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Abstract: An interesting feature of light fields is a phase anomaly, which 
occurs on the optical axis when light is converging as in a focal spot. Since 
in Talbot images the light is periodically confined in both transverse and 
axial directions, it remains an open question whether at all and to which 
extent the phase in the Talbot images sustains an analogous phase anomaly. 
Here, we investigate experimentally and theoretically the anomalous phase 
behavior of Talbot images that emerge from a 1D amplitude grating with a 
period only slightly larger than the illumination wavelength. Talbot light 
carpets are observed close to the grating. We concisely show that the phase 
in each of the Talbot images possesses an anomalous axial shift. We show 
that this phase shift is analogous to a Gouy phase of a converging wave and 
occurs due to the periodic light confinement caused by the interference of 
various diffraction orders. Longitudinal-differential interferometry is used 
to directly demonstrate the axial phase shifts by comparing Talbot images 
phase maps to a plane wave. Supporting simulations based on rigorous 
diffraction theory are used to explore the effect numerically. Numerical and 
experimental results are in excellent agreement. We discover that the phase 
anomaly, i.e., the difference of the phase of the field behind the grating to 
the phase of a referential plane wave, is an increasing function with respect 
to the propagation distance. We also observe within one Talbot length an 
irregular wavefront spacing that causes a deviation from the linear slope of 
the phase anomaly. We complement our work by providing an analytical 
model that explains these features of the axial phase shift. 
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1. Introduction 

Diffraction and interference phenomena are manifestations of the wave nature of light. A 
prime example for such effect constitutes a grating that diffracts monochromatic incident light 
into discrete directions. Especially in the Fresnel diffraction regime, i.e., the region close to 
the surface of the grating, each diffraction order propagates at a certain angle and superposes 
with others in space. Such a superposition leads to interference and self-images of the grating 
can be observed. This self-imaging phenomenon was first discovered by Talbot in 1836 [1] 
and afterward called the Talbot effect. It connotes that the light field emerging from the 
grating possesses a periodicity in propagation direction, in addition to the periodicity in lateral 
directions imposed by the periodicity of the object. Such particular field distributions repeat at 
regular distances away from the grating surface. An analytic description for this distance was 
derived by Lord Rayleigh in 1881 and he called it the Talbot length [2]. 

These self-imaging effects play an important role in numerous applications. Examples are 
for the measurements of the refractive index [3], for sensing a distance or a displacement [4], 
for laser resonators [5, 6], lithography [7], array illumination [8], sub-wavelength focusing 
[9], imaging [10], lensless image synthesis [11] and 2D optical correlator [12]. Such 
appealing applications draw attention and led to intensive investigations; both experimentally 
and theoretically. The theoretical studies often focused on a discussion of the origin of the 
Talbot effect and associated phenomena while relying on different approximations. Work has 
been done in the framework of Fresnel diffraction [13], Fresnel images [14], Fourier images 
[15], and the theory of image formation [16]. Associated effects such as the quasi-Talbot 
effect [17] or the fractional and fractal Talbot effects [18] were equally investigated. Also, 
rigorous studies were done using, e.g., electromagnetic theory [19], the finite-difference time-
domain (FDTD) method [20] and the Rayleigh-Sommerfeld formula to understand the impact 
of aberrations on the self-imaging process [21]. In physical optics, researchers discussed such 
effects down to the quantum mechanical level, i.e., the quantum Talbot effect [22, 23]. Such 
self-imaging phenomena are also not limited to optical waves. For instance, the Talbot effect 
exits for atomic matter waves [24, 25], x-ray [26], electron beams [27], and surface plasmons 
[28, 29]. 

Compared to the theoretical works, there are only few experimental investigations 
reported. In most of these experiments, the Talbot effect has been studied using gratings with 
periods much larger when compared to the wavelength, for example, in Refs. [20], [21] and 
[23]. This suggests a certain simplicity for the experiments since it is not difficult to 
accommodate the associated macroscopic scales. Moreover, and even surprisingly, the phase 
features are often not taken into account in these studies. Recently, a detailed experimental 
and theoretical study of the Talbot effect has been using a 1D amplitude grating with a period 
only slightly larger than the wavelength. There, detailed information of both amplitude and 
phase fields were provided [30]. The contributions of each diffraction order to the Talbot 
effect and the formation of self-images has been discussed. However, it can be expected that 
such fields may be characterized by much more interesting features. A prime example phase 
fields might feature, in general, is the anomalous axial phase shift [31]. In this work, we focus 
on the phase of light fields emerging from the grating surface that form Talbot images. 
Especially, the axial phase behavior of the light is of interest. 

