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Abstract Reverse convex programming (RCP) represents an important class of global op-
timization problems consisting of concave cost and inequality constraint functions. While
useful in many practical scenarios due to the frequent appearance of concave models, a more
powerful, though somewhat abstractly recognized, characteristic of the RCP problem is its
ability to approximate a very general class of nonconvex nonlinear programming (NLP)
problems to arbitrary precision. The goal of the present work is to make this abstract idea
concrete by formalizing an extended RCP framework with a nearly algorithmic procedure
to approximate the general NLP problem by an RCP one. Furthermore, an active-set RCP
algorithm, which may be seen as an improved and modernized version of Ueing’s method
[39], is proposed and described in detail. Some preliminary results are presented for sev-
eral NLP problems to demonstrate the potential of the proposed framework together with its
shortcomings.

Keywords Reverse convex programming · Concave programming · Piecewise-concave
approximation · Complete global optimization methods · Active-set methods

1 Introduction

The following reverse convex programming (RCP) problem is considered:

minimize
x

cT x

subject to gi(x)≤ 0, i = 1, ...,ng
Cx = d

, (1)

with x ∈ Rn×1 the vector of variables, g : Rn→ R a set of ng concave constraint functions,
and C ∈ RnC×n, d ∈ RnC×1 the matrix and vector defining the linear equality constraints. A
linear cost, c ∈ Rn×1, is chosen here as it eases the presentation and makes the theoretical
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discussions (a bit) simpler – the nonlinear version being equivalent to (1) via a simple epi-
graph transformation (see, e.g., [21]). Problem (1) will be referred to as the “standard” RCP
form in all the discussion that follows.

The following assumptions are made throughout this work:

A1. gi(x) is concave and differentiable for all i.
A2. rank C = nC and nC < n.
A3. The feasible space defined by gi(x)≤ 0 and Cx = d is compact.
A4. ‖c‖> 0.

Assumption A1 is mostly a convenience assumption – it is expected that all of the theory
in this work generalizes easily, though perhaps with a bit more effort, to quasiconcave and
nondifferentiable cases. A2 ensures that the linear equalities are not redundant and the prob-
lem not trivial (or trivially infeasible), while A3 ensures that the problem admits a global
minimum. A4 limits the discussion (though not the applicability) of the methods presented
to strictly optimization (rather than optimization and feasibility) problems.

Judging from the literature, formal study of RCP problems appears to be nearly fifty
years of age, with the 1966 paper by Rosen [29] usually credited as the first work where an
RCP problem is solved to local optimality. The term “reverse convex” is credited to Meyer
[24] in a slightly later work, and similar contemporary developments in the context of ge-
ometric programs (with the term “complementary convex programming”) are due to Avriel
[2]. First attempts to solve RCP problems to global optimality may be simultaneously cred-
ited to Ueing [39], in a general mathematical context, and to Rozvany [31,32], in the context
of structural optimization (under the name of “concave programming”). The key 1980 paper
by Hillestad and Jacobsen [14] represents the first attempt to formalize the RCP problem –
reviewing its global optimality properties and proposing an edge search, cutting-plane algo-
rithm that would be refined in later works [4,13,16]. The work by Tuy [36] represents the
first concrete link between RCP and canonical D.C. (CDC) programming [15,37,38], as it
shows how Problem (1) can be cast into an equivalent CDC form. Finally, some branch-and-
bound methods have treated RCP problems indirectly, as the concave function (especially if
it is separable) is one of those with an easily defined convex underestimator – see, e.g., [9]
or, more recently, [40].

Practical interest in RCP problems is justified by the common appearance of a concave
cost and/or constraints in application. Some examples include:

– integer constraints in MINLP problems, as these constraints may be reformulated into
continuous concave ones [34,15,10],

– the minimal-excitation condition in real-time optimization schemes [20,28],
– non-overlap constraints or a distance maximization criterion in packing and placement

problems [23,18],
– the cost in concave minimization problems [22,27,15].

Although these examples constitute an important argument for why “RCP matters”, it is the
author’s belief that the real potential of the RCP problem goes much further than this, and
as such the main message and contribution of this work is in showing that the general NLP
problem

minimize
x

f0(x)

subject to g0,i(x)≤ 0, i = 1, ...,ng0
h0,i(x) = 0, i = 1, ...,nh0

, (2)
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Fig. 1 The conceptual geometric link between linear (left) and reverse convex (right) programming, with the
former being a special case of the latter. In both cases, n locally linearly-independent constraints are required
to define a local minimum for the linear cost.

may be approximated to arbitrary precision by an RCP problem and solved to global opti-
mality in the RCP framework, provided that the functions f0, g0, and h0 (a) satisfy a certain
Lipschitz criterion and (b) satisfy a factorability condition (see Section 3). To the best of the
author’s knowledge, only Rozvany [31,32] has made explicit mention of this link, and it is
indeed Rozvany’s – and, in part, Zangwill’s [41] – work on piecewise-concave approxima-
tions that largely motivates the results presented in this paper.

The other major contribution of the present work lies in the development of an algorithm
tailored specifically to RCP problems. This is, largely, an extension on the work of Ueing
[39], who used the property that a local (and thereby global) minimum of an RCP problem
must lie on the intersection of n active and linearly-independent constraints to propose a
combinatorial search that is, essentially, an active-set method (this property, a generaliza-
tion of what is well known for the linear case, is illustrated qualitatively in Fig. 1). The two
major criticisms of Ueing’s approach [14], i.e. that it requires strict concavity to avoid the-
oretical complications and that it has unfavorable complexity, are treated and remedied to a
great extent in this work. Although, as already stated, there exist several ways to approach
Problem (1) (e.g. via CDC programming or a branch-and-bound search), the active-set ap-
proach is chosen here on both academic and practical grounds. With regard to the former,
the method is scientifically fascinating as it presents a fundamentally different approach to
solving NLP problems by searching for the solution on the space of active constraints rather
than on the space of problem variables, thereby replacing the curse of dimensionality with a
different sort of curse that may, in some instances, be more mild. Practically, this approach is
of some value as it (a) allows for a guaranteed upper bound on the total computational effort,
(b) does not require an initial point, (c) does not suffer from disjoint feasible regions, and
(d) can be shown to break the curse of dimensionality for certain (though perhaps academic)
examples.

The organization of this paper is as follows. As the RCP problem acts as the major the-
oretical backbone, all of the relevant theory regarding the characterization of a global mini-
mum and how it may be calculated is provided in Section 2. This is, in many ways, a review
of the concepts previously presented in [39] and [14], but additional care is taken to define a
“regular” RCP problem that allows for the application of Ueing’s method to problems with
nonstrict concavity, and some results are derived on how the regularity assumption may ei-
ther be verified or enforced. Section 3 then presents the extended RCP methodology and the
semi-algorithmic steps to approximate (2) by (1). The RCP algorithm is described in Section



4 Gene A. Bunin

4 – particularly, a number of RCP-specific fathoming techniques, together with well-known
domain reduction techniques, are presented as a means of speeding up the convergence of
the active-set search. A number of numerical examples are then presented in Section 5 so as
to illustrate the noticeable strengths and shortcomings of the proposed methodology. Finally,
Section 6 serves to conclude the paper with an outlook on how further improvements based
on the idea of homotopy could eventually culminate in an RCP-based general-purpose NLP
solver.

2 Reverse Convex Programming Theory

As detailed in both [39] and [14], an RCP problem defined by strictly concave inequality
constraints benefits from the following two necessary conditions that every local minimum,
x∗loc, must satisfy:

– x∗loc is defined completely by the intersection of n active constraints that are linearly
independent at x∗loc.

– x∗loc may be found by solving the (convex) reverse problem where the cost cT x is maxi-
mized subject to the complements of the n constraints in question:

x∗loc = argmaximize
x

cT x

subject to −Ga(x)≤ 0
, (3)

with Ga(x) representing the n active constraints defining the local minimum.

These two properties may be exploited to calculate the global minimum in finite time by
simply solving (3) for all possible

(ng
n

)
active sets and declaring the feasible point with the

lowest cost as the global minimum, x∗. However, as was pointed out in [14], that such an
approach would not be innately promising for two major reasons.

First, the number of active sets to be checked will almost always be unacceptable, from a
computational point of view, for practical problems – methods to overcome this are treated in
Section 4. The second issue, and the one addressed in this section, is that the properties above
do not always extend to cases when the constraints are concave but not strictly concave,
thereby making the theory inapplicable to – or, at least, not rigorous for – most pertinent
problems. This latter challenge may be dealt with by introducing of the notion of “RCP
regularity”, which, in this work, will refer to the minimalist set of conditions needed to
ensure that the global minimum (though not necessarily every local minimum) will retain
the two properties above.

In the two-part discussion that follows, the idea of RCP regularity is defined first, fol-
lowed by the proof of the two necessary conditions for RCP problems that satisfy the regu-
larity assumption.

2.1 Regular RCP Problems

In simplest terms, saying that an RCP problem is “regular” by the convention chosen here is
equivalent to saying that its global minimum (or one of its global minima, if nonunique) is
locally unique. The formal definition is given as follows:
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Definition 1 (RCP Regularity)
Let x∗ be a (possibly nonunique) global minimum of Problem (1). Problem (1) is said to

be regular if x∗ is a locally unique minimum:

6 ∃δx∗ ∈ Rn : ‖δx∗‖> 0, cT (x∗+ tδx∗) = cT x∗, gi(x∗+ tδx∗)≤ 0 (∀i = 1, ...,ng)
C(x∗+ tδx∗) = d, ∀t ∈ [0,1] , (4)

i.e. there does not exist a direction, δx∗, that locally is both feasible and yields the same cost
as x∗.

The following theorem presents a sufficient condition for which the RCP problem of
form (1) may be proven regular:

Theorem 1 (Sufficient Condition for RCP Regularity) Let x∗ be a global minimum of
Problem (1) and let δx∗ denote a (non-zero) direction. Index by iL0 = {i : gi(x∗+ tδx∗) =
0,∀t ∈ [0,1]} those inequality constraints that are active at x∗ and null in δx∗. Problem (1)
is regular, and x∗ a locally unique global minimum, if:

∀δx∗ ∈ N
([

cT

C

])
, 6 ∃λ ∈ Rng

+ ,µ ∈ RnC : cT + ∑
i∈iL0

λi∇gi(x∗)T +
nC

∑
i=1

µiCi = 0. (5)

Proof Suppose that x∗ is not a locally unique global minimum. This implies that there exists
a direction δx∗ with t ∈ [0,1] such that:

cT (x∗+ tδx∗) = cT x∗, gi(x∗+ tδx∗)≤ 0 (∀i = 1, ...,ng)
C(x∗+ tδx∗) =Cx∗ = d, ∀t ∈ [0,1] . (6)

The immediate conclusion is that this can only hold if δx∗ lies in the null space of both

the cost and equality constraints, i.e. δx∗ ∈ N
([

cT

C

])
, thereby limiting the directions in

question to those that satisfy this condition.
Consider now the stationarity properties of x∗+ tδx∗. This is done by first dividing the

constraints gi(x) into four categories:

– constraints that are active at x∗ and are null in δx∗ (as indexed by iL0),
– constraints that are active at x∗ and are linear but not null in δx∗, as indexed by iL = {i :

gi(x∗) = 0, gi(x∗+tδx∗) 6= gi(x∗) (∀t ∈ (0,1]), ∇gi(x∗+tδx∗) =∇gi(x∗) (∀t ∈ [0,1])},
– constraints that are active at x∗ and are nonlinear in δx∗, as indexed by iNL = {i : gi(x∗) =

0, ∃t ∈ (0,1] : ∇gi(x∗+ tδx∗) 6= ∇gi(x∗)},
– constraints that are inactive at x∗, as indexed by iI = {i : gi(x∗)< 0}.

For a small enough t > 0, it is seen that:

– gi(x∗+ tδx∗)< 0, ∀i ∈ iI .
– gi(x∗+ tδx∗) < 0, ∀i ∈ iNL by the nonlinearity of these constraints in δx∗ and the fact

that the direction δx∗ must be locally feasible for these constraints.
– gi(x∗+ tδx∗) < 0, ∀i ∈ iL by the virtue of these constraints being non-null in δx∗ and

the fact that the direction δx∗ must be globally feasible for these constraints.



6 Gene A. Bunin

As all of these constraints are inactive at x∗+ tδx∗, it follows that they cannot affect
the stationarity properties of this point and may be ignored there. However, as the point is
a global minimum, it is nevertheless stationary, i.e. the set of locally feasible, strict descent
directions is empty:

{x : cT (x− x∗− tδx∗)< 0, C(x− x∗− tδx∗) = 0,

∇gi(x∗+ tδx∗)T (x− x∗− tδx∗)≤ 0, ∀i ∈ iL0}=∅
, (7)

which, by the Lemma of Farkas [19], is equivalent to:

∃λ ∈ Rng
+ ,µ ∈ RnC : cT + ∑

i∈iL0

λi∇gi(x∗+ tδx∗)T +
nC

∑
i=1

µiCi = 0, (8)

and simplifies to (5) as ∇gi(x∗ + tδx∗) = ∇gi(x∗), ∀i ∈ iL0 by the virtue of these con-
straints being null (and therefore linear) in δx∗. As this condition is necessary for a lo-
cally nonunique global minimum x∗, it follows that the failure to meet it for all possible

δx∗ ∈ N
([

cT

C

])
proves that x∗ must be locally unique. ut

While there is no readily apparent algorithmic way to verify this condition (as one can-
not, in general, enumerate all possible δx∗ or know x∗ in advance), the preliminary results in
Section 5 will illustrate that (5) can be proven to hold quite easily for at least some problems.
Furthermore, certain types of NLP problems (e.g. concave minimization problems with a
stricty concave cost) naturally lead to regular RCP problems upon transformation. The fol-
lowing proposition is nevertheless given as a general-purpose means of ensuring regularity
for problems where (5) cannot be verified.

Proposition 1 (Enforcing RCP Regularity for Any RCP Problem)
Consider the following RCP problem:

minimize
x,s

s

subject to cT x−

(
αr

n

∑
i=1

x2
i

)
− s≤ 0

gi(x)≤ 0, i = 1, ...,ng
Cx = d

, (9)

with s∈R a slack variable and αr > 0 a regularizing scalar. Problem (9) becomes equivalent
to Problem (1) as αr→ 0, and is a regular RCP for any αr > 0.

Proof The equivalence is easily seen as the added constraint, which clearly must be active
at the minimum, approaches cT x∗ = s∗ as αr→ 0.

