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ABSTRACT 

This report presents the work conducted during the semester project. We 

built and present a real-time multi-people tracker, which is based on the 

Kalman Filter. The input to the software is a Probabilistic Occupancy Map 

of the observed area. The main goal of the project was to incorporate this 

tracker to the real-time detection software available on the CVLab demo 

room. A standalone version was also built. The algorithm exploits 

appearance cues to prevent identity switches. Instead of computing the 

appearance difference in a frame-by-frame manner, an appearance model 

is initially built when an individual enters the scene and is afterwards 

matched against the detected people. The frame-by-frame spatial tracking 

of the Kalman Filter makes the algorithm computationally efficient and the 

appearance model matching increases the robustness. The experiments 

performed in the demo room show that the method is satisfactory. We also 

validate our algorithm on a few datasets and the results prove that the 

method can be used in many scenarios. In certain datasets it even 

outperforms the state-of-the-art method while it’s one to two orders of 

magnitude faster.  
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1. INTRODUCTION 

One common approach to multiple people tracking is to perform the task in two discrete 

steps. First an object detector is employed, which provides measurements (sometimes 

noisy) about the positions of each individual. On the second step, a tracking algorithm is 

used to link those detections and create continuous trajectories. On this project we 

concentrate on the second part of this process. The main goal was to integrate a real-

time multiple people tracker on the currently existing detection framework of the CVLab. 

Based on the requirements, a Kalman Filter was used to facilitate the tracking of each 

person. A multi-person tracker which also exploits appearance cues was built and 

presented in this report. 

1.1 Report structure 

The rest of this report is organized as follows. In the following section (1.2), the related 

work is presented. It is followed by a description of the existing detection framework in 

1.3. The basic theory behind the Kalman Filter is analyzed in chapter 2. In chapter 3 we 

discuss all the aspects of the tracker. Chapter 4 is devoted to the software 

implementation of the tracker and the architecture of the system. In chapter 5, we 

present the experiments of our approach. Finally, some conclusions and future work 

can be found in chapter 6. 

1.2 Related work  

A lot of work has been done on the field of multi-object tracking for many years, both in 

monocular and multi-view scenarios. We focus on the multi-view approaches, based on 

Kalman filter, which are relevant to our project. 

In [1], a Kalman filter is employed to simultaneously track in 2D image coordinates and 

3D world coordinates for each camera. The 2D/3D trackers of each camera share 

information to improve the performance and trajectory prediction, which is used in case 

of occlusions. 

In [2], the authors propose a system where multiple synchronized cameras are used to 

segment, detect and track multiple people. For each pair of cameras an object location 

likelihood map is formed. Those maps are combined, taking into account possible 

occlusions and a presence likelihood map on the ground plane is computed. The 

ground plane locations are then tracked using a Kalman filter. 
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In [3], both a motion model and an appearance model is used to keep track of each 

individual. The motion models are obtained using a Kalman filter which predicts the 

position both in 2D and 3D. The tracking is performed by the maximization of a joint 

probability model which takes into account both the appearance and motion model.  

1.3 Existing framework 

Currently, the demo room of the CVLab has a real-time detection application based on 

the POM [4] software1. The room has four cameras, one on each corner and a single 

door. The POM software provides real-time detections of people in the room, presented 

both in a grid and as boxes around the person on the live camera feed. The goal of this 

project is to provide not only detections of individuals in the room, but to also track them 

and present the tracking result in a similar manner (on video and on the grid). 

  

                                            
1 http://cvlab.epfl.ch/software/pom/ 

http://cvlab.epfl.ch/software/pom/
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2. KALMAN FILTER 

In this chapter we present the basic theory behind the Kalman filter [5], in the context of 

object tracking. Given the motion model of a moving object (which contains some kind 

of dynamic noise), and some noisy observations about its position, the Kalman filter 

provides an optimal estimate of its position at each time step. The optimality is 

guaranteed if all noise is Gaussian. Then the filter minimizes the mean square error of 

the estimated parameters (e.g. position, velocity). The Kalman filter is an online 

process, meaning that new observations are processed as they arrive. 

To formulate a Kalman filter problem, we require a discrete time linear dynamic system 

with additive white noise that models unpredictable disturbances. The Kalman filter tries 

to estimate the state 𝑥 ∈ 𝑅𝑛 of that system which is governed by the vector difference 

equation: 

 𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 + 𝑤𝑘−1 (1)  

with a measurement: 

 𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 (2)  

The random variables 𝑤𝑘, 𝑣𝑘  represent the process and measurement noise 

respectively. They are assumed to be zero mean, white noise with covariance matrixes 

𝑄, 𝑅 respectively. 

The matrix 𝐴 is called the state transition matrix and relates the previous state 𝑥𝑘−1 to 

the current state 𝑥𝑘, if no noise was present. The size of  𝐴 is 𝑛 × 𝑛. Matrix 𝐵 is optional 

and relates the control input (if any) 𝑢𝑘 ∈ 𝑅𝑙 to the state 𝑥𝑘. In the context of our tracker, 

there is no control input, thus the factor 𝐵𝑢𝑘 is dropped from the equation. Finally, the 

𝑛 × 𝑙 matrix 𝐻, relates the measurement 𝑧𝑘 to the state 𝑥𝑘. 

The Kalman filter maintains the following two estimates of the state: 

 �̂�(𝑘|𝑘 − 1), which is an estimate of the state at time-step 𝑘, given knowledge of 

the process up to step 𝑘 − 1. It is an a priori state estimate at time-step 𝑘. 

 �̂�(𝑘|𝑘) , which is an estimate of the process state at time-step 𝑘  given the 

measurement 𝑧𝑘. It is an a posteriori estimate of the state at time-step 𝑘. 

