

CVLab: Computer Vision Laboratory
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne
http://cvlab.epfl.ch/

Real time multi-object tracking
using multiple cameras

Semester Project

Michalis Zervos

Supervisor Professor Pascal Fua

Teaching Assistant Horesh Ben Shitrit

Spring Semester

June 2012

http://cvlab.epfl.ch/

ABSTRACT

This report presents the work conducted during the semester project. We

built and present a real-time multi-people tracker, which is based on the

Kalman Filter. The input to the software is a Probabilistic Occupancy Map

of the observed area. The main goal of the project was to incorporate this

tracker to the real-time detection software available on the CVLab demo

room. A standalone version was also built. The algorithm exploits

appearance cues to prevent identity switches. Instead of computing the

appearance difference in a frame-by-frame manner, an appearance model

is initially built when an individual enters the scene and is afterwards

matched against the detected people. The frame-by-frame spatial tracking

of the Kalman Filter makes the algorithm computationally efficient and the

appearance model matching increases the robustness. The experiments

performed in the demo room show that the method is satisfactory. We also

validate our algorithm on a few datasets and the results prove that the

method can be used in many scenarios. In certain datasets it even

outperforms the state-of-the-art method while it’s one to two orders of

magnitude faster.

SUBJECT AREA: Computer Vision

KEYWORDS: People Tracking, Kalman Filter, Appearance Model

CONTENTS

1. INTRODUCTION .. 4

1.1 Report structure .. 4

1.2 Related work ... 4

1.3 Existing framework .. 5

2. KALMAN FILTER ... 6

3. TRACKING ... 9

3.1 Single person tracking ... 10

3.2 Multiple person tracking .. 11

3.2.1 Optimal object – measurement assignment 13

3.2.2 Dealing with detection noise ... 14

3.2.3 The complete linking algorithm ... 17

3.2.4 Track management ... 18

3.3 Appearance model .. 18

3.3.1 Handling occlusions .. 21

3.3.2 Distance of histograms ... 23

3.3.3 Updated measurement – object distance 23

4. SOFTWARE ... 25

4.1 Tracking framework pipeline ... 25

4.2 Architecture of the tracker ... 26

4.3 Standalone version ... 27

4.4 Recording .. 27

4.5 Support for more cameras ... 28

5. EXPERIMENTS .. 29

6. CONCLUSION .. 32

6.1 Future Work .. 32

ACKNOWLEDGEMENTS .. 32

REFERENCES ... 33

Real time multi-object tracking using multiple cameras

 4

1. INTRODUCTION

One common approach to multiple people tracking is to perform the task in two discrete

steps. First an object detector is employed, which provides measurements (sometimes

noisy) about the positions of each individual. On the second step, a tracking algorithm is

used to link those detections and create continuous trajectories. On this project we

concentrate on the second part of this process. The main goal was to integrate a real-

time multiple people tracker on the currently existing detection framework of the CVLab.

Based on the requirements, a Kalman Filter was used to facilitate the tracking of each

person. A multi-person tracker which also exploits appearance cues was built and

presented in this report.

1.1 Report structure

The rest of this report is organized as follows. In the following section (1.2), the related

work is presented. It is followed by a description of the existing detection framework in

1.3. The basic theory behind the Kalman Filter is analyzed in chapter 2. In chapter 3 we

discuss all the aspects of the tracker. Chapter 4 is devoted to the software

implementation of the tracker and the architecture of the system. In chapter 5, we

present the experiments of our approach. Finally, some conclusions and future work

can be found in chapter 6.

1.2 Related work

A lot of work has been done on the field of multi-object tracking for many years, both in

monocular and multi-view scenarios. We focus on the multi-view approaches, based on

Kalman filter, which are relevant to our project.

In [1], a Kalman filter is employed to simultaneously track in 2D image coordinates and

3D world coordinates for each camera. The 2D/3D trackers of each camera share

information to improve the performance and trajectory prediction, which is used in case

of occlusions.

In [2], the authors propose a system where multiple synchronized cameras are used to

segment, detect and track multiple people. For each pair of cameras an object location

likelihood map is formed. Those maps are combined, taking into account possible

occlusions and a presence likelihood map on the ground plane is computed. The

ground plane locations are then tracked using a Kalman filter.

Real time multi-object tracking using multiple cameras

 5

In [3], both a motion model and an appearance model is used to keep track of each

individual. The motion models are obtained using a Kalman filter which predicts the

position both in 2D and 3D. The tracking is performed by the maximization of a joint

probability model which takes into account both the appearance and motion model.

1.3 Existing framework

Currently, the demo room of the CVLab has a real-time detection application based on

the POM [4] software1. The room has four cameras, one on each corner and a single

door. The POM software provides real-time detections of people in the room, presented

both in a grid and as boxes around the person on the live camera feed. The goal of this

project is to provide not only detections of individuals in the room, but to also track them

and present the tracking result in a similar manner (on video and on the grid).

1 http://cvlab.epfl.ch/software/pom/

http://cvlab.epfl.ch/software/pom/

Real time multi-object tracking using multiple cameras

 6

2. KALMAN FILTER

In this chapter we present the basic theory behind the Kalman filter [5], in the context of

object tracking. Given the motion model of a moving object (which contains some kind

of dynamic noise), and some noisy observations about its position, the Kalman filter

provides an optimal estimate of its position at each time step. The optimality is

guaranteed if all noise is Gaussian. Then the filter minimizes the mean square error of

the estimated parameters (e.g. position, velocity). The Kalman filter is an online

process, meaning that new observations are processed as they arrive.

To formulate a Kalman filter problem, we require a discrete time linear dynamic system

with additive white noise that models unpredictable disturbances. The Kalman filter tries

to estimate the state 𝑥 ∈ 𝑅𝑛 of that system which is governed by the vector difference

equation:

 𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 + 𝑤𝑘−1 (1)

with a measurement:

 𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 (2)

The random variables 𝑤𝑘, 𝑣𝑘 represent the process and measurement noise

respectively. They are assumed to be zero mean, white noise with covariance matrixes

𝑄, 𝑅 respectively.

The matrix 𝐴 is called the state transition matrix and relates the previous state 𝑥𝑘−1 to

the current state 𝑥𝑘, if no noise was present. The size of 𝐴 is 𝑛 × 𝑛. Matrix 𝐵 is optional

and relates the control input (if any) 𝑢𝑘 ∈ 𝑅𝑙 to the state 𝑥𝑘. In the context of our tracker,

there is no control input, thus the factor 𝐵𝑢𝑘 is dropped from the equation. Finally, the

𝑛 × 𝑙 matrix 𝐻, relates the measurement 𝑧𝑘 to the state 𝑥𝑘.