Consider now Problem (9) in standard RCP form by making the following substitutions:

ĉT = [01×n 1], x̂ =
[

x
s

]
, (10)

so that (9) becomes:

minimize
x̂

ĉT x̂

subject to cT x−

(
αr

n

∑
i=1

x2
i

)
− s≤ 0

gi(x)≤ 0, i = 1, ...,ng
Cx = d

. (11)
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To verify regularity, consider the “worst-case” scenario of nC = 0, since this allows for
more potential δ x̂∗. Without any additional assumptions on c, it is clear that δ x̂∗ could be
any direction except [01×n 1]T , i.e. it must include a step in at least one of the x variables
to satisfy δ x̂∗ ∈ N(ĉT ). However, the constraint cT x−αrΣ

n
i=1x2

i − s ≤ 0 is nonlinear in any
such δ x̂∗ when αr > 0, which allows the following implication:

cT x∗−

(
αr

n

∑
i=1

(x∗i )
2

)
− s∗ = 0⇒

cT (x∗+ tδx∗)−

(
αr

n

∑
i=1

(x∗i + tδx∗i )
2

)
− (s∗+ tδ s∗)< 0

(12)

for any feasible x̂∗+ tδ x̂∗ and t > 0 sufficiently small. Since the above constraint must be
active at any minimum, it follows that any minimum, and thus any global minimum, must
be locally unique, since a small perturbation in any direction δ x̂∗ will render the constraint
inactive and thereby lead to a point that cannot be a minimum. ut

Proposition 1 thereby offers a simple way to ensure regularity with the addition of an
auxiliary variable and constraint. The scalar αr represents a potentially unwanted tradeoff,
however, as setting αr ≈ 0 leads to negligible approximation error but may lead to numerical
issues in practice (due to rounding errors), thereby losing regularity. Setting αr as sufficiently
large would avoid this but could introduce significant approximation error, which may not
be tolerable. As such, Proposition 1 is only advocated as a last resort to ensure regularity,
though it may work very well in certain cases.

Some examples illustrating RCP regularity are now given.

Example 1 (Non-regular RCP Problems)

As perhaps the simplest example of a non-regular RCP problem, consider the linear
programming problem of minimizing a single variable over a hypercube:

minimize
x

x1

subject to 0≤ x≤ 1
, (13)

where the global minimum is not unique as any of the points in the connected space corre-
sponding to x1 = 0 are globally optimal. To show this using Theorem 1, it is sufficient to
consider δx∗ = [0 1 01×(n−2)]

T , the constraint −x1 ≤ 0, and the corresponding multiplier
λ = 1, as this provides a counterexample to (5).

A similar example appears in [14]:

minimize
x1,x2

x1

subject to − x2
1 + x2−1≤ 0

−x1 ≤ 0
−x2 ≤ 0

, (14)

and fails to satisfy the regularity condition by the same counterexample.

Example 2 (RCP Regularity of Strict Concave Minimization Problems)

Consider the following concave minimization problem and its equivalent reformulation:

minimize
x

−
n

∑
i=1

(xi−0.5)2

subject to 0≤ x≤ 1
⇔

minimize
x,s

s

subject to −
n

∑
i=1

(xi−0.5)2− s≤ 0

0≤ x≤ 1

, (15)



8 Gene A. Bunin

where the latter is easily proven regular by the same arguments as in Proposition 1. This is
expected since the problem clearly admits 2n nonunique (but locally unique) global minima
in the corners of the hypercube.

2.2 Necessary Conditions of Global Optimality for Regular RCP Problems

Assuming RCP regularity, the two necessary conditions may now be proven. The following
lemma is presented first:

Lemma 1 (Uniqueness of an Optimum of a Cone Linear Program)
Let Ja ∈ Rna×n and consider the following LP:

minimize
x

cT x

subject to Ja(x− x∗)≤ 0
Cx = d

, (16)

with a minimum x∗cone that satisfies Ja(x∗cone− x∗) = 0. A necessary and sufficient condition
for x∗cone to be the unique solution to (16) is that:

rank
[

C
Ja

]
= n. (17)

Proof To prove necessity, suppose that the minimum, x∗cone, is unique, but that:

rank
[

C
Ja

]
< n. (18)

Since x∗cone is stationary, it follows that the gradients of the cost and the constraints are
linearly dependent, and that, by the rank-nullity theorem:

rank
[

C
Ja

]
= rank

 cT

C
Ja

< n⇔ N

 cT

C
Ja

 6=∅, (19)

i.e. that there exists a direction satisfying all of the active constraints while maintaining the
same cost, which contradicts the uniqueness of x∗cone.

To prove sufficiency, it is enough to note that the linear system

Ja(x− x∗) = 0
Cx = d

(20)

is solved uniquely by x∗cone when (17) holds. ut

The two necessary conditions follow.

Theorem 2 (First Necessary Condition of Global Optimality for a Regular RCP)
Let x∗ be a locally unique global minimum of RCP problem (1), and let Ja be the Ja-

cobian matrix of the active set of inequality constraints at x∗. The condition (17) must hold
and represents a necessary condition for x∗.
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Proof Consider the version of Problem (1) that has been linearized around x∗:

minimize
x

cT x

subject to gi(x∗)+∇gi(x∗)T (x− x∗)≤ 0, i = 1, ...,ng
Cx = d

. (21)

This problem has a tighter feasible region than the original due to the concavity of the
inequality constraints, and must admit x∗ as a single and locally unique global minimum
due to the convexity of the problem and the fact that the local uniqueness of x∗ cannot
be lost by tightening the feasible space while retaining x∗ as a feasible point. Noting that
ignoring the inactive constraints in (21) does not change the solution, and that gi(x∗) = 0
for all active constraints, (21) may be rewritten as (16). x∗ being the unique mininum, (17)
follows directly from Lemma 1. ut

Theorem 3 (Second Necessary Condition of Global Optimality for a Regular RCP)
Let x∗ be a locally unique global minimum of RCP problem (1), and let Ga(x) denote

the set of active inequality constraints at x∗, i.e. Ga(x∗) = 0. It follows that:

x∗ = argmaximize
x

cT x

subject to −Ga(x)≤ 0
Cx = d

. (22)

Proof With Ja the Jacobian of the active set at x∗, consider this time the reverse linearized
problem:

maximize
x

cT x

subject to − Ja(x− x∗)≤ 0
Cx = d

. (23)

By the argument of Theorem 2, the local of uniqueness of x∗ for (1) ensures that x∗ is
the unique minimum for (21). Since (21) and (23) have the same stationarity condition, it
follows that x∗ also solves (23) uniquely. Due to the convexity of −Ga(x), it is also clear
that (23) has a greater feasible region than (22). As such, x∗ must also solve (22) uniquely,
as tightening the feasible space cannot compromise the local uniqueness of x∗, x∗ being
feasible for both cases. ut

The proof of Theorem 3 may be interpreted geometrically as shown in Fig. 2. It is
important to emphasize that the linearized problems used in the proofs are purely conceptual
– there is no need to solve them in implementation.

Theorems 2 and 3 create the foundations of a combinatorial, active-set procedure. The
former makes it clear that there exists an active set of the nC equality constraints and n−
nC inequality constraints that are locally linearly independent at x∗ and define x∗ by their
active manifolds. The latter, in turn, provides a tractable approach to calculate x∗ given its
corresponding active set. Together, the two theorems provide a guarantee that checking all of
the possible active sets and solving for the corresponding x∗ candidates is bound to generate
a set of points that includes the global minimum (provided, of course, that the problem is
regular and feasible).

To finish, one notes that not having a regular RCP does not automatically guarantee the
failure of such a method, but only loses the guarantee of its success. The main reason for
this, as already pointed out in [14], is the inability to guarantee that the solution to (22) is
unique, which may result in (22) yielding an x∗ candidate that is infeasible for (1), even
when a solution that satisfies the constraints of (1) exists.
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Fig. 2 Geometrical illustration of Theorem 3 and its proof, with the light and dark areas denoting the feasible
and infeasible spaces, respectively, of an RCP problem whose global minimum is defined by two concave
inequality constraints. The shaded regions represent the feasible spaces of the linearized problems. Clearly, as
x∗ is a locally unique global minimum for the original problem, it is also the unique minimum for the original
problem linearized around x∗. It is also clear that the linearized reverse problem has the same solution as the
linearized original problem, and, as the infeasible-side linearized set is a superset of −Ga(x) ≤ 0, it follows
that solving the reverse problem over the latter also yields x∗.

3 The Piecewise-Concave Approximation and Extended RCP

To the best of the author’s knowledge, solving a general NLP problem (2) via an RCP ap-
proximation is an idea that has only been mentioned in passing by Rozvany [31,32], with no
formal systematic procedure of when and how such an approximation could be carried out
ever being proposed. This is the essential goal of this section. First, the piecewise-concave
function is defined and it is shown how any Lipschitz-continuous univariate function may
be approximated arbitrarily well by a piecewise-concave one. Using the piecewise-concave
approximation as a link, it is then shown how the general NLP (2) meeting a fairly weak
factorability assumption may be approximated as an RCP. Finally, a procedure for carrying
out the NLP→ RCP approximation is proposed and demonstrated on some example prob-
lems. As this essentially allows for non-RCP problems to be solved as RCP ones, the term
“extended reverse convex programming” is used to describe the proposed methodology.

3.1 Piecewise-Concave Functions as Approximators

The function p(x) is called “piecewise-concave” if:

p(x) = max
i=1,...,np

pi(x), (24)

with each of the np functions pi(x) concave. The first formal presentation of this function
and its properties are due to Zangwill [41], with multiple relevant works by Rozvany [30–
32] appearing at around the same time. Some later work has also looked at the use of these
functions in economics problems [3,7], as well as in a more general mathematical context
[11].

The ability of a piecewise-concave function to approximate a general function arbitrarily
well has been previously mentioned without proof [41,32], but may be proven, with a little
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work, under fairly weak assumptions for different choices of pi(x). Of particular interest
here is the case where:

– p(x) : R→ R is univariate, as this allows for a number of algorithmic conveniences.
– pi(x) = β2,ix2 + β1,ix+ β0,i, i.e. each piece is quadratic, as this will later lead to con-

vex/concave quadratic constraints in the extended RCP problem, which are easier to
treat both theoretically and numerically than general convex/concave constraints.

The following theorem proves the existence of a p(x) that meets the above criteria and
approximates a Lipschitz-continuous univariate function to arbitrary precision.

Theorem 4 (Approximation by a Piecewise Maximum of Concave Quadratics)
Let f (x) : R→ R be a κ-Lipschitz function on a closed interval x ∈ [x,x], so that:

−κ <
d f
dx

∣∣∣
x
< κ, ∀x ∈ [x,x], (25)

and consider the discretization x,x+∆x, ...,x−∆x,x with ∆x= x−x
napp−1 , i.e. the discretization

of the interval into napp evenly spaced points. Letting

p(x) = max
i=1,...,napp−1

(β2,ix2 +β1,ix+β0,i), (26)

it follows that there exist sets of coefficients β2 ∈ Rnapp−1
− and β1,β0 ∈ Rnapp−1 such that:

lim
napp→∞

max
x∈[x,x]

| f (x)− p(x)|= 0. (27)

Proof The theorem is proven by providing a single choice of quadratic functions that pos-
sess the desired properties. Consider the interval [xi,xi+1], where xi and xi+1 are neighbor-
ing discretization points (with xi+1 = xi + ∆x), and define the function pi(x) as pi(x) =
β2,ix2 +β1,ix+β0,i. Let pi(x) satisfy the following criteria:

pi(xi +0.5∆x) = f (xi +0.5∆x)
d pi

dx

∣∣∣
xi
= 2κ

d pi

dx

∣∣∣
xi+1

=−2κ

, (28)

which translate into the following linear system:

β2,i
β1,i
β0,i

=

 (xi +0.5∆x)2 xi +0.5∆x 1
2xi 1 0

2xi+1 1 0

−1 f (xi +0.5∆x)
2κ

−2κ

 . (29)

This system has a solution as long as xi 6= xi+1 (as this ensures that the inverted matrix
is full rank and therefore invertible), with the resulting pi(x) = − 2κ

∆x x2− 2κ(1− 2xi+1
∆x )x−

2κx2
i

∆x − 0.5κ∆x− 2κxi + f (xi + 0.5∆x). By enforcing the three conditions of (28), the fol-
lowing properties are guaranteed:

1. pi(x) is quadratic and concave, with β2,i =− 2κ

∆x < 0.
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2. pi(x) is a strict underestimator of f (x) at all points outside the interval (xi,xi+1). This
may be proven as follows. First, consider the function Li(x) = f (xi + 0.5∆x)− κ|x−
xi−0.5∆x|, which is nothing but the Lipschitz “sawtooth” underestimator of f (x), gen-
erated around x = xi + 0.5∆x. It follows from the definition of the Lipschitz constant
that Li(x)< f (x), ∀x\{xi +0.5∆x}. Analyzing the intersection of Li(x) and pi(x), one
sees that Li(x) = pi(x) at x = xi,xi+1. Consider now the function pi(x) = 2κx+ f (xi +
0.5∆x)− 2κxi− 0.5κ∆x, which is the linearization of pi(x) at x = xi. It is evident that
pi(x) ≤ Li(x), ∀x ∈ [x,xi], as both are linear and intersect at xi, with pi(x) having a
greater positive slope. From the concavity of pi(x), it is also true that pi(x)≤ pi(x), ∀x.
It follows that:

pi(x)≤ pi(x)≤ Li(x)< f (x), ∀x ∈ [x,xi]. (30)

A symmetrical analysis around xi+1 yields a symmetrical result, which then leads to the
following statement:

pi(x)< f (x), ∀x ∈ [x,xi]∪ [xi+1,x]. (31)

3. pi(x) approximates f (x) perfectly (with zero error) at x = xi +0.5∆x.
4. The interval for which pi(x) = p(x) is a strict subinterval of [xi−0.5∆x,xi+1 +0.5∆x],

i.e. pi(x) can only be a “piece” of the piecewise-maximum function in the interior of this
interval. This may be proven as follows. Let pi−1(x) denote a corresponding concave
quadratic function for the neighboring interval [xi−1,xi], and consider the difference:

pi−1(x)− pi(x) =−4κ(x− xi)+ f (xi−0.5∆x)− f (xi +0.5∆x). (32)

For x = xi − 0.5∆x, one may build on the result of (31), which states that pi(xi −
0.5∆x) < f (xi− 0.5∆x), and Property 3, which states that pi−1(xi− 0.5∆x) = f (xi−
0.5∆x), to arrive at the following:

−pi(xi−0.5∆x)>− f (xi−0.5∆x)
pi−1(xi−0.5∆x) = f (xi−0.5∆x)
⇒ pi−1(xi−0.5∆x)− pi(xi−0.5∆x)> 0