It also maintains the following two error covariance matrices of the state estimate: 
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 𝑃(𝑘|𝑘 − 1), which is the a priori estimate error covariance of �̂�(𝑘|𝑘 − 1)  

 𝑃(𝑘|𝑘), which is the a posteriori estimate error covariance of �̂�(𝑘|𝑘) 

A recursive minimum mean-square estimator, such as Kalman, operates in two phases 

on each time-step 𝑘. The first one is the prediction of the next state estimate �̂�(𝑘|𝑘 − 1) 

using the previous one. The second is the correction of that estimate using the 

measurement, to obtain �̂�(𝑘|𝑘). Initially, �̂�(1|1) and 𝑃(1|1) are considered known. To 

maintain those estimates, the following operations take place. In the prediction step: 

1. State prediction: 

 �̂�(𝑘|𝑘 − 1) = 𝐴 ∙ �̂�(𝑘 − 1|𝑘 − 1) (3)  

2. Error covariance prediction: 

 𝑃(𝑘|𝑘 − 1) = 𝐴 ∙ 𝑃(𝑘 − 1|𝑘 − 1) ∙ 𝐴𝑇 + 𝑄 (4)  

In the correction step: 

3. Measurement prediction: 

 �̂�(𝑘|𝑘 − 1) = 𝐻 ∙ �̂�(𝑘|𝑘 − 1) (5)  

4. Residual: 

 𝑟𝑘 = 𝑧𝑘 − �̂�(𝑘|𝑘 − 1) (6)  

5. Measurement prediction covariance: 

 𝑆𝑘 = 𝐻 ∙ 𝑃(𝑘|𝑘 − 1) ∙ 𝐻𝑇 + 𝑅 (7)  

6. Kalman gain: 

 𝑊𝑘 = 𝑃(𝑘|𝑘 − 1) ∙ 𝐻𝑇 ∙ 𝑆−1 (8)  

7. State update: 

 �̂�(𝑘|𝑘) = �̂�(𝑘|𝑘 − 1) + 𝑊𝑘𝑟𝑘 (9)  

8. Error covariance update: 

 𝑃(𝑘|𝑘) = 𝑃(𝑘|𝑘 − 1) − 𝑊𝑘 ∙ 𝑆𝑘 ∙ 𝑊𝑘
𝑇 (10)  
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So to initialize the Kalman filter, we have to define the state transition matrix 𝐴, the state 

– measurement matrix 𝐻, the two noise covariance matrices 𝑅, 𝑄 and at each time step 

to feed the filter with a measurement 𝑧𝑘. Those are all defined in the following chapter. 

While the Kalman Filter was selected for this project, the design of the system allows 

easy interchanging of the filter with some other frame-by-frame state estimator, such as 

a Particle Filter or an Extended Kalman Filter. 

 

Figure 1. The Kalman filter Predict/Correct model. 

 

For more information about the Kalman filter, the reader is referred to [6]. 
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3. TRACKING 

Let 𝑃𝑂𝑀(𝑥, 𝑦) be a Probabilistic Occupancy Map [4] of the scene with grid dimensions 

𝑊 × 𝐻  where 0 ≤ 𝑥 < 𝑊, 0 ≤ 𝑦 < 𝐻  and 0 ≤ 𝑃𝑂𝑀(𝑥, 𝑦) ≤ 1 . We threshold 𝑃𝑂𝑀  and 

keep only the values above 𝜃. This defines a function/grid 𝐺: 

 
𝐺(𝑥, 𝑦) = {

1, 𝑖𝑓 𝑃𝑂𝑀(𝑥, 𝑦) ≥ 𝜃
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 (11)  

Each position of the grid where 𝐺(𝑥, 𝑦) = 1 is considered as a measurement 𝑚 and 𝑀𝑘 

is the set of all the available measurements at a given frame 𝑘. 

Let 𝐶 be the number of cameras viewing the scene and providing frames at a constant 

framerate 𝑓𝑝𝑠. The interval between each frame is: 

 
𝑑𝑡 =

1

𝑓𝑝𝑠
 (12)  

In what follows, we discuss a single person tracker (section 0), the multi-person tracker 

(section 3.2) and the appearance model added on top of the multi-person tracker 

(section 3.3). 

The notation used throughout the chapter is summarized on Table 1. 

𝐺 Detection grid 

𝑑𝑡 Interval between two consecutive frames 

𝑥𝑘 State of the Kalman Filter at time-step 𝑘 

𝑧𝑘 Measurement provided to the Kalman Filter at time-step 𝑘 

𝑜 An object 

𝑚 A measurement 

𝑂𝑘 Set of objects at time-step 𝑘. Subscript 𝑘 may be dropped. 

𝑀𝑘 Set of measurements at time-step 𝑘. Subscript 𝑘 may be dropped. 

𝑁 = 𝑠𝑖𝑧𝑒(𝑂) Cardinality of the 𝑂 set 

𝐿 = 𝑠𝑖𝑧𝑒(𝑀) Cardinality of the 𝑀 set 

𝑝 = (𝑝𝑥, 𝑝𝑦) 2D coordinates of an object 

(𝑚𝑥,𝑚𝑦) 2D coordinates of a measurement 

(𝑣𝑥, 𝑣𝑦) 2D velocity of an object 

𝐷, �̇� Distance arrays. Original and augmented 

𝑐 A camera 

𝐶 Set of cameras 

𝑁𝐶 = 𝑠𝑖𝑧𝑒(𝐶) Cardinality of 𝐶 set 

𝑊,𝐻 View width and height 

Table 1. Notation table 
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3.1 Single person tracking 

Using a Kalman Filter, tracking of a single individual in the scene is a relatively easy 

task. Let (𝑝𝑥, 𝑝𝑦) be the real 2D coordinates of the object in the grid, (𝑚𝑥,𝑚𝑦) the 2D 

coordinates of a measurement in the grid so that 𝐺(𝑚𝑥,𝑚𝑦) = 1  and (𝑣𝑥, 𝑣𝑦)  the 

velocity in each direction. The state vector 𝑥𝑘 and measurement vector 𝑧𝑘 of the Kalman 

filter on frame 𝑘 are defined as: 

 𝑥𝑘 = (𝑝𝑥, 𝑝𝑦, 𝑣𝑥, 𝑣𝑦) (13)  

 𝑧𝑘 = (𝑚𝑥,𝑚𝑦) (14)  

The State-Measurement matrix 𝐻 is then defined as: 

 𝐻 = [
1 0 0 0
0 1 0 0

] (15)  

Assuming that a person moves with constant velocity, the state equations are defined 

as: 