In the context of the Talbot effect, the occurrence of axial phase anomalies has never been 
observed nor discussed. Such phase anomalies, however, constitute a generic feature in phase 
fields that occur when light is converging as in a focal spot or is confined as in a photonic 
nanojet [32]. A Talbot carpet shows a light distribution that corresponds to an array of focal 
spots with a periodicity along both lateral and axial directions. By considering this to be the 
periodic analog of an isolated focal spot, phase anomalies are expected to occur in each self-
imaging plane. Anomalous axial phase behavior of the wave fields has been drawing attention 
since Gouy’s discovery in 1890 [33], which is called Gouy phase or phase anomaly. In 
general, the anomaly is characterized by an α·π/2 axial phase shift for a converging light wave 
passing through its focus upon propagating from −∞ to + ∞. The factor α is a dimension-
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related value, which equals 1 for a line focus representing the 2D case (i.e., a cylindrical 
wave) and equals 2 for a point focus representing 3D case (i.e., a spherical wave). Although, 
Gouy’s discovery took place more than a hundred years ago, curiosity about the origin and 
physical meanings of this peculiar phenomenon continually stimulated discussions based on 
different theoretical perspectives. For example, the geometric properties of Gaussian beams 
[34], Berry’s geometrical phase [35–38], and even quantum mechanics [39–41] have been 
considered to give insights into this effect. Recently, it has been also explored in the context 
of deviating wavefields, i.e., astigmatic wavefields [42, 43]. The importance of such 
anomalous phase features can be found in various physical problems, for instance, they 
contribute defining the resonance frequencies of laser cavities [44, 45], they can be used for 
optical trapping [46–48], and for higher harmonic generations [49–51]. Such phase anomalies 
are a general wave phenomenon and were found not just in optical waves, but also in acoustic 
waves [52], microwaves [38, 53], and terahertz waves [54–56]. In optical waves, various 
classes of beams exhibit the Gouy phase. Examples are general higher Gaussian modes like 
Hermite-Gaussian and Laguerre-Gaussian beams [44, 57–60], more specifically a vortex 
beam [61, 62], a radially polarized beam [63], the Airy beam [64], and the Bessel beam [65, 
66]. In addition to such optical beams, surface plasmon-polaritons [67], matter waves [41], 
scattered hotspots (i.e., a photonic nanojet) [32], and diffracted hotspots (i.e., the spot of 
Arago) [68, 69] also show axial phase shifts. The amount of such axial phase shifts differs 
depending on the type of beams and the confinement situations. If one considers the analogy 
of multiple focal spots to the confined light in each self-imaging plane, the phase field in the 
Talbot images might naturally possess a phase anomaly too. Here, we will verify this 
hypothesis and determine the amount of the shift. A demonstration of the presence of the 
phase anomaly and the amount of the axial phase shift are the main subject of this work. 

The Talbot images we use are generated by a wavelength-scale amplitude grating in the 
visible spectrum, which allows only three propagating diffraction orders (i.e., the 0th and ± 
1st orders) that prevent a production of fractional or fractal Talbot images [18] and generate 
only self-images. To be precise, the amplitude grating we rely on has a period of Λ = 1 μm 
and the illumination wavelength is λ = 642 nm. The usage of such a high spatial frequency 
grating allows the experimental demonstration of the high-resolution light field measurement 
for the self-Talbot images. For experiments, we use a high-resolution interference microscope 
(HRIM) that facilitates the longitudinal-differential interferometry technique. The HRIM 
directly records the axial phase shift by comparing the measured phase with that of a 
reference plane wave in situ [31]. Therefore, it allows to measure directly the magnitude of 
the phase anomaly that is defined as the difference in phase of a given field to that of a 
referential plane wave. In order to verify the experimental results, rigorous simulations using 
Fourier Modal Method (FMM) are performed [70]. We rely here on a super-cell simulation 
that allows to take into account all the details of the finite sample. To understand the origin of 
such phase shifts in Talbot images, an analytical equation for the phase anomaly will be 
derived. We also briefly discuss about other phase features like the phase singularity that 
appears only in the self-imaging plane due to the destructive interference of the lowest three 
diffraction orders. This can find an application to measure the Talbot length with super-
resolution. 

