Restoring symmetry in two-dimensional solid-state NMR correlation spectra

Jose-Enrique Herbert-Pucheta, Philippe Pelupessy, Geoffrey Bodenhausen, Piotr Tekely

Ecole Normale Supérieure, Département de Chimie, 24 rue Lhomond, 75231 Paris cedex 05, France
Université Pierre-et-Marie Curie, Paris, France
UMR 7203 Laboratoire des Biomolécules, CNRS/UPMC/ENS, Paris, France

A R T I C L E I N F O

Article history:
Received 29 March 2012
In final form 14 May 2012
Available online 23 May 2012

A B S T R A C T

The intrinsic asymmetry of 2D solid-state homonuclear NMR correlation spectra that arises from a non-uniform preparation of the magnetization can be removed by equilibrating the magnetization in the initial stage of the experiments through dipolar recoupling induced by PARIS or PARISxy schemes. Both methods ensure magnetization exchange with modest radio-frequency amplitudes and permit one to create an initial state that restores the symmetry about the main diagonal of 2D spectra of uniformly labeled biomolecules. This improves the determination of structural and kinetic information. Both recoupling schemes may also be used to record nearly quantitative peak amplitudes in 1D cross-polarization magic-angle-spinning spectra.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Two-dimensional (2D) homonuclear correlation spectroscopy provides a powerful tool for the identification of spectral connectivities, the assignment of resonance lines, and the determination of internuclear distances and exchange rates [1]. Efficient magnetization transfer between spins such as carbon-13 or nitrogen-15 is a prerequisite for the assignment of solid-state NMR spectra of isotopically enriched molecules. Magnetization transfer can be brought about either via through-bond scalar couplings or via through-space dipolar interactions, provided the latter are ‘recoupled’ to cancel their elimination by magic angle spinning (MAS). To promote dipolar recoupling, we developed PARIS [2] and PARISxy [3] methods which permit one to achieve an efficient exchange of magnetization over a wide range of spinning frequencies and static magnetic fields and to record sensitive 2D correlation spectra of microcrystalline proteins [4], amyloid fibrils [5] and mixtures of crystallographic forms [6].

In solids, 13C–13C correlation spectra can be inherently asymmetric when cross-polarization from protons to carbons is employed before the evolution period, or, if the relaxation rates are not equal, when the delay between successive acquisitions is too short to allow a uniform recovery of the longitudinal magnetization. In spectra recorded by cross polarization, the asymmetry is most severe for cross-peaks between proton-carrying carbons on the one hand, and carbonyl, carboxyl, or quaternary carbons on the other, since the latter’s magnetization suffers from a slow build-up during cross-polarization. Asymmetric cross-peak intensities can also arise because of local variations in internal mobility. Whatever their origin, the asymmetry of 2D 13C–13C correlation spectra tend to complicate the assignment of uniformly labeled biomolecules and hamper the extraction of reliable structural and kinetic parameters. In order to record symmetric 2D spectra, it is desirable to equilibrate the magnetization in the initial stages of the experiments, preferably on a short time scale to avoid losses due to relaxation. It has been shown that the symmetry of the aliphatic region of a 2D 13C–13C correlation spectrum of ubiquitin could be improved by using rotary resonance based dipolar recoupling (RAD) [7] during an equilibration time [8] after cross-polarization. Taking advantage of efficient dipolar recoupling that can be promoted over wide spectral ranges by PARIS or PARISxy sequences, we present the first fully symmetric 2D 13C–13C correlation spectra over the whole spectral range. We also show that the requirements that must be fulfilled to record symmetric correlation spectra are similar, although not identical, to the requirements to obtain quantitative CP-MAS spectra where the integrated signal intensities are proportional to the number of nuclei.