 𝑝𝑥𝑘 = 𝑝𝑥𝑘−1 + 𝑣𝑥𝑘−1 ∙ 𝑑𝑡 

𝑝𝑦𝑘 = 𝑝𝑦𝑘−1 + 𝑣𝑦𝑘−1 ∙ 𝑑𝑡 

𝑣𝑥𝑘 = 𝑣𝑥𝑘−1 

𝑣𝑦𝑘 = 𝑣𝑦𝑘−1 

(16)  

And the state transition matrix: 

 

𝐴 = [

1
0

0
1

𝑑𝑡
 0

0
𝑑𝑡

0
0

0
0

1
0

 
0
1

] (17)  

The measurement noise covariance matrix 𝑅 and the process noise covariance matrix 

𝑄 are defined as: 

 
𝑅 = [

𝜎𝑚𝑥
2 0

0 𝜎𝑚𝑦
2 ] (18)  
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𝑄 = [

𝜎𝑝𝑥
2

0

0
𝜎𝑝𝑥

2
0
0

   
0
0

0    
0    

0
0

𝜎𝑣𝑥
2

0

0
𝜎𝑣𝑦

2

] (19)  

Where 𝜎2  denotes variance of each quantity. In our case, the measurement noise 

corresponds to the POM detections noise, and is set in the beginning of the execution. 

The process noise is defined according to the motion we want to track. For pedestrian 

tracking, usually there are small variations to their speed. 

On the other hand, for sport players, the variance of their velocity vectors is greater. 

Having defined those vectors and matrices, at each time step we update the Kalman 

filter with the new measurement and then predict an estimate �̂�𝑘  of its state as 

described in chapter 0. The 2D spatial coordinates (𝑝�̂�, 𝑝�̂�) of the state, is considered 

as the position 𝑝 of the object 𝑜. 

For single person tracking, if at some frame 𝑘 more than one measurement (due to 

noise probably) is found in the scene, then the measurement closest to the person’s last 

estimated location (𝑝�̂�𝑘−1, 𝑝�̂�𝑘−1) is assigned to that object and used to update the 

Kalman filter. 

When a measurement is not available, then the Kalman Filter is updated by its predicted 

state and not corrected by any measurement. 

3.2 Multiple person tracking 

The multi-person tracking is a generalization of the single person tracker. We assume 

that the motion of each person is independent of the others. For each object in the 

scene, a separate Kalman Filter is initialized and models its trajectory. The multi-person 

tracker maintains a set of objects 𝑂𝑘 currently being tracked at frame 𝑘 and a set of 

measurements 𝑀𝑘 available on this frame. Let 𝑁𝑘 denote the number of objects and 𝐿𝑘 

denote the number of measurements.  

 𝑂𝑘 = {𝑜1, 𝑜2, … , 𝑜𝑁𝑘
} (20)  

 𝑀𝑘 = {𝑚1, 𝑚2, … ,𝑚𝐿𝑘
} (21)  
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For the rest of the section, we drop the subscript 𝑘 from the notation and discuss for a 

single frame. 

Some caution must be taken, on how to link the measurements with the trajectories. For 

now, consider the case where there are as many measurements as the objects being 

tracked, 𝑁 = 𝐿. We deal with noisy detections on the following section (3.2.2). 

A very simple, yet efficient, algorithm to assign a measurement to each object, would be 

to iteratively traverse the list of objects and for each one calculate the closest 

measurement and assign it to it. This measurement would then be invalidated and the 

next object will be processed. The algorithm is presented below. 

Algorithm 1. Greedy assignment 

1: 𝑁 = 𝑠𝑖𝑧𝑒(𝑂) 
2: 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑[𝑁]  =  {𝑓𝑎𝑙𝑠𝑒} 
3: 𝑓𝑜𝑟 𝑖 =  1 𝑡𝑜 𝑁 
4:    𝑑𝑖𝑠𝑡𝑠[: ]  =  𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝑜𝑖, 𝑀, 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑) 
5:    (𝑑𝑚𝑖𝑛, 𝑚) = min(𝑑𝑖𝑠𝑡𝑠) 
6:    𝐴𝑠𝑠𝑖𝑔𝑛 𝑀[𝑚] 𝑡𝑜 𝑜𝑖 

7:    𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑[𝑚] = 𝑡𝑟𝑢𝑒 
8: 𝑒𝑛𝑑 𝑓𝑜𝑟 

Function 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝑜,𝑀, 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑)  computes and returns an array of 

distances between object 𝑜 and every measurement 𝑚 ∈ 𝑀 which has 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑[𝑚] =

𝑓𝑎𝑙𝑠𝑒. The function min (𝑑𝑖𝑠𝑡𝑠)  returns the minimum distance 𝑑𝑚𝑖𝑛  and the 

corresponding measurement 𝑚 . The distance used throughout this section is the 

Euclidean distance between the object’s position and the measurement’s position on 

the grid. 

This obviously is a greedy algorithm which might not lead to the best assignment 

between objects and measurements, since at each iteration it tries to minimize the 

“local” distance of this object and the available measurements. Also, depending on the 

order, which the objects are going to be processed, the output might be different. 

Consider the situation depicted in Figure 2, where the diamonds represent the 

measurements and the triangles represent two objects (𝑜1: red, 𝑜2: blue) being tracked. 

The red object lies in the middle of the two measurements, slightly closer to 𝑚2. Using 

Algorithm 1, the red object will be linked to 𝑚2 since it will be processed first, leaving 

only 𝑚1 available for the blue object. The resulting assignment (𝑟𝑒𝑑 − 𝑚2, 𝑏𝑙𝑢𝑒 − 𝑚1) is 

probably not the optimal one. 
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3.2.1 Optimal object – measurement assignment 

A better idea is to use an algorithm that minimizes the sum of all distances between 

every object – measurement linked pair. Using such an algorithm the result would be 

the globally optimal one, as shown in Figure 3. 

 

 

Basically we need an assignment that maps every measurement to exactly one object 

and every object to exactly one assignment such that the total distance is minimized. To 

find such an assignment, we need to properly formulate the problem. As before, 𝑂 

denotes the set of objects and 𝑀 the set of measurements. Let 𝐷𝑁×𝑁 be a matrix of the 

distances between every 𝑜 ∈ 𝑂 and 𝑚 ∈ 𝑀 such that 𝐷(𝑖, 𝑗) = 𝑑𝑖𝑠𝑡(𝑜𝑖, 𝑚𝑗).  