, (33)

which shows that the piece pi−1(x) must be strictly greater than pi(x) at x = xi−0.5∆x.
From examining (32), it is clear that the derivative of this difference with respect to x
is negative, i.e. the difference increases with decreasing x. This, in turn, implies that
pi−1(x)− pi(x) > 0 remains true on the interval x ∈ [x,xi−0.5∆x], i.e. pi(x) cannot be
the maximal piece on this interval. A symmetrical analysis shows that pi+1(x)− pi(x)>
0 for x ∈ [xi+1 + 0.5∆x,x], i.e. that pi(x) cannot be the maximal piece on this interval
either. The overall result is thus summarized as:

pi(x)< p(x), ∀x ∈ [x,xi−0.5∆x]∪ [xi+1 +0.5∆x,x]. (34)

The characteristics of p(x) as defined by the pi(x) piece functions are now stated. First,
by Property 3, p(x) has one member that approximates f (x) with zero error at the midpoint
of each discretization interval [xi,xi+1]. By Property 2, every other member must underesti-
mate this point. Together, these two properties guarantee that p(x) = f (x) at the midpoint of
every discretization interval, with Property 1 guaranteeing that all of the members of p(x)
are concave quadratic.
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It now remains to consider the approximation error between the midpoints of the dis-
cretization intervals, for which the first step requires the identification of the Lipschitz con-
stant of p(x). By Property 4, every piece pi(x) is limited to (xi−0.5∆x,xi+1 +0.5∆x), from
which it follows that the Lipschitz constant of p(x) cannot exceed the Lipschitz constant of
one of these pieces over the relevant interval:

sup
x∈(xi−0.5∆x,xi+1+0.5∆x)

∣∣∣d pi

dx

∣∣∣
x

∣∣∣= sup
x∈(xi−0.5∆x,xi+1+0.5∆x)

∣∣∣4κ

∆x
(xi− x)−2κ

∣∣∣= 4κ. (35)

This allows for the approximation error to be bounded with respect to any discretization
interval midpoint xi +0.5∆x as follows:

f (xi +0.5∆x)−κ|x− xi−0.5∆x| ≤ f (x)
≤ f (xi +0.5∆x)+κ|x− xi−0.5∆x|

p(xi +0.5∆x)−4κ|x− xi−0.5∆x| ≤ p(x)
≤ p(xi +0.5∆x)+4κ|x− xi−0.5∆x| ⇒

−p(xi +0.5∆x)−4κ|x− xi−0.5∆x| ≤ −p(x)
≤−p(xi +0.5∆x)+4κ|x− xi−∆x|

⇒ f (xi +0.5∆x)− p(xi +0.5∆x)−5κ|x− xi−0.5∆x| ≤ f (x)− p(x)
≤ f (xi +0.5∆x)− p(xi +0.5∆x)+5κ|x− xi−0.5∆x|

⇒ | f (x)− p(x)| ≤ 5κ|x− xi−0.5∆x|, ∀x ∈ [x,x]

. (36)

As this is true for any discretization interval midpoint, it is also true for xi+1 + 0.5∆x,
and so the following bound is also valid:

| f (x)− p(x)| ≤ 5κ|x− xi+1−0.5∆x|, ∀x ∈ [x,x]. (37)

Since these two discretization points can be any two consecutive discretization points,
one may, without loss of generality, assume x to lie between them, with x = θ(xi+0.5∆x)+
(1−θ)(xi+1 +0.5∆x), θ ∈ [0,1]. Substituting this into both bounds yields:

| f (x)− p(x)| ≤ 5κ∆x(1−θ)
| f (x)− p(x)| ≤ 5κ∆xθ

⇒ | f (x)− p(x)| ≤ 5κ∆xmax
θ

min(1−θ ,θ) = 2.5κ∆x
, (38)

and so:

| f (x)− p(x)| ≤ 2.5κ∆x, ∀x ∈ [x,x]

⇒ max
x∈[x,x]

| f (x)− p(x)| ≤ 2.5κ∆x , (39)

which clearly goes to 0 as ∆x→ 0 or, equivalently, as napp→ ∞. ut

Theorem 4 and its proof are more theoretically reassuring than constructive, as they
basically suggest to take a quadratic for each pair of discretization points, to make each one
so steep that it does not interfere with the others, and to then decrease ∆x (increase napp)
until the original function is approximated arbitrarily well by napp − 1 (possibly needle-
like) parabolas. Clearly, such a scheme would not only be inefficient but also numerically
unstable as ∆x→ 0, due to the loss in rank in (29).

A more practical approximation technique is proposed below.
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Algorithm 1 (A Piecewise-Concave Approximation by Quadratics)
User input: f (x), κ , napp, nori (the number of points used to represent f (x), with nori ≥
napp), ρ (equal to 1 if an over-approximation is desired and−1 for an under-approximation),
x, x.
Output: β2,β1,β0.

1. Discretize the relevant variable space x ∈ [x,x] into xapp ∈ Rnapp , with xapp a set of napp
evenly spaced points between x and x. Discretize the variable space into xori ∈ Rnori –
a set of nori evenly spaced points – and define the vector fori ∈ Rnori as the discrete
function values of f (x) at these points. Set X r :=∅.

2. Solve the following LP problem:

minimize
β2,β1,β0,εa

ρ

nori

∑
i=1

εa,i

subject to εa,i = β2, jx2
ori,i +β1, jxori,i +β0, j− fori,i,

i = 1, ...,nori, j = 1, ...,napp−1 : xapp, j ≤ xori,i ≤ xapp, j+1
ρεa,i ≥ 0, i = 1, ...,nori
β2, jx2

ori,i +β1, jxori,i +β0, j ≥ β2,kx2
ori,i +β1,kxori,i +β0,k

i = 1, ...,nori, k = 1, ...,napp−1
j 6= k : xapp, j ≤ xori,i ≤ xapp, j+1

β2, j ≤ 0, j = 1, ...,napp−1

, (40)

where β2,β1,β0 ∈ Rnapp−1 are, as before, the coefficients of the napp− 1 quadratic ap-
proximating functions and εa ∈ Rnori are the approximation errors on the finer grid de-
fined by xori.

3. For every combination of i = 1, ...,napp−1 and j = 1, ...,napp−1 (i 6= j):
(a) Calculate xr,1 and xr,2 as the solutions of β2,ix2 +β1,ix+β0,i = β2, jx2 +β1, jx+β0, j

(or only xr,1 if β2,i = β2, j).
(b) If max

k=1,...,napp−1
(β2,kx2

r,1 + β1,kxr,1 + β0,k) ≤ β2,ix2
r,1 + β1,ixr,1 + β0,i and x ≤ xr,1 ≤ x,

then append [xr,1 i j] to X r. Likewise, if max
k=1,...,napp−1

(β2,kx2
r,2 + β1,kxr,2 + β0,k) ≤

β2,ix2
r,2 +β1,ixr,2 +β0,i and x≤ xr,2 ≤ x, then append [xr,2 i j] to X r.

4. Sort the matrix X r so that its rows are in increasing order with respect to the xr values
in the first column. Define R := [x X r

1,1 1]. Denote by nr the number of rows in X r. For
k := 1, ...,nr−1:
(a) If Rk,3 = X r

k,2, append [X r
k,1 X r

k+1,1 X r
k,3] to R. Otherwise, if Rk,3 = X r

k,3, append
[X r

k,1 X r
k+1,1 X r

k,2] to R.
5. Append [X r

nr ,1 x napp−1] to R.
6. Define κp := 0. For k := 1, ...,nr +1:

(a) If |2β2,Rk,3 Rk,1 +β1,Rk,3 |> κp, set κp := |2β2,Rk,3 Rk,1 +β1,Rk,3 |.
(b) If |2β2,Rk,3 Rk,2 +β1,Rk,3 |> κp, set κp := |2β2,Rk,3 Rk,2 +β1,Rk,3 |.

7. Shift β0,i := β0,i +0.5ρ(κ +κp)∆xori for all i = 1, ...,napp−1.

Algorithm 1 builds an under- or over-approximation of the original function by breaking
the relevant interval into napp− 1 subintervals and ensuring that a single concave function
be the maximal element for each. This is done via the third set of constraints in (40), while
the second set is used to ensure an under- or over-approximation. The discretization, xori,
used for ensuring these properties, as well as for fitting the approximation to f (x) via the
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Fig. 3 Under- and over-approximations (dashed lines) of f (x) = Σ 5
i=1i cos((i+1)x+ i) (solid line) on the

interval x ∈ [0,10] as constructed by Algorithm 1. nori is fixed at 1,000, napp is varied, and the Lipschitz
constant is taken as κ = 70. The dotted vertical lines show the discretization instants xapp.

objective, is assumed to be sufficiently fine so as to describe f (x) accurately, while the
discretization xapp will generally be much coarser so as to avoid inefficiency in the approxi-
mation. However, one still needs to account for the intergrid behavior on xori so as to ensure
the robustness of the under- or over-approximation. This is done in Steps 3-7, which essen-
tially identify which piece is maximal over which interval (the matrix R) and then use this
information to calculate the Lipschitz constants of each piece and, thereby, the Lipschitz
constant κp of the entire function p(x) over [x,x]. By the same argument as in the end of the
proof of Theorem 4, the calculated p(x) is then shifted up/down to account for worst-case
intergrid deviations.

While lacking the theoretical rigor of Theorem 4, Algorithm 1 has been found to work
well in practice, with p(x) ≈ f (x) as both napp and nori are increased (the application of
Algorithm 1 to a sinuisoidal function is demonstrated in Fig. 3).

3.2 Extended RCP

The results of the previous subsection may be used to approximate the NLP problem (2) by
an RCP problem provided that the functions f0(x), g0(x), h0(x) meet a certain factorability
assumption. This is now formally defined.

Definition 2 (A Concave-Factorable Function)
The function f (x) : Rn→R is “concave factorable” if it may be expressed as a sum of a

concave function, fccv(x) : Rn→ R, with the products of factorable functions f 0
i j(x) : Rn→

R:
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f (x) = fccv(x)+∑
j
∏

i
f 0
i j(x), (41)

with each f 0
i j(x) in turn equal to the sum of products of other factorable functions, f 1

i j(x):

f 0
i j(x) = ∑

j
∏

i
f 1
i j(x), (42)

and so forth until1:

f m−1
i j (x) = ∑

j
∏

i
f m
i j ((a

F
i j)

T x+bF
i j), (43)

i.e. sequential factoring eventually reduces the function to component functions that are
univariate in affine combinations of the variables, with m finite.

This definition is particularly suitable to the needs of this paper, but is not different
in essence from the decomposition or factoring methods described in, e.g., [21] or [17],
where the goal is also to reduce a potentially involved function to a series of univariate
expressions. The sole key difference lies in allowing the concave component, fccv(x), on
which no factorability/decomposition assumption is required.

The following theorem now builds on this definition to link it to the RCP problem.

Theorem 5 (Approximation of a Concave-Factorable Constraint by an RCP Set)
Let f (x) :Rn→R be concave-factorable and consider the constraint f (x)≤ 0. It follows

that there is an equivalent RCP constraint set that approximates the set {x : f (x) ≤ 0}
to arbitrary precision, provided that the base component functions f m

i j ((a
F
i j)

T x+ bF
i j) are

Lipschitz-continuous in (aF
i j)

T x + bF
i j over the box X = {x : x ≤ x ≤ x} and that f (x) is

bounded on X.

Proof The constraint f (x)≤ 0 is rewritten as:

fccv(x)+∑
j
∏

i
f 0
i j(x)≤ 0. (44)

Adding the auxiliary variable sccv and employing the epigraph transformation yields the
equivalent set:

fccv(x)+ sccv ≤ 0, ∑
j
∏

i
f 0
i j(x)− sccv ≤ 0, (45)

of which the first constraint is RCP and is lumped into the RCP set. Assume the summation
in the second constraint to have n j elements. Introducing the auxiliary variables s0

1, ...,s
0
n j

and applying the epigraph again yields the equivalent set:

n j

∑
j=1

s0
j − sccv ≤ 0

∏
i

f 0
i j(x)− s0

j ≤ 0, j = 1, ...,n j

, (46)

1 The indices i and j are not used rigorously in these definitions, since doing so would complicate the
notation significantly – e.g. f m

i j (x) by the notation used here is ambiguous, since it could have multiple def-
initions depending on which “factoring path” it was derived from. For simplicity, assume that only a single
path is considered.



Extended Reverse Convex Programming: An Active-Set Approach to Global Optimization 17

of which the first constraint is linear and lumped into the RCP set. Assuming the product
term to have ni terms, reformulate the second set with the following equality constraints and
the auxiliary variables z:

ni

∏
i=1

z0
i j− s0

j ≤ 0, j = 1, ...,n j

f 0
i j(x)− z0

i j = 0, i = 1, ...,ni

. (47)

It is now shown that both of these sets may be approximated by equivalent RCP sets.
Consider the first constraint type

ni

∏
i=1

z0
i j− s0

j ≤ 0 (48)

and note that continuous additions of auxiliary variables u and the substitution:

z1z2−u = 0 (49)

allows for (48) to be reduced to the constraint set defined by one constraint of the type:

uaub− s0
j ≤ 0, (50)

and some finite number of constraints of type (49).
The constraint type (50) is approximated by an RCP set as follows:

uaub− s0
j ≤ 0⇔ 0.5(ua +ub)

2−0.5u2
a−0.5u2

b− s0
j ≤ 0

⇔ 0.5u2
c−0.5u2

a−0.5u2
b− s0

j ≤ 0, uc = ua +ub

≈ 0.5p(uc)−0.5u2
a−0.5u2

b− s0
j ≤ 0, uc = ua +ub

⇔ 0.5pi(uc)−0.5u2
a−0.5u2

b− s0
j ≤ 0 (i = 1, ...,np), uc = ua +ub

, (51)

with p(uc) ≈ u2
c guaranteed to exist as u2

c is Lipschitz-continuous on a bounded domain
of uc (boundedness of f (x) implying boundedness of f 0

i j(x) implying boundedness of z0
i j

implying boundedness of ua and ub, and thus uc). (49) is approximated by first breaking it
into z1z2−u≤ 0 and −z1z2 +u≤ 0, and then applying the procedure of (51) to both.

