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Abstract

The electrical diversity of neurons arises from the expression of different combinations of ion channels. The gene expression
rules governing these combinations are not known. We examined the expression of twenty-six ion channel genes in a broad
range of single neocortical neuron cell types. Using expression data from a subset of twenty-six ion channel genes in ten
different neocortical neuronal types, classified according to their electrophysiological properties, morphologies and
anatomical positions, we first developed an incremental Support Vector Machine (iSVM) model that prioritizes the predictive
value of single and combinations of genes for the rest of the expression pattern. With this approach we could predict the
expression patterns for the ten neuronal types with an average 10-fold cross validation accuracy of 87% and for a further
fourteen neuronal types not used in building the model, with an average accuracy of 75%. The expression of the genes for
HCN4, Kv2.2, Kv3.2 and Cab3 were found to be particularly strong predictors of ion channel gene combinations, while
expression of the Kv1.4 and Kv3.3 genes has no predictive value. Using a logic gate analysis, we then extracted a spectrum of
observed combinatorial gene expression rules of twenty ion channels in different neocortical neurons. We also show that
when applied to a completely random and independent data, the model could not extract any rules and that it is only
possible to extract them if the data has consistent expression patterns. This novel strategy can be used for predictive reverse
engineering combinatorial expression rules from single-cell data and could help identify candidate transcription regulatory
processes.
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Introduction

Experimental and computational informatics studies have

revealed more than 270 genes associated with voltage-gated ion

channels in the Rattus norvegicus (Gene Ontology: GO:0005244 as

of January 2011). It is the combinations in which these genes are

expressed as well as the precise spatial distribution and biophysical

properties of the channels they code for that underlies the diversity

of neuronal electrical properties [1].

Previous studies have localized and identified the distribution of

ion channels in specific neurons [2,3,4,5,6] and attempted to

match gene expression profiles with different neuronal cell types

based on their electrical or morphological characteristics

[6,7,8,9,10,11]. Although these studies provided important insight

into the correlation between single ion channels and the electrical

behavior of neurons, they do not address combinatorial rules of

gene expression in different classes of neurons. A more

comprehensive strategy would be to identify preferred combina-

tions of expressed genes in morphologically and electrically diverse

neurons located in different regions.

The most extensive multivariate study was carried out by

Toledo-Rodriguez et al. [12], where the patch-clamp technique

(see Materials and Methods) was used to characterize the electrical

and morphological properties from 203 juvenile rat neocortical

neurons from layers 2 to 6, while simultaneously performing

single-cell multiplex RT-PCR for twenty-six ion channel genes on

the aspirated cell cytoplasm. We used the same dataset from

Toledo Rodriguez et al. and asked whether combinatorial rules

could be extracted. It is worth noting, that the neurons in the

Toledo Rodriguez et al. study were selected based on the

expression of the house-keeping gene Gapdh and that only those

expressing this gene and a minimum of two ion channel genes

were used in the analysis resulting in only 203 out of the 601

initially harvested. The abbreviations used for the morphological

and electrical phenotypes were previously defined in [13,14]

(Table 1). The major advance of the study by Toledo Rodriguez et

al. was that it enabled the identification of clusters of ion channel

gene expression, correlations between genes expressed and the

electrical phenotypes, and the further prediction of electrical

properties of neurons from expression profiles.

By exploring this data, however it also becomes clear that

expression profiles are distinctive not only between neurons

displaying different electrical behaviors and morphologies, but also

within neurons even of the same morpho-electrically classified

neuron type located in the same neocortical layer. For example,

the variability of the expression profiles in the classical adapting

Martinotti Cell (MC-cAD) found in layer L2/3 neurons is clearly

noticeable (Figure 1). Is this finding just due to experimental

artifacts or does such variability reflect combinatorial expression

rules? Standard statistical correlation and multivariate analyses are

not sufficient to reveal the preferred combinations of expressed
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genes in different classes of neuron. Even for the twenty-six ion

channels we examined, there are over 67 million theoretically

possible combinations (
Pn~26

n~0
C26

n ), let alone the actual number of

possible combinations for the entire channelome of a cell.

Our approach to this problem was to build a combinatorial

rule extractor model that can be constrained by, in principle, any

information about the neurons that may be available. We

classified neurons according to their morphological (M),

electrical types (E) and the neocortical layer (L) in which they

resided. Even though it is still not possible to objectively classify

neuron types, we reasoned that there would be sufficient

information in this generally accepted subjective classification

to at least partly constrain the model. We constructed the

combinatorial rule extractor model as multiple incremental

Support Vector Machines (iSVM), one for each of the twenty-six

ion channel genes where we searched for the best combinations

of input genes that would improve the prediction of the

expression of each other gene. By exploring these preferred

combinations we were able to derive candidate expression rules

governing each gene and then also the preferred combinations

expressed in each neuronal type. This combinatorics showed that

the same type of neuron can indeed express different combina-

tions of ion channel genes. We constructed these models using

ten neuronal types, each having more than three neuron counts,

out of the twenty-four in our dataset. Additionally, in order to

assess the significance of the models and the extracted rules, we

fitted the iSVM models on a completely random dataset where

the expression value for each gene was sampled randomly with a

Bernoulli distribution having the probability of expression equal

to the experimentally determined expression frequency. We

show that this approach can effectively reveal combinatorial

expression rules from the experimental data but could not

extract any rule from the random data and that the observed

gene expression variability can be explained in part by these

rules and is not random. This approach revealed a spectrum of

novel candidate gene expression combinations that provide new

insight into the regulatory mechanisms of ion channel gene

expression.