2. Experiment and simulation 

For the measurements of amplitude and phase in the entire 3D space, a high-resolution 
interference microscope (HRIM) is considered. Details of the experimental setup are reported 
elsewhere [71, 72]. A particular measurement mode of the HRIM allows longitudinal-
differential (LD) interferometry [31] that directly measures the axial phase shift by comparing 
the phase of the object field with that of a reference plane wave in situ. In this study, all 
experimental and theoretical investigations were performed at a single wavelength of 642 nm 
(CrystaLaser: DL640-050-3). In passing we note that the laser source provides perfect 
coherent light and the light delivering system is based on a collimation using a spatial 
filtering technique that also assures perfect spatial coherence. The Talbot effect occurs in the 
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amplitude of the wave field only if it is perfectly coherent, as it holds for the present setup. 
However, even for incoherent light a longitudinal periodicity can be observed that was first 
described by Lau [73] and it also holds for partially coherent beams [74, 75]. 

The achievable spatial resolution for the amplitude fields is subject to the diffraction limit 
of the observing objective (in this case, a 100X/NA0.9 HC PL FLUOTAR from Leica 
Microsystems). LD interferometry requires an in situ reference plane wave. This provides 
direct information on the phase evolution of the referential plane wave. To include the 
referential plane wave in the object space, we design an integrated sample system that 
includes a wide opening. This opening is distant from the edge of the grating and serves as the 
passage of the unperturbed illumination, which provides the referential phase. The geometry 
of the integrated sample system is illustrated in Fig. 1. It has three distinct regions: An 
opening for the reference wave, an amplitude stop for spatial separation, and the grating 
region. The reference field is a 40-μm opening that is located next to a 30-μm opaque region 
to separate the grating and reference region. The grating is a 1D amplitude grating that has a 
period of 1 μm and a duty cycle of 0.5. The grating structures and the opaque region are made 
of 80-nm thick chromium (Cr) coating, which is opaque at the wavelength of interest and a 
metal coating that used for conventional mask structure of photolithography formed on a 1.5-
mm-thick glass substrate (Compugraphics Jena GmbH). Illumination is in TM polarization 
with respect to the grating. 

 

Fig. 1. Schematic geometry of the grating structure: the 1D amplitude grating of the period Λ = 
1 μm and the duty cycle = 0.5, the 30-μm-wide opaque region, and the 40-μm-wide opening 
region where the in situ reference plane wave passes. Structures are fabricated on a 1.5-mm-
thick glass substrate. 

Eventually, what we want to probe in our experiments is the phase anomaly in a wave 
field that consists of three interfering plane waves, in our case, three propagating diffraction 
orders, that could have been also generated in the field upon interference of a finite number of 
plane waves. However, such scheme does not allow for the measurement of LD phase map in 
an unambiguous manner since an isolated plane wave that provides the referential phase 
advance cannot be incorporated into such measurement scheme. The beauty of the proposed 
sample structure shown in Fig. 1 is the integration of all the necessary structures into a single 
sample that can be equally measured at once. This is a clear advantage of devices that are 
discussed in the field of micro- and nano-optics, respectively. The integration of multiple 
functionalities into one sample is often very beneficial [76]. With this particularly designed 
sample, we can additionally demonstrate and study the presence of the boundary diffraction 
wave at the edge of the opaque region and, moreover, the propagation of an isolated 
diffraction order that is not superposed to other diffraction orders. These features can be 
observed at the edges of the opaque region. To be precise, at the left edge of the 30-μm 
opaque region in Fig. 1, a boundary diffraction wave emerges toward both the shadow (to the 
right) and opening (to the left) regions. At the right boundary of the opaque region, an 
isolated diffraction order emerges to the left into the shadow region and does not superpose 
with other orders of the grating. The diffraction orders emerging from the middle of the 
grating region superpose each other and eventually produce the Talbot images. 
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For the rigorous numerical calculation of the field distribution behind the grating the 
Fourier Modal Method is used [70]. It solves directly Maxwell’s equations and only assumes 
the structure to be periodically arranged. Therefore, the finite structure is simulated within a 
super-cell approach, i.e., with an artificial super-period of P = 130 µm. It was verified that the 
size of the super-cell does not affect the conclusions to be drawn, i.e., it is large enough to 
consider the regions of interest as being isolated. The grating consists of 60 periods with the 
same period, filling fraction, and height as in the experiment. Left to the grating the opaque 
region with a width of 30 µm is considered. Further to the left, the opening with a width of 40 
µm exists. Taking all together the super-cell has a period of 130 µm. The metal is assumed to 
be characterized by a refractive index of n = 2.039 + i2.879, corresponding to the index of 
chrome at a wavelength of 642 nm. The entire structure is placed on a substrate with index n 
= 1.5 and illuminated from the substrate with a TM polarized plane wave. Due to the large 
super-period, an excessive number of Fourier orders had to be taken into account (N = 4001) 
for the simulation in order to achieve convergent results. All intensity and phase distributions 
in the manuscript are shown such that z = 0 µm correspond to the terminating edge of the 
grating. 