 

𝐷 =

[
 
 
 
𝑑1,1

𝑑2,1
⋯

𝑑1,𝑁

𝑑2,𝑁

⋮ ⋱ ⋮
𝑑𝑁,1 ⋯ 𝑑𝑁,𝑁]

 
 
 
 (22)  

𝑚1 

𝑚2 

Figure 2. Assignment of the Greedy algorithm 

𝑚1 

𝑚2 

Figure 3. Optimal assignment 
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We want to find a bijection (one-to-one correspondence) 𝑓: 𝑂 → 𝑀 such that the quantity 

below is minimized: 

 
∑𝐷(𝑖, 𝑓(𝑖))

𝑁

𝑖=1

 (23)  

This can be formulated as linear optimization program: 

 
Minimize ∑ ∑ 𝐷(𝑖, 𝑗) ∙ 𝑎𝑖𝑗

𝑗∈𝑀𝑖∈𝑂

 

Subject to ∑ 𝑎𝑖𝑗 = 1𝑖∈𝑂  ∀𝑗 ∈ 𝑀  

 ∑ 𝑎𝑖𝑗 = 1𝑗∈𝑀  ∀𝑖 ∈ 𝑂  

 𝑎𝑖𝑗 ≥ 0 ∀𝑖 ∈ 𝑂, 𝑗 ∈ 𝑀  

 

(24)  

This is a well-known optimization problem (the Assignment Problem) and is proved to 

have an optimal solution [7] where the variables 𝑎𝑖𝑗 take the value 1 if object 𝑜𝑖 is linked 

with measurement 𝑚𝑗, or 0 otherwise. The problem can be solved in polynomial time 

using the Hungarian Method. The analysis of this algorithm is out of the scope of this 

report and the reader is referred to [7], [8] for more information.  

In our implementation, initially we calculate the pair-wise distances of every object and 

measurement and then employ an instance of the Hungarian Algorithm solver to find the 

optimal assignment. Given that the number of objects is usually fairly small, the 

algorithm is very efficient and can be used in our real-time tracker. 

3.2.2 Dealing with detection noise 

As is usually the case, the detections are noisy. There are two different types of noise 

that can arise during the detection phase.  

1) Wrongly positioned detections. 

2) Different number of detections (𝐿 using the previous notation) than the actual 

number of the objects (𝑁) being tracked. 

In the first case, Kalman filter, by its design, can deal with those outliers and provide a 

smooth trajectory. To handle the second case, though, we need to modify the 
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assignment method described in section 3.2.1, since 𝐿 ≠ 𝑁 .Two cases can be 

distinguished: a) The number of measurements is greater than the number of objects 

being tracked, 𝑁 < 𝐿 and b) the number of measurements is less than the number of 

objects being tracked, 𝑁 > 𝐿. 

In both cases, we construct the array of pair-wise distances 𝐷𝑁×𝐿 as before. Let 𝑟 =

max (𝑁, 𝐿). Next, we augment as many columns/rows needed to 𝐷 to create an 𝑟 × 𝑟 

matrix �̇�. The distance between an object and an augmented measurement is set to +∞ 

(same for augmented objects). With then run the Hungarian method on matrix �̇�, which 

will still link objects and measurements that provide the global minimum of the objective 

function.  

Below, we describe three examples that demonstrate the linking algorithms under noisy 

detections. 

a) Number of objects greater than the number of measurements, 𝑁 > 𝐿. Consider the 

four objects (triangles) and the two measurements (diamonds) shown in Figure 4. Let 

the original distance matrix 𝐷4×2 be: 

 

𝐷 = [

8 4
1 6
4
6

3
1

] (25)  

It is obvious that 𝑜2 should be linked to 𝑚1 and 𝑜4 to 𝑚2, while the remaining two object 

shouldn’t be linked with any measurement. Since the Hungarian method requires the 

two sets to have equal cardinalities, we augment the matrix with 2 measurements as 

discussed. 

 

𝑚2 

𝑚1 
𝑜2 

𝑜3 

𝑜4 

𝑜1 

Figure 4. The case where there are more objects than measurements 
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The augmented matrix �̇� will be: 

 

�̇� = [

8 4
1 6
4
6

3
1

∞ ∞
∞ ∞
∞
∞

∞
∞

] (26)  

And the Hungarian method will produce the desired output (𝑜2, 𝑚1), (𝑜4, 𝑚2). The two 

remaining objects will be assigned to one of the two augmented columns, but they is no 

actual measurement corresponding to them. 

b) Consider, now, the case of Figure 5 where 𝐿 > 𝑁. There are 4 measurements and 2 

objects. 

 

 

Let the original distance matrix 𝐷4×2 be: 

 𝐷 = [
8 1 3 7
1 7 6 4

] (27)  

We augment the matrix with two more objects and it becomes: 

 

�̇� = [

  8 1  3  7  
  1 7  6  4  
∞ ∞ ∞ ∞
∞ ∞ ∞ ∞

] (28)  

Running the Hungarian method on �̇� will produce the assignment {(𝑜1, 𝑚2), (𝑜2, 𝑚1)}. 

c) Finally, consider the case where 𝑁 = 𝐿, but a detection for an object is absent, while 

two detections appear for another object. This is shown in Figure 6. This configuration 

𝑚4 

𝑚2 
𝑜2 

𝑜1 

𝑚3 

𝑚1 

Figure 5. The case where there are more measurements than objects 
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will result in a normal execution of the Hungarian algorithm and the assignment 

(𝑜1, 𝑚2), (𝑜2, 𝑚1). While this is actually the optimal solution to the assignment problem, 

we might want to avoid the linking of 𝑜1 with 𝑚2. For this reason, we set a threshold on 

the maximum distance between an object and a measurement can be linked. 

  

Figure 6. The case where two measurements are detected for an object, while none for the other 

The complete assignment algorithm is presented in the following section (3.2.3). 

3.2.3 The complete linking algorithm 

With those modifications in mind the complete linking algorithm can be summarized as 

follows. 

