successful non-adaptive iterated distinguisher of order
d against this cipher.

– The second one is answered by providing again a 3-round Feistel con-
struction decorrelated to the order 2d such that ‖[C]2d − [C∗]2d‖A ≤
8d2/2k, where 2k is the number of elements in GF(2k). They construct
even an iterated distinguisher of order 1 on this cipher, when δ is high.

These counter-intuitive examples can also be applied to our case since
the Feistel ciphers used in the solution to both questions are decorrelated
by the adaptive norm, and non-adaptive attacks are a subset of adaptive
attacks. To conclude, thanks to [BMV12], our two questions for Theorem
7 are immediately answered.
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A Some Details of Bounding Expression 6

Hence, we will give the detailed upper bounding of the following expres-
sion

1

2

(
1

M

1

M − 1
· · · 1

M − 2d+ 1
− 1

M2

1

(M − 1)2
· · · 1

(M − d+ 1)2

)
M2d,

or equivalently,

1

2

(
1

1− 1
M

1

1− 2
M

· · · 1

1− 2d−1
M

)
−1

2

(
1

(1− 1
M )2

1

(1− 2
M )2

· · · 1

(1− d−1
M )2

)
.

In order to find an upper bound for Expression 6, we need to maximize
(1− 1/M)−1(1− 2/M)−1 · · · (1− (2d− 1/M))−1. Hence, we use two in-
equalities such that (1− 1/x)−1 ≤ 1 + 2/x when |x| ≥ 2, which holds for

x = M since M ≥ 2 according to Theorem 7 and
(
1 + r/k

)k ≤ er, when
1 + r/k ≥ 0, then, the upper bound is

1

1− 1
M

1

1− 2
M

· · · 1

1− 2d−1
M

≤ e8d2/M .

In addition,we get

1

(1− 1
M )2

1

(1− 2
M )2

· · · 1

(1− d−1
M )2

≥ 1 +
d(d− 1)

M
.

by using geometric series formula, i.e., (1− x)−1 =
∑∞

n=0 x
n for |x| < 1,

which implies that (1− 1/x)−1 ≥ 1 + 1/x for |x| > 1. Hence, we get the
desired upper bound for Expression (6).

B Bounding the probability γ

We find an upper bound for γ which is the expected value of the probabil-
ity that x and x′ collide when G is given and there is no collision between
u and u′. There is only one way for x and x′ to collide when there is no
collision between u and u′. This happens when one common query is from
u (respectively u′) and the other is from v′ (respectively v). In detail, let
ui = (ai, bi) and u′j = (a′j , b

′
j) be two respective entries from u and u′,

and vi and v′j be their corresponding output. When bi = 0, b′j = 1 and
ai = v′j , then there is a collision in x and x′ such that xi = x′j . Since u
and v′ are independent, the probability that u and v′ collide is less than
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d2/2M. Similarly, we have the same result for u′ and v. Thus, we bound
γ as

γ ≤ d2

2M
+

d2

2M
=
d2

M
.

C Linear and Differential Distinguishers

Input: an integer n, a set X, a distribution X on X, a set I, masks a and b
Oracle: an oracle Ω implementing a permutation c

for i = 1 to n
Pick x1 at random from X
Set y1 = c(x1)
Set Ti = a · x1 ⊕ b · y1

end for

if T1 + · · ·+ Tn ∈ I then
Output 1

else
Output 0

Fig. 5. Linear Distinguisher

Input: an integer n, a set X, a distribution X on X, differences α and β
Oracle: an oracle Ω implementing a permutation c

for i = 1 to n
Pick x1 at random from X
Set x2 = x1 ⊕ α
Set y1 = c(x1), y2 = c(x2)
Set Ti = 1y1⊕y2=β

end for

if T1 + · · ·+ Tn 6= 0 then
Output 1

else
Output 0

Fig. 6. Differential Distinguisher
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