Table 1. Different layers, morphological and electrical
phenotypic profiles of the 65 neurons.

Layer (L) Morphological Identity (M) Electrical Identity (E)

L2/3 Large Basket Cell (LBC) Continuous Adapting (cAD)

L4 Martinotti Cell (MC) Continuous Fast Spiking (cFS)

L5 Nest Basket Cell (NBC) Delayed Fast Spiking dFS

L6 Pyramidal Cell (PC) Continuous Stuttering (cST)

doi:10.1371/journal.pone.0034786.t001

Figure 1. Diversity within layer L2/3 MC-cAD neurons. A Reconstructed morphologies of three L2/3 MC-cAD neurons. B Electrical response of
the same three L2/3 MC-cAD neurons. C Genetic profiles of the twenty-six ion channel genes in the nine L2/3 MC-cAD neurons.
doi:10.1371/journal.pone.0034786.g001
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Results

The data pre-processing step resulted in one hundred and

thirty-five neurons. The models were built using sixty-five neurons

grouped into ten different combinations of layer (L), morphology

(M), and electrical type (E) (LME) each of which having a neuron

count greater than 3 (Table 2). The data used to build the model is

referred to as model data hereafter. The remaining data consisted of

seventy neurons of which only eighteen were retained because

their L, M and E parameters were found in the model data but their

LME combinations were not (see Materials and Methods). These

eighteen neurons belonged to fourteen different LME combina-

tions (Table 3) each of which having only one or two neuron

counts and are referred to as generalization data hereafter (see

Materials and Methods).

Correlative expression
No single ion channel gene is ubiquitously expressed and the

highest individual frequency of expression was for Kv3.2 (,50% of

cells). Each of the twenty-six genes had an overall expression

frequency less than 50% in the model data set (Figure 2A). The

observed average expression frequency for all ion channel genes is

23.07%. The potassium channel genes coding for Kv1.1, Kv2.1,

Kv3.1, Kv3.2, Kv3.3, and the cationic channel gene HCN1 have the

highest frequency of expression (greater than 35%) while the

Kv2.2, Kv4.3, SK2 and Caa1I channel genes have the lowest

frequency of expression (less than 10%) (Figure 2A). It is expected

that neurons only express a small fraction of the ion channels

[13,15], but the low expression frequency of their genes might also

be due to the drawback of single-cell gene expression profiling and

specifically multiplex RT-PCR where a significant amount of false

negatives may be present because of mRNA harvesting or

amplification failures [12,16].

Some of the genes tend to have a relatively similar level of

expression between LME types hence it is likely that there is no

significant relationship between the LME type and the expression

of these genes (Figure 2B). However, many of the channel genes

appear to be differentially expressed in different LME types. For

instance, Kv3.3 tends to be highly expressed in L2/3 LBC-cFS and

L4 LBC-cST neurons, while very lowly expressed in L2/3 LBC-

dFS, L2/3 NBC-cFS and L5 PC-cAD neurons. HCN1 and HCN2

seem to be expressed the most in L2/3 LBC-cFS. Caa1A is highly

expressed in L4 LBC-cST and L6 PC-cAD as opposed to L2/3

NBC-cFS neurons where its expression is less than 10%. Kv1.2 and

Kv1.4 are almost absent in L2/3 MC-cAD, L2/3 NBC-cFS, and

L5 PC-cAD neurons while expressed in almost 60% of L2/3 LBC-

dFS neurons. The expression of SK2, Caa1B, and Caa1I channel

genes were not detected in layers 4, 5, and 6 neurons. Although

these results cannot be generalized because of the small sample

size (n = 65) they indicate that some relationship between the

expression frequencies and LME type of neuron exists and suggest

combinatorial expression rules may also exist.

Model selection
In order to extract combinatorial rules, we first needed to select

a model capable of assessing and prioritizing the value of single

and combined genes for the prediction of gene expression –i.e.

how well do expressed genes predict expression of other genes. To

find the optimal model, we began by comparing the performance

of two well-established classifiers, Logistic Regression (LR) [17]

and Support Vector Machines (SVM) [18]. Both classifiers were

initially fitted for every ion channel gene using the three

categorical variables: Layer, Morphology, and Electrical type as

input parameters.

The performance of SVM classifiers depends on two main

parameters, the cost parameter C and the kernel parameter c, and

on the kernel function used. The cost parameter C regulates the

tradeoff between allowing training errors and forcing rigid margins

while the c parameter determines the width of the Radial Basis

Function (RBF). We performed an extensive grid search, 961 grid

points per model, and used a 10-fold cross validation to find the

best c and C parameters for every ion channel using both linear

and radial kernels. The final values of these parameters yield a

model for predicting the expression of a single ion channel gene.