The second constraint type of (47) may be approximated by an RCP set by first breaking
it into inequalities:

f 0
i j(x)− z0

i j = 0⇔ f 0
i j(x)− z0

i j ≤ 0, − f 0
i j(x)+ z0

i j ≤ 0, (52)

which, by factorability, may be written as:

∑
j
∏

i
f 1
i j(x)− z0

i j ≤ 0, −∑
j
∏

i
f 1
i j(x)+ z0

i j ≤ 0. (53)

This establishes a cyclic procedure, since both of these constraints may be treated by
the steps of (47)-(53) to yield more RCP approximations together with the constraints of
(53) where the factoring level has been augmented by one. This can be continued until the
factoring level reaches m and, lumping the z variable into the summation of products, one is
left with an RCP set and the constraints:

∑
j
∏

i
f m
i j ((a

F
i j)

T x+bF
i j)≤ 0, −∑

j
∏

i
f m
i j ((a

F
i j)

T x+bF
i j)≤ 0. (54)
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The summations may be “removed” by the same procedure as in (46) and, introducing
a final set of auxiliary z variables, one has:

∏
i

zm
i j ≤ 0, −∏

i
zm

i j ≤ 0, f m
i j ((a

F
i j)

T x+bF
i j)− zm

i j = 0, (55)

where the first two sets may be put through the procedure of (48)-(51) to yield RCP approx-
imations. With the addition of auxiliary variables xi j = (aF

i j)
T x+bF

i j, the last constraint type
can now be expressed and reformulated as:

f m
i j (xi j)− zm

i j = 0⇔ f m
i j (xi j)− zm

i j ≤ 0, − f m
i j (xi j)+ zm

i j ≤ 0
≈ p+(xi j)− zm

i j ≤ 0, p−(xi j)+ zm
i j ≤ 0

⇔ p+k (xi j)− zm
i j ≤ 0 (k = 1, ...,n+p ), p−k (xi j)+ zm

i j ≤ 0 (k = 1, ...,n−p )
, (56)

which is an RCP set.
Since all of the RCP approximations used in steps (51) and (56) may be arbitrarily

precise, it follows that the overall approximation of f (x)≤ 0, which includes a finite number
of such approximations, may be arbitrarily precise as well. ut

Although somewhat busy, it is worth noting that the proof of Theorem 5 is nearly al-
gorithmic in nature, as the steps could, in principle, be automated. The one part that may
prove difficult for automation is the factoring, as this may require either symbolic logic or
additional input from the user.

The following corollary completes the link between Problems (1) and (2).

Corollary 1 (Approximation of NLP Problem (2) by RCP Problem (1))
Let f0(x), g0(x), h0(x), and −h0(x) be concave-factorable, bounded over X, and their

base component functions Lipschitz-continuous in the relevant affine combinations over X.
It follows that Problem (2) may be approximated, to arbitrary precision, by Problem (1).

Proof The addition of an auxiliary variable s, the epigraph transformation, and the splitting
of equality constraints allows the following equivalence:

minimize
x

f0(x)

subject to g0,i(x)≤ 0, i = 1, ...,ng0
h0,i(x) = 0, i = 1, ...,nh0

⇔

minimize
x,s

s

subject to f0(x)− s≤ 0
g0,i(x)≤ 0, i = 1, ...,ng0
h0,i(x)≤ 0, i = 1, ...,nh0
−h0,i(x)≤ 0, i = 1, ...,nh0

. (57)

Clearly, f0(x)− s is concave-factorable if f0(x) is concave-factorable. It then follows
from Theorem 5 that the feasible set of the right-hand side of (57) may be approximated
arbitrarily well by an RCP set. As the cost of the latter is also linear, equivalence to Problem
(1) is established. ut

Some examples to illustrate the NLP→ RCP approximation are now given.

Example 3 (NLP→ RCP Approximation)

Consider the following problem of Al-Khayyal and Falk [1]:

minimize
x1,x2

−x1 + x1x2− x2

subject to −6x1 +8x2 ≤ 3
3x1− x2 ≤ 3
x1,x2 ∈ [0,5]

, (58)
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where the constraints are already in RCP form and only the cost needs reformulation.
Applying the epigraph to the nonlinear portion of the cost and using the equality x1x2 =

0.5(x1 + x2)
2−0.5x2

1−0.5x2
2 yields the equivalent problem:

minimize
x1,x2,x3

−x1− x2 +0.5x3

subject to (x1 + x2)
2− x2

1− x2
2− x3 ≤ 0

−6x1 +8x2 ≤ 3
3x1− x2 ≤ 3
x1,x2 ∈ [0,5],x3 ∈ [0,50]

. (59)

Then, introducing the auxiliary x4:

minimize
x1,x2,x3,x4

−x1− x2 +0.5x3

subject to x1 + x2− x4 = 0
x2

4− x2
1− x2

2− x3 ≤ 0
−6x1 +8x2 ≤ 3
3x1− x2 ≤ 3
x1,x2 ∈ [0,5],x3 ∈ [0,50],x4 ∈ [0,10]

. (60)

Finally, one may define p(x4)≈ x2
4 and break the piecewise-maximum to obtain:

minimize
x1,x2,x3,x4

−x1− x2 +0.5x3

subject to x1 + x2− x4 = 0
pi(x4)− x2

1− x2
2− x3 ≤ 0, i = 1, ...,np

−6x1 +8x2 ≤ 3
3x1− x2 ≤ 3
x1,x2 ∈ [0,5],x3 ∈ [εa,50+ εa],x4 ∈ [0,10]

, (61)

which is easily rearranged into standard RCP form.
The box constraints X = {x : x≤ x≤ x} deserve a few words. As will become apparent

in Sections 4 and 5, domain reduction techniques represent a crucial aspect of the proposed
method and as such it is important that lower and upper bounds on all variables, including the
auxiliary ones, be provided2. In many cases, as in this example, it is easy to calculate these
bounds (e.g. one simply minimizes or maximizes x2

4− x2
1− x2

2 over X to obtain the bounds
on x3, since x3 must equal this quantity at the optimum). One should, however, keep in mind
that approximation error may affect these bounds, i.e. when x2

4 is replaced by p(x4), it is
important to add appropriate slacks for the lower and upper bounds on the approximation
error (εa and εa, respectively). A practical observation, however, is that gross under- and
over-estimates will often suffice, as the domain reduction techniques discussed in Section 4
are often able to refine these.

Example 4 (NLP→ RCP Approximation)

Consider the following problem:

minimize
x1,x2

(sinx1)(−x1 +0.3x2)

subject to x1 ∈ [−2,2],x2 ∈ [−5,5]
. (62)

Noting that the cost is already written as a product of base component functions, one
may define the auxiliary variables x3 = sinx1 and x4 =−x1+0.3x2, with the implicit bounds
x3 ∈ [−1,1] and x4 ∈ [−3.5,3.5]:

2 Note that doing so also ensures the compactness of the feasible space.
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minimize
x1,x2,x3,x4

x3x4

subject to − x1 +0.3x2− x4 = 0
x3 = sinx1
x1 ∈ [−2,2],x2 ∈ [−5,5],x3 ∈ [−1,1],x4 ∈ [−3.5,3.5]

. (63)

Breaking the equality constraint and rearranging leads to sinx1 ≤ x3 and−sinx1 ≤−x3.
Using the piecewise-concave approximations pa(x1)≈ sinx1 and pb(x1)≈−sinx1, and then
splitting the components into individual constraints yields:

minimize
x1,x2,x3,x4

x3x4

subject to − x1 +0.3x2− x4 = 0
pa,i(x1)− x3 ≤ 0, i = 1, ...,na
pb,i(x1)+ x3 ≤ 0, i = 1, ...,nb
x1 ∈ [−2,2],x2 ∈ [−5,5],x3 ∈ [−1+ εa,1,1+ εa,1],x4 ∈ [−3.5,3.5]

. (64)

The only remaining non-concave part is the objective, which may again be transformed
by the equality x3x4 = 0.5(x3 + x4)

2−0.5x2
3−0.5x2

4 and the use of the epigraph:

minimize
x1,x2,x3,x4,x5

0.5x5

subject to − x1 +0.3x2− x4 = 0
pa,i(x1)− x3 ≤ 0, i = 1, ...,na
pb,i(x1)+ x3 ≤ 0, i = 1, ...,nb
(x3 + x4)

2− x2
3− x2

4− x5 ≤ 0
x1 ∈ [−2,2],x2 ∈ [−5,5],x3 ∈ [−1+ εa,1,1+ εa,1]
x4 ∈ [−3.5,3.5],x5 ∈ [−7,7]

. (65)

Following the same steps as in Example 3 then gives:

minimize
x1,x2,x3,x4,x5,x6

0.5x5

subject to − x1 +0.3x2− x4 = 0
x3 + x4− x6 = 0
pa,i(x1)− x3 ≤ 0, i = 1, ...,na
pb,i(x1)+ x3 ≤ 0, i = 1, ...,nb
pc,i(x6)− x2

3− x2
4− x5 ≤ 0, i = 1, ...,nc

x1 ∈ [−2,2],x2 ∈ [−5,5],x3 ∈ [−1+ εa,1,1+ εa,1],x4 ∈ [−3.5,3.5]
x5 ∈ [−7+ εa,2,7+ εa,2],x6 ∈ [−4.5+ εa,1,4.5+ εa,1]

. (66)

4 An Extended RCP Solution Method

The basic prototype of an extended RCP solution method, comprised of the problem set-
up and an active-set algorithm, is given here in three parts. The active-set-search scheme is
outlined first, as this constitutes the base of the method and guarantees its finite-time conver-
gence to a global minimum of (1). The second part then goes through a number of techniques
that may dramatically speed up the algorithm by reducing the number of active sets to be
checked. These may be divided into (a) techniques particular to (extended) RCP and (b) do-
main reduction techniques that are common to existing global optimization solvers. Finally,
the third part joins these ideas to provide the full active-set RCP algorithm as it was coded
in this work.
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Fig. 4 The branching scheme of possible active sets for a problem with n− nC = 4 and ng = 6. The effect
of fathoming an active subset (g3(x) and g4(x)) is demonstrated, with all the resulting fathomed active sets
shown via dotted branches.

4.1 Active-Set Search: General Procedure

As discussed at the end of Section 2, the global minimum of (1), provided that the problem is
regular, may be found by simply checking all of the possible

( ng
n−nC

)
active sets, solving the

corresponding convex problems (22), and then comparing the solutions. However, much like
the brute vertex enumeration techniques of concave minimization [22,27], such an approach,
though guaranteed to solve the problem in finite time, is not computationally enviable when( ng

n−nC

)
is large. The work by Ueing [39] has proposed considering active subsets as a means

of bypassing this difficulty, and this is essentially the approach pursued here.
Envisioning the entire set of possible active sets as a tree (Fig. 4), the basic idea of

checking active subsets involves starting at the base level of the tree, with a single mem-
ber (a single inequality constraint), and building up to the final level of n− nC inequality
constraints. The justification for doing this is formalized in the following lemma.

Lemma 2 (Fathoming of Active Subsets)
Let G̃a(x) denote a set of ñ < n− nC inequality constraints of Problem (1), assumed

regular, and consider the following problem:

minimize
x

cT x

subject to − G̃a(x)≤ 0
x ∈ C

, (67)

where C is defined as any convex set that contains x∗ (nominally, the convex relaxation of
the feasible set of (1), together with the linear equality constraints). It follows that:

(i) if (67) is infeasible, then the ñ constraints defining G̃a(x) cannot be a subset of the
active set defining x∗.

(ii) if (67) is feasible, the optimal value cT x̃∗ defines a lower bound on the potential global
minimal value attained for the active set Ga(x)⊃ G̃a(x).

(iii) denoting by ī the inequality constraints that are active or violated at x̃∗, with ī = {i :
gi(x̃∗) ≥ 0}, Problem (67) will be feasible for all G̃a(x) that are defined by subsets of
ī.
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Proof (i) Let Ga(x) denote the full active set of n−nC inequality constraints defining the
global minimum x∗. By contradiction, suppose that G̃a(x) ⊂ Ga(x) despite Problem
(67) being infeasible. Ga(x∗) = 0 implies G̃a(x∗) =−G̃a(x∗) = 0. By definition, x∗ ∈
C . However, this contradicts the infeasibility of (67), since x∗ is clearly feasible for
this problem.

(ii) Since x∗ ∈ C and solves (22), the following equivalence must hold:

x∗ = argmaximize
x

cT x

subject to −Ga(x)≤ 0
Cx = d

=

argmaximize
x

cT x

subject to −Ga(x)≤ 0
Cx = d
x ∈ C

. (68)

Consider now the reverse:

x∗ = argminimize
x

cT x

subject to −Ga(x)≤ 0
Cx = d
x ∈ C

, (69)

where it is obvious that cT x∗ ≤ cT x∗. It follows that cT x̃∗ ≤ cT x∗ since (67) is the same
as (69) but with some constraints removed.

(iii) Since x̃∗ ∈ C and satisfies−G̃a(x̃∗)≤ 0 for all constraint sets G̃a(x) that are subsets of
ī, it follows that x̃∗ will be a feasible point for all problems (67) where G̃a(x) is defined
by subsets of ī. ut

One sees that solving Problem (67) is very useful as it essentially does triple duty by:

(a) fathoming subsets that cannot define the active set for the global minimum (when the
problem is infeasible), thereby saving the computational effort of checking the active
sets that include the fathomed combinations as subsets,

(b) providing a lower bound on the globally minimal cost value attained by certain active
sets, thereby allowing for those sets to be fathomed if a feasible point with a lower cost
value is found,

(c) allowing for computational savings by foregoing Problem (67) when it is known to be
feasible.

Of these three points, (a) is the most crucial as it allows for entire branches to be removed
from the active-set search (see Fig. 4 for an illustration, where fathoming a single subset
invalidates 6 of the 15 possible active sets).

On an implementation level, the active-set search proceeds by considering all the sub-
sets at ñ = 1 and solving (67) for these subsets. This is repeated for increased ñ until ñ
reaches n− nC, at which point the reverse problems (22) are solved to obtain the global
minimum candidates. Once more using the problem in Fig. 4 as an example, the active-
set search in this case would proceed by solving (67), if needed, for the following sub-
sets: {g1}, {g2}, {g3}, {g1,g2}, {g1,g3}, {g1,g4}, {g2,g3}, {g2,g4}, {g3,g4}, {g1,g2,g3},
{g1,g2,g4}, {g1,g2,g5}, {g1,g3,g4}, {g1,g3,g5}, {g1,g4,g5}, {g2,g3,g4}, {g2,g3,g5},
{g2,g4,g5}, {g3,g4,g5}, before proceeding to solve (22) for the full active sets.

Throughout this procedure, a fathoming and a validation basis are built to cut out certain
branches entirely and to skip solving (67) for certain others, respectively. Deferring the
actual algorithmic details to Section 4.3, it should be noted that the worst-case complexity
of such a scheme is actually worse than the

( ng
n−nC

)
convex problems of a brute enumeration.
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However, its observed performance is unequivocally better (often orders of magnitude so)
than the brute approach.