3. Intensity distributions: Talbot images and Talbot length 

The simplest demonstration of the self-imaging effect is an intensity measurement that 
prominently shows the periodic intensity distributions corresponding to the grating period and 
an axial periodicity at repeated distances away from the grating surface. Figure 2 shows the 
measured and simulated x-z intensity distributions when the 1D grating structure from Fig. 1 
is illuminated by a plane wave of 642 nm wavelength. 

The region of interest (ROI) is the central 60-μm part, which covers a part of the opening 
and the grating and the full 30-μm opaque region. On the left hand side, the in situ reference 
plane wave with minimal perturbations passes through the opening. No light passes through 
the opaque region, x = 5 - 35 μm in Fig. 2. Only diffracted light emerges at certain angles 
from both edges of the opaque region. On the right hand side, x = 35 - 60 μm, the self-images 
of the grating appear, i.e., the Talbot images. Here, one can see a consequence of the finite 
grating. The diffraction angle of the ± 1st orders defines a geometrical region with an inclined 
edge where the three diffraction orders superpose and interfere to form the Talbot image. The 
inclination angle perfectly corresponds to the diffraction angle of the 1st order. For a period 
of Λ = 1 μm and a wavelength of λ = 642 nm, the 1st order diffraction order propagates at an 
angle of 39.9°. The region x = 50 - 60 μm shows Talbot images extending up to z = 20 μm. It 
corresponds to the upper limit of the region of interest. The simulation in Fig. 2(b) shows an 
excellent agreement with the measurement from Fig. 2(a). 

While the boundary diffraction wave at the left edge of the opaque region is not 
prominently visible in both figures due to very low field strength, the single diffraction order 
emerging from the boundary between the opaque region and the grating is well resolved. This 
single diffraction order emerging toward the left from the grating, which is defined as the −1st 
order in our convention, demonstrates a tilting angle that corresponds to the diffraction angle 
of 39.9°. This is the vertical reflection of the inclination angle of the Talbot image zone in 
Fig. 2 that is defined by the + 1st order. Since in the present configuration only three 
diffraction orders propagate, i.e., the 0th and ± 1st, only self-Talbot images are found. This 
implies that there are neither quasi-Talbot images nor fractional Talbot images [17, 18] that 
are associated with higher diffraction orders. Each self-image plane has a lateral shift of half 
grating period. The distance between adjacent self-image planes is equal to half the Talbot 
length. In some literatures [e.g., Ref. [22]] this half-length is used as the Talbot length ZT, but 
we adopt the original definition proposed by Lord Rayleigh [2], which is derived as 

 T 2

λ
.

λ
1 1

Z =
 − −  Λ 

 (1) 
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Fig. 2. The x-z intensity distribution emerging from the grating structure shown in Fig. 1. A 
plane wave is used for the illumination. (a) Measured and (b) simulated intensity distribution. 
The region of interest is the central 60-μm part of Fig. 1. Intensities are normalized. 

He also suggested an approximation to Eq. (1) when the wavelengths λ is considered to be 
small compared to the period Λ of the structure. In this paraxial approximation the Talbot 
length can be expressed as 

 
2

T

2
.

