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Abstract

We propose a shape-from-shading method to reconstruct surfaces of silicon wafers from images of

printed circuits taken with scanning electron microscope. Our method combines the physical model of

the optical acquisition system with prior knowledge about the shapes of the patterns in the circuit. The

reconstruction of the surface is formulated as an optimization problem with a combined criterion based

on the irradiance equation and a shape prior that constrains the shape of the surface to agree with the

expected shape of the pattern. To account for the variability of the manufacturing process, the model

allows a non-linear elastic deformation between the expected patterns and the reconstructed surface. Our

method provides two outputs: a reconstructed surface and a deformation field. The reconstructed surface

is derived from the shading observed in the images and the prior knowledge about circuit patterns, which

results in a shape-from-shading technique stable and robust to noise. The deformation field produces a

mapping between the expected shape and the reconstructed surface, which provides a measure of deviation

between the models and the real manufacturing process.

I. INTRODUCTION

As circuit designs become more complex due to technology scaling, engineers in the semiconductor

industry require new tools to obtain accurate and useful information about the manufacturing process. In

particular, the characterization of surface topography is essential in optical lithography in order to optimize

the printing process from layout masks to silicon wafers. Scanning electron microscopy (SEM) is the

primary tool currently used in industry to measure geometrical features of semiconductor structures, but

it provides only limited information about the third dimension of the surfaces. In fact, several parameters

associated to the surface of the wafer are crucial to control the lithographic process (the height of the
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step, the slope of the side walls or the curvature of edges) [1], and it has now become necessary for

the industry to develop image processing techniques to reconstruct accurate 3D surfaces from 2D SEM

images. In this paper, we describe such a technique. It is formulated as a shape-from-shading (SFS)

reconstruction that considers prior knowledge about the shape of the printed patterns in order to improve

the accuracy and robustness of the method.

In the past, computer vision [2]–[7] has focused on stereoscopy and SFS for the reconstruction of

surfaces from SEM images of printed circuits, but the resulting techniques have not been adopted by

the industry. The acquisition of pairs of stereoscopic SEM images at the nanometre scale is not only

challenging for large wafers, but extremely expensive, and the throughput requirements of manufacturers

call for simpler and more economic methods. In particular, SEM images are usually analysed with

simple image processing techniques based on edge detection and template matching to define contours

and estimates of 1D profiles of the surface [8]–[13]. These techniques coarsely detect edges in the SEM

images with simple gradient and thresholding methods, locate a preliminary contour and subsequently

refine it to match a physically-meaningful criterion in terms of the underlying surface. To that purpose,

they exploit available information about the patterns of the circuit and analyse 1D profiles of the image

along the normals to the contours, which are then modified to match a fixed height level of the underlying

surface. The resulting profile measurements along the contours are relatively fast to extract, but no real

3D surface is reconstructed. We propose to “fill in the gap” between these two approaches and include

the knowledge of the patterns expected in the circuit into a surface reconstruction method based on

shape-from-shading. Compared to the stereoscopic method, we do not require SEM image pairs obtained

with a dedicated system to reconstruct accurate surfaces. Instead, we exploit the available information

about the shapes of the patterns in the circuit to overcome the ill-posed nature of the SFS problem and

obtain a robust reconstruction method.

For each pattern in the printed circuit, the nature and accuracy of the available information can be con-

siderably different. While for some technology nodes and designs, reasonable optical proximity correction

(OPC) models of the printing process exists, in the first cycles of development the available models are

under calibration and only the mask associated to the circuits can be trusted [1]. The reconstruction

method that we propose considers both situations and defines different shape prior terms depending

on the nature of the available information. Simultaneously, our technique estimates a deformation field

between the expected pattern and the reconstructed surface, which can be used a posteriori to quantify

unaccounted errors in the OPC modelling or lithographic process.

The contributions of the paper are the following. First, we include a shape prior in the surface
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reconstruction method associated to SFS and obtain a method robust to noise and SEM artefacts. Secondly,

to account for variability in the lithographic printing process, we estimate a deformation field between the

expected shape of the pattern and the reconstructed surface. Third, we use a ridge detector to weight the

smoothness penalty commonly used in variational formulations of SFS and improve the reconstruction.

Finally, we adopt minimization methods recently introduced to imaging to solve the resulting problem

and obtain a fast, efficient and easy-to-code algorithm.

The rest of the paper is organized as follows. Section II presents the proposed technique, reviewing

and putting it in context with existing SFS and shape-prior models in imaging. The reconstruction of the

surface is then formulated as a minimization problem and solved with efficient optimization techniques

in Section III. Section IV presents the experimental results and conclusions are drawn in Section V.

II. SHAPE FROM SHADING WITH SHAPE PRIOR

We formulate the reconstruction of surfaces as an optimization problem with a combined matching

criterion based on the irradiance equation and a shape prior that constrains the reconstructed surface

to agree with the expected shape of the pattern. To account for the variability of the physical printing

process, the model allows a non-linear elastic deformation of the expected patterns. We propose two

different objective energies to measure for this deformation, one based on an OPC model of the expected

surface and another on the limited information extracted from the mask of the circuit. Our optimization

problem has thus two variables or outputs of our reconstruction method: a reconstructed surface and a

deformation field. The surface that we recover is derived from the shading observed in the SEM images

and the prior knowledge about circuit patterns, while the deformation field produces a mapping between

the expected shapes in the circuit and the reconstructed surface.

On the following, we present the different components of our model and review related approaches.

A. Shape from shading

In computer vision, shape recovery refers to the reconstruction of a 3D scene from 2D images and

covers different techniques, called shape-from-x, depending on the nature of the input information. Shape-

from-shading in particular deals with the recovery of shape from a gradual variation of shading in the

image.