We found that the accuracy of the models with radial kernel is

marginally better than that of the linear ones (difference ,1%) and

that the best twenty-six c and C parameters fall within the ranges

[3.05e-5, 2] and [0.03125, 32] respectively (Figure S1).

We estimated the accuracy of the LR and SVM classifiers by

performing a 10-fold cross validation on the model data set (see

Materials and Methods). For most ion channel genes, the tuned SVM

Table 2. Layer, morphology and electrical type combinations
(LME) of the model dataset with the corresponding neurons
counts.

LME Type Neuron Count

L2/3 LBC-cAD 7

L2/3 LBC-cFS 7

L2/3 LBC-dFS 4

L2/3 MC-cAD 9

L2/3 NBC-cFS 12

L4 LBC-cST 4

L4 MC-cAD 6

L5 MC-cAD 5

L5 PC-cAD 5

L6 PC-cAD 6

doi:10.1371/journal.pone.0034786.t002

Table 3. Layer, morphology and electrical type combinations
(LME) of the generalization dataset with the corresponding
neurons counts.

LME Type Neuron Count

L2/3 PC-cAD 2

L2/3 NBC-cAD 1

L2/3 LBC-cST 1

L2/3 NBC-dFS 1

L4 PC-cAD 1

L4 LBC-dFS 1

L4 LBC-cFS 2

L4 NBC-cAD 1

L4 NBC-dFS 1

L5 NBC-cFS 2

L5 LBC-dFS 1

L5 LBC-cFS 2

L5 MC-cFS 1

L6 LBC-cST 1

doi:10.1371/journal.pone.0034786.t003
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models out-performed the LR ones and the overall 10-fold cross

validation average accuracy of the SVM model was found to be

78% as opposed to 71% for the LR Model (Figure 3A). Based on

these results, the SVM model was selected as the base model with

the three input parameters, L, M and E.

In order to capture combinatorial expression rules of all ion

channel genes that best fit with the expression of any one gene (the

ith ion channel gene), we developed an incremental SVM classifier

(iSVM) by iteratively combining the expression profiles of the

remaining genes to the LME input parameters of the SVM model

and evaluated the improvement in the prediction. At the first

iteration, we identified which gene out of the twenty-five

remaining genes improves the prediction accuracy of the ith gene

the most and retained it as an additional input parameter in the

model (input gene 1, IG1). We then repeated the same process in

the second iteration by sequentially combining each of the

remaining twenty-four genes in turn to the IG1-LME model and

identified which gene of the twenty-four improved the prediction

accuracy the most and then retained it as well (IG2) for the third

iteration. We iterated until the prediction accuracy of the ith ion

channel gene could no longer be improved.

An iSVM model was generated for each of the twenty-six ion

channel genes. Two of the iSVM models, for ion channels Kv1.2

and Kv3.3, had a high cost parameter C = 32 while most of the

remaining ones had a low cost parameter value (C,5). A high cost

parameter increases the penalty for non-separable points which

can create a more accurate model at the risk of having some over-

fitting [19]. On the other hand, the models with the lowest cost

parameter (around C = 0.03) are the ones where the channels have

the lowest expression frequency (,10%) indicating a possible

under-fitting. In fact, the prediction of the expression of these

channels was always 0 (Kvb2, Kv2.2, Kv4.3, SK2, Caa1B, and

Caa1I).

The maximum number of input genes needed to reach the peak

level of prediction for any gene was found to be 5 (Figure S2).

Using more than 5 input genes resulted in reduced accuracy for

some genes and no improvement for others. It is interesting to note

that although correlation coefficients have proven beneficial to

reconstruct biological networks [20,21,22], they were not found to

be useful in our analysis because of their low values (mean,

0.03860.146) and were not used as a criterion for choosing the

input genes. The highest absolute correlation coefficient is 0.48

(Figure S3). Some ion channel genes have a high correlation

coefficient in one neuronal type and low in another. If our

selection were to be based on correlation, we would then need to

split the data based on the neuronal types and then compute the

correlation coefficients for every neuronal type. However, this

might only work for identifying linear relationships between the

input and target genes, which might not necessarily be the case.

Thus, we found it more appropriate to base our selection criterion

on the actual improvement in the accuracy of the prediction.

The prediction accuracy increased for all genes with the

exception of the six genes with very low expression frequency,

Kvb2, Kv2.2, Kv4.3, SK2, Caa1B, and Caa1I (Figure 3A). In fact, the

prediction of these genes is trivial and is always estimated to be 0

irrespective of the model used which explains the fact that the

incremental steps did not improve their prediction. The accuracy

of the iSVM was increased beyond that of the SVM in some cases

by more than 17% (Kv1.1, Kv3.1, Kv3.3) and the overall average

accuracy was significantly improved from 78% for the SVM

model to 87% for the iSVM model (P = 3.78e-06) when taking all

genes, and from 74.8% for the SVM model to 85.6% for the

iSVM when excluding the six genes with the trivial 0 prediction.