2. Methods and materials

All experiments were performed in a magnetic field of 9.4 T (400 MHz for 1H) at spinning frequencies ν_{rot} between 20 and 30 kHz. The pulse sequences used in this work are shown in Figure 1. Either the phase-alternated recoupling irradiation scheme (PARIS) [2] or its phase-shifted counterpart PARISxy [3] were used...
to equilibrate the magnetization (dashed rectangles in Figure 1).
Both recoupling methods use rf fields applied only to the protons
with a moderate constant rf amplitude $m_{1(1H)}$ that need not fulfill
any rotary resonance condition [2,3]. For PARIS irradiation the
phase is reversed from $+x$ to $-x$ after a duration $\tau_p = N\tau_{rot}$ where
$N = \frac{1}{2}$ or 2. In this work we used only $N = 2$, since the magnetiza-
tion exchange between spectrally distant carbons such as carboxyl
and aliphatic carbons (separated by ca. 100–150 ppm or 10–15 kHz
at 9.4 T) is less efficient when using PARIS with $N = 1/2$ [2], while
PARIS with $N = 2$ generates recoupling bands at $m_{rot}/2$ on either side
of resonance signals [2]. For PARISxy, the pulse duration τ_p must
always be equal to half the rotor period ($\tau_p = \tau_{rot}/2$). PARISxy con-
sists of a block of m pairs ($m = 1$ or 2) of phase-alternated pulses
$[x(-x)]m$, followed by a phase-shifted block $[y(-y)]m$ [3]. Each
version creates different sets of recoupling bands which allows
their complementary use and flexible exploitation over a very
broad range of spinning frequencies and static magnetic fields
[3–6]. In the present work, with moderate spinning frequencies $20 < v_{rot} < 30$ kHz and a medium static magnetic field of 9.4 T, PARISxy ($m = 1$) naturally appears to be the method of choice [3].

3. Results and discussion

Figure 2 illustrates the effect of the initial equilibration of mag-
etization on 1D and 2D spectra of L-histidine recorded with the pulse sequences of Figure 1a and c. In the 1D spectra, the changes in peak intensities that result from equilibration show how the ini-
tial 13C magnetization is redistributed within the spin system. This
allows one to restore the symmetry about the main diagonal of 2D
spectra (Figure 2 top right). Figure 3 shows that the recovered sym-
metry does not depend on the mixing time. The asymmetry param-
eters g_{ij} are defined as ratios of peak volumes (integrated
amplitudes) $g_{ij} = I_{ij}/I_{ji}$ for cross-peaks on either side of the diagonal
that connect two chemically inequivalent sites i and j. When the
ratio $g_{ij} = 1$, this is synonymous of full symmetry. We noticed that
a similar improvement of the symmetry about the main diagonal
can be also achieved at higher spinning frequencies, provided the
equilibration time is longer (data not shown).

The intrinsic asymmetry of 13C–13C exchange spectra hampers
the extraction of reliable kinetic parameters. This is visualized in
Figure 4, which shows cross- and diagonal-peak volumes in pro-
ton-driven spin diffusion (PDS) and PARISxy exchange spectra re-
corded without equilibration. The time-dependence of the cross-
and diagonal-peaks was fitted by assuming that the initial part of
the build-up curves is governed by spin exchange between only
two sites, which allows one to express the intensities of the diagonal
peaks I_{ii} and cross-peaks I_{ij} as

\[I_{ii} = \frac{1}{2} \left(I_{0} + I_{1} \right) \]

\[I_{ij} = \frac{1}{2} \left(I_{0} - I_{1} \right) \]
structural information about internuclear distances is available from spin exchange rate constants governing the polarization transfer rate over a rotor cycle [13]. Assuming a weak collision approximation [14], the term \(F_{ij}(\omega) \) is given by a zero-quantum relaxation time constant \(T_2^{(0)} \) so that the powder average of the exchange rate constant under MAS may be written as

\[
W_{ij} = \left(\frac{\pi}{2} \right)^2 d_{ij}^2 T_2^{(0)}
\]