The function 𝑐𝑜𝑚𝑝𝑢𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝑜,𝑀) computes the distances between the object 𝑜 and 

every measurement 𝑚 ∈ 𝑀 . The 𝐻𝑢𝑛𝑔𝑎𝑟𝑖𝑎𝑛(𝐷)  returns an array of size 𝑟  with the 

measurement assigned to each object. Only the first 𝑁 are then processed (not the 

augmented) to determine if they are below the threshold distance 𝜃. 

Algorithm 2. Optimal linking algorithm 

1: 𝑁 = 𝑠𝑖𝑧𝑒(𝑂), 𝐿 = 𝑠𝑖𝑧𝑒(𝑀) 
2: 𝑟 = max (𝑁, 𝐿) 
3: 𝐷[𝑟 × 𝑥] = ∞ 
4: 𝑓𝑜𝑟 𝑖 =  1 𝑡𝑜 𝑁 
5:    𝐷[𝑖, 1: 𝐿]  =  𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝑜𝑖, 𝑀) 
6: 𝐴[: ] = 𝐻𝑢𝑛𝑔𝑎𝑟𝑖𝑎𝑛(𝐷) 
7: 𝑓𝑜𝑟 𝑖 =  1 𝑡𝑜 𝑁 
8:     𝑚 = 𝑀[𝐴[𝑖]] 
9:     𝑖𝑓  𝑑𝑖𝑠𝑡(𝑜𝑖, 𝑚) < 𝜃 
10:        𝐴𝑠𝑠𝑖𝑔𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑀[𝐴[𝑖]]𝑡𝑜 𝑜𝑖 

 

  

𝑚2 

𝑚1 
𝑜2 

𝑜1 
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3.2.4 Track management 

Each object has a timestamp describing the last frame on which a measurement was 

assigned to it. When the detection – object linking phase of the current frame is 

complete, two more steps are performed. 

3.2.4.1 Disabled Objects 

If for some reason, the algorithm has lost track of an individual, meaning that no 

measurement was assigned to that specific trajectory, for more than a predefined 

number of frames, then the specific object is disabled and no output is produced for this 

individual.  

At each frame, all the disabled objects are checked against measurements that are not 

assigned to an existing enabled object. If the appearance model at a detection grid 

position matches one of the disabled persons’, then the corresponding trajectory is re-

enabled and continues as normal. 

3.2.4.2 Access points 

The tracker allows individuals to enter or exit the scene at specific locations called 

access points, which are defined in the configuration file. For the demo application in 

our lab, a single access point is defined at the door. A measurement near the access 

points, which is not part of an existing trajectory, triggers the creation of a new person 

being tracked. Similarly, if the last observed detection of the trajectory was near an 

access point, then the corresponding person is removed from the list of objects being 

tracked. 

In the first few frames, when the application starts, every grid cell is considered as an 

access point so that people who are already in the scene will be tracked. After that 

point, only individuals who enter through the access points are tracked. 

3.3 Appearance model 

Up until now, to link a measurement with an object we considered only the Euclidean 

distance between the two points. However if two trajectories intersect, there is the 

possibility of an identity switch. To minimize the number of identity switches, we exploit 

the color information of an object to build an appearance model for each individual. 



Real time multi-object tracking using multiple cameras 

 

 19  

Initially, for each camera, we build an occlusion map as described in 3.3.1. Then, for 

those individuals that are not occluded in at least 𝑘  views, we create a YCbCr 

normalized color histogram of their image for each camera. The color histogram has 3 ×

20 bins. For the 𝑘 non-occluded views, we calculate the average of those histograms, 

and this serves as the appearance model of the person.  

To calculate the color histogram of a person for a camera, we first crop the rectangle 

defined by the bounding box corresponding to the specific grid position. Then, we use 

the background subtraction to mask only the part of it that actually contains pixels 

belonging to the moving object. Finally, we convert those pixels to YCbCr color space 

and build a normalized histogram on those. The appearance model is only defined if the 

percentage of pixels that contributed to the histogram (with respect to the number of 

pixels in the bounding box) is above a threshold. The various steps of this process can 

be seen in Figure 7. 

 
 

(a) 

 
 

(b) 

    

 

(c) (d) (e) (f) (g) 

Figure 7. (a) Captured image with track result. (b) Background subtraction of that frame. (c) Region of 
interest of the original image. (d) ROI of the background subtraction. (e) Masked part of the image. (f) Y, Cb, 
Cr channels of (e). (g) Concatenated histogram of the 3 normalized histograms of the YCbCr channels with a 
total of 3x20 bins. 
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This process is repeated at each frame for all measurements in the grid, so each 

measurement has an appearance model associated with it. When a new object enters 

the scene, the appearance model of its corresponding measurement is assigned to it on 

the first frame that the object is not occluded in a specified number of cameras. From 

that point on, that appearance model will be used to compute the distance (section 

3.3.2) between that person’s appearance model and every measurement’s appearance 

model. 
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Figure 8. Appearance model computation workflow 

 

As is clear, we don’t rely on a frame-by-frame appearance matching as this would still 

cause problems when two persons’ trajectories intersect. By combining the frame-by-

frame nature of the Kalman filter spatial tracking and the aforementioned appearance 
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model matching, the algorithm becomes more robust while still is computationally 

efficient. 

The complete workflow of the appearance model computation is presented in Figure 8. 

3.3.1 Handling occlusions 

On the previous section, we said that in order to calculate the appearance model on a 

specific location 𝑙 (3D cylinder of specific height corresponding to a grid position), only 

the non-occluded views of that location 𝑙 are used. To find which cameras have a clear 

view of 𝑙, we build an occlusion map for each camera. We describe the process for a 

camera 𝑐. 

An image 𝐼 of equal size to the captured frame is created and every pixel is set to zero. 