This demonstrates that specific combinations of ion channel genes

are preferred in specific LME types.

The iSVM models can identify which ion channel genes are

sensitive to other combinations of expressed genes and can

highlight the neuronal type where these particular preferred

combinations occur. However, these models cannot specify the type

of relationship within these combinations such as: an AND

relation (both expressed or both not expressed), a NOT relation

(one expressed while the second not expressed), and an OR

relation (any one of the input genes is expressed). Given that the

expressions are binary, one can apply Boolean minimization

functions such as ESPRESSO [23] to extract the types of

relationships between the genes. While a logic gate model can

Figure 2. Gene expression frequencies of the twenty-six ion channel genes in the model dataset. A Overall expression frequency of the
twenty-six ion channel genes in the 65 neurons of the experimental model dataset. B Expression frequencies of the twenty-six ion channel genes in
the ten neuronal types of the experimental model dataset. C Overall expression frequency of the twenty-six ion channel genes in the 65 neurons of
the random model dataset. D Expression frequencies of the twenty-six ion channel genes in the ten neuronal types of the random model dataset.
doi:10.1371/journal.pone.0034786.g002
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easily be constructed to derive the expression rules [23], because of

the small sample size in this study we could directly extract the

types of relationships by simply noting the AND, NOT and OR

relationships between the genes (Tables S1, S2).

Model assessment
In order to assess the significance of the iSVM for every ion

channel gene, we computed the accuracy of the iSVM models on a

completely random dataset where the expression value for each

gene was sampled randomly with a Bernoulli distribution having a

probability of expression equal to the observed experimental

expression frequency. The random data was divided into model

and generalization dataset with the same neuron types and counts

as the experimental data (Figure 2E, F, G, H) (referred to as iSVM

random data, rdiSVM) (see Materials and Methods). The rdiSVM

models have an average 10-fold cross validation accuracy of 73%

on the random data. None of the models outperformed the normal

SVM models (Figure 3A) and no improvement was detected after

incrementing the number of inputs (Figure S1) (the models for the

five genes with the lowest frequency of expression (,10%) had the

same accuracy). Consequently, none of the input genes improved

the prediction of others and no combinatorial expression rules

could be extracted from the random data. This indicated that our

extractor model could not identify any combinatorial expression

rules in the random data.

In order to assess the uniqueness of the iSVM models we also

randomly varied the iSVM input genes, as well as the gamma c
and cost C parameters (referred to as iSVM random inputs,

riiSVM) and then recomputed the accuracy. Figure 3B shows the

boxplots of the accuracy distributions of the iSVM (red), riiSVM

(blue) and rdiSVM (green) after 1000 iterations. The analysis of

variance (ANOVA) of the accuracies of the three models showed

that there is a significant difference between them at the 5% level

(P,2.2e-16). Additionally, when specifically comparing iSVM to

riiSVM and iSVM to rdiSVM we also found that there is

significant difference at the 5% level (P values,2.2e-16). These

results clearly indicate that the fit of the iSVM models, for the ten

neuron types, is significant at the 5% level and that the

combinations of expressed ion channels cannot be obtained

randomly in these neuron types. There is also a clear relationship

between the target ion channel gene to be predicted and the

selected input genes as well as the c and C parameters, and by only

Figure 3. Models assessment and accuracy. A 10-fold cross validation accuracies of the Logistic Regression (black), base SVM models (blue), and
the iSVM models (red) of the twenty-six ion channel genes. B, left, Receiver Operating Characteristic (ROC) curves of the iSVM models for the twenty-
six ion channel genes. B, right, boxplots of the 10-fold cross validation accuracies of the iSVM model (red), random inputs iSVM (riiSVM) (blue), and
random data iSVM (rdiSVM) (green) after 1000 iterations.
doi:10.1371/journal.pone.0034786.g003
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choosing the right set of input genes we can achieve this high level

of accuracy.

Additionally, the average Area Under the Curve (AUC) of the

twenty-six iSVM models is 77% (Figure 3B). The classifiers having

an AUC = 50% (diagonal line) correspond to the five ion channel

genes that have the lowest expression frequency (,10%). Although

the models for these five ion channels have the highest prediction

accuracies (.90%), their AUC is the lowest since they cannot

discriminate true positives from true negative and always predict

the expression to be 0. The average AUC for the remaining

classifiers is 85.4% indicating that the iSVM classifiers can identify

true positives in more than 85% of the cases.