4.2 Fathoming and Domain Reduction Techniques

A natural property of the active-set search is that the fathoming of many low-cardinality
subsets is bound to lead to the solution much quicker, since low-cardinality subsets will
cut out greater parts of the search tree. A more general statement is that more fathoming
will automatically lead to faster convergence, and so a number of fathoming techniques
are now considered in detail. Some of these, as will be seen, take direct advantage of the
concavity, the active-set nature, and the approximation steps that characterize the extended
RCP framework. Others, however, employ standard domain reduction techniques common
to modern global optimization solvers [25] so as to shrink C as much as possible, thereby
increasing the number of subsets for which (67) is infeasible.

4.2.1 Fathoming Techniques Particular to Extended RCP

Innate Fathoming

Once the RCP problem has been defined, there are certain constraints or constraint com-
binations that are innately known to either never intersect or to not define the global mini-
mum. These are stated in the following lemma.

Lemma 3 (Innate Fathoming Rules)
The following inequality constraint subsets are not subsets of the active set defining x∗

and may be fathomed:

(i) Any set or subset of n−nC constraints or less that is linearly dependent at x∗.
(ii) Lower and upper bound constraints, s ≤ s and s ≤ s, on auxiliary variables added

through the epigraph transformation:

f1(x)+ f2(x)≤ 0⇔
f1(x)+ s≤ 0
f2(x)− s≤ 0
s≤ s≤ s

, (70)

with s≤ inf
x∈X

f2(x) and s≥ sup
x∈X

f2(x).

(iii) Any pair of constraints pi(x1)+ f (x) ≤ 0 and p j(x1)+ f (x) ≤ 0, with i 6= j denoting
different pieces of the piecewise-concave function p(x1) = max

k=1,...,np
pk(x1), assumed

(without loss of generality) to be univariate in x1, where pi(x1) = p j(x1)⇒ pk(x1)+
f (x)> 0 for some k = 1, ...,np or pi(x1) = p j(x1)⇒ x1 6∈ [x1,x1].

(iv) Any pair of constraints p+i (x)+ f1(x)≤ 0 and p−j (x)− f1(x)≤ 0, where max
i=1,...,n+p

p+i (x)<

− f2(x) and max
j=1,...,n−p

p−j (x)< f2(x).

Proof (i) This follows directly from Theorem 2.
(ii) It is first proven that the constraints f1(x)+ s ≤ 0 and f2(x)− s ≤ 0 must be active

simultaneously at the global minimum (x∗,s∗). Suppose the alternatives where at least
one of the two is inactive and consider the implication from summing the two inequal-
ities:
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f1(x∗)+ s∗ = 0
f2(x∗)− s∗ < 0 or

f1(x∗)+ s∗ < 0
f2(x∗)− s∗ = 0 or

f1(x∗)+ s∗ < 0
f2(x∗)− s∗ < 0 ⇒ f1(x∗)+ f2(x∗)< 0, (71)

i.e. that the original constraint is strictly inactive at x∗ and may therefore be dropped
from consideration. As such, only the case where f1(x∗)+ s∗ = 0 and f2(x∗)− s∗ = 0
is of interest. Since this fixes the value of s as s∗ = f2(x∗), the box constraints s≤ s≤ s
can only influence this value if they do not admit s∗ = f2(x∗) as feasible. This is,
however, ruled out by the definition of s and s. Since leaving these box constraints
out of the RCP problem does not affect the solution, they may be fathomed from
consideration.

(iii) Both constraints being active at x∗ implies pi(x∗1)= p j(x∗1), which in turn either implies
pk(x∗1)+ f (x∗)> 0 or x∗1 6∈ [x1,x1], both of which contradict the feasibility of x∗.

(iv) Suppose, by contradiction, that both p+i (x) + f1(x) ≤ 0 and p−j (x)− f1(x) ≤ 0 are
active at the global minimum:

p+i (x
∗)+ f1(x∗) = 0

p−j (x
∗)− f1(x∗) = 0 ⇒ p+i (x

∗)+ p−j (x
∗) = 0. (72)

From max
i=1,...,n+p

p+i (x)<− f2(x) and max
j=1,...,n−p

p−j (x)< f2(x), it follows that:

p+i (x
∗)<− f2(x∗)

p−j (x
∗)< f2(x∗)

⇒ p+i (x
∗)+ p−j (x

∗)< 0, (73)

which contradicts (72). ut

In extended RCP language, the results of Lemma 3 mean the following:

(i) any combination of n− nC or less linear constraints that are linearly dependent may
be fathomed – this is particularly relevant for box constraint pairs (e.g. x1 ≤ x1 and
x1 ≤ x1),

(ii) box constraints for introduced auxiliary variables may be fathomed,
(iii) all pairs of constraints corresponding to non-adjacent pieces in a piecewise-concave

approximation may be fathomed (see Fig. 5 for an illustration),
(iv) when a univariate nonlinear equality constraint (e.g. x3 = sin x1 in (63)) is split with

both parts strictly under-approximated, the pairs coming from different approxima-
tions cannot define together the optimal active set and may be fathomed (this is equiv-
alent to saying that a strict over-approximation of a function cannot intersect a strict
under-approximation of the same function).

Fathoming Box Constraint Combinations

All points corresponding to a given active subset of box constraints may be proven
infeasible (and the constraint combination thereby fathomed) via a cheap computational
procedure when C is a polytope:

C = {x : (aC
i )

T x≤ bC
i , i = 1, ...,nC }, (74)

which, for the methods proposed in this work, will always be the case.
This procedure is possible since choosing a subset of box constraints fixes the corre-

sponding variables and allows for a simple minimization of any linear constraint over the
rest. Without loss of generality, let x1, ...,xñ denote the variables whose box constraints have
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Fig. 5 Illustration of how a crossing between non-adjacent concave constraints of a piecewise-concave
function is bound to lie in the infeasible region. Here, the cross designates the intersection between
p1(x1)+ f (x) = 0 and p3(x1)+ f (x) = 0 (seen to be infeasible), while the two round points indicate the fea-
sible intersections of adjacent constraints p1(x1)+ f (x) = p2(x1)+ f (x) and p2(x1)+ f (x) = p3(x1)+ f (x).

been fixed and xñ+1, ...,xn the others. If, for example, the constraint set in question consists
of the lower bounds on x1, ...,xñ, then the minimal value of each C constraint value over X
(and thus over C ) may be calculated as:

min
xñ+1,...,xn∈X

(aC
i )

T x =
ñ

∑
j=1

aC
i j x j +

n

∑
j=ñ+1

min
(

aC
i j x j,a

C
i j x j

)
. (75)

It then follows that if this value is strictly superior to bC
i for any i = 1, ...,nC , then the

constraint set corresponding to the lower bounds on x1, ...,xñ may be fathomed since there
cannot exist any point in C for which these constraints would be active. Note that the equal-
ity constraints Cx = d may be easily incorporated by simply being split into Cx ≤ d and
−Cx≤−d.

While this method can provide useful fathoming information at a very low price, it may
nevertheless be computationally expensive to run this check for all possible active sets and
subsets generated by the box constraints. The following scheme is proposed to check the
different sets in a branching manner that is somewhat similar in nature to the overall active-
set search, but which is set to terminate if the number of nodes grows too large.

Subroutine A (Fathoming Box Constraints)
User input: C , X , and F . F is the fathoming basis – a Boolean3 matrix of ng columns, with
0 denoting the absence of a constraint from the considered set and 1 its presence. The final
2n columns of F correspond, by the convention set here, to the box constraints.
Output: F (updated).

1. Set B := 01×2n.

3 Boolean vectors and matrices are used throughout the main algorithm and subroutines as this provides
an easy way to check membership (e.g. of a Boolean vector in a Boolean matrix) through a series of multi-
plications and additions.
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2. If B =∅, terminate. Otherwise, go to Step 3.
3. Define B1

c as the first n elements of the first row of B and B1
c as the last n elements of

the first row of B. Remove the first row of B and define B1
c = B1

c +B1
c . Let ñ denote the

index of the last non-zero element of B1
c (0 if there are none) augmented by 1. If ñ > n,

return to Step 2. Otherwise, proceed to Step 4.
4. For k := ñ, ...,n:

(a) Define Bc and Bc as the vectors B1
c and B1

c with their kth indices set to 1.
(b) If

∃i ∈ 1, ...,nC : ∑
j:Bc, j=1

aC
i j x j + ∑

j:B1
c, j=1

aC
i j x j

+ ∑
j:Bc, j ,B

1
c, j=0

min
(

aC
i j x j,a

C
i j x j

)
> bC

i
(76)

and 6 ∃z : Fz ∈ [01×(ng−2n) Bc B1
c ], then append [01×(ng−2n) Bc B1

c ] to F4. If neither

is true, then append [Bc B1
c ] to B. Likewise, if

∃i ∈ 1, ...,nC : ∑
j:B1

c, j=1

aC
i j x j + ∑

j:Bc, j=1

aC
i j x j

+ ∑
j:B1

c, j ,Bc, j=0

min
(

aC
i j x j,a

C
i j x j

)
> bC

i
(77)

and 6 ∃z : Fz ∈ [01×(ng−2n) B1
c Bc], then append [01×(ng−2n) B1

c Bc] to F . If neither is
true, then append [B1

c Bc] to B.
5. If the number of rows in B is superior to 100, terminate. Otherwise, return to Step 2.

Here, the choice of 100 in the final step of the routine is heuristic.

Fathoming Separable Concave Constraints

One may also prove the inactivity of a given separable concave constraint over X (and
thereby C ) by calculating its maximum value on X and showing that it is strictly inferior to 0.
This may be done in the general nonseparable case by solving a single convex optimization
problem, and indeed this is what happens in (67) when G̃a(x) consists of a single member.
However, a faster check may be performed for the separable case since, for a given gi(x):

max
x∈X

gi(x) =
n

∑
j=1

max
x j∈[x j ,x j ]

gi j(x j), (78)

where each of the separate components must reach their maximum at either (a) the lower
boundary, (b) the upper boundary, or (c) the stationary zero-derivative point. As checking
these cases n times is significantly cheaper than maximizing gi(x) over C , (78) offers an
easy way to quickly fathom gi(x) if it is irrelevant.

Subroutine B (Fathoming Separable Concave Constraints)
User input: X , gi(x) (with i = 1, ...,ng−2n), F . By the convention set here, the first ng−2n
columns of F correspond to the concave constraints (box constraints excluded).
Output: F (updated).

1. For i = {1, ...,ng−2n}\{i : gi(x) not separable}:

4 Fz denotes the zth row of F .
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(a) For j = 1, ...,n:
(i) Calculate:

max
x j∈[x j ,x j ]

gi j(x j) = max
(
gi j(x j),gi j(x j),gi j(x̂ j)

)
x̂ j = {x̂ j : dgi j

dx j

∣∣∣
x̂ j
= 0} if x j ≤ x̂ j ≤ x j (gi j(x̂ j) =∅ otherwise)

. (79)

(b) If:

n

∑
j=1

max
x j∈[x j ,x j ]

gi j(x j)< 0, (80)

then append [01×(i−1) 1 01×(ng−2n−i) 01×2n] to F if 6 ∃z : Fz ∈ [01×(i−1) 1 01×(ng−2n−i)
01×2n].

Mandatory Constraints and Linked Constraint Sets

A characteristic of the NLP→ RCP transformation is the addition of auxiliary variables
via the epigraph transformation. This naturally leads to inequality constraints that are linked
by the auxiliary variables and which may be shown to be necessarily active together if one of
them is active at the solution. Additionally, applying the epigraph to any portion of the cost
function, or recognizing innate epigraph forms in a given problem, leads to “mandatory”
constraints that must be active at the optimum.

For the former case, consider Point (ii) of Lemma 3 and its proof, which shows that
“distributing” a constraint over two (or more) constraints in the epigraph transformation
leads to a linked set – if the original constraint is relevant and active at the global minimum,
the entire equivalent set of multiple inequality constraints must be as well. Although this
information does not yield useful members for the fathoming basis F , it may nevertheless
be exploited through conditional statements to fathom out those constraint combinations that
preclude linked constraints being active together.

With regard to the latter point, consider the following transformation of the (bounded)
problem:

minimize
x

n f

∑
i=1

fi(x) ⇔
minimize

x

n f

∑
i=1

si

subject to fi(x)− si ≤ 0, i = 1, ...,n f

, (81)

where it is clear that all of the resulting constraints must be active at a global (or local)
minimum. Furthermore, transforming any of the resulting constraints via an additional epi-
graph implies that all of the constraints that result from the second transformation must be
active as well. The impact of mandatory constraints is to reduce the number of levels in the
active-set search. By the convention proposed here, mandatory constraints are given the first
indices and are included in every subset and set considered.

4.2.2 General Domain Reduction Techniques

Domain reduction techniques [6] are standard in several of the currently available global
optimization solvers [26], and have been credited for reducing the computational effort of
a complete global search significantly [33,40]. This is no different in extended RCP, where
the use of domain reduction techniques to shrink X (and thereby C ) can make solution times
orders of magnitude faster. The particular characteristic of the RCP active-set search with
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respect to domain reduction techniques is that domain reduction allows for more subsets to
be fathomed earlier in the search.

The general domain reduction routine, with a slight modification, is presented first.

Subroutine C (Domain Reduction)
User input: X , C , and XC . XC ∈ Rn×2n is a matrix of 2n coordinates corresponding to the
points where the n variables reach their lower and upper bounds on C .
Output: X (updated), C (updated), XC (updated).

1. If XC 6=∅, skip to Step 3. Otherwise, for i = 1, ...,n:
(a) Calculate

XC := argminimize
x

xi

subject to x ∈ C
(82)

and update xi := XC ,i. Likewise, calculate

XC := argmaximize
x

xi

subject to x ∈ C
(83)

and update xi := XC ,i. Append [XC XC ] to XC .
2. Use the updated X to update C accordingly.
3. For i = 1, ...,n:

(a) Define XC as the row vector corresponding to the first n columns of the ith row of
XC . Likewise, define XC as the row vector corresponding to the last n columns of
the ith row of XC .

(b) If XC ∈ C , proceed to Step 3c. Otherwise, reorder the constraints of C so that:

(aC
1 )

T XC −bC
1 ≥ (aC

2 )
T XC −bC

2 ≥ ...≥ (aC
nC
)T XC −bC

nC
. (84)

(i) Set ñC := n−nC.
(ii) Construct:

AC :=


C

(aC
1 )

T

...
(aC

ñC
)T

 , bC :=


d

bC
1
...

bC
ñC

 . (85)

(iii) If rank AC < n, set ñC := ñC + 1 and return to (ii). Otherwise, define XC :=
A†

C bC († denoting the Moore-Penrose pseudoinverse).
(iv) If XC ∈ C , check that XC is a KKT point of (82) by verifying that ∃λ ∈

RñC
+ ,µ ∈RnC : [01×(i−1) 1 01×(n−i)]+∑

ñC
i=1 λi(aC

i )
T +∑

nC
i=1 µiCi = 0. A cheap

way to do this is by taking the pseudoinverse to solve for the Lagrange mul-
tipliers. If this cannot be verified, or if XC 6∈ C , redefine XC by solving (82).
Update xi := XC ,i.