The Kalman filter maintains the following two estimates of the state:

 �̂�(𝑘|𝑘 − 1), which is an estimate of the state at time-step 𝑘, given knowledge of

the process up to step 𝑘 − 1. It is an a priori state estimate at time-step 𝑘.

 �̂�(𝑘|𝑘) , which is an estimate of the process state at time-step 𝑘 given the

measurement 𝑧𝑘. It is an a posteriori estimate of the state at time-step 𝑘.

It also maintains the following two error covariance matrices of the state estimate:

Real time multi-object tracking using multiple cameras

 7

 𝑃(𝑘|𝑘 − 1), which is the a priori estimate error covariance of �̂�(𝑘|𝑘 − 1)

 𝑃(𝑘|𝑘), which is the a posteriori estimate error covariance of �̂�(𝑘|𝑘)

A recursive minimum mean-square estimator, such as Kalman, operates in two phases

on each time-step 𝑘. The first one is the prediction of the next state estimate �̂�(𝑘|𝑘 − 1)

using the previous one. The second is the correction of that estimate using the

measurement, to obtain �̂�(𝑘|𝑘). Initially, �̂�(1|1) and 𝑃(1|1) are considered known. To

maintain those estimates, the following operations take place. In the prediction step:

1. State prediction:

 �̂�(𝑘|𝑘 − 1) = 𝐴 ∙ �̂�(𝑘 − 1|𝑘 − 1) (3)

2. Error covariance prediction:

 𝑃(𝑘|𝑘 − 1) = 𝐴 ∙ 𝑃(𝑘 − 1|𝑘 − 1) ∙ 𝐴𝑇 + 𝑄 (4)

In the correction step:

3. Measurement prediction:

 �̂�(𝑘|𝑘 − 1) = 𝐻 ∙ �̂�(𝑘|𝑘 − 1) (5)

4. Residual:

 𝑟𝑘 = 𝑧𝑘 − �̂�(𝑘|𝑘 − 1) (6)

5. Measurement prediction covariance:

 𝑆𝑘 = 𝐻 ∙ 𝑃(𝑘|𝑘 − 1) ∙ 𝐻𝑇 + 𝑅 (7)

6. Kalman gain:

 𝑊𝑘 = 𝑃(𝑘|𝑘 − 1) ∙ 𝐻𝑇 ∙ 𝑆−1 (8)

7. State update:

 �̂�(𝑘|𝑘) = �̂�(𝑘|𝑘 − 1) + 𝑊𝑘𝑟𝑘 (9)

8. Error covariance update:

 𝑃(𝑘|𝑘) = 𝑃(𝑘|𝑘 − 1) − 𝑊𝑘 ∙ 𝑆𝑘 ∙ 𝑊𝑘
𝑇 (10)

Real time multi-object tracking using multiple cameras

 8

So to initialize the Kalman filter, we have to define the state transition matrix 𝐴, the state

– measurement matrix 𝐻, the two noise covariance matrices 𝑅, 𝑄 and at each time step

to feed the filter with a measurement 𝑧𝑘. Those are all defined in the following chapter.

While the Kalman Filter was selected for this project, the design of the system allows

easy interchanging of the filter with some other frame-by-frame state estimator, such as

a Particle Filter or an Extended Kalman Filter.

Figure 1. The Kalman filter Predict/Correct model.

For more information about the Kalman filter, the reader is referred to [6].

Real time multi-object tracking using multiple cameras

 9

3. TRACKING

Let 𝑃𝑂𝑀(𝑥, 𝑦) be a Probabilistic Occupancy Map [4] of the scene with grid dimensions

𝑊 × 𝐻 where 0 ≤ 𝑥 < 𝑊, 0 ≤ 𝑦 < 𝐻 and 0 ≤ 𝑃𝑂𝑀(𝑥, 𝑦) ≤ 1 . We threshold 𝑃𝑂𝑀 and

keep only the values above 𝜃. This defines a function/grid 𝐺:

𝐺(𝑥, 𝑦) = {

1, 𝑖𝑓 𝑃𝑂𝑀(𝑥, 𝑦) ≥ 𝜃
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (11)

Each position of the grid where 𝐺(𝑥, 𝑦) = 1 is considered as a measurement 𝑚 and 𝑀𝑘

is the set of all the available measurements at a given frame 𝑘.

Let 𝐶 be the number of cameras viewing the scene and providing frames at a constant

framerate 𝑓𝑝𝑠. The interval between each frame is:

𝑑𝑡 =

1

𝑓𝑝𝑠
 (12)

In what follows, we discuss a single person tracker (section 0), the multi-person tracker

(section 3.2) and the appearance model added on top of the multi-person tracker

(section 3.3).

The notation used throughout the chapter is summarized on Table 1.

𝐺 Detection grid

𝑑𝑡 Interval between two consecutive frames

𝑥𝑘 State of the Kalman Filter at time-step 𝑘

𝑧𝑘 Measurement provided to the Kalman Filter at time-step 𝑘

𝑜 An object

𝑚 A measurement

𝑂𝑘 Set of objects at time-step 𝑘. Subscript 𝑘 may be dropped.

𝑀𝑘 Set of measurements at time-step 𝑘. Subscript 𝑘 may be dropped.

𝑁 = 𝑠𝑖𝑧𝑒(𝑂) Cardinality of the 𝑂 set

𝐿 = 𝑠𝑖𝑧𝑒(𝑀) Cardinality of the 𝑀 set

𝑝 = (𝑝𝑥, 𝑝𝑦) 2D coordinates of an object

(𝑚𝑥,𝑚𝑦) 2D coordinates of a measurement

(𝑣𝑥, 𝑣𝑦) 2D velocity of an object

𝐷, �̇� Distance arrays. Original and augmented

𝑐 A camera

𝐶 Set of cameras

𝑁𝐶 = 𝑠𝑖𝑧𝑒(𝐶) Cardinality of 𝐶 set

𝑊,𝐻 View width and height

Table 1. Notation table

Real time multi-object tracking using multiple cameras

 10

3.1 Single person tracking

Using a Kalman Filter, tracking of a single individual in the scene is a relatively easy

task. Let (𝑝𝑥, 𝑝𝑦) be the real 2D coordinates of the object in the grid, (𝑚𝑥,𝑚𝑦) the 2D

coordinates of a measurement in the grid so that 𝐺(𝑚𝑥,𝑚𝑦) = 1 and (𝑣𝑥, 𝑣𝑦) the

velocity in each direction. The state vector 𝑥𝑘 and measurement vector 𝑧𝑘 of the Kalman

filter on frame 𝑘 are defined as:

 𝑥𝑘 = (𝑝𝑥, 𝑝𝑦, 𝑣𝑥, 𝑣𝑦) (13)

 𝑧𝑘 = (𝑚𝑥,𝑚𝑦) (14)

The State-Measurement matrix 𝐻 is then defined as:

 𝐻 = [
1 0 0 0
0 1 0 0

] (15)

Assuming that a person moves with constant velocity, the state equations are defined

as:

 𝑝𝑥𝑘 = 𝑝𝑥𝑘−1 + 𝑣𝑥𝑘−1 ∙ 𝑑𝑡

𝑝𝑦𝑘 = 𝑝𝑦𝑘−1 + 𝑣𝑦𝑘−1 ∙ 𝑑𝑡

𝑣𝑥𝑘 = 𝑣𝑥𝑘−1

𝑣𝑦𝑘 = 𝑣𝑦𝑘−1

(16)

And the state transition matrix:

𝐴 = [

1
0

0
1

𝑑𝑡
 0

0
𝑑𝑡

0
0

0
0

1
0

0
1

] (17)

The measurement noise covariance matrix 𝑅 and the process noise covariance matrix

𝑄 are defined as:

𝑅 = [

𝜎𝑚𝑥
2 0

0 𝜎𝑚𝑦
2] (18)

Real time multi-object tracking using multiple cameras

 11

𝑄 = [

𝜎𝑝𝑥
2

0

0
𝜎𝑝𝑥

2
0
0

0
0

0
0

0
0

𝜎𝑣𝑥
2

0

0
𝜎𝑣𝑦

2

] (19)

Where 𝜎2 denotes variance of each quantity. In our case, the measurement noise

corresponds to the POM detections noise, and is set in the beginning of the execution.

The process noise is defined according to the motion we want to track. For pedestrian

tracking, usually there are small variations to their speed.

On the other hand, for sport players, the variance of their velocity vectors is greater.

Having defined those vectors and matrices, at each time step we update the Kalman

filter with the new measurement and then predict an estimate �̂�𝑘 of its state as

described in chapter 0. The 2D spatial coordinates (𝑝�̂�, 𝑝�̂�) of the state, is considered

as the position 𝑝 of the object 𝑜.

For single person tracking, if at some frame 𝑘 more than one measurement (due to

noise probably) is found in the scene, then the measurement closest to the person’s last

estimated location (𝑝�̂�𝑘−1, 𝑝�̂�𝑘−1) is assigned to that object and used to update the

Kalman filter.

When a measurement is not available, then the Kalman Filter is updated by its predicted

state and not corrected by any measurement.

3.2 Multiple person tracking

The multi-person tracking is a generalization of the single person tracker. We assume

that the motion of each person is independent of the others. For each object in the

scene, a separate Kalman Filter is initialized and models its trajectory. The multi-person

tracker maintains a set of objects 𝑂𝑘 currently being tracked at frame 𝑘 and a set of

measurements 𝑀𝑘 available on this frame. Let 𝑁𝑘 denote the number of objects and 𝐿𝑘

denote the number of measurements.

 𝑂𝑘 = {𝑜1, 𝑜2, … , 𝑜𝑁𝑘
} (20)

 𝑀𝑘 = {𝑚1, 𝑚2, … ,𝑚𝐿𝑘
} (21)

Real time multi-object tracking using multiple cameras

 12

For the rest of the section, we drop the subscript 𝑘 from the notation and discuss for a

single frame.

Some caution must be taken, on how to link the measurements with the trajectories. For

now, consider the case where there are as many measurements as the objects being

tracked, 𝑁 = 𝐿. We deal with noisy detections on the following section (3.2.2).

A very simple, yet efficient, algorithm to assign a measurement to each object, would be

to iteratively traverse the list of objects and for each one calculate the closest

measurement and assign it to it. This measurement would then be invalidated and the

next object will be processed. The algorithm is presented below.

Algorithm 1. Greedy assignment

1: 𝑁 = 𝑠𝑖𝑧𝑒(𝑂)
2: 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑[𝑁] = {𝑓𝑎𝑙𝑠𝑒}
3: 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁
4: 𝑑𝑖𝑠𝑡𝑠[:] = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝑜𝑖, 𝑀, 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑)
5: (𝑑𝑚𝑖𝑛, 𝑚) = min(𝑑𝑖𝑠𝑡𝑠)
6: 𝐴𝑠𝑠𝑖𝑔𝑛 𝑀[𝑚] 𝑡𝑜 𝑜𝑖

7: 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑[𝑚] = 𝑡𝑟𝑢𝑒
8: 𝑒𝑛𝑑 𝑓𝑜𝑟

Function 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝑜,𝑀, 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑) computes and returns an array of

distances between object 𝑜 and every measurement 𝑚 ∈ 𝑀 which has 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑[𝑚] =

𝑓𝑎𝑙𝑠𝑒. The function min (𝑑𝑖𝑠𝑡𝑠) returns the minimum distance 𝑑𝑚𝑖𝑛 and the

corresponding measurement 𝑚 . The distance used throughout this section is the

Euclidean distance between the object’s position and the measurement’s position on

the grid.

This obviously is a greedy algorithm which might not lead to the best assignment

between objects and measurements, since at each iteration it tries to minimize the

“local” distance of this object and the available measurements. Also, depending on the

order, which the objects are going to be processed, the output might be different.

Consider the situation depicted in Figure 2, where the diamonds represent the

measurements and the triangles represent two objects (𝑜1: red, 𝑜2: blue) being tracked.

The red object lies in the middle of the two measurements, slightly closer to 𝑚2. Using

Algorithm 1, the red object will be linked to 𝑚2 since it will be processed first, leaving

only 𝑚1 available for the blue object. The resulting assignment (𝑟𝑒𝑑 − 𝑚2, 𝑏𝑙𝑢𝑒 − 𝑚1) is

probably not the optimal one.

Real time multi-object tracking using multiple cameras

 13

3.2.1 Optimal object – measurement assignment

A better idea is to use an algorithm that minimizes the sum of all distances between

every object – measurement linked pair. Using such an algorithm the result would be

the globally optimal one, as shown in Figure 3.

Basically we need an assignment that maps every measurement to exactly one object

and every object to exactly one assignment such that the total distance is minimized. To

find such an assignment, we need to properly formulate the problem. As before, 𝑂

denotes the set of objects and 𝑀 the set of measurements. Let 𝐷𝑁×𝑁 be a matrix of the

distances between every 𝑜 ∈ 𝑂 and 𝑚 ∈ 𝑀 such that 𝐷(𝑖, 𝑗) = 𝑑𝑖𝑠𝑡(𝑜𝑖, 𝑚𝑗).