To understand the problem of SFS it is necessary to study how the images are formed. In our

formulation, we attach to the camera a 3D coordinate system (x, y, z), with the plane (x, y) denoting the

image plane and the axis z on the optical axis. If we assume an orthographic projection, the visible part
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of the scene defines a height map z(x), where x = (x, y)1 designates a point in the image. The SFS

problem is then formulated in terms of the “image irradiance equation”:

I0(x) = R(n(x)). (1)

Equation (1) relates the grey level I0(x) measured in the image at point x with the reflectance function

R(n(x)) of the surface at that point. In physical terms, R(n) gives the value of the light re-emitted by

the surface as a function of its orientation, i.e. of the vector n normal to the surface. This normal can

easily be expressed in terms of the gradient of the height map as

n =
(−∇xz,−∇yz, 1)√

|∇z|2 + 1
. (2)

The SFS problem proposed by Horn in [14] consists on the recovery of a height map z, the unknown of

the problem, from the shading observed in the image I0, the data available from measurements.

Since the introduction of SFS in the 70s [14], most efforts have been directed into the recovery of

shapes from images taken under normal lighting conditions and only few investigations [2]–[7], [15],

[16] have considered the problem associated to SEM images. In the SEM acquisition system, images

are formed scanning the sample with an electron beam and detecting the electrons emitted at the point

where the beam strikes the surface. The number of electrons emitted by the surface is related to the

angle between the electron beam and the surface normal, resulting in shades in the captured image I0

proportional to the number of electrons. At high magnifications, the imaging geometry can be modelled

as an orthographic projection with a unique light source at infinity. The resulting reflectance function for

SEM images is then given by

R (n) =
ν

n ·L
, (3)

where ν is the reflectance coefficient of the surface and L is a unit vector indicating the direction of the

light source. In the case of our SEM images of silicon wafers, ν is assumed uniform within an image,

L ≈ (0, 0, 1) and both parameters can be directly estimated from the SEM images as explained in Section

III-A. Such a reflectance map neglects the effects of mutual illumination, but provides a computationally

tractable model of the SEM acquisition system.

In the case of silicon wafers of printed circuits, the features derived from SEM images are generally

too sparse for standard SFS techniques. For this reason, in research surface reconstruction from SEM

1We use boldface for vector fields.
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measurements has been formulated as the correspondence problem associated to stereo pairs of images

obtained by tilting the microscope stage or deflecting the electron beam [2]–[7]. The combination of

stereoscopy and SFS is able to reconstruct accurate surfaces because the two techniques complement

each other: SFS works best where the surface is smooth and featureless, while stereo works well where

the surface is rough and features are dense.

In the industry, however, the main approach to 3D surface reconstruction from SEM images of circuit

patterns is based on 1D measurements and Monte Carlo simulations [17]–[19]. The Monte Carlo method

models statistically the interaction of incident electrons with the wafer by repeated detailed simulations,

which results in extremely long running times. Consequently, Monte Carlo simulations are only used

to obtain a library of SEM signals for simple shapes defined by a few parameters. A measured SEM

signal is then compared to the library and a 1D surface profile is reconstructed estimating the parameters

that best match the observed measurements from the signals in the library. In this case it is important

to obtain a robust estimate of the SEM profile, and several 1D measurements are usually averaged, that

is, smoothed to avoid the effects of noise. This technique has proved considerably accurate for simple

structures available in the libraries, but lacking for the complicated 2D patterns currently used in circuit

designs. Compared to the SFS approach adopted in computer vision, Monte Carlo simulations provide

an accurate model of the reflectance map but the reconstruction is limited to 1D profiles and does not

consider the 3D nature of the surface.

Our approach combines SFS techniques from computer vision with the prior knowledge available in

industry about the expected patterns and OPC models. In the proposed approach, Equation (3) is only

a rough approximation to the SEM acquisition system and we expect deviations even in clean images

in comparison to the Monte Carlo method. To overcome the limitations of Equation (3) our formulation

considers the 2D nature of the image measurements, the expected smoothness of the surface and the prior

knowledge about its shape. Similar to the combination of SFS with stereoscopy, our approach integrates

the complementary techniques of SFS and image registration to merge the best of both worlds: while SFS

works well where the image is featureless and the surface is smooth, the registration of the shape prior is

guided by edges in the image, i.e., abrupt changes in the surface topology. Compared to stereoscopy, we

do not require special acquisition systems to obtain simultaneous SEM image pairs and only make use

of the information available from circuit designs about the printed patterns. It is worth noting, however,

that our approach could also be modified to include stereoscopic pairs.

We formulate our SFS reconstruction algorithm in a variational framework, i.e., as a minimization

problem, for three reasons. First, variational SFS techniques are generally more robust than other available
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approaches [20], [21], and therefore better suited to its application with industrial SEM data. Secondly,

the objective minimization energy can easily include a term describing the prior information provided by

the mask or the OPC model in the shape reconstruction algorithm. Thirdly, the resulting minimization

problem can be solved with efficient optimization techniques that are guaranteed to converge and can

benefit from a multi-resolution approach to speed up the reconstruction. We refer the reader to the review

papers [20]–[22] and references therein, for a review of the different available SFS approaches.

Variational SFS methods are defined by the choice of three elements: the unknown z used to describe

the surface, the objective functional E that is minimized, and the minimization method. Functional E

is defined by two terms or constraints: the brightness and the smoothness constraint. The brightness

term A ensures that the reconstructed shape produces a similar irradiance as the input image, while the

smoothness term G ensures the reconstruction of a smooth surface and is introduced to overcome the

ill-posed nature of the problem. As both constraints can be directly written in terms of the gradient ∇z

or normal n of the surface, the minimization can be solved in terms of ∇z or n and the height map

subsequently recovered by integration [23]–[26]. In this case, the integrability constraint ∂2z
∂x∂y = ∂2z

∂y∂x

is included in the formulation [27] to reconstruct physically meaningful surfaces and improve accuracy.