λ
Z

Λ=  (2) 

Our study is a prime example to demonstrate the invalidity of Eq. (2) when the period Λ tends 
to be in the order of the wavelength λ. Figure 3 shows the calculated Talbot length with 
respect to the grating period by using both Eqs. (1) and (2). The difference between results of 
two equations becomes prominent when Λ equals 5λ, where 1% difference occurs. Here, the 
difference in percentage is derived by comparing the difference with the actual Talbot length 
from Eq. (1). Analytically, the difference can reach 100% when the Talbot lengths equals the 
observation wavelength, hence Λ = λ. Already for the case of Λ = 1.56λ (i.e., Λ = 1 μm at λ = 
642 nm), the difference is significantly increased up to almost 12%. Therefore, for our case, 
we can assert that Eq. (2) is not valid anymore and should not be used. Equation (1) is the 
exact analytical solution to verify the experimental and numerical results. Figures 2(a) and 
2(b) both demonstrate the Talbot length ZT = 2.8 μm that perfectly matches with the result of 
Eq. (1) while Eq. (2) would lead to ZT = 3.1 μm. 

#179273 - $15.00 USD Received 5 Nov 2012; revised 21 Dec 2012; accepted 26 Dec 2012; published 11 Jan 2013
(C) 2013 OSA 14 January 2013 / Vol. 21,  No. 1 / OPTICS EXPRESS  1294



 

Fig. 3. Comparison of the exact and approximate Talbot lengths ZT with respect to the grating 
period Λ. The difference becomes noticeable when the period Λ is below 5λ. The case of Λ = 
1.56λ ( = 1 μm) produces approximately 12% difference between two results. When Λ = λ, this 
relative error reaches up to 100%. The experimental result is in excellent agreement with the 
exact Talbot length. 

4. Phase distributions: longitudinal-differential and propagation phase maps 

In experiments, the longitudinal-differential interferometer naturally records the LD phase 
map as shown in Fig. 4(a). The experimental errors due to vibration and the laser source 
instability can now be corrected by using the in situ reference plane wave that is present in the 
region of x = 1 - 8 μm and which appears as a constant phase. By wrapping this constant 
phase of the reference plane wave with a modulo of 2π, a propagation phase map, which is 
the counterpart of the simulated absolute phase map, is obtained as shown in Fig. 4(b). The 
corresponding simulations are shown in Fig. 5. Note that the coordinates of the region of 
interest are shifted to match with intensity distributions. Therefore, the in situ reference 
appears now at x = 1 - 5 μm. The simulations are again in excellent agreement with 
experiments. In simulations, the absolute phase is the natural result that represents the 
propagation phase map as shown in Fig. 5(b). Subtracting the phase of the plane wave from 
the propagation map leads to the LD phase map in Fig. 5(a). 

Especially in the low intensity region, e.g., in the geometrical shadow behind the 30-μm 
opaque region, the phase maps show much more information than the intensity maps. Now, 
the presence of the boundary diffraction wave is clearly observed on the left edge of the 
opaque region. The phase of the single diffraction order that does not superpose with other 
diffraction orders shows as a tilted planar wavefront on the right edge of the opaque region. In 
the region where the three diffraction orders superpose (x = 38 - 60 μm for experiment and x 
= 35 - 60 μm for simulation), phase Talbot images emerge from the grating surface. In this 
region, the super-resolution features like phase singularities are found in each self-image 
plane. Such phase dislocations occur where the destructive interference causes points in space 
with zero amplitude. Since only the self-images demonstrate such features [30], the position 
of the singularity can serve as an indication for the self-image planes. Therefore, a super-
resolution distance measurement can be put in place when the phase field is considered for 
the applications exploiting the Talbot effect. 
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Fig. 4. The measured x-z phase distributions: (a) the longitudinal-differential phase map and 
(b) the propagation phase map. The reference plane wave passing the opening is shown in x = 
1 - 8 μm of both maps in the referential plane at x = 0 µm. The propagation phase is obtained 
by adding the phase advance of a plane wave in free space to each distance that can be 
calculated analytically according to kz and unwrapping it with a modulo of 2π. 

 

Fig. 5. The simulated x-z phase distributions: (a) the longitudinal-differential phase map and 
(b) the propagation phase map. The reference plane wave passing the opening is shown in x = 
1 - 5 μm of both maps. The LD phase distribution is obtained by subtracting the phase of the 
plane wave from the propagation phase map in the referential plane at x = 0 µm. 
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5. Phase anomaly of the Talbot image 

By definition, the classical Gouy phase of a focused, monochromatic field at an axial point is 
defined as the difference between the argument (or “phase”) of the object field and that of a 
plane wave of the same frequency [77]. Here, we adopt this notion to discuss the phase 
anomaly of Talbot images. Therefore, the LD phase maps, which display the axial phase 
difference from the phase of the in situ reference plane wave, shown in Fig. 4(a) and 5(a) 
directly reveals the axial phase shift from the plane wave. Since Talbot images are periodic 
along the lateral direction, on-axis observation points are defined here as the points 
connecting the center of each Talbot image. Therefore, the axial profiles of the LD phase 
maps from the experiment [see Fig. 4(a)] and the simulation [see Fig. 5(a)] are extracted 
along the center of one Talbot image, i.e., close to x = 55 μm. After unwrapping they are 
plotted together in Fig. 6. 