𝐷 =

[

𝑑1,1

𝑑2,1
⋯

𝑑1,𝑁

𝑑2,𝑁

⋮ ⋱ ⋮
𝑑𝑁,1 ⋯ 𝑑𝑁,𝑁]

 (22)

𝑚1

𝑚2

Figure 2. Assignment of the Greedy algorithm

𝑚1

𝑚2

Figure 3. Optimal assignment

Real time multi-object tracking using multiple cameras

 14

We want to find a bijection (one-to-one correspondence) 𝑓: 𝑂 → 𝑀 such that the quantity

below is minimized:

∑𝐷(𝑖, 𝑓(𝑖))

𝑁

𝑖=1

 (23)

This can be formulated as linear optimization program:

Minimize ∑ ∑ 𝐷(𝑖, 𝑗) ∙ 𝑎𝑖𝑗

𝑗∈𝑀𝑖∈𝑂

Subject to ∑ 𝑎𝑖𝑗 = 1𝑖∈𝑂 ∀𝑗 ∈ 𝑀

 ∑ 𝑎𝑖𝑗 = 1𝑗∈𝑀 ∀𝑖 ∈ 𝑂

 𝑎𝑖𝑗 ≥ 0 ∀𝑖 ∈ 𝑂, 𝑗 ∈ 𝑀

(24)

This is a well-known optimization problem (the Assignment Problem) and is proved to

have an optimal solution [7] where the variables 𝑎𝑖𝑗 take the value 1 if object 𝑜𝑖 is linked

with measurement 𝑚𝑗, or 0 otherwise. The problem can be solved in polynomial time

using the Hungarian Method. The analysis of this algorithm is out of the scope of this

report and the reader is referred to [7], [8] for more information.

In our implementation, initially we calculate the pair-wise distances of every object and

measurement and then employ an instance of the Hungarian Algorithm solver to find the

optimal assignment. Given that the number of objects is usually fairly small, the

algorithm is very efficient and can be used in our real-time tracker.

3.2.2 Dealing with detection noise

As is usually the case, the detections are noisy. There are two different types of noise

that can arise during the detection phase.

1) Wrongly positioned detections.

2) Different number of detections (𝐿 using the previous notation) than the actual

number of the objects (𝑁) being tracked.

In the first case, Kalman filter, by its design, can deal with those outliers and provide a

smooth trajectory. To handle the second case, though, we need to modify the

Real time multi-object tracking using multiple cameras

 15

assignment method described in section 3.2.1, since 𝐿 ≠ 𝑁 .Two cases can be

distinguished: a) The number of measurements is greater than the number of objects

being tracked, 𝑁 < 𝐿 and b) the number of measurements is less than the number of

objects being tracked, 𝑁 > 𝐿.

In both cases, we construct the array of pair-wise distances 𝐷𝑁×𝐿 as before. Let 𝑟 =

max (𝑁, 𝐿). Next, we augment as many columns/rows needed to 𝐷 to create an 𝑟 × 𝑟

matrix �̇�. The distance between an object and an augmented measurement is set to +∞

(same for augmented objects). With then run the Hungarian method on matrix �̇�, which

will still link objects and measurements that provide the global minimum of the objective

function.

Below, we describe three examples that demonstrate the linking algorithms under noisy

detections.

a) Number of objects greater than the number of measurements, 𝑁 > 𝐿. Consider the

four objects (triangles) and the two measurements (diamonds) shown in Figure 4. Let

the original distance matrix 𝐷4×2 be:

𝐷 = [

8 4
1 6
4
6

3
1

] (25)

It is obvious that 𝑜2 should be linked to 𝑚1 and 𝑜4 to 𝑚2, while the remaining two object

shouldn’t be linked with any measurement. Since the Hungarian method requires the

two sets to have equal cardinalities, we augment the matrix with 2 measurements as

discussed.

𝑚2

𝑚1
𝑜2

𝑜3

𝑜4

𝑜1

Figure 4. The case where there are more objects than measurements

Real time multi-object tracking using multiple cameras

 16

The augmented matrix �̇� will be:

�̇� = [

8 4
1 6
4
6

3
1

∞ ∞
∞ ∞
∞
∞

∞
∞

] (26)

And the Hungarian method will produce the desired output (𝑜2, 𝑚1), (𝑜4, 𝑚2). The two

remaining objects will be assigned to one of the two augmented columns, but they is no

actual measurement corresponding to them.

b) Consider, now, the case of Figure 5 where 𝐿 > 𝑁. There are 4 measurements and 2

objects.

Let the original distance matrix 𝐷4×2 be:

 𝐷 = [
8 1 3 7
1 7 6 4

] (27)

We augment the matrix with two more objects and it becomes:

�̇� = [

 8 1 3 7
 1 7 6 4
∞ ∞ ∞ ∞
∞ ∞ ∞ ∞

] (28)

Running the Hungarian method on �̇� will produce the assignment {(𝑜1, 𝑚2), (𝑜2, 𝑚1)}.

c) Finally, consider the case where 𝑁 = 𝐿, but a detection for an object is absent, while

two detections appear for another object. This is shown in Figure 6. This configuration

𝑚4

𝑚2
𝑜2

𝑜1

𝑚3

𝑚1

Figure 5. The case where there are more measurements than objects

Real time multi-object tracking using multiple cameras

 17

will result in a normal execution of the Hungarian algorithm and the assignment

(𝑜1, 𝑚2), (𝑜2, 𝑚1). While this is actually the optimal solution to the assignment problem,

we might want to avoid the linking of 𝑜1 with 𝑚2. For this reason, we set a threshold on

the maximum distance between an object and a measurement can be linked.

Figure 6. The case where two measurements are detected for an object, while none for the other

The complete assignment algorithm is presented in the following section (3.2.3).

3.2.3 The complete linking algorithm

With those modifications in mind the complete linking algorithm can be summarized as

follows.

The function 𝑐𝑜𝑚𝑝𝑢𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝑜,𝑀) computes the distances between the object 𝑜 and

every measurement 𝑚 ∈ 𝑀 . The 𝐻𝑢𝑛𝑔𝑎𝑟𝑖𝑎𝑛(𝐷) returns an array of size 𝑟 with the

measurement assigned to each object. Only the first 𝑁 are then processed (not the

augmented) to determine if they are below the threshold distance 𝜃.

Algorithm 2. Optimal linking algorithm

1: 𝑁 = 𝑠𝑖𝑧𝑒(𝑂), 𝐿 = 𝑠𝑖𝑧𝑒(𝑀)
2: 𝑟 = max (𝑁, 𝐿)
3: 𝐷[𝑟 × 𝑥] = ∞
4: 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁
5: 𝐷[𝑖, 1: 𝐿] = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝑜𝑖, 𝑀)
6: 𝐴[:] = 𝐻𝑢𝑛𝑔𝑎𝑟𝑖𝑎𝑛(𝐷)
7: 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁
8: 𝑚 = 𝑀[𝐴[𝑖]]
9: 𝑖𝑓 𝑑𝑖𝑠𝑡(𝑜𝑖, 𝑚) < 𝜃
10: 𝐴𝑠𝑠𝑖𝑔𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑀[𝐴[𝑖]]𝑡𝑜 𝑜𝑖

𝑚2

𝑚1
𝑜2

𝑜1

Real time multi-object tracking using multiple cameras

 18

3.2.4 Track management

Each object has a timestamp describing the last frame on which a measurement was

assigned to it. When the detection – object linking phase of the current frame is

complete, two more steps are performed.