The integrability of the surfaces can also be ensured by directly formulating the brightness constraint in

terms of the height map z, which results in variational methods of higher order and, consequently, in

slower or more complex minimization algorithms [28]–[30]. We adopt such a formulation, but use recent

advances in optimization techniques to obtain a fast algorithm.

In our formulation, the brightness term reads

A (I) =
1

2

∫
Ω

(R (d)− I0)2 with d = (dx, dy) = ∇z , (4)

which assumes Gaussian noise in the SEM image acquisition process, but other norms than L2 could be

used for more robust methods.

We adapt the common smoothness term 1
2

∫
Ω (∆z + 2∇x∇yz)2 based on image segmentation tech-

niques. In particular, our approach is inspired by the geodesic active contour model [31], and weights

the common smoothness term with an inverse ridge detector to only penalize locations where high slopes

are unlikely. The resulting penalty is

G (z) =
1

2

∫
Ω

w (∆z + 2∇x∇yz)
2

=
1

2

∫
Ω

w|∇d|2 with d = ∇z , (5)

where the weighting function w is designed to satisfy w ≈ 0 in positions where changes in the shape
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of the surface are likely and w ≈ 1 elsewhere. Weighting the smoothness term is equivalent to the

constraint proposed by Zheng and Chellappa in [32], which specifies that the intensity gradients of the

reconstructed image and the input image should be close to each other. In the same way that the geodesic

active contour model [31] integrates the original snake model of Kass, Witkin and Terzopoulos [33], our

weighted smoothness term forces the intensity gradients of the reconstructed image to be close to the

input ones. In our experiments we define w as the inverse ridge detector proposed in [34], [35] applied

to the SEM image I0, but other weight functions are equally possible.

B. Deformation field and similarity to the layout

Humans, and in particular engineers, interpret SEM images of circuits by incorporating high-level

knowledge about the expected patterns. Such a knowledge is necessary to disambiguate low-level inten-

sities and artefacts in noisy images and make any automatic evaluation method robust. Computer vision

has successfully imitated the integration of prior knowledge done by humans into the image segmentation

problem, but this information has not yet been exploited in the context of SFS. Inspired by image

segmentation techniques, we incorporate into our surface reconstruction process the prior knowledge

about the shapes of the patterns in the circuit.

Shape priors are included in image segmentation techniques, see e.g. [36]–[42] and references therein, to

ensure robustness to occlusions and noise. The standard approach in variational methods is to incorporate

an additional term in the objective energy that defines the segmentation criteria. This additional term

measures the similarity between the evolving shape and a reference one (called shape prior) and penalizes

deviations with respect to the expected shape. The resulting method must deal with two important issues:

alignment of the shape prior within the image and variability of the shape with respect to the prior. For the

question of shape alignment, affine transformations (rotation, translation and scaling) can be taken into

account in the model. This is done explicitly in the definition of the energy, but at the price of increasing

the complexity of the optimization; or by intrinsic alignment of more complex shape descriptors [37],

[42], [43]. The second issue is the question of shape variability from the reference template, which is

usually handled through statistical [36], [37], [44], [45] or trained [36], [38], [39], [43], [44], [46] shape

models.

Shape alignment techniques could be adapted and included in our SFS model, increasing the complexity

of the minimization. For SEM images of silicon wafers, however, it is not necessary because this issue

is handled during image acquisition and we can assume correct scaling and rotation for the sake of

simplicity. The question of shape variability is more difficult to handle in our case because obtaining an
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accurate model of surfaces is extremely expensive at the nanometre scale. To model the shape variations

in terms of SFS we require the 3D surfaces, not the available SEM images, and only few options are

available. Atomic force microscopy can be used to measure the surfaces for the different patterns, but it

is an extremely expensive process specially if several images of each pattern should be acquired. OPC

modelling can be used to obtain surface models by simulations, but are partly based on heuristics and only

predict failures in the printing process due to certain causes. Due to these limitations, we include a dense

deformation field in our surface recovery model instead of a model of shape variability. In our approach

we simultaneously recover the surface z and estimate a deformation field u between the expected shape

and the recovered one. This strategy does not require a shape model and offers two additional advantages.

First we can incorporate information of the expected shapes in terms of 3D models or 2D masks of the

patterns, depending on the accuracy of the available information. Second, the approach directly provides

a measure of erosion in the printing process compared to the expected shape (larger deformation fields

are associated to larger printing errors) and can be directly used in metrology or OPC modelling to detect

failing regions, wrong measurements or models. The problem of shape variability is thus formulated as

the estimation of a deformation field between two surfaces or, equivalently, the registration of their height

maps. The registration technique that we adopt is based on the non-linear elastic model of [47].

In agreement with our variational formulation of SFS, we consider the registration problem as the

minimization of a functional whose unknown is the displacement field u and refer the reader to [48]

for an overview of other registration methods. Denoting by z0 the template or shape prior and z the

reconstructed surface described in terms of the height map, image registration is performed minimizing

a functional that combines a measure of similarity between z and z0 and a penalty on the displacement

field u.