 

 

Fig. 6. The axial phase shifts along the center of Talbot images from the experiment (filled 
square) and simulation (red solid line). The analytical result using Eq. (3) is plotted in dark 
dashed line. For the single diffraction order, the simulation result is plotted in blue dot-dashed 
line denoted as FMM single order. 

We observe a continuously growing phase shift along the z-axis. To better understand this 
phenomenon, an analytical equation is derived by using the tilted wave model [78]. In this 
model, the ± 1st orders are considered as propagating toward each other at a diffraction angle 
of 39.9° with respect to the surface normal. The superposition results in an interference that 
leads to Moiré-like fringes aligned along the axial direction. This Moiré interference fringe is 
superposed with the 0th diffraction order that is a plane wave propagating on-axis. Finally, 
the resulting interference between the Moiré-like fringe and the plane wave causes the axial 
periodicity, that is, the axial periodicity of the self-Talbot images. This suggests that the phase 
of the Talbot images can be written as the phase difference between the titled higher 
diffraction orders and the 0th order and is given as 

  (cosθ 1) ,z kφΔ = ⋅ −  (3) 
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with θ being the diffraction (or tilt) angle and k being the wavenumber ( = 2π/λ). In this case, 
the amount of the axial phase shift or phase anomaly Δφ does not has a finite and bound 
value, as in the case of a converging wave, but it is a growing function with respect to the 
propagation distance z. The phase anomaly calculated by Eq. (3) is also plotted in Fig. 6 and 
is compared to the experimental and numerical results. Overall, the analytical results show a 
very good agreement to the experiment and simulation. The axial phase of the single 
diffraction order, which is the −1st, has been plotted as well (see FMM single order). This 
will be discussed later with results of Fig. 7. 

Apart from the main effect, which is the linearly growing phase anomaly defined by the 
analytical solution [see Eq. (3)], both the experimental and numerical results demonstrate 
periodic deviations from this linear slope. This clearly originates from the wavefront 
deformation and the irregular spacing within adjacent wavefronts. Talbot images are 
produced by three-waves-interference (the 0th and ± 1st orders) that causes the wavefront 
deformation appearing over one Talbot length [see Figs. 4(b) and 5(b) at x = 40 – 60 μm]. 
This results in an irregular wavefront spacing within one Talbot length, as shown in the 
extracted axial phase profile from Fig. 5(b) given in Fig. 7(a). Such irregular wavefront 
spacing is typically found in focused beams [63, 79, 80]. The irregularity causes a deviation 
of the phase from the linear slope as shown in Fig. 7(b), which is the phase anomaly 
occurring within one Talbot length (e.g., z = 0 - 2.8 μm). Therefore, the periodicity of this 
deviation in the Talbot image phase map is again equal to the Talbot length. 

 

Fig. 7. Phase profiles within one Talbot length along the center of the Talbot image close to x 
= 55 μm: (a) the absolute phase from Fig. 5(b) and (b) the unwrapped LD phase from Fig. 5(a). 
The absolute phase shows the irregular wavefront spacing within one Talbot length. This 
irregularity leads to the phase anomaly slope deviating from the linear slope of the analytical 
solution Eq. (3). This repeatedly appears in Fig. 6 as a demonstration for the axial periodicity 
that represents the Talbot length. 