Network diagram
The outcome of the iSVM models allows the reconstruction of a

directed network diagram that indicates for each gene whether it

has predictive value for any of the other genes. The link indicates

the direction but not the type of relationship (ie. AND, NOT, OR)

(Figure 4) and its color indicates the sequence of the iteration in

which the gene was selected. This also highlights the level of

improvement in predicting the target gene where the first have the

highest prediction value. The channels that have the highest

predictive value are HCN4, Kv3.1 and Cab3. HCN4 was selected at

the first incremental step for three channels (Kv1.6, Cab3, and

Caa1G) while Kv3.1 and Cab3 were selected at the first incremental

step for two channels. Kv3.1 was selected for Kv1.2 and Kv2.1, and

Cab3 was selected for Cab4 and Kv3.3. Additionally, channels

Kv2.2, Kv3.2 and Cab3 have the highest outdegree (see Materials and

Methods) and were used as input parameters for five different

channels, while Kv1.4 and Kv3.3 were not found to be useful for

predicting any channel (Figure 5). Channels Kv3.1, Kv3.2, HCN4,

and Kvb1 have the highest indegree and each have five input

channels in their iSVM model (Figure 5). The network diagram

(Figure 4) indicates that HCN3 has a predictive value for Kv1.4 and

is the only input channel for it. The prediction accuracy of Kv1.4

improved by 4% after the inclusion of the expression of HCN3 in

its iSVM model (87% for the base SVM model and 91% for the

iSVM, Figure 3A).

Since the iSVM model additionally incorporates the input genes

as predictors, we first examined the neuronal types where the

iSVM model outperformed the SVM model and then extracted a

candidate expression rule between the input and the target ion

channel genes. We then explored the expression of the input and

target genes in these neuronal types for any consistent AND,

NOT, or OR relationship. These rules were derived from the

model dataset that contains four or more of each of the ten types of

neurons. Using this approach we extracted a spectrum of observed

rules that explain the combinatorial expression of twenty ion

channels (Table S1). No rules could be identified for the remaining

six genes (Kvb2, Kv2.2, Kv4.3, SK2, Caa1B, and Caa1I) because of

their low expression frequencies and none of the rules was

ubiquitously observed in all of the ten neuron types.

We found for example, that Kv1.4 is expressed in L5 MC-cAD

and L2/3 LBC-dFS neurons whenever HCN3 is expressed, and is

not expressed if HCN3 is not expressed (Table S3). The base SVM

model predicted a 0 value for Kv1.4 for those neuronal types while

iSVM predicted 1 whenever HCN3 was included as ‘‘expressed’’

and 0 whenever it was included as ‘‘not expressed’’. Another

relationship that the iSVM model was able to identify is between

the Caa1A and Kv1.6 channels (Table S4). These two channels

have exactly the opposite expression profile in the L6 PC-cAD

neurons –i.e. Caa1A is expressed only if Kv1.6 is not expressed and

vice versa. All identified expression patterns of the ion channel

genes are listed in (Table S1). Rules that were found in more than

one neuron type are highlighted in bold and the number of times

each rule is observed in the respective neuron types is reported in

Table S1. For instance, the Kv1.4 = HCN3 rule was found in eight

out of the nine L5 MC-cAD and L2/3 LBC-dFS neurons (Table

S3). Kv1.4 is expressed in the 3 cases where HCN3 is expressed, it is

not expressed in the 5 cases where HCN3 is not expressed but was

expressed only once when HCN3 was not expressed. Consequent-

ly, the number of occurrence of the Kv1.4 = HCN3 rule is 8 out of

9. All rules were found in more than 80% of the cases in their

respective neuron types with the exception of the HCN1 rule

(HCN1 = Kvb1 OR Kv1.1 in L2/3 NBC-cFS and L2/3 LBC-cFS

neurons) and Kv3.3 rule (Kv3.3 = Kv4.3 OR Kv2.2 OR Kv1.1

OR Cab3 in L2/3 LBC-cAD neurons) which were found in only

13/19 (68%) and 4/7 (57%) cases respectively.

Our results show that the iSVM model can reveal which ion

channel genes may have rules that relate their expression pattern

within a specific neuronal type and we therefore extracted and

grouped these expression rules for the ten neuronal types of the

model data set (Table S2). Interestingly, we found that the

majority of the expression rules are consistent whenever identified

in different neuronal types, which indicates that these rules are not

specific to a single neuronal type. For example, the expression of

HCN3 is similar to that of Cab1 in L2/3 LBC-dFS, L4 MC-cAD,

and L5 MC-cAD neuronal types (Table S1, S2). Additionally,

Kv1.2 is expressed in L2/3 NBC-cFS, L2/3 LBC-cAD whenever

Kv2.2, Kv3.1, and Kv3.2 were simultaneously expressed

(Kv1.2 = Kv2.2 AND Kv3.1 AND Kv3.2), and it is expressed in

L2/3 LBC-cFS, L2/3 LBC-dF, L4 LBC-cST, and L5 MC-cAD

neuronal types whenever Kv3.1 and Kv3.2 are expressed

(Kv1.2 = Kv3.1 AND Kv3.2) (Table S1, S2). The expression rule

for Kv1.6 in L2/3 LBC-cAD and L2/3 NBC-cFS types was also

found to be the same (Kv1.6 = Kv3.2 AND (NOT (HCN2) AND

NOT (HCN4))) (Table S1). The expression of HCN1 was

consistently related to that of Kvb1 in L6 PC-cAD, L5 MC-cAD,

5PC-cAD, L2/3 NBC-cFS and L2/3 LBC-cFS neurons. We did

find few cases where a rule did not apply across different cell types,

such as the expression rules for HCN2. The HCN2 expression rule

in L2/3 LBC-cAD neurons is HCN2 = Kv3.1 AND Kv2.2 AND

NOT Kv4.3 while in L5 MC-cAD it is HCN2 = NOT Kv3.1 AND

NOT Kv2.2 AND NOT Kv4.3 (Table S2). Given the small sample

size, it is however not clear if this difference is due to the neuronal

type, to other unobserved parameters to an uncertainty introduced

by the low neuronal count for this example or to the high false

negative rate.