If we can use OPC simulations to provide a prior model of the surface and its height map z0, we can

directly measure the distance between the surface and the expected OPC shape with the L2-norm. The

term associated to the shape prior is then

B (z,u) =

∫
Ω

(z (x)− z0 (x+ u))2 . (6)

If a reliable OPC model is not available, we measure the similarity of the reconstructed surface directly

with the binary mask of the pattern provided in the circuit design. In that case the minimization of the

energy will be slower and the reconstruction less robust to the optical and physical proximity effects

modelled in OPC. To compare our surface to the mask, we need first to binarize it in order to have a
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meaningful measure. For simplicity, we threshold the surface at a fixed threshold θ and compare it to the

mask with the L2-norm. The thresholding is written in terms of the Heaviside function H (z − θ) and

the mask described in terms of the signed distance function φ to its contour, i.e. H (φ) corresponds to

the binary mask. The similarity to the layout is therefore measured with the following shape prior term

B (z,u) =

∫
Ω

(H (z (x)− θ)−H (φ (x+ u)))2 . (7)

We choose to describe the mask by means of the distance function to its contour in order to improve the

numerical convergence associated with the registration of binary texture-less images.

To regularize the displacement field we can either rely on physical models, such as elastic and viscous

fluid models, or rely on image regularization [49]–[51]. In general, physical models are more interesting

than image regularizers because they model real materials and follow our intuition. In our case, we

consider that the deformation of the mask or OPC model follows a physical model and borrow energies

from material sciences to penalize deformation fields u that are non-elastic.

The concept of elasticity is incorporated in image registration by considering the template and reference

images as observations of the same elastic body before and after being subjected to a deformation.

Deformations of elastic bodies are then measured in terms of the Green-St. Venant strain tensor

ε =
∇u+∇uT +∇uT∇u

2
. (8)

In Equation (8), ϕ = Id+u is the deformation matrix, and the strain tensor measures thus the deviation

between the given deformation and a rigid one. As penalty for our deformation field u, elastic models

use the St. Venant-Kirchoff energy stored by the deformed material, which is given by

W (ε (u)) =

∫
Ω

λ

2
(tr ε (u))2 + µ tr ε (u)2 , (9)

where λ and µ are the first and second Lamé parameters characteristic to the material.

The first linear elastic model, proposed by Broit in [52], neglects the quadratic term in the strain

tensor and the resulting model is fast to optimize but does not allow large deformations. To overcome

this limitation, Christensen et al. [53] proposed a viscous fluid model where objects evolve as fluids

in accordance to Navier-Stokes equations. Compared to the elastic models, fluid equations perform

regularization on the velocity field and allow larger deformations, but they are computationally more

expensive.

It has been observed recently in [47] that we can obtain an elastic model comparable to the viscous
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model of [53] by simply considering the quadratic term in the strain tensor and defining Equation (9)

as smoothness penalty. The non linearity in this elastic model allows small strains even when the stress

is relatively large and, consequently, large deformation fields between the shape obtained from the OPC

model and the recovered surface or their respective masks.

III. PROPOSED MINIMIZATION MODEL

The variational formulation of our surface reconstruction method results in the following non-convex

minimization problem

min
I,u

αA (∇z) + βB (z,u) + γG (∇z) +W (∇u) . (10)

To solve this optimization problem, we make use of recent advances in minimization techniques [54],

[55] and apply variable splitting and augmented Lagrangians [56] to obtain an efficient and easy-to-code

algorithm.

The minimization problem that we need to solve has terms involving the surface height map z, its

spatial gradients d = ∇ z, the deformation field u and its spatial derivatives V = ∇ u2. To efficiently

solve the problem, we design an iterative algorithm that considers these variables as independent and

use Lagrangian multipliers to ensure that the relationships d = ∇ z and V = ∇ u hold. In image

processing, similar techniques have been recently applied to variational image denoising, segmentation

and reconstruction that were previously solved with PDE methods [54], [55], [57].

Minimization techniques based on PDEs derive the Euler-Lagrange equations associated to the objective

functional and solve them with iterative time marching algorithms. The resulting PDE evolution is

inefficient because its time step is restricted by the Courant-Friedrichs-Lewy stability conditions. These

conditions assure convergence and accuracy in the solution, but make explicit PDE evolution extremely

slow for models with higher order derivatives, like the one proposed here. In the last years, however,

PDE methods have been combined and replaced by more efficient optimization techniques to provide

faster and more stable algorithms in imaging. These optimization techniques are usually based on the dual

formulation of convex problems [58]–[60] or on variable-splitting and equality constrained optimization;

which can be solved by quadratic-penalties [54], Bregman iterations [55], [61] or the equivalent augmented

Lagrangian method [62]. The algorithm that we propose falls in this last category. We rewrite the problem

2u is a 2-dimensional vector field in R2 and we denote as V = ∇u the 2× 2 matrix field obtained of applying the gradient
operator to each component of u.
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as a constraint minimization and use augmented Lagrangians to solve it. The resulting Lagrangian is

minimized with respect to each variable independently and the multipliers are then updated in a cyclic

way. The independent minimizations for each variable are easier to solve because they reduce to convex

problems involving only first order derivatives or are decoupled for each pixel. The initial complex

minimization of Equation (10) is thus divided in small and easier subtasks that are efficiently solved, and

the resulting algorithm is faster, easier to control and more stable.

We also adopt a multi-resolution approach to speed up the surface reconstruction method. Multi-

resolution or scale space tracking is commonly used in computer vision to solve large non-convex

minimization problems efficiently. An approximate solution is found at a coarse scale and then tracked

through scale as the problem is solved at higher resolutions. At a large scale, the problem will not

suffer from local minima and a first coarse solution is easily found. This solution is used to initialize the

algorithm at smaller scales. As the scale is reduced, local minima appear in the minimization and tracking

of the initial solution guarantees that the solution is kept meaningful. In fact, scale space is not certified

to find the global minimum of a non-convex minimization problem, only a significant one that appears

at large scales. In terms of efficiency, the algorithm is designed to perform most of its iterations at large

scale. It then initializes the same minimization algorithm at smaller scales with this coarse solution and

requires only a few iterations, which are now more expensive due to the finer resolution of the grid, to

converge. Multi-resolution makes our method more fast and robust to local minima.