(c) If XC ∈ C , proceed to Step 3d. Otherwise, reorder the constraints of C so that:

(aC
1 )

T XC −bC
1 ≥ (aC

2 )
T XC −bC

2 ≥ ...≥ (aC
nC
)T XC −bC

nC
. (86)

(i) Set ñC := n−nC.
(ii) Construct AC and bC as in (85).
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(iii) If rank AC < n, set ñC := ñC + 1 and return to (ii). Otherwise, define XC :=
A†

C bC .
(iv) If XC ∈ C , check that XC is a KKT point of (83) by verifying that ∃λ ∈

RñC
+ ,µ ∈RnC : [01×(i−1) −1 01×(n−i)]+∑

ñC
i=1 λi(aC

i )
T +∑

nC
i=1 µiCi = 0. If this

cannot be verified, or if XC 6∈ C , redefine XC by solving (83). Update xi :=
XC ,i.

(d) Replace the ith row of XC by the updated [XC XC ].
4. Compare the previous X (prior to Step 3) with the new updated X element by element.

If the maximum absolute difference between the old and new elements is less than the
specified tolerance εX , terminate. Otherwise, return to Step 2.

The above subroutine essentially updates the box X by solving linear programs to cal-
culate the minimal and maximal bounds on the individual variables, which it then uses to
redefine and shrink C , after which the bounds are recalculated. The aforementioned “slight
modification” comes via storing the old solution points and using them whenever possible
to avoid solving (82) and (83), either by (a) verifying that the old point is still inside C and
thus does not need updating, or by (b) projecting the old answer on the most active con-
straints in hopes of this being the optimal active set that would solve (82) or (83). It should
be mentioned that storing XC may reduce the computational burden of (82) and (83) sig-
nificantly as well, as it provides a warm start for what are already LP problems. Additional
techniques may be possible to reduce the effort here as well (see, e.g., [40]), but have not
been considered in this work.

Of crucial interest in Subroutine C is the “update C accordingly” in Step 2, which is
pertinent since the definition of C will generally be dependent on the definition of X . Noting
that Cx = d, any linear gi(x), and the box X may be incorporated into C directly, of which
only the latter is affected by Subroutine C, the other elements defining C are now discussed
in some detail.

Convex Underestimators

Denote by li(x)≤ gi(x),∀x ∈ X a linear underestimator of the (nonlinear) concave con-
straint gi(x) over X . It is well-known that the efficiency of such underestimators will depend
on the degree of nonlinearity of gi(x) as well as on the size of X . Incorporating li(x) into
C thereby allows for the iterative domain reduction as described in Subroutine C, as tight-
ening X makes li(x) more efficient (and thereby more restricting), which in turn allows for
further tightening of X , and so on. Two particular cases, arguably the two most relevant in
the extended RCP methodology, are examined here.

The first corresponds to the case where gi(x) is separable, as this allows to construct a
convex (linear) underestimator of gi(x) by constructing the convex (linear) underestimators
of its univariate components, gi j(x). As all of these components are concave, the convex un-
derestimator of each gi j(x) is simply the line segment joining (x j,gi j(x j)) and (x j,gi j(x j)).
The summation of these underestimators then gives the underestimator of gi(x), which is,
with respect to X , its convex envelope [9].

The second case of interest is that of the univariate piecewise-concave function as gen-
erated by Algorithm 1. It is not difficult to show that the convex underestimator of such a
function is simply the (piecewise-linear) convex underestimator of the intersection points of
the adjacent pieces, together with the points corresponding to the lower and upper bound-
aries x and x. An algorithm for constructing this underestimator is proposed below.
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Fig. 6 An example of applying Algorithm 2 to construct a convex underestimator of the 3-piece piecewise-
concave under-approximator of the function f (x) = sin x, which is equivalent to the convex underestimator of
the boundary and intersection points. The convex underestimator and piecewise-concave approximation are
identical on the first interval.

Algorithm 2 (Convex Underestimator for a Univariate Piecewise-Concave Function)
User Input: x, x, p(x), and xc, where xc may be taken as the first column of X r in Algorithm
1 and corresponds to the coordinates of all of the feasible intersection points of the pieces
of p(x), sorted in increasing order.
Output: P, a two-column matrix giving the slope and y-intercept for the underestimating
linear functions.

1. Set P :=∅. Remove elements of xc that are either inferior to x or superior to x. Append
x to the beginning of xc and x to the end. Set k := 1. Let xc,k denote the kth element of xc.

2. If k = ‖xc‖0, terminate. Otherwise, proceed to Step 3.
3. For j := k+1, ...,‖xc‖0, define mk j := p(xc, j)−p(xc,k)

xc, j−xc,k
.

4. Find ĵ : mk ĵ = min
j

mk j.

5. Calculate b̂ = p(xc,k)−mk ĵxc,k.
6. Append [mk ĵ b̂] to P.
7. Set k := ĵ and return to Step 2.

Fig. 6 shows the application of this algorithm to a piecewise-concave approximation
of the function f (x) = sin x. It should be clear that compressing X here (i.e. raising x or
lowering x) would improve the quality of the underestimator as well.

Local Minimization and Cutting Planes

Given some feasible point x0, it is often reasonable to put in the computational effort for
a local optimization so as to bring this point to a local minimum of the RCP problem, x∗loc.
The resulting point (in some cases already the global minimum) then gives an upper bound
on the global minimum and allows for the cutting plane constraint cT x≤ cT x∗loc to be added
to C . In the author’s experience, this is arguably the most important constraint with respect
to the domain reduction, as finding a very good upper bound on the cost tends to lead to
drastic reductions in X .
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Other cutting plane constraints may be derived from multiplier techniques [25], which
are based on the fact that the Lagrangian function must provide a lower bound on the cost
function for any feasible point (x∗loc included):

cT x∗loc +
ng

∑
i=1

λigi(x∗loc)+
nC

∑
i=1

µi(Cix∗loc−di)≤ cT x∗loc, (87)

with λ ∈ Rng
+ and µ ∈ RnC the Lagrange multipliers for the inequality and equality con-

straints, respectively. Since the Lagrangian at the global minimum must also minimize the
Lagrangian, it follows that the constraint

cT x+
ng

∑
i=1

λigi(x)+
nC

∑
i=1

µi(Cix−di)≤ cT x∗loc (88)

must be met for the global minimum. Since the constraints gi(x) are concave, their linear
underestimators may be used instead in the definition of C , thereby yielding the linear con-
straint:

cT x+
ng

∑
i=1

λili(x)+
nC

∑
i=1

µi(Cix−di)≤ cT x∗loc. (89)

Like the linear approximations themselves, these constraints will too be refined as X is
reduced.

The following subroutine is defined:

Subroutine D
User input: x0 (optional), U , X , C , gi(x), C, d, X∗loc, and Λ ∗, where X∗loc and Λ ∗ are the
matrices of coordinates and Lagrange multipliers for any previously found local optima,
and U is an upper bound on the random samples used to find x0 if it is not provided.
Output: C (updated), X∗loc (updated), Λ ∗ (updated).

1. If x0 is not given, randomly sample X until (a) a feasible x0 is found, or (b) U samples
have failed to find a feasible point. In the case of (a), proceed to Step 2. Otherwise,
terminate.

2. Initialize a local solver at x0 and solve (1) to local optimality to obtain x∗loc and the
corresponding multipliers λ ∗,µ∗.

3. Letting X∗loc,z ∈ X∗loc denote a row of X∗loc, if 6 ∃z : cT X∗loc,z ≤ cT x∗loc, replace (or introduce,
if X∗loc =∅) the cost cutting plane in C with cT x≤ cT x∗loc.

4. If 6 ∃z : ‖X∗loc,z− x∗loc‖2 ≤ εloc, where εloc is some specified tolerance, add the constraint
cT x+∑

ng
i=1 λ ∗i li(x)+∑

nC
i=1 µ∗i (Cix−di)≤ cT x∗loc to C and append x∗loc to X∗loc and [λ ∗ µ∗]

to Λ ∗.

It is important to note that Subroutine D may not be very useful for hard feasibility
problems where the feasible region is a small subset of X and where random sampling to
find a feasible point in less than U samples may be close to impossible.

4.3 Detailed Outline of the Active-Set RCP Algorithm

Bringing together the ideas of the previous two subsections, the entire algorithm is now
presented.
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Algorithm 3 (Active-Set RCP Algorithm)
User input: c, gi(x), C, d, C , X , U , and F , where F should be populated according to the
innate fathoming rules described in Section 4.2.
Output: X∗ (the set of solution candidates).

1. Initialize: N := 0 as the counter on the optimization problems solved (the dominant
computational effort). X∗ := ∅. V := ∅ and XV := ∅ as the validation basis and the
corresponding points for each member of the basis. S := [11×nm 01×(ng−nm)] as the ma-
trix of candidate active sets and subsets (initially a vector with only the nm mandatory
constraints accounted for, where the convention of listing the nm mandatory constraints
first is chosen). Slow := 0 as the vector of lower bounds corresponding to the constraint
sets in S (initially a scalar with a dummy value of 0 that serves as a place holder).
X∗loc :=∅,Λ ∗ :=∅,XC :=∅.

2. Run Subroutine D (N := N+1) with no x0 provided (unless a feasible point is somehow
known). Proceed to Step 6 if Subroutine D fails to find a feasible point. Otherwise,
denote the resulting local optimum by xup and proceed to Step 3.

3. Run Subroutine C (N := N +NC, where NC is the number of times that Problems (82)
or (83) are solved).

4. Run Subroutines A and B.
5. Solve the relaxed problem (N := N +1):

xlow := argminimize
x

cT x

subject to x ∈ C
. (90)

If max
i=1,...,ng

gi(xlow)≤ εg, where εg is the largest acceptable constraint violation, then ter-

minate and declare X∗ := xlow. Alternatively, if cT xup−cT xlow < ε , where ε is the largest
acceptable suboptimality, terminate and declare X∗ := xup.

6. If S =∅, terminate. Otherwise, define S̃1 as the first row of S. Remove the first row of S
and the first element of Slow. Denote by ñg the index of the last non-zero element of S̃1.
If ‖S̃1‖1 < n−nC−1, proceed to Step 7. Otherwise, proceed to Step 8.

7. Let Ik := {i : ñg +1≤ i≤ ng}, ordered in increasing order, and define those indices of Ik
for which individual constraints have been fathomed as IF := {i : ∃z : Fz = [01×(i−1) 1
01×(ng−i)], i≥ ñg +1}. Set Ik := Ik \ IF . Remove the last n−nC−‖S̃1‖1−1 elements of
Ik (this avoids exploring those branches that terminate without being able to reach full
cardinality, i.e. n−nC members). Set k equal to the first element of Ik:
(a) Define the candidate subset, S̃, as S̃1 with the kth element set to 1.
(b) If ∃z : Fz ∈ S̃, or if the set S̃ implies a full active set where conditionally linked active

constraints are not present together, then proceed to Step 7f.
(c) If ∃z : S̃ ∈Vz, append S̃ to S and cT xlow to Slow. Proceed to Step 7f.
(d) Define G̃a(x) as the constraint set corresponding to S̃ and solve (67) (N := N + 1).

If infeasible, append S̃ to F and proceed to Step 7f. Otherwise, append S̃ to S and,
denoting by x̃∗ the solution to (67), append cT x̃∗ to Slow. Define Vc as the Boolean
vector where Vc,i = 1,∀i : gi(x̃∗)≥ 0 (and 0 otherwise). Remove any rows z from V
for which Vz ∈ Vc, together with the corresponding rows from XV . Append Vc to V
and x̃∗ to XV .

(e) If gi(x̃∗) ≤ 0,∀i = 1, ...,ng or if N > 50, run Subroutine D (N := N + 1) with x̃∗ as
the initial point in the former case and no initial point in the latter (in this case, reset
N := 0). Update xup if a better local optimum is found. If Λ ∗ changes, follow with
Subroutines C (N := N +NC), A, and B, and then repeat the procedure of Step 5.
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For any rows i of S where Slow,i > cT xup, transfer the corresponding rows Si to F
and delete these rows from Slow. Find any indices i : XV,i 6∈C and remove these rows
from V and from XV .

(f) If k is the last element of Ik, return to Step 6. Otherwise, set k to the next element of
Ik and return to 7a.

8. Let Ik := {i : ñg +1≤ i≤ ng}, define IF as in Step 7, and set Ik := Ik \ IF . Set k equal to
the first element of Ik:
(a) Define the candidate active set, S̃, as S̃1 with the kth index set to 1.
(b) If ∃z : Fz ∈ S̃, or if the set S̃ is an active set where conditionally linked active con-

straints are not present together, then proceed to Step 8d.
(c) Define Ga(x) as the constraint set corresponding to S̃ and solve (22), denoting the

solution by x∗cand . If gi(x∗cand)≤ εg,∀i = 1, ...,ng, then append x∗cand to X∗.
(d) If k is the last element of Ik, return to Step 6. Otherwise, set k to the next element of

Ik and return to 8a.

Some remarks regarding this algorithm follow:

– There are three ways for Algorithm 3 to terminate. Criteria I and II will be defined as
the termination due to a sufficiently tight C , which yields a relaxed solution that either,
in the case of I, satisfies the concave constraints with an acceptable tolerance or, in the
case of II, yields a lower bound on the cost that is sufficiently close to the value for a
feasible local minimum that has already been found. Criterion III indicates that a full
active set search has been carried out, in which case the full set of candidates X∗ is
reported (the member with the lowest cost value corresponding to the global minimum).
If X∗ is empty, then this implies that the RCP problem is infeasible.

– Note that Termination Criteria I and II do not require the RCP problem to be regular,
as both declare a solution by more “traditional” means. Regularity is required for Ter-
mination Criterion III to be valid, however. Also note that Criterion III will yield all
global minima in the case that multiple equally good minima exist, while I and II may
terminate as soon as just one of these is found and proven to be globally minimal within
a certain tolerance.