Additionally, we used the in situ hybridization slices of the P14

developing mouse brain from the Allen Brain Atlas (http://

developingmouse.brain-map.org/) to check whether some of the

identified rules can be found at a lower resolution. In fact, the

genes HCN1 and Kvb1 were found to have relatively similar

expression patterns in the somatosensory neocortical area, which is

consistent with the predictions of our model (Figure S4). The genes

Kv1.2, Kv2.2, Kv3.2 were also found to have relatively similar

expression patterns, which is partly in line with our extracted rule

(Kv1.2 = Kv2.2 AND Kv3.1 AND Kv3.2) (Figure S5). The expression

patterns of the genes Kv3.1, HCN3, Kv1.6 and Cab3 could not

however be checked because they were not found in the P14

developing brain.

Given that none of rdiSVM (iSVM with random data) models

improved the prediction accuracies of the ion channel genes, no

rules could be extracted from these models and no relationship

could be identified between the input and target genes of the

rdiSVM models. This clearly indicates that our models can only

extract rules whenever they are consistently observed in the data.
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Testing the generalization of the models
We checked to see whether these rules apply to other neuron

types having different combinations of Layer, Morphology and

Electrical type parameters that were not used in the training set.

This would be very beneficial because it is neither efficient nor

feasible to identify every single combination of the parameters in

brain slices and then perform single cell RT-PCR on each type.

We therefore used the iSVM models to predict the expression of

the twenty-six ion channels of new neuronal types in the

generalization data set. Only new combinations of already

observed Layer, Morphology, and Electrical type parameters were

used. Figure 6 shows the average accuracy per LME type in the

generalization data set, which consists of 18 neurons belonging to

14 neuron types. The average accuracy of the generalization data

set was found to be 75%. Given the small difference in

performance between the test and training data results for twenty

ion channels, it is highly probable that there is no over-fitting and

these models can indeed be used to estimate the expression of

these twenty ion channel genes. Nonetheless, it is worth

mentioning that this drop in accuracy could also be due to the

high false negative rate (66%) and that most of the LME neuronal

types in the generalization data set used have only one occurrence,

Figure 4. Directed network diagram that links the input ion channel genes to their corresponding output channels. The edges are
colored in red, blue, green, orange, and black based on the predictive value of the input ion channel gene. Red edges have the highest predictive
value and represent the genes that were selected as inputs at the first incremental step while the black edges have the lowest predictive value and
represent the genes that were selected at the last incremental step.
doi:10.1371/journal.pone.0034786.g004

Figure 5. Indegree and outdegree of the twenty-six ion channel
genes. The indegree represents the number of input channels used in
the iSVM model of a given channel, and the outdegree, number of
times a given channel was used as an input for another channel.
doi:10.1371/journal.pone.0034786.g005
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so additional data is obviously needed in order to provide even

stronger assessment of the generalizability of the models.

Discussion

We present a computational multi-parametric approach for

extracting combinatorial expression rules of ion channel genes in

ten different neuronal types of the neocortex. Using the iSVM

approach, we developed a strategy to explore the diverse

combinations of expressions when constrained by different input

parameters, such as the electrical and morphological phenotypic

profile, the location of a neuron in a microcircuit as well as the

expression of other ion channel genes. We constructed a network

diagram that illustrates the predictive value of the expression of

single and combined gene with respect to one another (Figure 4)

and carried out a logic gate analysis that suggests a spectrum of

preferred combinations of ion channels in ten different neuron

types.

Ten fold cross-validation was used to estimate the prediction

accuracy and significance, and the model was tuned to find the

best hyper-parameters C and c (see Results). In addition to

improving the prediction accuracies, the iSVM models identified

which combinations of ion channel genes are preferred in different

neuronal types. The major advantage of the iSVM model

approach is therefore that it allows the identification of different

patterns of expressions for the same set of ion channels in different

neuronal types. Interestingly, many of the preferred combinations

found in any specific neuron type, were then also found in other

neuronal types, suggesting that the expression of preferred

combinations of ion channels are not necessarily unique to a

single neuron type. Additionally, since no rules were extracted

from the random data but only the ones with high occurrence

frequency (.80%) were identified in the experimental data, we

can be confident about the robustness of the extractor model and

the significance of the rules in the ten neuron types. Further study

would be required to determine whether these preferred

combinations we identified, apply across other cells in the

neocortex, change with brain development, and whether these

preferred combinations change in different species. Understanding

the extent to which preferred combinations of expressed genes

vary between neurons could therefore provide a foundation for a

genetic classification of neurons.