A. Estimation of the reflectance map

In order to improve the approximation of the reflectance function (3), we alternatively iterate between

the refinement of the reflectance map (in terms of the estimated reflectance coefficient ν and light source

direction L) and the refinement of the reconstructed surface.

Given a first estimate of the surface and its normal n, we can refine the parameters of the reflectance

map solving the following least squares minimization problems.

ν = arg min
ν

∫
Ω

(ν − I0(x)n(x) ·L)2. (11)

In Equation (11), L is assumed known and takes the value of the previous estimate. We can then

analytically compute the solution to this least-square problem, which reads ν =
∫

Ω I0(x)n(x) · L.

Similarly, for the estimation of L, we assume ν known, giving it the value of the previous estimate, and
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solve the following minimization problem

L = arg min
|L|=1

∫
Ω

(
ν

I0(x)
− n(x) ·L)2. (12)

In this case, the constraint |L| = 1 is not handled explicitly in the minimization by a closed-form solution

and we adopt the same augmented Lagrangian technique used for the other minimizations.

With the resulting estimate of the reflectance map, the estimate of the surface can be improved with

the proposed SFS algorithm. In our algorithm, the process is iterated by alternating the refinements of

surface and reflectance maps.

B. Notation

We discretize the image domain Ω ⊂ R2 with a regular grid of size n = nx × ny. In Ω we consider

images and height maps as scalar functions with z(i) ∈ R and their gradients as vector-valued functions

with ∇z(i) ∈ R2. For vector fields d = (dx, dy), we define the gradient operator on each of its

components, that is ∇d = (∇dx,∇dy).

We use forward differences to compute the discrete gradients and backward differences for the diver-

gence in order to preserve the adjoint relationship div = −∇∗ in the discrete setting. In vector notation,

we can efficiently compute the spatial derivatives multiplying the discrete functions arranged as a column

vector with the sparse finite difference matrices ∇x z = Dx z, ∇y z = Dy z.

For numerical purposes we also relax the Heaviside function to a smooth approximation Hε (x) =

1
2

(
1 + 2

π arctan
(
x
ε

))
, with its corresponding derivative δε approximating the Dirac distribution.

C. Numerical minimization

To reconstruct the height map z associated with the surface and estimate the deformation field u, we

need to solve the minimization problem of Equation (10). We propose an iterative algorithm to solve this

problem based on splitting and constraint minimization techniques. The main idea is to split the original

problem into sub-optimization problems which are easy to solve, and combine them together using an

augmented Lagrangian.

Let us consider the following constrained minimization problem, which is equivalent to (10):

min
d=∇z
V =∇u

αA (d) + βB (z,u) + γG (d) +W (V ) . (13)

Next, we reformulate this constrained minimization problem as an unconstrained optimization task.

This can be done with an augmented Lagrangian approach, which translates the constraints into pairs of
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Lagrangian multiplier and penalty terms. The augmented Lagrangian energy associated to (13) reads

L (z,d,u,V ,λz,λu) = Ec (z,d,u,V ) +

∫
Ω
λz · (d−∇z)+

rz
2
|d−∇z|22 + λu · (V −∇u) +

ru
2
|V −∇u|22, (14)

where the vectorial functions λz,λu are Lagrange multipliers and rz, ru are positive constants.

The constraint minimization problem (13) reduces to finding the saddle-point of the augmented La-

grangian energy L. The solution to the saddle point problem (14) can be approximated iteratively by

the following algorithm: initialize the variables and Lagrange multipliers to zero; at iteration k find an

approximate minimizer of L (z, d,u, V , λz
k−1, λu

k−1) with respect to the variables z,d,u,V and

update the Lagrange multipliers with the residuals associated to each constraint.

In general, it is difficult to find the exact minimizer of the Lagrangian L with respect to all the

variables z,d,u,V . However, experiments show that a good approximation can be found by alternating

the minimization of L with respect to each variable while considering the others fixed. The resulting

method is equivalent to the alternating direction method of multipliers [63]. The minimization method is

summarized in Algorithm 1.

Algorithm 1 Augmented Lagrangian method to solve the constraint minimization (13)

1: Initialize z,d,u,V ,λz,λu
2: For each iteration l = 1, 2 . . ., find an approximate minimizer of L with respect to variables

(z,d,u,V ) with fixed Lagrange multipliers λz l, λul:

zl = arg min
z
L
(
z,dl−1,ul−1,V l−1,λz

l−1,λu
l−1
)

(15)

dl = arg min
d
L
(
I l, J l,d,ul−1,V l−1,λz

l−1,λu
l−1
)

(16)

ul = arg min
u
L
(
zl,dl,u,V l−1,λz

l−1,λu
l−1
)

(17)

V l = arg min
V
L
(
zl,dl,ul,V ,λz

l−1,λu
l−1
)

(18)

3: Update Lagrange multipliers

λz
l =λz

l−1 + rz(dl −∇zl) (19)

λu
l =λu

l−1 + ru(V l −∇ul) (20)

4: Stop the iterative process when ‖u
l−ul−1‖
‖ul‖ < ε, ‖z

l−zl−1‖
‖zl‖ < ε.