3.2.4.1 Disabled Objects

If for some reason, the algorithm has lost track of an individual, meaning that no

measurement was assigned to that specific trajectory, for more than a predefined

number of frames, then the specific object is disabled and no output is produced for this

individual.

At each frame, all the disabled objects are checked against measurements that are not

assigned to an existing enabled object. If the appearance model at a detection grid

position matches one of the disabled persons’, then the corresponding trajectory is re-

enabled and continues as normal.

3.2.4.2 Access points

The tracker allows individuals to enter or exit the scene at specific locations called

access points, which are defined in the configuration file. For the demo application in

our lab, a single access point is defined at the door. A measurement near the access

points, which is not part of an existing trajectory, triggers the creation of a new person

being tracked. Similarly, if the last observed detection of the trajectory was near an

access point, then the corresponding person is removed from the list of objects being

tracked.

In the first few frames, when the application starts, every grid cell is considered as an

access point so that people who are already in the scene will be tracked. After that

point, only individuals who enter through the access points are tracked.

3.3 Appearance model

Up until now, to link a measurement with an object we considered only the Euclidean

distance between the two points. However if two trajectories intersect, there is the

possibility of an identity switch. To minimize the number of identity switches, we exploit

the color information of an object to build an appearance model for each individual.

Real time multi-object tracking using multiple cameras

 19

Initially, for each camera, we build an occlusion map as described in 3.3.1. Then, for

those individuals that are not occluded in at least 𝑘 views, we create a YCbCr

normalized color histogram of their image for each camera. The color histogram has 3 ×

20 bins. For the 𝑘 non-occluded views, we calculate the average of those histograms,

and this serves as the appearance model of the person.

To calculate the color histogram of a person for a camera, we first crop the rectangle

defined by the bounding box corresponding to the specific grid position. Then, we use

the background subtraction to mask only the part of it that actually contains pixels

belonging to the moving object. Finally, we convert those pixels to YCbCr color space

and build a normalized histogram on those. The appearance model is only defined if the

percentage of pixels that contributed to the histogram (with respect to the number of

pixels in the bounding box) is above a threshold. The various steps of this process can

be seen in Figure 7.

(a)

(b)

(c) (d) (e) (f) (g)

Figure 7. (a) Captured image with track result. (b) Background subtraction of that frame. (c) Region of
interest of the original image. (d) ROI of the background subtraction. (e) Masked part of the image. (f) Y, Cb,
Cr channels of (e). (g) Concatenated histogram of the 3 normalized histograms of the YCbCr channels with a
total of 3x20 bins.

Real time multi-object tracking using multiple cameras

 20

This process is repeated at each frame for all measurements in the grid, so each

measurement has an appearance model associated with it. When a new object enters

the scene, the appearance model of its corresponding measurement is assigned to it on

the first frame that the object is not occluded in a specified number of cameras. From

that point on, that appearance model will be used to compute the distance (section

3.3.2) between that person’s appearance model and every measurement’s appearance

model.

Background
Subtractions

Camera
Frames

Mask ROI

RGB ->
YCbCr

Compute
Histogram

Unoccluded
Measurement

#1

Mask ROI

RGB ->
YCbCr

Compute
Histogram

Unoccluded
Measurement

#L

Occlusion Map
Camera #1

Bounding
Boxes

Camera #1

Measurements

Average
Measurement

#1

Average
Measurement

#L

Appearance
Model #1

Appearance
Model #L

Background
Subtractions

Camera
Frames

Mask ROI

RGB ->
YCbCr

Compute
Histogram

Unoccluded
Measurement

#1

Mask ROI

RGB ->
YCbCr

Compute
Histogram

Unoccluded
Measurement

#L

Occlusion Map
Camera #1

Bounding
Boxes

Camera #C

From
cam #1

From
cam #C

Figure 8. Appearance model computation workflow

As is clear, we don’t rely on a frame-by-frame appearance matching as this would still

cause problems when two persons’ trajectories intersect. By combining the frame-by-

frame nature of the Kalman filter spatial tracking and the aforementioned appearance

Real time multi-object tracking using multiple cameras

 21

model matching, the algorithm becomes more robust while still is computationally

efficient.

The complete workflow of the appearance model computation is presented in Figure 8.

3.3.1 Handling occlusions

On the previous section, we said that in order to calculate the appearance model on a

specific location 𝑙 (3D cylinder of specific height corresponding to a grid position), only

the non-occluded views of that location 𝑙 are used. To find which cameras have a clear

view of 𝑙, we build an occlusion map for each camera. We describe the process for a

camera 𝑐.

An image 𝐼 of equal size to the captured frame is created and every pixel is set to zero.

For each measurement 𝑚 available in that time-step, the bounding box 𝑏 of that

measurement for the camera 𝑐 is retrieved (since the cameras are calibrated, we know

the exact projection of the 3D cylinder in a specific grid position to the camera 𝑐). The

pixels of image 𝐼 inside the rectangle 𝑏 are incremented by 1. We do this for every

measurement. In the end the image 𝐼 looks like the one in Figure 9. We know that a

location is not occluded if the sum inside the corresponding bounding box is exactly the

same as the number of pixels in that rectangle. In practice, we allow a small percentage

(10%) of the box to be occluded. In the image black corresponds to 0, dark grey

corresponds to 1 and light grey corresponds to 2. So in (a) we know that no objects are

occluding each other, while in (c) the green and blue boxes are occluding each other.

So once the image 𝐼 is computed, we just have to check if the sum inside each

rectangle is equal to the area of that rectangle. To efficiently compute the sum inside

each rectangle, we first compute the integral image 𝐼𝑖𝑛𝑡𝑒𝑔 of 𝐼 . Then the sum of a

rectangle can be computed in constant time.

The algorithm for computing the non-occluded views is the following. The algorithm

takes as input the view width 𝑊 and height 𝐻 , the number of cameras 𝑁𝐶 and the

measurements 𝑀, where 𝑠𝑖𝑧𝑒(𝑀) = 𝐿. It returns a boolean array 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑑[𝐿, 𝑁𝐶] which

denotes if the measurement 𝑚 is occluded in camera 𝑐.