Although these combinatorial rules do not necessarily indicate

binary interactions between the ion channels, they raise interesting

questions regarding the transcriptional processes that regulate the

expression of the related ion channel genes. For example, they

may suggest common or different transcription factors, gene

expression promoters and suppressors. However, given that single

cell multiplex RT-PCR experiments might introduce a significant

number of false negatives, it is very likely that many of the

expression rules are not detected. For instance, Cab4 and Caa1A

do not appear to be related in our dataset, although they were

previously found to interact [24,25]. The method is therefore

limited in identifying all possible combinatorial expression rules by

the quality of the gene expression data. As techniques from single

cell transcriptomics improve, it would however become possible to

reveal more of the combinatorial rules that govern gene

expression. Nonetheless, since false positives are highly unlikely

in these experiments we can be confident in the robustness of the

combinatorial rules that are identified for the ten neuron types.

The search algorithm is computationally demanding since the

size of the search scales quadratically with respect to the number of

genes. The algorithm is however highly parallelizable since the

models can be computed independently from each other. The

algorithm is therefore computationally feasible for analyzing

clusters of genes and would require high performance computing

to analyze complete transcriptomes in a reasonable time.

In summary, the study provides a novel strategy for the rigorous

identification of the expression of preferred combinations of ion

channel genes in specific neuronal types, and to reverse engineer

their combinatorial expression rules in single neurons. We believe

that with additional data the prediction accuracy and power of our

iSVM models will greatly improve along with the ability to find

additional rules of combinatorial gene expression in other neuron

types.

Materials and Methods

Single cell data
The dataset used in this analysis was obtained previously in

Toledo Rodriguez et al [12]. In brief, slices of Wistar rats (13–16

days old) were obtained as described previously in [26,27].

Somatic whole-cell recordings and histological procedures were

performed on 203 neocortical neurons in layers 2 to 6 as described

in [26,27,28]. Binary genetic profiles of 26 voltage-gated ion

Figure 6. Generalization dataset accuracy for iSVM models of the twenty-six ion channel genes. The generalization data set consists of
eighteen neurons belonging to fourteen LME combinations.
doi:10.1371/journal.pone.0034786.g006
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channels were obtained using non-quantitative single-cell multi-

plex RT-PCR. These 203 neurons were selected based on the

expression of the house-keeping gene Gapdh and a minimum of two

ion channel genes. The official Gene Symbols, Names and

GenBank Accession No. of the ion channel genes are listed in

(Table S5). Each neuron was classified on the basis of its layer of

origin, morphological class and electrical firing type. Morpholog-

ical and electrical type classifications were done as described in

[13,14].

Data pre-processing
The neurons belonged to 4 different electrical phenotypic

profiles (E), 4 different morphological structures (M) and in 4

layers. Neurons were excluded from the analysis if there was no

information regarding all three defining characteristics; layer,

morphology and electrical firing types. This reduced the sample

size from 203 to 135. Neurons were then grouped based on the

combination of layer (L), morphology (M), and electrical type (E).

This yielded twenty-four types of neuron each with a different

number of member neurons. These groups of neurons were then

divided depending on the number of neurons (n) per L, M and E

combination into a model (n$4) and a generalization (n,4)

datasets (Tables 2 & 3).

Model data consisted of sixty-five neurons belonging to ten

different LME combinations each having a minimum of four

neurons. The generalization data consisted of eighteen of the

remaining neurons that belonged to fourteen different LME

combinations with only one or two neurons per combination. This

selection was made to ensure that the fourteen neuronal types of

the generalization dataset consisted of different combinations of L,

M and E used in the model dataset. We did not include LME

combinations that have only one or two neurons in the model

dataset in order not to induce a bias in our models and also to

assess the generalization performance of our models. We also

could not use the seventy remaining neurons because their

morphological or electrical type was not represented in the model

dataset. Given that the L, M and E variables are categorical, we

cannot test our predictions on new L, M and E types but only on

new and different combinations of L, M and E types in the model

dataset. Although this is the largest single cell multiplex study on

neurons at this level of characterization, the generalization data

contains mostly single examples. Nonetheless, since false positives

are highly unlikely in these experiments we expect more under-

fitting than over-fitting and hence a larger dataset can only

improve the confidence in the results. The results we report

therefore provide the most conservative view of the expression

rules.