The next step is to determine the solutions of the sub-minimization problems (15),(18), which can be

computed efficiently. To simplify notation we omit the super-index in the sub-minimization problems.
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D. Minimization w.r.t. z

If we have an OPC model z0 of the printed surface, the sub-minimization problem with respect to z

reads

min
z

∫
Ω

β

2
(z − z̄0)2 + λz · (d−∇z) +

rz
2
|d−∇z|22, (21)

where z̄0 = z0 (x+ u) does not depend on z. We observe that it is a convex minimization problem and

therefore we can compute its optimality conditions by means of its first variation. Euler-Lagrange gives

us the following optimality condition

βz − rz∆z = λz + βz̄0 − div (λz + rzd) . (22)

If we discretize the optimality conditions and consider each scalar function in Ω as a vector of its pixel

values, equation (22) is discretized as a system of linear equations Azz = b with a positive definite

matrix. In particular we have

Az = βIn + rzD
T
xDx + rzD

T
y Dy

b = βz̄0 +DT
x (rddx + λz,x) +DT

y (rdy + λz,y) . (23)

Note that matrix Az is block circulant and we can use the Fourier transform F to decompose it as

Az = FTDF , with D a diagonal matrix. Consequently, the system (23) can easily be solved in the

Fourier domain. In practice we use the FFT transform instead of doing the matrix multiplications with

F and FT , which gives us the solution z = FT
(
D−1Fb

)
with a complexity O(n log n).

If we compare the surface to the expected mask in terms of the Heaviside function, we have the

following minimization problem

min
z

∫
Ω

β

2
(Hθ (z)− h)2 + λz ·(d−∇z) +

rz
2
|d−∇z|22, (24)

where h = H (φ (x+ u)) does not depend on z and we have denote as Hθ the composition of the

Heaviside function with the translation by θ, i.e., Hθ(x) = H(x − θ). In this case we do not have a

closed-form solution for the minimization and require an iterative algorithm. In practical terms, we derive

a fast semi-implicit minimization algorithm, that we initialize with the value of the previous iterate in

the augmented Lagrangian Algorithm 1. The resulting minimization with respect to z converges within

2-5 iterations.
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The Euler-Lagrange equations associated with Equation (24) are

−rz∆z = β(Hθ(z)− h)δθ(z) + λz + βz̄0 − div (v) , (25)

where v = λz + rzd and δ(·) is the derivative of the Heaviside function, that is, the Dirac distribution.

Given a small ε > 0, the system is equivalent to

εz − rz∆z = εz + β(Hθ(z)− h)δθ(z) + λz + βz̄0 − div v (26)

and can be solved with the following fixed-point iterative method (iterations on k)

εzk+1 − rz∆zk+1 = εzk + β(Hθ(z
k)− h)δθ(z

k)+

λz + βz̄0 − div v. (27)

At each iteration we have a linear system equivalent to (22), that we solve again in the Fourier domain.

E. Minimization w.r.t. d

If we define v = ∇z − λz

rz
, the minimization problem with respect to d = (dx, dy) reads

min
d

∫
Ω
α (R (d)− I0)2 + γw|∇d|2 + rz|d− v|22. (28)

The ideal reflectance function for SEM is given by Equation (3), but in fact, at the nanometre scale

the reflectance map is considerably more complex and has to account for proximity effects. As a result,

Equation (3) is only an approximation of the SEM image acquisition system, which can be equally

modelled by its first order Taylor expansion in the minimization process. Such an approach has also been

shown to improve convergence in [32]. At iteration k + 1 we approximate the reflectance map around

the previous slope estimate as

R (d) ≈ Rk +
(
dx − dkx

)
Rkx +

(
dy − dky

)
Rky , (29)

where Rk = R(dk), Rkx = ∂dxR(dk) and Rky = ∂dyR(dk). Then, at each iteration we have to solve

min
d

∫
Ω
α
(
Rkxdx +Rkydy + R̄k

)2
+ γw|∇d|2 + rz|d− v|2, (30)

with R̄k = R
(
dk
)
−Rkxdkx −Rkydky − I0.

For simplicity we minimize independently for each component of d and correct this approximation

January 19, 2013 DRAFT



16

through the iterative method. A simultaneous minimization could also be performed efficiently solving a

2×2 linear system of equations for each pixel in the frequency domain, see e.g., [64]. The Euler-Lagrange

equations associated with the minimization with respect to dx and dy are

rzdx + αRkxdx + γ∇w·∇dx − γw∆dx = rzvx − αRkx
(
Rkydy + R̄k

)
rzdy + αRkydy + γ∇w·∇dy − γw∆dy = rzvy − αRky

(
Rkxdx + R̄k

)
.

If we discretize the optimality conditions, we have a linear system of equations Axdx = bx and Aydy = by

with

Ax = rzIn + αDRxk + γDT
xDwDx + γDT

y DwDy

bx = αDRxk (DRykdy −DR̄k) + rzvx

Ay = rzIn + αDRyk + γDT
xDwDx + γDT

y DwDy

by = αDRyk (DRxkdx −DR̄k) + rzvy,

where DRxk, DRyk and Dw are diagonal matrices, with entries associated with the values of functions

Rkx, Rky and w in Ω. Matrices Ax, Ay are then symmetric, sparse and diagonally dominant and the systems

can be inverted with an iterative Gauss-Seidel method. As a consequence of the sparsity of the matrices,

each iteration of the Gauss-Seidel method is extremely fast and convergence is achieved within a few

updates.