Real time multi-object tracking using multiple cameras

 22

(a)

(b)

(c)

(d)

Figure 9. (a), (c) Views from camera #1 and #2. (b) Corresponding occlusion maps

Algorithm 3. Occlusion map computation

1: 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑑[𝑁𝐶 × 𝐿] = 𝑡𝑟𝑢𝑒
2: 𝐹𝑜𝑟𝑒𝑎𝑐ℎ 𝑐𝑎𝑚𝑒𝑟𝑎 𝑐
3: 𝐼[𝑊 × 𝐻] = 0
4: 𝐹𝑜𝑟𝑒𝑎𝑐ℎ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑚 ∈ 𝑀
5: 𝑏 = 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑥(𝑚. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑐)
6: 𝐼(𝑏) = 𝐼(𝑏) + 1
7: 𝐸𝑛𝑑 𝑓𝑜𝑟𝑒𝑎𝑐ℎ
8: 𝐼𝑖𝑛𝑡𝑒𝑔 = 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙(𝐼)

9: 𝐹𝑜𝑟𝑒𝑎𝑐ℎ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑚 ∈ 𝑀
10: 𝑏 = 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑥(𝑚. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑐)
11: 𝑠 = 𝑠𝑢𝑚(𝐼𝑖𝑛𝑡𝑒𝑔, 𝑏)

12: 𝑖𝑓 (𝑎𝑟𝑒𝑎(𝑏) ∗ (1 + 𝜃) ≥ 𝑠)
13: 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑑[𝑐,𝑚] = 𝑓𝑎𝑙𝑠𝑒

14: 𝐸𝑛𝑑 𝐹𝑜𝑟𝑒𝑎𝑐ℎ
15: 𝐸𝑛𝑑 𝑓𝑜𝑟𝑒𝑎𝑐ℎ

Real time multi-object tracking using multiple cameras

 23

The function 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑥(𝑝, 𝑐) returns the bounding rectangle of position 𝑝 in

cameras’ 𝑐 image. The value 𝜃 is the allowed occlusion threshold.

3.3.2 Distance of histograms

Kullback – Leibler (KL) divergence of two probability distributions 𝑃, 𝑄 of a discrete

random variable is defined as:

𝐷𝐾𝐿(𝑃||𝑄) = ∑𝑃(𝑖)𝑙𝑛

𝑃(𝑖)

𝑄(𝑖)
𝑖

 (29)

The KL divergence is only defined if both 𝑃 and 𝑄 sum to 1 and if 𝑄(𝑖) > 0 for any 𝑖 that

𝑃(𝑖) > 0. The quantity 0𝑙𝑛0 is interpreted as zero.

In the case of normalized histograms the first condition (sum to 1) is always met.

However, the second condition proves to be problematic. In many cases on our

experiments only one of the two quantities 𝑃(𝑖), 𝑄(𝑖) was zero.

For that reason, we chose to use the Jensen – Shannon (JS) Divergence as the

distance between two color histograms. The JS Divergence is defined as:

𝐷𝐽𝑆(𝑃||𝑄) =

1

2
(𝐷𝐾𝐿(𝑃||𝑀) + 𝐷𝐾𝐿(𝑄||𝑀)) (30)

where 𝑀 =
1

2
(𝑃 + 𝑄).

The JS divergence can always be calculated and is a finite value (unlike KL

divergence). If for some 𝑖 , 𝑃(𝑖) > 0 and 𝑄(𝑖) = 0 , then 𝑀(𝑖) > 0 , so 𝐷𝐾𝐿(𝑃||𝑀) and

𝐷𝐾𝐿(𝑄||𝑀) can always be computed. Also JS divergence has the nice property that:

 0 ≤ 𝐷𝐽𝑆(𝑃||𝑄) ≤ 1 (31)

if base 2 logarithm is used for the computation. This property is extremely useful

because there is no need for a normalization of the result.

3.3.3 Updated measurement – object distance

The distance function used in the linking algorithm described in 3.2.3, is altered to also

take into account the appearance model distance. The new distance between a

measurement and object is defined as:

Real time multi-object tracking using multiple cameras

 24

 𝑑𝑖𝑠𝑡(𝑜,𝑚) = 𝑤 ∗ 𝐷𝑒𝑢𝑐𝑙𝑁 (𝑝𝑜, 𝑝𝑚) + (1 − 𝑤) ∗ 𝐷𝐽𝑆(𝑎𝑜, 𝑎𝑚) (32)

where 𝑤 is a weight factor, 𝑝𝑜 , 𝑝𝑚are the 2D points associated with the object and the

measurement, 𝑎𝑜 , 𝑎𝑚 the appearance models associated with the object and the

measurement and 0 ≤ 𝐷𝑒𝑢𝑐𝑙𝑁(𝑥, 𝑦) =
𝑑𝑖𝑠𝑡(𝑥,𝑦)

𝑀𝐴𝑋_𝐷𝐼𝑆𝑇
≤ 1 is the normalized Euclidean distance

between two points 𝑥, 𝑦 . The 𝑀𝐴𝑋_𝐷𝐼𝑆𝑇 is the maximum distance on the grid,

corresponding to the diagonal.

Real time multi-object tracking using multiple cameras

 25

4. SOFTWARE

In this chapter, we present the software implementation aspects of the project. The

project was implemented in C++ and uses the Qt library for its Graphical User Interface.

It is now integrated with the existing real-time detection framework of the CVLab (see

section 1.3). A standalone version was also built which takes as input the Probability

Occupancy Map generated by the publicly available POM software1. A side-project was

to extend the current software so as to provide a recording tool, which saved the videos

either directly from the cameras or after the detection / tracking. Also, we added support

to the framework for more than 4 cameras. Those two extensions are discussed in

sections 4.4 and 4.5 respectively.

4.1 Tracking framework pipeline

The complete pipeline of the demo system is show in the diagram below (Figure 10). To

avoid unnecessary delays in the communication, the various subsystems share circular

buffers where they read/write. For example, such a circular buffer is used between the

CameraController and the Tracker to write and read (respectively) the frame captured

from a camera. All the components run on different threads.

Offline

For each camera

Camera
Controller

Calibration
White

Balance
Background

Model

Camera
Controller #1

Camera
Feed #1

Background
Subtraction

Camera
Controller #2

Camera
Feed #2

Background
Subtraction

Camera
Controller #3

Camera
Feed #3

Background
Subtraction

Camera
Controller #4

Camera
Feed #4

Background
Subtraction

POM
Detector

Tracker Display

Figure 10. Tracking framework pipeline

1 http://cvlab.epfl.ch/software/pom/

http://cvlab.epfl.ch/software/pom/

Real time multi-object tracking using multiple cameras

 26

4.2 Architecture of the tracker

The tracker was designed in such a way that the Kalman Filter can be easily substituted

by some other frame-by-frame filter, such as a Particle Filter or an Extended Kalman

Filter. Those filters should just provide a similar interface to the tracker software.

The tracker module, as can be seen in the pipeline diagram (section 4.1), has been

placed between the Detector and Display subsystem and runs on a separate thread.