The zero-quantum relaxation rate is usually assumed to be approximately equal to the sum of the single-quantum relaxation rates of the two spins [15]. An estimate of \(T_2^{(0)} \) to be used in Eq. (5) was obtained from the \(1/T_2 \) rates of the corresponding \(^{13}\)C nuclei, as measured in the presence of PARISxy irradiation during the mixing time. The factor \(P_z(\cos \Theta_j)^2 \) was taken to be equal to 0.25 [13]. The exchange rate constants \(W_{ij} \) calculated from Eq. (5) are given in Table 1. The remarkable agreement between these calculated rate constants and those extracted by fitting the experimental data of Figure 5 to Eqs. (1), (2), although it may be perhaps somewhat fortuitous considering the number of assumptions and approximations, suggests that rate constants retrieved from symmetric 2D exchange spectra are directly related to internuclear distances and may be exploited for structure determination. This is analogous to the measurement of internuclear distances between chemically equivalent sites in rotating solids [16,17].

In experiments involving 3-site exchange, the time dependence of the longitudinal magnetization during the mixing time can be

\[
I_{ij} = A_y \exp(-R_{ij} \tau_m) (1 + \exp(-2k_I \tau_m))
\]

\[
I_{ij} = A_y \exp(-R_{ij} \tau_m) (1 - \exp(-2k_I \tau_m))
\]

where \(\tau_m \) is the mixing time, while \(k_I \) is the exchange rate constant between two sites. The spin–lattice rate constants \(R_{ij} \) describe the decay of the diagonal peak volumes, while the rate constants \(k_I \) describe the decaying envelopes of the cross-peaks. The differences between the fitted values of symmetry-related rate constants (the \(k_i \) resulting from fitting are unlike \(k_h \)), and between sites with similar internuclear distances \(r_{ij} \) and \(r_{jk} \) (\(k_i \) are unlike \(k_h \)), witness the difficulties of extracting reliable structural information from asymmetric exchange spectra. This stands in contrast to exchange data recorded after initial equilibration which, as shown in Figure 5, permits one not only to recover the symmetry about the main diagonal of the 2D spectra, but also to extract reliable exchange rate constants that correctly reflect the symmetry of the kinetic rate matrix.

Structural information about internuclear distances is available from spin exchange rate constants governing the polarization transfer (also called flip–flop or spin-diffusion processes) [12–15]. The exchange rate constant between spins \(S_i \) and \(S_j \) that are coupled to \(^1\)H spins is given by [12]

\[
W_{ij} = \left(\frac{\pi}{2} \right)^2 d_{ij}^2 F_{ij}(\omega)
\]

where \(d_{ij} \) denotes the effective dipolar coupling

\[
d_{ij} = -\frac{H_0}{4\pi} \left(\frac{\gamma_i^2 h}{\gamma_j T} \right) \frac{1}{2} (3 \cos^2 \Theta_j - 1)
\]

and \(r_{ij} \) is the internuclear distance, with the vector \(r_{ij} \) forming an angle \(\Theta_j \) with the external magnetic field. The term \(F_{ij}(\omega) \) is the intensity of the normalized zero-quantum (ZQ) spectrum (flip–flop transition of the two spins \(S_i \) and \(S_j \) at zero frequency \(\omega = 0 \)).
Figure 3. (a) Asymmetry parameters $\eta(C_i, C_j)$ and (b) $^{13}C-^{13}C$ exchange spectra of L-histidine as a function of the mixing time t_{mix} using the sequence of Figure 1c with equilibration through PARISxy recoupling ($m = 1$) during a time $t_{\text{eq}} = 1s$ with an rf amplitude $\nu _1(1H) = 20 \text{ kHz}$. The experimental conditions were the same as those of Figure 2.