The merit of our sample is the access to an isolated diffraction order that emerges from the 
left edge of the grating toward the opaque region. This single diffraction order, i.e., the −1st 
order, corresponds to a plane wave propagating obliquely at an angle of 39.9° with respect to 
the surface normal. In this case, the phase along the axial direction is defined by the 
longitudinal component of the wave number, kz = 2π/λ·cosθ, which represents exactly a tilted 
wave. Therefore, the axial phase difference of this isolated diffraction order from the plane 
wave propagating along the axial direction equals the result of Eq. (3). Now, the axial profile 
from the simulation from Fig. 5(a) is extracted at x = 34 μm for the −1st order. Since there is 
no wavefront deformation and irregular spacing, a periodic deviation from the linear slope is 
not found. The phase extracted from the simulation along this line is equally shown in Fig. 6 
(see FMM single order) and shows clearly a linear slope at no specific periodic deviation. In 
this way, we can verify that the phase anomaly of the Talbot image is associated with the 
unified action of all the diffraction orders, for our case, the 0th and ± 1st orders, not the 0th 
order alone. The tilt angle θ (i.e., the diffraction angle of the higher orders) plays a key role to 
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define the growing slope. But the fine details are clearly dominated by the interference of 
multiple diffraction orders. For the Talbot images, the wavefront deformation and the 
irregular wavefront spacing causes periodic deviations from the linear slope that appear along 
the propagation distance. This periodicity verifies the Talbot length in another way. When the 
phase difference between higher ( ± 1st) orders and the lowest (0th) order equals 2π, 
constructive or destructive interference occurs. This suggests that the axial period of the 
Talbot images, which are the result of the constructive interference, equals the distance z 
where Δφ = 2π. Therefore, by letting Eq. (3) = 2π another formulation of the Talbot length 
can be derived: 

 T

λ
,

1 cosθ
Z =

−
 (4) 

When applying the grating equation sinθ = λ/Λ, Eq. (1) leads to an identical formula as Eq. 
(4) that covers up to the non-paraxial case of the diffraction and interference problems. 

6. Conclusions 

We experimentally and theoretically investigated the phase anomaly in Talbot images close to 
1D amplitude grating with a period only slightly larger than the illumination wavelength. 
Upon normal incidence, three propagating diffraction orders emerge, the 0th and ± 1st orders 
that have a diffraction angle of 39.9° in our specific geometry. With three interfering beams 
the minimal condition to generate Talbot images is fulfilled and self-images were found. The 
deflection angle of approximately 40° is well beyond the paraxial regime; consequently, the 
approximated equation for the Talbot length fails to agree with the experimental observations 
and rigorous simulations. The exact analytical equation derived by Lord Rayleigh is 
confirmed to be valid for such small period gratings and shows a perfect agreement with 
experimental and numerical results. 

In order to provide the in situ reference plane wave as required for longitudinal-
differential interferometry, particular grating structures were designed that sustain a wide 
opening far away from the edge of the grating. This opening permits the incidence plane wave 
to propagate with marginal perturbation so that the wavefront compares very well to that of 
the initial plane wave. The longitudinal-differential phase distributions, which are the natural 
outcomes of the experiments, directly demonstrate how much amount of axial phase shifts 
occur along the Talbot images. By wrapping this LD phase map with 2π modulo referencing 
the in situ plane wave, the propagation phase map could be obtained as well. Measurements 
were compared to simulations and showed an excellent agreement. Particular phase features 
like phase singularities were found in each self-image plane. There, destructive interference 
among the three propagating orders occurs at both sides of the bright Talbot images. It can be 
safely anticipated that these features can find application for super-resolution distance 
measurements, for instance. 

The unwrapped axial phase profiles, which are extracted from the LD phase maps along 
the Talbot image center, allow the direct measurement of the phase anomaly in Talbot 
images. The main body of such self-images is the moiré-like interference fringe of two tilted 
waves, i.e., the ± 1st diffraction orders. This moiré fringe again interferes with the 0th order 
that corresponds to a plane wave propagating along the longitudinal direction with no 
deflection. Consequently, the phase difference between the tilted waves (i.e., the higher 
orders) and the normal plane wave (i.e., the 0th order) directly indicates the amount of the 
phase anomaly. By applying this concept, the analytical solution for the phase anomaly of the 
Talbot images has been derived and it matches well with experiments and simulations. 
Moreover, from this analytical solution of the phase anomaly, another formula for the Talbot 
length can be derived with respect to the tilt angle. The origin of the phase anomaly in the 
Talbot images is therefore the result of the phase difference between the higher diffraction 
orders and the 0th order caused by the tilt angle of the higher orders. Beyond increasing our 
understanding for the basic principles in such complicated beams, we may only speculate at 
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the moment that such research will find its way into applications such as a lensless image 
synthesis, into illumination systems and it may find use in various types of microscopes 
where structured illumination is at the heart to achieve images with super-resolving features. 
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