The Detector was altered to emit a signal each time it gets update. The Tracker catches

that signal and updates the trajectories on each time step. The Tracker in turn, emits a

signal that it has been updated, which is caught by the display subsystem that presents

the output on the window.

The main classes of the system are:

 KalmanFilter. OpenCV’s implementation of Kalman Filter is used. There are two

main methods being used: Predict() and Correct() which perform the steps

described in the corresponding section. To implement a Kalman Filter from

scratch one needs to write the code to perform a few matrix operations as

described in chapter 0. OpenCV’s implementation was chosen in order to avoid

rewriting code for matrix operations.

 Object, which models a person being tracked. Each object contains a

KalmanFilter that keeps track of it.

 AppearanceModel. This models encapsulates a histogram as described in

section 3.3. It also provides the methods to compute the histogram from the

input image, to normalize it and also compute the distance (JS or KL) between

two Appearance Models.

 MultipleObjectsTracker. This is the main class of the program and provides

methods for linking measurements to objects (Section 3.2.3), for handling

disabled objects or those entering / exiting the scene (Section 0), for computing

the occlusion maps and appearance models on each measurement position

(Section 0) and various other tasks. The method 𝑇𝑟𝑎𝑐𝑘𝐹𝑟𝑎𝑚𝑒() is responsible of

invoking all the internal methods, to update the state of every object for that

frame.

 Measurement. This class represents a measurement. It contains the position of

the measurement, as well as the associated Appearance Model.

Real time multi-object tracking using multiple cameras

 27

More information and details about the implementation can be found inside the source

code files.

4.3 Standalone version

A standalone version was also implemented, so that we could evaluate our algorithm on

various datasets. The algorithm and the classes are essentially the same as described

before. The main difference is the input files. The main input files are the probabilities of

occupancy of each grid position for each frame, in the open POM format. To visualize

the detections, the bounding boxes for each grid position and each camera should be

given in the same format as in the POM input files. If the appearance model is to be

used, a video file of each camera should be given as input, together with the

background subtractions for each frame. Those background subtractions can be either

a video file for each camera or separate .png images, as is the input for POM. The

paths for all the input and some parameters are set in a configuration file (similar to the

one POM uses). Sample configuration files are provided for three datasets (Basketball,

Soccer, Lab 6P).

This version can either run completely verbose in the console and produce an output

similar to the one that KSP produces or present the tracking results on the input video

and on a grid. Also it has the ability to save a video with the tracking result; both

bounding boxes on each person and the tracking grid. The output is an MPEG-4

encoded .avi file in the same size and framerate as the original. All those options can be

set in the configuration file.

To execute the standalone version use the command:

“./kalman_pom <CONFIG_FILE>”

4.4 Recording

We modified the configuration tool to allow the recording of raw video from every

camera connected to the system.

The output video of each camera has the original camera size (1032 x 778) saved at 30

fps and encoded in MPEG-4 .avi format with a bitrate of 51385 kb/s.

To allow concurrent smooth video presentation on the screen and recording, different

threads have to be started that handle the saving. For this purpose, the class

Real time multi-object tracking using multiple cameras

 28

videoRecorder was built. It’s basically a wrapper around the OpenCV’s VideoWriter1

class. For each camera, one instance of videoRecorder is created and assigned to a

new thread. This class reads from the corresponding camera buffer, passes the frame

to the encoder and saves it to the specified output video. The tool was tested with 6

cameras and could handle simultaneous video presentation and writing on the original

size and frame rate.

4.5 Support for more cameras

The configuration tool of the framework was extended to support an arbitrary number of

Ethernet cameras. The user has now the ability to click on any of the four views and

then press the number of the camera that she wishes to switch to. So each view of the

four views can be connected to any of the cameras plugged into the system. The

recording feature, presented above, automatically captures from all the cameras, not

only those shown.

When a new camera is connected to an Ethernet adapter of the computer, the Reverse

Path Filtering of the kernel for that adapter should be turned off, for the driver to be able

to communicate with the camera. To do this, run the command

“sysctl -w net.ipv4.conf.ethX.rp_filter=0” where X is the adapter number where the

camera is connected. This change is temporary until the system is rebooted. To make

the change permanent edit the file /etc/sysctl.conf and set the same variable as in the

command.

1 http://opencv.willowgarage.com/wiki/documentation/cpp/highgui/VideoWriter

http://opencv.willowgarage.com/wiki/documentation/cpp/highgui/VideoWriter

Real time multi-object tracking using multiple cameras

 29

5. EXPERIMENTS

The complete real-time tracking application is operating on a demo room of the CVLab

at EPFL. There are 4 cameras, one in each corner of the room. A screenshot of one of

the cameras, together with the grid can be seen below.

(a)

(b)

Figure 11. (a) Screenshot from one of the cameras of the CVLab demo room. (b) Corresponding detection
grid

The real-time demo in the CVLab room can handle up to 5 or 6 people. This limitation is

due to the size of the room and the positions of the cameras. People tend to occlude big

parts of the image which results in pretty bad detections from the POM. As is shown

next, our method can easily handle 20 or more persons in a scene.

Apart from the real-time experiments conducted in the demo room, we evaluated the

algorithm on three publicly available datasets, using the standalone version of the

software (Section 4.3). For each dataset, we calculated the GMOTA metric as defined in

[9]. The GMOTA metric is an extension of the well known Multiple Object Tracking

Accuracy (MOTA) metric [10], where the 𝑚𝑚𝑒𝑡 term is substituted by 𝑔𝑚𝑚𝑒𝑡 . It is

defined as:

𝐺𝑀𝑂𝑇𝐴 = 1 −

∑ (𝑐𝑚(𝑚𝑡) + 𝑐𝑓(𝑓𝑝𝑡) + 𝑐𝑠(𝑔𝑚𝑚𝑒𝑡))𝑡

∑ 𝑔𝑡𝑡
 (33)

where 𝑚𝑡 is the number of miss-detections, 𝑓𝑝𝑡 is the number of false positives and 𝑔𝑡

is the number of ground truth detections. The term 𝑔𝑚𝑚𝑒𝑡 measures the proportion of

Real time multi-object tracking using multiple cameras

 30

identity switches in a global manner (unlike 𝑚𝑚𝑒𝑡, in MOTA metric, which is the number

of instantaneous identity switches). More information about the definition of 𝑔𝑚𝑚𝑒𝑡 can

be found in [9]. The 𝑐𝑚, 𝑐𝑓 and 𝑐𝑠 are weighting functions set to 𝑐𝑚(𝑥) = 𝑐𝑠(𝑥) = 1 and

𝑐𝑠(𝑥) = log10 𝑥, as in [9].