F. Minimization w.r.t. u

If we have an OPC model z0 of the printed surface, the sub-minimization problem with respect to u

reads

min
u

∫
Ω

β

2
(z (x)− z0 (x+ u))2 + λu · (V (x)−∇u (x)) +

ru
2
|V (x)−∇u (x) |2. (31)

The associated Euler-Lagrange equation is

− ru∆u (x) = b(u)

b(u) = v + βz0 (x+ u)∇z0 (x+ u) ,

where we define v = −βz (x)− div (λu (x) + ruV (x))
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If we compare the surface to the expected mask in terms of the Heaviside function, we have the

following minimization problem

min
u

∫
Ω

β

2
(hθ (z(x))−H (φ (x+ u)))2 +

λu · (V (x)−∇u (x)) +
ru
2
|V (x)−∇u (x) |2. (32)

The associated Euler-Lagrange equation is now

− ru∆u (x) = b(u)

b(u) = v + βH (φ (x+ u)) δ (φ (x+ u))∇φ (x+ u) ,

where now v = −βhz (x)− div (λu (x) + ruV (x)).

In both cases, the optimality conditions reduce to

−ru∆u = b (u) (33)

and can be solved iteratively with the same scheme. To that purpose, we choose a small ε > 0 and

initialize the following fixed-point method with the solution to the previous Lagrangian iterate

εut+1 − ru∆ut+1 = b
(
ut
)

+ εut. (34)

The previous fixed-point schema is discretized as a system of linear equations equivalent to (23) and

and can be efficiently solved by means of the FFT transform or a few iterations of Gauss-Seidel. We

have experimentally observed that 2-5 iterations of this fixed-point algorithm are enough to achieve

convergence.

G. Minimization w.r.t. V

Defining W = ∇u− λu

ru
, the minimization w.r.t. V reads

min
V

∫
Ω
|V −W |F 2 +W

(
V + V T + V TV

2

)
, (35)

where |·|F designates the Frobenius norm. In this case the minimization functional contains no derivatives

is decoupled for each pixel and we only need to solve a scalar minimization problem independently for

each pixel. To that purpose we use a semi-implicit gradient descent scheme with time step τ . At each

pixel we denote V =

V1,1 V1,2

V2,1 V2,2

 and iteratively update V pixel-wise with the following rule
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V k+1
1,1 =

V k
1,1 + τ

(
ruW1,1 − λck0,1 − µck0,2 − µck0,4V k

1,2

)
1 + τ

(
ru+ λck0,1 + µck0,2

)
V k+1

1,2 =
V k

1,2 + τ
(
ruW1,2 − µck0,4

(
1 + V k

1,1

))
1 + τ

(
ru+ λck0,1 + µck0,3

)
V k+1

2,1 =
V k

2,1 + τ
(
ruW2,1 − µck0,4

(
1 + V k

2,2

))
1 + τ

(
ru+ λck0,1 + µck0,2

)
V k+1

2,2 =
V k

2,2 + τ
(
ruW2,2 − λck0,1 − µck0,3 − µck0,4V k

2,1

)
1 + τ

(
ru+ λck0,1 + µck0,3

) ,

where

c0,1 = V1,1 + V1,2 +
1

2

(
V 2

1,1 + V 2
1,2 + V 2

2,1 + V 2
2,2

)
c0,2 = 2V1,1 + V 2

1,1 + V 2
2,1

c0,3 = 2V2,2 + V 2
1,2 + V 2

2,2

c0,4 = V1,2 + V2,1 + V1,1V1,2 + V2,1V2,2.

A similar scheme has been proposed in [47] in the context of image registration, but the relation V = ∇u

is here considered a constraint instead of a penalty in the minimization. Experimentally we have found

that few iterations are enough to reach the accuracy required for the Lagrangian update rule of Algorithm

1.

IV. EXPERIMENTAL RESULTS

In this section we present the experimental results of our surface reconstruction method. For our

experiments we have used large field of view SEM images of circuits corresponding to diffusion layer,

covering an area of 1.25× 1.25 µm. We have used a multi-resolution approach to speed up convergence,

adapting the shape prior at each resolution with the solution of the previous scale in order to have

smaller and smoother deformation fields at each scale. Therefore, at each scale the deformation should

be computed concatenating the deformations at previous resolutions correctly scaled. For simplicity, in

all the experiments we have set α = 500, β = 50, γ = 100, λ = µ = 10−4, but the value of these

parameters could be refined.

The shape prior adopted are based on the mask, that is on Equation (7), as we did not have access to
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OPC models. Convergence of the algorithm should be faster with a shape prior of Equation (6) based

on OPC models because the sub-minimization tasks with respect to z and u would be easier. However,

the reconstructed surface would only be more accurate to the same extent that the OPC models are.

In that sense, it is always better to use limited but reliable mask information, than unreliable OPC

models. Figure 1 shows the masks associated to the patterns in the experiments and Figure 3 shows

the reconstructed surface for a simple structure, where we have included the reconstructed surface and

the estimated deformation field u. For quick visual inspection, we have superposed the isoline of height

θ = 0.5zmax + 0.5zmin of the reconstructed surface in the SEM image of Figure 2, where we observe

that the surface reconstruction correctly estimates the position of the edges in the image.

Figure 4 presents the results for the reconstruction of more complex patterns of Figure 1(b)-1(d).

For these experiments we can only provide qualitative results for our reconstruction method because no

ground truth of the reconstructed surfaces is currently available, but we observe that results agree with

our intuitive reconstruction from the SEM images.

To measure the contribution of the shape-prior term in the reconstruction, we compare the results

to the equivalent variational method ignoring the shape-prior, that is, defining z as the minimizer of

minz αA (∇z) + γG (∇z). Figures 5(a) present the results of the reconstruction without the shape prior,

where SFS alone fails due to noise, shadows and SEM artefacts. For instance, the shadow present under

the white band in the SEM image results in a deep and narrow valley in the surface reconstructed in

Figure 5(e).

In order to test the robustness of our method to noise, we have artificially added white Gaussian noise

to the previous SEM images in Figures 5(b)-5(d). We observe that our SFS method is robust to noise.