For each measurement 𝑚  available in that time-step, the bounding box 𝑏  of that 

measurement for the camera 𝑐 is retrieved (since the cameras are calibrated, we know 

the exact projection of the 3D cylinder in a specific grid position to the camera 𝑐). The 

pixels of image 𝐼 inside the rectangle 𝑏 are incremented by 1. We do this for every 

measurement. In the end the image 𝐼 looks like the one in Figure 9. We know that a 

location is not occluded if the sum inside the corresponding bounding box is exactly the 

same as the number of pixels in that rectangle. In practice, we allow a small percentage 

(10%) of the box to be occluded. In the image black corresponds to 0, dark grey 

corresponds to 1 and light grey corresponds to 2. So in (a) we know that no objects are 

occluding each other, while in (c) the green and blue boxes are occluding each other. 

So once the image 𝐼  is computed, we just have to check if the sum inside each 

rectangle is equal to the area of that rectangle. To efficiently compute the sum inside 

each rectangle, we first compute the integral image 𝐼𝑖𝑛𝑡𝑒𝑔  of 𝐼 . Then the sum of a 

rectangle can be computed in constant time. 

The algorithm for computing the non-occluded views is the following. The algorithm 

takes as input the view width 𝑊 and height 𝐻 , the number of cameras 𝑁𝐶  and the 

measurements 𝑀, where 𝑠𝑖𝑧𝑒(𝑀) = 𝐿. It returns a boolean array 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑑[𝐿, 𝑁𝐶] which 

denotes if the measurement 𝑚 is occluded in camera 𝑐. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 9. (a), (c) Views from camera #1 and #2. (b) Corresponding occlusion maps 

 

Algorithm 3. Occlusion map computation 

1: 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑑[𝑁𝐶 × 𝐿] = 𝑡𝑟𝑢𝑒 
2: 𝐹𝑜𝑟𝑒𝑎𝑐ℎ 𝑐𝑎𝑚𝑒𝑟𝑎 𝑐 
3:    𝐼[𝑊 × 𝐻] = 0 
4:    𝐹𝑜𝑟𝑒𝑎𝑐ℎ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑚 ∈ 𝑀 
5:        𝑏 = 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑥(𝑚. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑐) 
6:       𝐼(𝑏) = 𝐼(𝑏) + 1 
7:     𝐸𝑛𝑑 𝑓𝑜𝑟𝑒𝑎𝑐ℎ 
8:     𝐼𝑖𝑛𝑡𝑒𝑔 = 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙(𝐼) 

9:     𝐹𝑜𝑟𝑒𝑎𝑐ℎ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑚 ∈ 𝑀 
10:        𝑏 = 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑥(𝑚. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑐) 
11:       𝑠 = 𝑠𝑢𝑚(𝐼𝑖𝑛𝑡𝑒𝑔, 𝑏) 

12:        𝑖𝑓 (𝑎𝑟𝑒𝑎(𝑏) ∗ (1 + 𝜃) ≥ 𝑠)   
13:            𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑑[𝑐,𝑚] = 𝑓𝑎𝑙𝑠𝑒 

14:       𝐸𝑛𝑑 𝐹𝑜𝑟𝑒𝑎𝑐ℎ 
15: 𝐸𝑛𝑑 𝑓𝑜𝑟𝑒𝑎𝑐ℎ 
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The function 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑥(𝑝, 𝑐)  returns the bounding rectangle of position 𝑝  in 

cameras’ 𝑐 image. The value 𝜃 is the allowed occlusion threshold. 

3.3.2 Distance of histograms 

Kullback – Leibler (KL) divergence of two probability distributions 𝑃, 𝑄  of a discrete 

random variable is defined as: 

 
𝐷𝐾𝐿(𝑃||𝑄) = ∑𝑃(𝑖)𝑙𝑛

𝑃(𝑖)

𝑄(𝑖)
𝑖

 (29)  

The KL divergence is only defined if both 𝑃 and 𝑄 sum to 1 and if 𝑄(𝑖) > 0 for any 𝑖 that 

𝑃(𝑖) > 0. The quantity 0𝑙𝑛0 is interpreted as zero.  

In the case of normalized histograms the first condition (sum to 1) is always met. 

However, the second condition proves to be problematic. In many cases on our 

experiments only one of the two quantities 𝑃(𝑖), 𝑄(𝑖) was zero.  

For that reason, we chose to use the Jensen – Shannon (JS) Divergence as the 

distance between two color histograms. The JS Divergence is defined as: 

 
𝐷𝐽𝑆(𝑃||𝑄) =

1

2
(𝐷𝐾𝐿(𝑃||𝑀) + 𝐷𝐾𝐿(𝑄||𝑀)) (30)  

where 𝑀 =
1

2
(𝑃 + 𝑄). 

The JS divergence can always be calculated and is a finite value (unlike KL 

divergence). If for some 𝑖 , 𝑃(𝑖) > 0  and 𝑄(𝑖) = 0 , then 𝑀(𝑖) > 0 , so 𝐷𝐾𝐿(𝑃||𝑀)  and 

𝐷𝐾𝐿(𝑄||𝑀) can always be computed. Also JS divergence has the nice property that: 

 0 ≤ 𝐷𝐽𝑆(𝑃||𝑄) ≤ 1 (31)  

if base 2 logarithm is used for the computation. This property is extremely useful 

because there is no need for a normalization of the result. 

3.3.3 Updated measurement – object distance 

The distance function used in the linking algorithm described in 3.2.3, is altered to also 

take into account the appearance model distance. The new distance between a 

measurement and object is defined as: 
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 𝑑𝑖𝑠𝑡(𝑜,𝑚) = 𝑤 ∗ 𝐷𝑒𝑢𝑐𝑙𝑁 (𝑝𝑜, 𝑝𝑚) + (1 − 𝑤) ∗ 𝐷𝐽𝑆(𝑎𝑜, 𝑎𝑚) (32)  

where 𝑤 is a weight factor,  𝑝𝑜 , 𝑝𝑚are the 2D points associated with the object and the 

measurement, 𝑎𝑜 , 𝑎𝑚  the appearance models associated with the object and the 

measurement and 0 ≤ 𝐷𝑒𝑢𝑐𝑙𝑁(𝑥, 𝑦) =
𝑑𝑖𝑠𝑡(𝑥,𝑦)

𝑀𝐴𝑋_𝐷𝐼𝑆𝑇
≤ 1 is the normalized Euclidean distance 

between two points 𝑥, 𝑦 . The 𝑀𝐴𝑋_𝐷𝐼𝑆𝑇  is the maximum distance on the grid, 

corresponding to the diagonal. 
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4. SOFTWARE 

In this chapter, we present the software implementation aspects of the project. The 

project was implemented in C++ and uses the Qt library for its Graphical User Interface. 