We tested our algorithm on three different datasets. The first one is the publicly

available ISSIA dataset [11], which is a 2 minutes video footage shot at 25 fps by 6

cameras. It features 25 people, 11 of each team and 3 referees. The second dataset is

a 4000 frames sequence from a basketball match, shot by 6 cameras on 25 fps. There

are 14 people being tracked, five people and one coach on each team and two referees.

Even though 6 cameras were used for the detection by POM, only 4 of them were used

for computing the appearance models for the tracker. The last dataset is the publicly

available 6 person laboratory video sequence shot in our demo room1. It consists of a

3000 frames shot at 25 fps by 4 cameras.

Figure 12. Two screenshots from the ISSIA dataset

We compare this algorithm to a number of different algorithms: The K-Shortest Paths

method [12] (KSP), a modified version of KSP which takes into account appearance

information from frame to frame (C-KSP), the state-of-the-art Linear Programming

method that exploits the appearance model [9] and two tracklet versions of the LP

method (Multi Commodity Network Flow), referred to as LLP and TLP. The GMOTA

scores for the soccer dataset are presented below (Figure 13).

In the soccer dataset, our method achieves similar scores with the LLP method while it

outperforms all the others. This happens because of the reliable POM detections, the

fact that there aren’t many occlusions and the large (in general) distance between the

1 http://cvlab.epfl.ch/data/pom/ - Laboratory Sequence – 6 People

http://cvlab.epfl.ch/data/pom/

Real time multi-object tracking using multiple cameras

 31

players. When two players are close to each other, they are usually from different teams

and the appearance model helps differentiating between the two.

Figure 13. Soccer dataset GMOTA scores

The computational aspects of our algorithm are summarized on Table 2. The algorithm

runs on a single core of an Intel i7 3.2GHz processor. The method proved to be very

efficient which was a primary goal of this project, since we plan to add new features in

the real-time tracking pipeline (see section 6.1).

Sequence # Cameras Resolution # People FPS

Lab 4 360 x 288 4 173

Soccer 6 480 x 270 25 170

Basketball 4 1294 x 964 14 25

Table 2. Frames per second, for each different dataset

As can be observed in the table, high resolution videos can slow down the algorithm; in

those cases, the appearance model computation becomes a bottleneck because the

number of pixels to be processed is quite large. In practice, we can subsample the

original image before we compute the appearance models.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 0.75 1 1.5 1.75 2 2.25 2.5

G
M

O
TA

Distance threshold in meters

KSP

C-KSP

LP

LLP

TLP

C-Kalman

Kalman

Real time multi-object tracking using multiple cameras

 32

6. CONCLUSION

We have presented a real-time people tracker built on top of the POM detector. It is

based on the Kalman Filter and can keep track of many people simultaneously. An

unknown number of people, entering or exiting the scene at any moment, can be

tracked. The algorithm exploits appearance cues to prevent identity switches. Instead of

computing the appearance difference in a frame-by-frame manner, an appearance

model is initially built when an individual enters the scene and is afterwards matched

against the detected people. The algorithm was integrated to the existing demo

application of the CVLab. Also a standalone version was built and used to evaluate our

method. The frame-by-frame spatial tracking of the Kalman Filter makes the algorithm

computationally efficient and the appearance model matching increases the robustness.

In certain datasets it outperforms the state-of-the-art method while it’s one to two orders

of magnitude faster. As a side-project, we added support for more than 4 cameras in the

existing demo and implemented a recording tool that captures each camera’s feed.

6.1 Future Work

Even though the current tracking framework avoids some identity switches, by exploiting

the image appearance, it doesn’t prevent them at all. On situations where individuals

wear clothes of similar colour or part of the clothes of a person match the background

colour, the appearance model is essentially meaningless.

We plan to extend the framework so as to exploit the facial characteristics of each

individual and build face models. The purpose of building a face model is twofold: a) the

facial information, when available, could be combined with the current motion and

appearance models, to provide more accurate tracking across frames. b) The face

model will be used to identify the person by matching it against those in a face

database. Such an algorithm could be used in applications, where specific individuals

need to be tracked and their motion to be modeled.

ACKNOWLEDGEMENTS

I would like to thank my teaching assistant Horesh Ben Shitrit for his valuable feedback,

the help and the advice he provided during my semester project.

Real time multi-object tracking using multiple cameras

 33

REFERENCES

[1] J Black, T Ellis, and P Rosin, "Multi view image surveillance and tracking," in

Workshop on Motion and Video Computing, 2002. Proceedings, dec 2002, pp. 169

- 174.

[2] Anurag Mittal and Larry S Davis, "M2Tracker: A Multi-View Approach to

Segmenting and Tracking People in a Cluttered Scene," International Journal of

Computer Vision, vol. 51, no. 3, pp. 189--03, 2003.

[3] J Kang, I Cohen, and G Medioni, "Tracking people in crowded scenes across

multiple cameras," in Asian conference on computer vision, vol. 7, 2004.

[4] F Fleuret, J Berclaz, R Lengagne, and P Fua, "Multicamera People Tracking with a

Probabilistic Occupancy Map," IEEE Transactions onPattern Analysis and Machine

Intelligence , vol. 30, no. 2, pp. 267 - 282, Feb 2008.

[5] R.E. Kalman, "A new approach to linear filtering and prediction problems," Journal

of basic Engineering, vol. 82, pp. 35 - 45, 1960.

[6] G. Welch and G. Bishop, "An Introduction to the Kalman Filter," Computer Science,

University of North Carolina at Chapel Hill, Chapel Hill, 2006.

[7] R. Burkard, M. Dell'Amico, and S. Martello, Assignment Problems.: Society for

Industrial and Applied Mathematics.

[8] H.W Kuhn, "The Hungarian method for the assignment problem," Naval research

logistics quarterly, vol. 2, no. 1-2, 1955.

[9] H Ben Shitrit, J Berclaz, F Fleuret, and P Fua, "Tracking multiple people under

global appearance constraints," in 2011 IEEE International Conference on

Computer Vision (ICCV), nov 2011, pp. 137 -144.

[10] K. Bernardin and R. Stiefelhagen, "Evaluating Multiple Object Tracking

Performance: The CLEAR MOT Metrics," EURASIP Journal on Image and Video

Processing, vol. 2008, no. 1, p. 246309, May 2008.

[11] T. D'Orazio, M. Leo, N. Mosca, P. Spagnolo, and P.L. Mazzeo, "A Semi-automatic

System for Ground Truth Generation of Soccer Video Sequences," in 6th IEEE

International Conference on Advanced Video and Signal Based Surveillance AVSS

'09. , sep 2009, pp. 559 - 564.

[12] J Berclaz, F Fleuret, E Turetken, and P Fua, "Multiple Object Tracking Using K-

Shortest Paths Optimization," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 33, no. 9, pp. 1806 -1819, Sep 2011.