In particular, the only difference visible in the reconstructed shape in comparison to our reconstruction

of Figure 3 and 4, are the gentle and almost negligible waves present in the dark flat areas. This waves

are the only residual left in the reconstruction from the noise.

It is interesting to analyse the reconstructions of Figure 6, where the printing process partially fails.

In the first pattern, we observe that the height of the walls of the reconstructed surface degrades in the

vertical direction, while for the second surface we can see how the walls of the pattern become thinner

and almost break. In both cases, our method produces surfaces that agree with the human interpretation

of the corresponding SEM images and can detect failures in the lithographic process.

Due to the lack of reliable ground truth data at the nanometre scale, we propose the following

experiment to indirectly evaluate the performance of our reconstruction method in the context of optical

lithography. In particular we will compare one-dimensional distance measurements associated to different
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(a) (b) (c) (d) (e) (f)

Fig. 1: Binary masks associated to different patterns.

Fig. 2: SEM image with associated mask 1(a). In red we superposed the iso-contours of height θ associated
to the reconstructed surface of Figure 3.

patterns obtained by OPC simulations with the corresponding distances measured from our reconstructed

surfaces. To that purpose, it is first necessary to define some concepts from lithography. One of the

basic tasks of computational lithography is the quantitative characterization of the printing process, from

patterns and masks in circuit designs to the shapes carved in silicon wafers. In particular, numerical

simulations are performed to model optical and physical properties of the light source and materials

and estimate the shape of the wafer’s surface with OPC models. For accurate results, these models are

iteratively refined by calibration with measurements of the wafer in several cycles of printing-simulation.

To that purpose, OPC modellers describe the patterns printed in a wafer in terms of critical distances,

that is, one-dimensional measurements of distances associated to the surface of the wafer at a critical

position designated by a gauge. Gauges are in fact line segments that mark the specific location for each

pattern where the engineers expect that the printing process might fail. In the next experiment we analyse

the critical distance associated to the reconstructed surface with its equivalent generated with calibrated

OPC models for 24 patterns that printed correctly. With an accurate SFS reconstruction, we expect these

distances to coincide with the OPC models; while wrong SFS reconstructions would lead to a mismatch

of the pairs of critical distances. Consequently, we use this process as validation of our SFS reconstruction

method. For the OPC simulations, we use the compact resist model CM1 of Mentor Graphics and run

simulations with Calibre to estimate the critical distance associated to each one of the 24 patterns. In both
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(a) Surface at largest scale. (b) Zoom at middle scale. (c) Zoom at smallest scale.

(d) Deformation at largest scale. (e) Deformation at middle scale. (f) Deformation at smallest scale.

Fig. 3: Reconstructed surface and deformation fields at three different scales from SEM image of Figure
2.

simulations and SFS reconstruction, the critical distance is measured at the location of the gauge where

the simulated and reconstructed surfaces attain height 0.3 with respect to a normalized surface. Figure

7 shows the scatter plots between the critical distances in OPC simulations and the proposed method.

This Figure provides a quantitative evaluation of the proposed method, but it is only representative to

the extent that the OPC model is reliable. We observe that the critical distances are nicely correlated

(the difference in scaling is due to the pixel-to-nanometre conversion), except in a few outlier cases. We

conclude that the proposed reconstruction method agrees with the calibrated OPC estimates. Currently we

cannot assess if the existing differences are due to errors in the OPC models, in our SFS reconstruction

method or they simply show effects of the manufacturing process that are not considered in the OPC

model. To clarify this point it is necessary to compare the surfaces estimated with our method and OPC

models to real and accurate 3D measurements on the wafer, possibly with atomic force microscopy. At

present, this information is not available and the question remains open to future investigations.

V. CONCLUSIONS

In this paper we have proposed a surface reconstruction method from SEM images of silicon wafers.

Our experiments show that the method is robust to noise and SEM artefacts because it incorporates
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Fig. 4: Results of our surface reconstruction method for different SEM images and patterns of Figure
1(b) (left), 1(c) (middle) and 1(d) (right). First row shows the SEM images, the second column the
reconstructed surfaces and the third one a zoom on the estimated deformation fields.

knowledge about the shapes of the patterns in the reconstruction process. In particular, we adopt an

intuitive variational formulation that includes models of the SEM acquisition systems, the expected

smoothness of the wafer and a term penalizing deviations from the patterns in the circuit. The resulting

minimization is solved by variable splitting and augmented Lagrangian techniques, which results in a fast,

efficient and easy-to-code algorithm. Our algorithm also estimates a deformation field between the ideal

pattern of the circuit and the reconstructed surface, which is included to model variability of printing

process and can be directly used to detect failures and critical regions in the wafer. From the point

of view of applications, we believe that the proposed technique can have an important impact on the

chip manufacturing industry, where an accurate description of the surface topography is essential for the

characterization of the lithographic process.
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(a) Surface without shape
prior.

(b) Noisy image, 1.85 dB SNR (c) Noisy image, 2.36 dB SNR. (d) Noisy image, 1.05 dB SNR

(e) Zoom on Figure 5(a) (f) Surface from noisy image
5(b)

(g) Surface from noisy image
5(c)

(h) Surface from noisy image
5(d)

Fig. 5: First column shows the reconstruction results for the SEM image of Figure 2 ignoring the shape
prior in the SFS algorithm. The last three columns correspond to reconstruction of surfaces with the
proposed method with noisy images.

Fig. 6: SEM images and reconstructed surface for patterns of Figure 1(e) and 1(f) . The lithographic
process resulted in pinching in the center of the left’ pattern and thin and fading the outer walls on the
right pattern.
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