It is now integrated with the existing real-time detection framework of the CVLab (see 

section 1.3). A standalone version was also built which takes as input the Probability 

Occupancy Map generated by the publicly available POM software1. A side-project was 

to extend the current software so as to provide a recording tool, which saved the videos 

either directly from the cameras or after the detection / tracking. Also, we added support 

to the framework for more than 4 cameras. Those two extensions are discussed in 

sections 4.4 and 4.5 respectively. 

4.1 Tracking framework pipeline 

The complete pipeline of the demo system is show in the diagram below (Figure 10). To 

avoid unnecessary delays in the communication, the various subsystems share circular 

buffers where they read/write. For example, such a circular buffer is used between the 

CameraController and the Tracker to write and read (respectively) the frame captured 

from a camera. All the components run on different threads.  
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Figure 10. Tracking framework pipeline 

                                            
1 http://cvlab.epfl.ch/software/pom/ 

http://cvlab.epfl.ch/software/pom/
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4.2 Architecture of the tracker 

The tracker was designed in such a way that the Kalman Filter can be easily substituted 

by some other frame-by-frame filter, such as a Particle Filter or an Extended Kalman 

Filter. Those filters should just provide a similar interface to the tracker software.  

The tracker module, as can be seen in the pipeline diagram (section 4.1), has been 

placed between the Detector and Display subsystem and runs on a separate thread. 

The Detector was altered to emit a signal each time it gets update. The Tracker catches 

that signal and updates the trajectories on each time step. The Tracker in turn, emits a 

signal that it has been updated, which is caught by the display subsystem that presents 

the output on the window. 

The main classes of the system are:  

 KalmanFilter. OpenCV’s implementation of Kalman Filter is used. There are two 

main methods being used: Predict() and Correct() which perform the steps 

described in the corresponding section. To implement a Kalman Filter from 

scratch one needs to write the code to perform a few matrix operations as 

described in chapter 0. OpenCV’s implementation was chosen in order to avoid 

rewriting code for matrix operations. 

 Object, which models a person being tracked. Each object contains a 

KalmanFilter that keeps track of it. 

 AppearanceModel. This models encapsulates a histogram as described in 

section 3.3. It also provides the methods to compute the histogram from the 

input image, to normalize it and also compute the distance (JS or KL) between 

two Appearance Models. 

 MultipleObjectsTracker. This is the main class of the program and provides 

methods for linking measurements to objects (Section 3.2.3), for handling 

disabled objects or those entering / exiting the scene (Section 0), for computing 

the occlusion maps and appearance models on each measurement position 

(Section 0) and various other tasks. The method 𝑇𝑟𝑎𝑐𝑘𝐹𝑟𝑎𝑚𝑒() is responsible of 

invoking all the internal methods, to update the state of every object for that 

frame. 

 Measurement. This class represents a measurement. It contains the position of 

the measurement, as well as the associated Appearance Model. 
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More information and details about the implementation can be found inside the source 

code files.  

4.3 Standalone version 

A standalone version was also implemented, so that we could evaluate our algorithm on 

various datasets. The algorithm and the classes are essentially the same as described 

before. The main difference is the input files. The main input files are the probabilities of 

occupancy of each grid position for each frame, in the open POM format. To visualize 

the detections, the bounding boxes for each grid position and each camera should be 

given in the same format as in the POM input files. If the appearance model is to be 

used, a video file of each camera should be given as input, together with the 

background subtractions for each frame. Those background subtractions can be either 

a video file for each camera or separate .png images, as is the input for POM. The 

paths for all the input and some parameters are set in a configuration file (similar to the 

one POM uses). Sample configuration files are provided for three datasets (Basketball, 

Soccer, Lab 6P). 

This version can either run completely verbose in the console and produce an output 

similar to the one that KSP produces or present the tracking results on the input video 

and on a grid. Also it has the ability to save a video with the tracking result; both 

bounding boxes on each person and the tracking grid. The output is an MPEG-4 

encoded .avi file in the same size and framerate as the original. All those options can be 

set in the configuration file. 

To execute the standalone version use the command: 

“./kalman_pom <CONFIG_FILE>” 

4.4 Recording 

We modified the configuration tool to allow the recording of raw video from every 

camera connected to the system.  

The output video of each camera has the original camera size (1032 x 778) saved at 30 

fps and encoded in MPEG-4 .avi format with a bitrate of 51385 kb/s. 

To allow concurrent smooth video presentation on the screen and recording, different 

threads have to be started that handle the saving. For this purpose, the class 
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videoRecorder was built. It’s basically a wrapper around the OpenCV’s VideoWriter1 

class. For each camera, one instance of videoRecorder is created and assigned to a 

new thread. This class reads from the corresponding camera buffer, passes the frame 

to the encoder and saves it to the specified output video. The tool was tested with 6 

cameras and could handle simultaneous video presentation and writing on the original 

size and frame rate.  

4.5 Support for more cameras 

The configuration tool of the framework was extended to support an arbitrary number of 

Ethernet cameras. The user has now the ability to click on any of the four views and 

then press the number of the camera that she wishes to switch to. So each view of the 

four views can be connected to any of the cameras plugged into the system. The 

recording feature, presented above, automatically captures from all the cameras, not 

only those shown. 

When a new camera is connected to an Ethernet adapter of the computer, the Reverse 

Path Filtering of the kernel for that adapter should be turned off, for the driver to be able 

to communicate with the camera. To do this, run the command  

“sysctl -w net.ipv4.conf.ethX.rp_filter=0” where X is the adapter number where the 

camera is connected. This change is temporary until the system is rebooted. To make 

the change permanent edit the file /etc/sysctl.conf and set the same variable as in the 

command. 

 

 

  

                                            
1 http://opencv.willowgarage.com/wiki/documentation/cpp/highgui/VideoWriter 

http://opencv.willowgarage.com/wiki/documentation/cpp/highgui/VideoWriter
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5. EXPERIMENTS 

The complete real-time tracking application is operating on a demo room of the CVLab 

at EPFL. There are 4 cameras, one in each corner of the room. A screenshot of one of 

the cameras, together with the grid can be seen below.  