– Some care should be taken with respect to the numerical tolerances of the multiple op-
timization problems and subroutines involved in the algorithm, as failing to do so may
lead to a nonrobust implementation with some feasible solutions being fathomed due
to slight numerical infeasibility. As just one example of where things could go wrong,
consider the case of a local solver finding the globally minimal cost (in Subroutine D)
lowered by a numerical error of −10−4, and thereby reporting cT xup = cT x∗− 10−4.
If this is then incorporated into C as a cutting plane constraint on the cost, which is,
in turn, used by a different (presumably more efficient and convex) solver to solve the
domain reduction and relaxed problems, it may be that the latter cannot find a feasi-
ble solution since the reported upper bound is slightly below what is feasible. Details
regarding where all such tolerances should be accounted for would result in a lengthy
discussion, which the reader is spared, but it is worth noting that they are quite important
nevertheless.

– The counter N adds a heuristic rule by which the RCP solver decides to “take a break”
from the active set search to perform a local minimization and hopefully find a new
local optimum with which to refine C . This is the only non-deterministic feature of
the algorithm, since the initial start point for the local minimization will be randomly
generated and, if a very good point is found, may lead to significant reductions in C and
therefore to earlier termination.
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– Algorithm 1 builds the active-set tree (e.g. Fig. 4) dimension-by-dimension, which re-
sults in Step 7 being exhausted before Step 8 is reached, with the latter corresponding to
the solution of the reverse problems (22) for any active sets that have not been fathomed.
Since the validation basis V is no longer needed in Step 8, it is no longer updated or used
there.

– The choice to order the elements of Ik in increasing order is not mandatory, and other
choices could be proposed. Essentially, this affects how the constraints are ordered when
growing the branches, and is likely to affect performance. It is difficult to say if this
choice could be optimized, however.

5 Illustrative Examples

Several NLP examples are chosen so as to illustrate the different benefits and drawbacks
of the extended RCP method. Specifically, the first two problems are those where RCP
should have an advantage, as these NLPs are innately RCP and have reasonable

( ng
n−nC

)
values. Example 6 in particular illustrates a case where the curse of dimensionality with
respect to the number of variables is broken by the RCP framework. Example 7 extends
RCP to the particular class of concave minimization problems for a modest dimension size
of n = 10, and shows that while the method may work well here, the computation times may
differ significantly depending on the available feasible points and on the nonlinearity of the
problem. Examples 8 and 9 then consider simple two-dimensional NLPs where piecewise-
concave approximations are needed to obtain the RCP form, and demonstrate how one could
still get guarantees of ε-optimality in the presence of approximation error. Example 9 also
shows a case where the global minimum is not unique (though unique locally). Finally,
Example 10 is application flavored and applies the extended RCP method to a maximum-
likelihood linear regression where the probability density function of the noise is bimodal.

In each case, the algorithm was coded in MATLAB R©, with the CVX-SeDuMi modeling-
solver combination [35,12,8] used for solving all of the convex problems presented in this
paper, while any local (nonconvex) minimizations were done with the MATLAB routine
fmincon. For all optimizations, it was verified that the solution converged to a local mini-
mum. It should be noted that none of these choices are considered as computationally op-
timal, but rather as convenient and sufficient for the proof-of-concept message presented
here. Since the dominant computational effort lies in the number of optimization problems
solved by Algorithm 3, the computational effort for each example is reported in terms of the
number of times that each type of optimizer is called, with the following three types being
relevant:

– “Convex”: Problems (67) and (22), which are general convex NLPs.
– “LP”: Given as two numbers, N1 +N2, with N1 denoting the LP problems (82) and (83)

solved during domain reduction and N2 denoting the LP relaxation (90) solved over C .
– “Local”: Problem (1) solved to local optimality.

The tolerances were defined as ε = 10−3,εg = 10−6,εX = 10−4,εloc = 10−6, and U := 106

was used for Subroutine D. The regularity of each problem was justified individually.

Example 5 (A Low-Dimensional Problem with Concave Constraints)

The following problem is solved:
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Fig. 7 The feasible region (lined) of (91) with the cost contours and global minimum given for the case of
c1 = 0.1,c2 = 1.0.

minimize
x1,x2

cT x

subject to −2.42(x1 +0.4)2 +1.1x1 + x2−0.235≤ 0
−1.1x2

1 +1.3x1− x2−0.17≤ 0
−e−5x1+4− x2 +1.2≤ 0
−(x1−0.5)2− (x2−0.5)2 +0.09≤ 0
−22(x1−0.3)2 +1.1x1 + x2−1.155≤ 0
−2.2(x1−0.5)2 +1.1x1 + x2−1.475≤ 0
−20(x1−0.1)2 +1.3x1− x2 +0.5≤ 0
x1,x2 ∈ [0,1]

, (91)

which is already in standard RCP form and has a disjoint feasible region as shown in Fig. 7.
The proof of regularity is easy and may be outlined as follows for the case where both

c1 6= 0 and c2 6= 0:

1. Since c1 6= 0 and c2 6= 0, any δx∗ ∈ N(cT ) must have both elements non-zero.
2. There are no constraints that are null in any such δx∗.

From Fig. 7, it is clear that the problem is not regular for c1 = 1,c2 = 0, for c1 =−1,c2 = 0,
or for c1 = 0,c2 =−1, as all of these realizations have an infinite number of global minima
that are not locally unique. Although not able to be proven regular for c1 = 0,c2 = 1, the
problem is effectively so since the constraint x2 ≥ 0, which hinders the regularity proof, may
be removed without affecting the feasible space.

The computational results for ten randomly generated c are reported in Table 1, and it
is seen that the computational burden for this problem is quite light regardless of how the
algorithm terminates. It is worth noting that the brute enumeration approach would require
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Table 1 Computational effort for Example 5.

c1 c2 Convex LP Local Termination

0.1 1.0 3 8 + 2 2 I
1.0 0.4 0 4 + 1 1 I
-0.2 0.7 0 6 + 1 1 II
-0.1 0.1 0 5 + 1 1 II
-0.6 2.2 0 10 + 1 1 II
0.7 1.6 4 16 + 2 2 II
0.6 -0.6 13 4 + 1 1 III
1.1 0.1 0 5 + 1 1 I
-0.1 -0.8 0 4 + 1 1 I
0.3 -1.3 9 4 + 1 1 III

solving
(11

2

)
= 55 convex problems to arrive at the solution, which, though probably ac-

ceptable, still requires a lot more computation than Algorithm 3. Finally, one sees that in
over half of the cases, domain reduction finds the solution before the active-set search even
begins.

Example 6 (High-Dimensional RCPs with Favorable Complexity)

Consider the RCP:

minimize
x

cT x

subject to −
n

∑
i=1

wix2
i + r ≤ 0

x≥ 0

, (92)

with c,w ∈Rn
++, and r = 1. A qualitative cut of this problem is shown in Fig. 8, from which

it is easily seen that the difficulty arises from the ellipse centered at the origin, generated
by the single concave constraint. This is, however, an example of an RCP with favorable
complexity, as the number of active sets (without any fathoming) is equal to

(n+1
n

)
= n+1

and scales linearly in n. As such, one could always solve this problem by solving n convex
optimization problems (the active set corresponding to only x ≥ 0 may be fathomed as the
solution for this set, x = 0, is clearly infeasible). The regularity of this problem is easily
proven as follows:

1. The constraint −Σ n
i=1wix2

i + r ≤ 0 is mandatory and must be active at any global mini-
mum (otherwise, 0 would be the trivial solution).

2. Since this constraint is nonlinear in all variables, a perturbation in any feasible δx∗ ∈
N(cT ) will make this constraint inactive, thereby losing global optimality.

Algorithm 3 is run for various dimension sizes n, with c and w randomly generated in
each case. As the algorithm requires upper bounds on the variables as well, an additional
set of constraints x ≤ 100 is provided, although these are quickly fathomed by the algo-
rithm. Table 2 reports the results, where it is seen that the active-set search, although not as
efficient as the brute enumeration for this problem, still manages to scale very nicely with
dimensionality, solving approximately n convex problems in each case. Significant extra
work is introduced by the domain reduction LPs, but these too appear to scale linearly (on
average) with n.

Example 7 (Concave Minimization)

The following problem is solved:
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Fig. 8 A two-dimensional cut of the feasible set from the example in (92), where the strict positivity of
the cost vector coefficients ensures that the solution always lie on the intersection of the strictly concave
constraint and n−1 of the linear constraints.

Table 2 Computational effort for Example 6.

n Convex LP Local Termination

20 22 40 + 1 1 III
40 43 80 + 1 2 III
60 63 240 + 2 3 III
80 82 402 + 3 3 III
100 104 596 + 3 4 III
120 125 360 + 3 3 III
140 143 423 + 3 3 III
160 163 642 + 2 3 III
180 183 1262 + 4 4 III
200 204 603 + 2 3 III

minimize
x1,...,x10

xT Qx+αcT x

subject to Ax≤ b
xi ∈ [0,1], i = 1, ...,10

, (93)

where A and b are defined as follows:

A =


2 −6 −1 0 −3 −3 −2 −6 −2 −2
6 −5 8 −3 0 1 3 8 9 −3
−5 6 5 3 8 −8 9 2 0 −9
9 5 0 −9 1 −8 3 −9 −9 −3
−8 7 −4 −5 −9 1 −7 −1 3 −2

 , b =


−4
22
−6
−23
−12

 , (94)
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Table 3 Computational effort for Example 7. The asterisk (*) denotes the case where the algorithm was warm
started with a cutting plane constraint ĉT x≤ ĉT x∗ in C , with ĉT x∗ the cost value at the global minimum.

α Convex LP Local Termination

-10 4 71 + 1 2 III
-1 3 96 + 1 2 III
-0.1 6 113 + 1 2 III
0.1 356 165 + 3 10 III
1 1005 242 + 14 24 III
1* 3 139 + 2 2 III
10 3 90 + 1 2 III

and where Q =−50I, c = [48 42 48 45 44 41 47 42 45 46]T . α is a scalar that is varied
for test purposes, with α := 1 corresponding to Test Problem 2.6 from [10].

This problem is easily converted into standard RCP form by employing the epigraph
transformation:

minimize
x1,...,x11

ĉT x

subject to xT Q̂x− x11 ≤ 0
Âx≤ b
xi ∈ [0,1], i = 1, ...,10, x11 ∈ [−500,0]

, (95)

with:

ĉ =
[

αc
1

]
, Q̂ =

[
Q 010×1

01×10 0

]
, Â = [A 05×1]. (96)

The bounds on the auxiliary variable x11 correspond to the minimal and maximum values
of xT Q̂x over X . It is clear that the new constraint is mandatory (i.e. it must be active at the
global optimum), and as such must belong to any active set that is considered.

The proof of regularity is similar to that of Example 6:

1. Any direction δx∗ ∈ N(ĉT ) must contain at least two non-zero elements.
2. The constraint xT Q̂x− x11 ≤ 0 is both mandatory and nonlinear in any such direction.
3. Since xT Q̂x−x11 ≤ 0 must be active at the global minimum, a step in any such δx∗ will

render it inactive and thereby lose global optimality.

Table 3 presents the computational results for different values of α . As might be ex-
pected (see, e.g., the discussion in [22]), problems with relatively small nonlinear effects
(i.e. α =±10) are solved very quickly due to the local minimization and domain reduction
subroutines being very effective at finding a good local minimum and reducing the box ac-
cordingly. When the nonlinear effects are more significant (α = 0.1,1.0), the computational
effort can increase significantly. This can, however, be overcome by providing a good ini-
tial point or “guess” of the globally minimal cost. For α = ±0.1, it should be noted that
the initial point found is much better for the case of α = −0.1 than for that of α = 0.1
(hence the discrepancy in computational effort between these two). For α = 1.0, compare
the performance when no initial upper bound is given with the performance when the global
minimum value is provided from the onset, allowing major reductions in X due to the con-
straint ĉT x≤ ĉT x∗ being incorporated into C . This serves to reinforce the importance of the
“good” cutting plane constraints in the RCP scheme.
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Example 8 (Extended RCP and Approximation Error Bounds)

Problem (58) is considered and reformulated into an RCP as shown in (59)-(61), with a
piecewise-linear function of np pieces used to either under-approximate or over-approximate
the convex portion of the true constraint. Clearly, using an under-approximation will yield
an RCP that has a larger feasible set than the original problem, with the opposite true for an
over-approximation. From this it follows that solving the under-RCP will produce a lower
bound on the globally minimal cost, while solving the over-RCP will produce an upper
bound. The gap between the two may then be seen as a bound on the approximation error and
may be used as a sort of feedback on the appropriate value of np, as choosing np to be very
large a priori would, though yielding a very accurate answer, introduce more constraints
into the RCP problem and thereby increase the computational burden.

Regularity is proven as follows:

1. One of the pi(x4)−x2
1−x2

2−x3 ≤ 0 constraints must be active at a global minimum due
to the epigraph transformation of the cost.

2. Any δx∗ ∈ N
([

cT

C

])
with non-zero first or second elements is removed from con-

sideration as this constraint is nonlinear in all such directions, making it impossible to
preserve global optimality while moving in any such δx∗. Only δx∗ where the first two
elements are 0 are therefore pertinent.

3. However, no such δx∗ exists since δx∗ ∈ N(C) implies that the fourth element is 0 as
well, but this precludes the existence of any non-zero δx∗ ∈ N(cT ).

Noting that the global minimum of this problem lies at [1.1667,0.5000] with a cost
value of −1.0833, the problem is now solved for both under- and over-approximations
with increasing np values. The results, given in Table 4, show that there is a steady in-
crease in both computational effort and solution accuracy as np increases, although there
are occasional (pleasant) surprises with respect to the former (see np = 200 for the over-
approximation case). Depending on the user’s requirements, the procedure of increasing np
could be brought to an end once the lower and upper bounds grow sufficiently close – for
np = 200, one sees that the gap is in the fourth digit, for example, which may be sufficiently
accurate. It is also worth noting that the upper bounds provided by the over-approximate
RCP solution can be further improved upon by a final local minimization – as the solu-
tion point here must be a feasible point for the original problem and therefore can only be
improved upon by any local descent method.

Example 9 (Nonlinear Equality Constraints and Multiple Global Minima)

Problem (62) is considered and placed into RCP form via the steps detailed in (63)-(66).
As mentioned earlier, the equality constraint x3 = sin x1 is broken into two inequalities and
the nonlinear univariate functions sin x1 and −sin x1 are under-approximated by piecewise-
concave functions (see also Fig. 6). It is implicit that these must be under-approximations,
as over-approximating both would lead to an infeasible set. So as not to mix lower and
upper bounds, the convex function is under-approximated as well, and so the resulting RCP
problem has a larger feasible set than the original and thereby yields a lower bound on the
globally minimal cost upon solution. An upper bound may be obtained by taking the solution
of the RCP problem and using it as a starting point for a local minimization of the original
problem. Like in the previous example, it is clear that finer and finer approximations may be
used until the gap between the lower and upper bounds is sufficiently small5.