Model building
We first built a Logistic Regression (LR) and Support Vector

Machine (SVM) classifiers for every ion channel gene by using

three categorical variables: layer, morphology, and electrical type

as input parameters and the binary expression of the ion channel

gene as the output parameter. The SVM classifiers were trained

and tuned using the radial and linear basis kernels. The optimal

cost (C) and gamma (c) hyper-parameters were obtained for every

model after evaluating 961 grid points (31631) over the range [2e-

15, 2e15] for each of the parameters. Given the low expression

frequencies of the ion channel genes, we chose the average

expression frequency (0.23) (see Results) as the cutoff in the LR

classification. The best classifier was selected based on the average

10-fold cross validation accuracy and it came out to be the SVM

model. In order to capture the expression diversity within a given

LME type and to improve the prediction accuracy we checked

whether the expression of a given ion channel gene is affected or

not by that of another gene. For that we incremented the number

of input parameters by combining the expression of every gene to

the three input parameters (L, M, E) and estimated the prediction

accuracy using 10-fold cross validation. If the accuracy is

improved we retain the combined gene otherwise we reject it.

We iteratively combine more genes until the prediction accuracy is

no longer improved (Figure 3). This model is referred to as iSVM

(incremental Support Vector Machine) model.

Model assessment
In order to assess the performance of the iSVM models we

incremented the basic SVM models with random input genes and

used random hyper-parameters and recomputed the prediction

accuracy, this model is referred to as riiSVM. We also randomly

generated binary data for each gene with a Bernoulli distribution

having a probability of expression equal to the observed

experimental expression frequency in order to check how the

iSVM performance compares to a random data model. The

random data was also divided into modeling and generalization

data each having the same neuron types and neuron counts as the

experimental data, and the random modeling data was used to fit

the rdiSVM models. We used analysis of variance (ANOVA) to

compare the 10-fold cross validation accuracies of the three

models: iSVM, riiSVM, and rdiSVM after 1000 iterations. The

accuracies of the iSVM models were also computed for a

generalization data set where new combinations of LME

parameters not found in the model data are used in order to

check whether the identified rules can be generalized or not.

Network diagram
The indegree of a given ion channel gene is defined to be the

number of input genes used in its iSVM model, and the input list is

the list of those input genes. The outdegree of a given ion channel

gene is defined to be the number of times this gene is used in the

iSVM models of all other genes, and the output list is the list of genes

that are affected by it. Cytoscape [29] is used to graphically represent

the input/output lists of all genes in a directed network diagram.

Statistical analysis
All statistical tests and models building were done in R 2.11.1

[30]. Student’s t-test was used to compute all p-values unless stated

otherwise. The packages and functions used in R are listed in

Methods S1.

Supporting Information

Figure S1 Tuned iSVM parameters and average accu-
racy of kernels. A Average accuracy of the radial and linear

kernels for the twenty-six ion channel genes. The radial kernel has

a marginally better average accuracy than the linear kernel. B
Distribution of the best gamma parameters identified for the

twenty-six channels after tuning the iSVM models over the range

[2e-15, 2e15]. C Distribution of the best cost parameters identified

for the twenty-six channels after tuning the iSVM models over the

range [2e-15, 2e15].

(TIF)

Figure S2 Improvement of the average accuracy of the
iSVM models after the addition of new input ion channel
gene. The green, blue and black lines correspond to the average

accuracy of the SVM, logistic regression (LR) model and a random

data iSVM model respectively. The red line represents the mean

and standard deviation after 1000 cross validation iterations.
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Using more than 5 input channels resulted in either a drop or no

change in accuracy.

(TIF)

Figure S3 Heatmap of the Pearson correlation coeffi-
cients for the twenty-six ion channel genes. The maximum

absolute coefficient is 0.48.

(TIF)

Figure S4 In situ hybridization stains of HCN1 (A) and Kvb1 (B)

from the Allen Brain Atlas P14 mouse developing brain (http://

developingmouse.brain-map.org/). The HCN1 slice is the P14-

sagittal-115 slice and the Kvb1 slice is the P14-sagittal-104

(Kcnab1) slice. The expression patterns in the somatosensory

neocortical area are similar and consistent with the identified rule

HCN1 = Kvb1 in our model.

(TIF)

Figure S5 In situ hybridization stains of Kv1.2 (A), Kv2.2 (B) and

Kv3.2 (C) from the Allen Brain Atlas P14 mouse developing brain

(http://developingmouse.brain-map.org/). The Kv1.2 slice is the P14-

sagittal-137 (Kcna2) slice, the Kv2.2 slice is the P14-sagittal-142 (Kcnb2)

slice and the Kv3.2 slice is the P14-sagittal-127 (Kcnc2) slice. The three

genes have relatively similar expression patterns in the somatosensory

neocortical area which is partly in line with our extracted rule

(Kv1.2 = Kv2.2 AND Kv3.1 AND Kv3.2). We could not check the

expression pattern of Kv3.1 since no P14 slice was found for it.

(TIF)

Table S1 Identified patterns of expression rules for the
twenty ion channel genes.
(DOC)

Table S2 Identified expression rules in the ten neuronal
types.

(DOC)

Table S3 Expression of Kv1.4 and HCN3 in two different
neuronal subtypes.

(DOC)

Table S4 Expression of Caa1A and Kv1.6 in 6 PC-cAD
neurons.

(DOC)

Table S5 Official Gene Symbols, Names and GenBank
Accession No. of the ion channels genes used.

(DOC)

Methods S1

(DOC)
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