Figure 4. (Bottom) Asymmetry parameters $\eta(C_i, C_j)$ and (top) peak volumes as a function of the mixing time t_{mix} obtained for alanine without initial equilibration (a) by proton-driven spin diffusion (PDSD), i.e., without any irradiation in the mixing time t_{mix}, and (b) by promoting exchange with PARISxy ($m = 1$) in the mixing time t_{mix} with an rf amplitude $\nu _1(1H) = 15 \text{ kHz}$. The spectra were recorded with a recovery delay $t_{\text{rd}} = 30s$ and a spinning frequency $\nu _{\text{rot}} = 20 \text{ kHz}$. Each panel shows the volume of a particular cross- or diagonal-peak. The solid lines represent fits of the data to Eqs. (1), (2), and the numbers give the exchange rates ($\pm 0.5 \text{ s}^{-1}$) derived from the fits. Note that these rates often violate the expected symmetry about the diagonal.
Table 1

<table>
<thead>
<tr>
<th>i,j</th>
<th>t0 (Å)</th>
<th>T2(0) (s)</th>
<th>W0 (s⁻¹)</th>
<th>k0 (s⁻¹)ᵃ</th>
<th>k0 (s⁻¹)ᵇ</th>
<th>1st population</th>
<th>2nd population</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃–CH</td>
<td>1.54</td>
<td>1.7 ± 0.1 x 10⁻⁵</td>
<td>29.2 ± 1.7</td>
<td>32.8 ± 0.5</td>
<td>15.1 ± 0.05</td>
<td>3.1 ± 0.05</td>
<td></td>
</tr>
<tr>
<td>CH₂–COOH</td>
<td>1.55</td>
<td>2.05 ± 0.1 x 10⁻⁵</td>
<td>33.5 ± 1.8</td>
<td>33.3 ± 0.5</td>
<td>22.8 ± 0.05</td>
<td>4.3 ± 0.05</td>
<td></td>
</tr>
<tr>
<td>CH₂–COOH</td>
<td>2.55</td>
<td>5.31 ± 0.05 x 10⁻³</td>
<td>4.4 ± 0.6</td>
<td>4.4 ± 0.6</td>
<td>6.6 ± 0.5</td>
<td>1.1 ± 0.05</td>
<td>0.4 ± 0.05</td>
</tr>
</tbody>
</table>

ᵃ Extracted by fitting experimental data using Eqs. (1), (2).
ᵇ By using the exchange matrix Eq. (7).
To reach the latter requirement, the slowly exchanging populations should in principle come to equilibrium. Figure 8 shows the changes in the 13C peak intensities of L-histidine as a function of the equilibration time t_{eq} obtained using the pulse sequence of Figure 1b with PARIS ($N = 2$) (top) and PARISxy ($m = 1$) (bottom). Under the present experimental conditions, both methods permit one to reach similar ($\pm 10\%$) magnetizations of chemically different nuclei on a time scale of a few hundreds of milliseconds, which compares favourably with other methods proposed to obtain quantitative CP-MAS spectra [19,20]. However, recording fully quantitative CP-MAS spectra would require a much longer equilibration time t_{eq}, depending on the amounts and rate constants of slowly exchanging populations. For given experimental conditions, this will depend on the choice of the methods used for equilibration.
4. Conclusions

We have demonstrated that the intrinsic asymmetry of homonuclear solid-state NMR 2D correlation spectra arising from a non-uniform preparation of the magnetization can be removed by equilibration in the initial stage of exchange experiments by taking advantage of PARIS or PARISxy irradiation schemes. Both methods promote dipolar recoupling and permit an efficient magnetization exchange between spectrally close and distant carbons. This, in turn, allows one to create an equilibrated initial state, leading to the restoration of the symmetry about the main diagonal of 2D correlation spectra. Recording symmetric 2D spectra improves the quantitative analysis of exchange rates and helps the assignment of intra-residual and sequential cross-peaks, possibly assisted by covariance analysis [21], through the signal enhancement in 2D correlation spectra of biomolecules, microcrystalline proteins and amyloid fibrils. We have shown that both recoupling schemes, even when using modest rf amplitudes, may also be exploited to record nearly quantitative 1D CP-MAS spectra.

Acknowledgments

Financial support from the Agence Nationale de la Recherche (Project ‘FastSpinProts’ ANR-09-BLAN-0111-01) and from the CNRS is gratefully acknowledged.

References