The following reasoning is used to prove regularity:

5 For simplicity, the number of approximation pieces for each function is the same, with na = nb = nc = np.
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Table 4 Computational effort for Example 8. Here, (−) and (+) denote under- and over-approximations,
respectively.

np Convex LP Local Termination x∗ cT x∗

3− 0 9 + 1 1 II [1.4590,1.4692] -2.9307
3+ 11 11 + 1 2 III [1.5000,1.5000] -0.2500
5− 0 18 + 1 1 I [1.1348,0.4045] -1.5418
5+ 9 10 + 1 2 III [1.2500,0.7500] -1.0625
10− 13 14 + 1 2 III [1.1667,0.5000] -1.2377
10+ 26 10 + 1 2 III [1.2500,0.7500] -1.0625
15− 27 11 + 1 2 III [1.1964,0.5893] -1.1445
15+ 42 10 + 1 2 III [1.0833,0.2500] -1.0625
20− 34 14 + 1 2 III [1.2105,0.6316] -1.1122
20+ 46 10 + 1 2 III [1.1250,0.3750] -1.0781
30− 36 45 + 2 3 III [1.1379,0.4138] -1.0957
30+ 40 48 + 2 3 III [1.1667,0.5000] -1.0833
50− 45 110 + 3 3 I [1.1837,0.5510] -1.0877
50+ 52 89 + 2 4 III [1.1500,0.4500] -1.0825
100− 87 129 + 3 3 I [1.1667,0.5000] -1.0846
100+ 87 134 + 3 3 I [1.1750,0.5250] -1.0831
200− 172 292 + 4 4 I [1.1709,0.5126] -1.0836
200+ 19 192 + 3 3 II [1.1750,0.5250] -1.0831

1. At least one of the constraints pc,i(x6)− x2
3 − x2

4 − x5 ≤ 0 must be active at a global
minimum due to the epigraph transformation of the cost.

2. It follows that any δx∗ ∈ N
([

cT

C

])
with the third and fourth elements non-zero may

be excluded from consideration since the mandatory constraint is nonlinear in any such
δx∗ and therefore cannot remain active if perturbed locally in those directions.

3. The equality constraint x3 + x4− x6 = 0 then requires that the sixth element of δx∗ be 0
as well.

4. In order for δx∗ ∈ N(cT ), it is necessary that the fifth element of δx∗ also be 0. Overall,
it is now clear that only those δx∗ with the first two elements being non-zero are of
relevance.

5. From the equality constraint −x1 + 0.3x2 − x4 = 0, it follows that both the first and
second elements must be non-zero. As such, δx∗ = [0.3δx δx 0 0 0 0]T , with δx being
any non-zero number.

6. However, there are no constraints that are null in this δx∗ and that could allow for the
satisfaction of (5).

Virtually all of the innate fathoming rules given in Lemma 3 are relevant here. Apart
from the “inconvenience” of a nonlinear equality constraint, this problem has an additional
difficulty in that the objective function exhibits a symmetry (Fig. 9) and has two global min-
ima (at [−1.8601,5.0000] and [1.8601,−5.0000]), both with a cost value of −3.2205. The
consequence of this is that domain reduction is unlikely to be as effective as it may be in
certain problems, due to the two global minima being dispersed on nearly opposite corners
of the original domain and the impossibility of shrinking the domain without fathoming one
of these minima. The computational results, given in Table 5, largely confirm these expec-
tations, with domain reduction only playing a significant role for a poorly approximated
problem (np = 3), where it is likely that there is a significant discrepancy between the two
global minima due to approximation error. For better approximated problems, no real reduc-
tion occurs and the computational effort increases significantly. A smarter management of
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Fig. 9 The function f (x) = (sinx1)(−x1 + 0.3x2), which has two global minima (marked) over x1 ∈
[−2,2],x2 ∈ [−5,5] at [−1.8601,5.0000] and [1.8601,−5.0000].

Table 5 Computational effort for Example 9.

np Convex LP Local Termination x∗ cT x∗ Upper Bound

3 0 47 + 1 1 I [2.0000,-5.0000] -6.4366 -3.2205
5 389 11 + 3 3 III [-2.0000,5.0000] -3.5217 -3.2205
10 1525 11 + 2 9 III [1.5966,-5.0000] -3.2692 -3.2205
20 6109 12 + 2 27 III [-1.8246,5.0000] -3.2623 -3.2205

the approximations is clearly desired for these cases, as it is seen that simply breaking them
into finer and finer evenly-dispersed pieces leads to significant rises in the computations but
small improvements in the lower bounds (compare the case of np = 10 with that of np = 20).

Example 10 (Maximum-Likelihood Regression with a Bimodal Noise Distribution)

A univariate “unknown” affine function, L1u+L2, is sampled with noise v at ny evenly-
spaced discrete instants u1, ...,uny over the interval u ∈ [0,1]:

yi = L1ui +L2 + vi, i = 1, ...,ny, (97)

with the problem of interest being to estimate the parameters L1 and L2 from the available
input-output (u,y) data and a known probability density function (pdf) for v.

When v is additive white Gaussian noise, the standard approach to solving this problem
is that of simple least-squares linear regression, with the resulting fit being the one that is
the most statistically likely from the maximum-likelihood perspective. This is because the
general (log-)likelihood formulation



42 Gene A. Bunin

−6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

v

P
 (

v
)

v

Fig. 10 The probability density function of the noise in Example 10.

minimize
L1,L2,v̂

−
ny

∑
i=1

log Pv(v̂i)

subject to v̂i = yi−L1ui−L2, i = 1, ...,ny

, (98)

reduces to a least-squares problem when the pdf Pv : R→ R is that of the normal Gaus-
sian distribution [5]. More generally, Problem (98) may be solved efficiently using convex
programming whenever the function Pv is log-concave, but requires global optimization to
guarantee best solutions otherwise.

The following bimodal pdf is considered in this example (Figure 10):

Pv(v) =
1

7.5
√

2π
e−

1
2 (

v
1.5 )

2
+

1
1.25
√

2π
e−

1
2 (v−6)2

. (99)

So as to cast this problem as an RCP, the log-likelihood penalty function −log Pv(v) is
over-approximated by a piecewise-concave function p(v) of just three pieces, chosen here
in an ad hoc manner (rather than being calculated by Algorithm 1) so as to capture the
function’s main trends without creating too much of a computational burden (Figure 11).
This leads to the reformulation:

minimize
L1,L2,v̂

ny

∑
i=1

max (p1(v̂i), p2(v̂i), p3(v̂i))

subject to v̂i = yi−L1ui−L2, i = 1, ...,ny

, (100)

and, with the addition of auxiliary variables s and the epigraph transformation, to the RCP
form:

minimize
L1,L2,v̂,s

ny

∑
i=1

si

subject to v̂i = yi−L1ui−L2, i = 1, ...,ny
p1(v̂i)− si ≤ 0, i = 1, ...,ny
p2(v̂i)− si ≤ 0, i = 1, ...,ny
p3(v̂i)− si ≤ 0, i = 1, ...,ny

, (101)
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Fig. 11 The negative log-likelihood penalty function and its piecewise-concave approximation.

with the additional box constraints−6≤ vi ≤ 10 and 0≤ si ≤ 10 set based on the knowledge
of Pv. The “real” function is defined as having L1 = 10 and L2 = 0, and a priori box bounds
of 0 ≤ L1 ≤ 20 and −20 ≤ L2 ≤ 20 are assumed. Rather than attempt to rigorously bound
the solution (as in Examples 8 and 9), the answer obtained by solving (101) is taken as an
initial point for the local minimization of the original problem, which proves sufficient to
find the global minimum in all cases tested here.

RCP regularity is now (loosely) justified:

1. By the epigraph transformation, it follows that either p1(v̂i)− si ≤ 0, p2(v̂i)− si ≤ 0, or
p3(v̂i)− si ≤ 0 must be active at the global minimum for each i = 1, ...,ny.

2. Of the three pieces, only p2(v̂i) is nonlinear in v̂i (see Fig. 11). Suppose that p2(v̂i)−si≤
0 is active at the global minimum for two data points. Assign them, for simplicity, as
i = 1 and i = 2.

3. Since p2(v̂i) is nonlinear in v̂i, it follows that the elements in δx∗ corresponding to both
v̂1 and v̂2 must be 0, since otherwise p2(v̂1)− s1 ≤ 0 and p2(v̂2)− s2 ≤ 0 cannot remain
active for a local perturbation in δx∗.

4. Since the constraints v̂1 = y1−L1u1−L2, v̂2 = y2−L1u2−L2 must hold in δx∗, the first
and second δx∗ elements that would allow this would be [1 −u1] and [1 −u2] for the
two constraints, respectively, but these cannot be equal by the definition of u. As such,
no such δx∗ exists.

This justification is not entirely rigorous as it depends on the additional, though not very
unrealistic, supposition that the p2(v) constraint will prove limiting for at least two data
points. For a fully rigorous justification one could use nonlinear pieces for p1(v) and p3(v),
but this was not done here, and the justification above was considered sufficient.

The results for different data set sizes ny are presented in Table 6, with Figure 12 giv-
ing the visual performance for ny = 10 and ny = 50. There is a clear trend of the problem
becoming less and less nonconvex (and therefore more susceptible to domain reduction) as
ny increases – compare, for example, the contour plots in Figure 12. This is reflected in the
computational results, as domain reduction virtually takes over the computational effort for
problems with greater ny and almost single-handedly solves the problem.
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Table 6 Computational effort for Example 10.

ny Convex LP Local Termination

5 159 293 + 4 5 III
10 95 548 + 2 4 III
20 51 983 + 2 3 II
50 0 2039 + 1 1 II
100 1 7640 + 2 2 II
200 0 8840 + 1 1 II
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Fig. 12 Results for the maximum-likelihood regression of Example 10 for ny = 10 (top) and ny = 50 (bottom),
with the plots on the left showing the linear regression of the noisy data and the plots on the right showing
the contours of the original maximum-likelihood problem. Circles denote the linear fit (left) and the optimum
(right) found by solving the problem with the RCP method, while squares denote the same results for the
standard least-squares approach. In this case, the latter can be seen to correspond to an inferior local minimum.
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General Observations

It is first stated that the proposed method found the global minimum for all the problems
where this was readily verifiable, thereby confirming its theoretical properties and guaran-
tees.

Perhaps the most striking aspect of the results is the role of domain reduction (Subrou-
tine C) in the algorithm, as this allows for many problems to be solved without completing
the active-set search. Even for many of the cases where the algorithm finished the search
(e.g. Example 7), it was observed that the algorithm terminated much quicker following sig-
nificant domain reduction. This is not too surprising, however, given the documented success
of domain reduction techniques [25] and given the success of branch-and-reduce solvers like
BARON [33,26]. It is also interesting to note, however, that even after nearly complete re-
duction to a single point (as observed for Example 7), the algorithm terminated by Criterion
III and not by Criteria I or II – the tolerances ε and εg not being sufficiently large in these
cases, but fast termination still made possible by the effectiveness of the fathoming methods
in the active-set search. This may be seen as an advantage of the RCP scheme, in that it is
able to avoid the clustering issue that may arise in standard branch-and-bound schemes [25].

The noted dependance on domain reduction also acts, not surprisingly, as a weakness.
This is particularly obvious in Example 9, where the inability to reduce the domain due to the
presence of two well-dispersed global minima leads to significantly slower solution times
than in the other examples, although the dimensionality is not that large. A natural option
would be to split the search space as is done in branch-and-bound, although this introduces
a heuristic difficulty (how and when to split).

While not necessarily practical, Example 6 is nevertheless inspirational as it opens a new
avenue for solving large problems with very acceptable computational effort. The key, of
course, is the discrepancy between the number of possible active constraints and the degrees
of freedom n− nC. When effective fathoming techniques are able to reduce the number of
constraints to be considered significantly, it is not inconceivable that good scaling properties
may be noted for problems other than the one of Example 6. At the same time, Example 10
offers a case of a problem that scales well practically, though not theoretically, due to the
effectiveness of domain reduction techniques.

6 Concluding Remarks: Towards Extended RCP Homotopy

The work in this paper has proposed a new approach to solving a broad class of NLP prob-
lems to global optimality by approximating them as RCP problems and then applying an
active-set search scheme to find the active set defining the global minimum. While the pre-
liminary results are promising, there is naturally a lot to be done before this method can be
turned into a competitive NLP solver. Certainly, the fathoming “theory” presented in Section
4.2 is incomplete, and numerous advances, either already available or waiting to be discov-
ered, can improve the effectiveness of these techniques further. The same may be said for
domain reduction methods.

A seemingly more promising path for extended RCP improvement, however, may be the
one of homotopy, where the fundamental idea would be to solve simpler, more brute RCP
problems and recycle the obtained information to warm start more difficult ones. Examples
8 and 9 are perhaps the most direct illustration of this, as one sees that using coarser ap-
proximations improves computation times at the cost of accuracy. A homotopy approach for
these kinds of problems could incorporate the following:
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Fig. 13 A homotopy approach to solving extended RCP problems.

– starting with a small np, and using the obtained cT x∗ as an a priori upper bound on the
cost for problems with larger np,

– refining approximations only for those pieces that are shown to be relevant (i.e. not
refining approximations of constraints that will be fathomed anyway),

– recycling feasible points obtained from problems with small np values to be used for
problems with large np values,

– recycling fathomed constraint information wherever possible.

A very qualitative illustration of such a homotopy scheme, together with the idea of lower
and upper bounds, is given in Fig. 13. Note, however, that posing an over-RCP may not
always be so straightforward, as shown by Example 9 for the case of nonlinear inequality
constraints.

An additional interesting trait of the homotopy approach is that it may be generalized to
a standard RCP problem without approximations. The key technique at work here would be
that of joint constraints. Consider, for example:

g1(x)≤ 0
g2(x)≤ 0 ⇒ g1(x)+g2(x)≤ 0 , (102)

where the original RCP set (left) is approximated by a relaxed RCP constraint (right). The
latter would lead to an easier RCP problem with a larger feasible set, the solution of which
would yield a lower bound on the original. Such techniques could potentially be used to ap-
ply homotopy methods to RCP problems with unfavorable complexity due to a large

( ng
n−nC

)
value.

The ideal version of such a homotopy method would likely be one that solves very dif-
ficult NLP problems via a sequence of simple RCPs that are intelligently refined so as to
close the suboptimality gap, cT x∗up− cT x∗low, as quickly and efficiently as possible. Incorpo-
rating such intelligence into the refinement may not be trivial, however, and thus represents
a worthy topic for future research.
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