  
 

(a) 
 

(b) 

Figure 11. (a) Screenshot from one of the cameras of the CVLab demo room. (b) Corresponding detection 
grid 

The real-time demo in the CVLab room can handle up to 5 or 6 people. This limitation is 

due to the size of the room and the positions of the cameras. People tend to occlude big 

parts of the image which results in pretty bad detections from the POM. As is shown 

next, our method can easily handle 20 or more persons in a scene. 

Apart from the real-time experiments conducted in the demo room, we evaluated the 

algorithm on three publicly available datasets, using the standalone version of the 

software (Section 4.3). For each dataset, we calculated the GMOTA metric as defined in 

[9]. The GMOTA metric is an extension of the well known Multiple Object Tracking 

Accuracy (MOTA) metric [10], where the 𝑚𝑚𝑒𝑡  term is substituted by 𝑔𝑚𝑚𝑒𝑡 . It is 

defined as: 

 
𝐺𝑀𝑂𝑇𝐴 = 1 −

∑ (𝑐𝑚(𝑚𝑡) + 𝑐𝑓(𝑓𝑝𝑡) + 𝑐𝑠(𝑔𝑚𝑚𝑒𝑡))𝑡

∑ 𝑔𝑡𝑡
 (33)  

where 𝑚𝑡 is the number of miss-detections, 𝑓𝑝𝑡 is the number of false positives and 𝑔𝑡 

is the number of ground truth detections. The term 𝑔𝑚𝑚𝑒𝑡 measures the proportion of 
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identity switches in a global manner (unlike 𝑚𝑚𝑒𝑡, in MOTA metric, which is the number 

of instantaneous identity switches). More information about the definition of 𝑔𝑚𝑚𝑒𝑡 can 

be found in [9]. The 𝑐𝑚, 𝑐𝑓 and 𝑐𝑠 are weighting functions set to 𝑐𝑚(𝑥) = 𝑐𝑠(𝑥) = 1 and 

𝑐𝑠(𝑥) = log10 𝑥, as in [9]. 

We tested our algorithm on three different datasets. The first one is the publicly 

available ISSIA dataset [11], which is a 2 minutes video footage shot at 25 fps by 6 

cameras. It features 25 people, 11 of each team and 3 referees. The second dataset is 

a 4000 frames sequence from a basketball match, shot by 6 cameras on 25 fps. There 

are 14 people being tracked, five people and one coach on each team and two referees. 

Even though 6 cameras were used for the detection by POM, only 4 of them were used 

for computing the appearance models for the tracker. The last dataset is the publicly 

available 6 person laboratory video sequence shot in our demo room1. It consists of a 

3000 frames shot at 25 fps by 4 cameras. 

  

Figure 12. Two screenshots from the ISSIA dataset 

We compare this algorithm to a number of different algorithms: The K-Shortest Paths 

method [12] (KSP), a modified version of KSP which takes into account appearance 

information from frame to frame (C-KSP), the state-of-the-art Linear Programming 

method that exploits the appearance model [9] and two tracklet versions of the LP 

method (Multi Commodity Network Flow), referred to as LLP and TLP. The GMOTA 

scores for the soccer dataset are presented below (Figure 13). 

In the soccer dataset, our method achieves similar scores with the LLP method while it 

outperforms all the others. This happens because of the reliable POM detections, the 

fact that there aren’t many occlusions and the large (in general) distance between the 

                                            
1 http://cvlab.epfl.ch/data/pom/ - Laboratory Sequence – 6 People 

http://cvlab.epfl.ch/data/pom/
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players. When two players are close to each other, they are usually from different teams 

and the appearance model helps differentiating between the two. 

 

Figure 13. Soccer dataset GMOTA scores 

The computational aspects of our algorithm are summarized on Table 2. The algorithm 

runs on a single core of an Intel i7 3.2GHz processor. The method proved to be very 

efficient which was a primary goal of this project, since we plan to add new features in 

the real-time tracking pipeline (see section 6.1).  

Sequence # Cameras Resolution # People FPS 

Lab 4 360 x 288 4 173 

Soccer 6 480 x 270 25 170 

Basketball 4 1294 x 964 14 25 

Table 2. Frames per second, for each different dataset 

As can be observed in the table, high resolution videos can slow down the algorithm; in 

those cases, the appearance model computation becomes a bottleneck because the 

number of pixels to be processed is quite large. In practice, we can subsample the 

original image before we compute the appearance models. 
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6. CONCLUSION 

We have presented a real-time people tracker built on top of the POM detector. It is 

based on the Kalman Filter and can keep track of many people simultaneously. An 

unknown number of people, entering or exiting the scene at any moment, can be 

tracked. The algorithm exploits appearance cues to prevent identity switches. Instead of 

computing the appearance difference in a frame-by-frame manner, an appearance 

model is initially built when an individual enters the scene and is afterwards matched 

against the detected people. The algorithm was integrated to the existing demo 

application of the CVLab. Also a standalone version was built and used to evaluate our 

method. The frame-by-frame spatial tracking of the Kalman Filter makes the algorithm 

computationally efficient and the appearance model matching increases the robustness. 

In certain datasets it outperforms the state-of-the-art method while it’s one to two orders 

of magnitude faster. As a side-project, we added support for more than 4 cameras in the 

existing demo and implemented a recording tool that captures each camera’s feed. 

6.1 Future Work 

Even though the current tracking framework avoids some identity switches, by exploiting 

the image appearance, it doesn’t prevent them at all. On situations where individuals 

wear clothes of similar colour or part of the clothes of a person match the background 

colour, the appearance model is essentially meaningless.  

We plan to extend the framework so as to exploit the facial characteristics of each 

individual and build face models. The purpose of building a face model is twofold: a) the 

facial information, when available, could be combined with the current motion and 

appearance models, to provide more accurate tracking across frames. b) The face 

model will be used to identify the person by matching it against those in a face 

database. Such an algorithm could be used in applications, where specific individuals 

need to be tracked and their motion to be modeled.  
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