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Abstract
In this thesis, we develop methods for modeling route choice behavior using smartphone
data. The developing global positioning system (GPS) technology and the popularity
of smartphones have revolutionized the revealed preference route choice data collection.
Nowadays, smartphones are embedded with various kinds of sensors that are able to
provide mobility related information. These sensors include GPS, accelerometer and
bluetooth. The recorded raw data is not directly applicable to travel behavior study,
information such as the paths and transport modes of travels have to be inferred. The
inference procedure is challenging due to the poor quality and the variety of the data. This
thesis deals with these challenges by proposing probabilistic methods that account for
errors in the data, and fusing various kinds of smartphone data in an integrated framework.
Based on the inference methods, a route choice modeling framework exploiting GPS data
is developed.

The low cost sensors of smartphones observe measurements with significant errors.
Moreover, due to practical constraints, such as the limits on smartphone battery volume
and the cost of data transmitted via wireless networks, data are usually recorded
in a relatively large time interval (low frequency). These drawbacks preclude path
identification (a.k.a. map-matching, MM) algorithms that are designed for dense and
accurate data from dedicated GPS devices. Therefore, we first propose a probabilistic
unimodal MM method that infers the traveled paths from GPS data recorded during a
car trip. Instead of deterministically matching a sequence of GPS points to one path,
it generates a probabilistic path observation which is composed of a set of candidate
paths, and a measurement likelihood for each path. The candidate paths are generated
by a candidate path generation algorithm from GPS data. It is capable of dealing with
both accurate and dense data (1 second interval) from dedicated GPS devices, and noisy
and sparse data (more than 10 seconds interval) from smartphones. A probabilistic
measurement model is constructed to calculate the measurement likelihood, which is the
likelihood that the observed GPS data is recorded along a given path. The probabilistic
measurement model employs structural equation modeling techniques, and the latent
status for each measurement is defined as the true location where the measurement is
observed. A GPS sensor measurement model relates the status to each GPS measurement;
a structural travel model captures the status over time in the network. In this approach,
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besides geographical coordinates, speed and time recorded from GPS also contribute to
the identification of the true path. Applications and analyses on real data illustrate the
robustness and effectiveness of the proposed approach.
Based on the framework designed for the unimodal MM, a multimodal MM method is
developed to deal with a more general problem where the trips can be multimodal and
the modes are unknown. We infer both path and mode information simultaneously from
various kinds of data. The candidate path generation algorithm is extended to deal with
multimodal networks, and to generate multimodal paths, of which a transport mode is
associated with each road. The latent status includes both location and mode, and the
correlation between them is exploited. For example, if the mode is bus, the path should
follow bus routes. Besides the most useful GPS data, acceleration and bluetooth also
contribute mobility information, so they are integrated in the probabilistic measurement
model by constructing a sensor measurement model for each. ACCEL provides motion
status that can be used to infer the transport mode. BT data gives the amount of
nearby BT devices, which can be used to recognize, for instance, a public transport
environment if there are a lot of BT devices nearby. This approach is flexible in two
aspects. First, any kind of sensor data can be integrated as long as a corresponding
sensor measurement model is provided. Second, any transport network can be added or
removed according to necessity and availability. Data recorded from a trip does not need
to be preprocessed into unimodal travel segments, so the risk of wrong segmentation is
attenuated. Numerical experiments include map visualizations of some example trips,
and an analysis of the performance of the transport mode inference.
In the last part of the thesis, we develop a comprehensive and operational route choice
modeling framework for estimating route choice models from GPS data. It integrates three
components: the probabilistic unimodal MM method for generating probabilistic path
observations from GPS data; the “network-free” data approach proposed by Bierlaire &
Frejinger (2008) for estimating route choice models from probabilistic path observations;
and a new importance sampling based algorithm for sampling path alternatives for
the choice model estimation. The proposed path sampling algorithm produces more
relevant alternatives by exploiting the GPS data. Numerical analyses using a real
transportation network and synthetic choices empirically show that the proposed path
sampling algorithm yields more precise parameter estimates than other importance
sampling algorithms. The proposed framework accounts for the imprecision in GPS
data. The necessary modifications of each method for GPS data are presented. A route
choice model estimated from smartphone GPS data shows the viability of applying the
proposed route choice modeling framework with real data.
Keywords: route choice model, smartphone data, GPS data, probabilistic measurement
model, map-matching, transport mode inference, sampling of alternatives
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Résumé
Cette thèse développe des méthodes de modélisation du comportement pour le choix
d’itinéraire à l’aide de données issues de smartphones. La technologie GPS et la popularité
et le taux de pénétration élevés des smartphones ont révolutionné la collecte de données de
préférences révélées pour le choix d’itinéraire. Aujourd’hui, les smartphones contiennent
différents types de capteurs capables de fournir des informations sur la mobilité de leur
utilisateur. Ces capteurs incluent le GPS (Global Positioning System), l’accéléromètre
et Bluetooth. Les données brutes enregistrées ne sont pas directement utilisables pour
étudier le comportement de mobilité ; le chemin parcouru et le mode de transport utilisé
pendant le trajet doivent être déduits. Cette procédure est rendue difficile de par la faible
qualité des données et leur variété. Cette thèse répond à ce challenge en proposant une
méthode probabiliste prenant en compte les erreurs dans les données, et fusionnant les
différents types de données issues du smartphone dans un modèle intégré. Fondé sur la
méthode probabiliste, un modèle de choix d’itinéraire utilisant les données du GPS est
développé.

Les capteurs bon marché des smartphones fournissent des mesures avec des erreurs
significatives. De plus, pour des raisons pratiques telles que la durée de vie limitée de
la batterie ou le coût de la transmission de données, les données sont habituellement
enregistrées à de grands intervalles temporels. Ces inconvénients empêchent l’utilisation
d’algorithmes d’identification des chemins (« map-matching » en anglais), de même
que d’algorithmes d’identification du mode de transport créés pour des données de
GPS professionnels plus précis et dont les mesures sont plus fréquentes. C’est pourquoi
nous proposons tout d’abord une méthode probabiliste et unimodale d’identification de
chemin déduisant le chemin parcouru à partir de données GPS enregistrées pendant un
trajet en voiture. Au lieu de faire correspondre déterministiquement une séquence de
points GPS à un chemin, la méthode génère un ensemble de chemins candidats et la
vraisemblance pour chacun de ces chemins candidats d’avoir été mesurés. Les chemins
candidats sont générés par un algorithme dédié à partir des données GPS. L’algorithme
est capable d’utilisé à la fois des données précises et denses (intervalle d’une seconde)
provenant de capteurs GPS dédiés, et des données bruyantes et éparses (intervalle de
plus de 10 secondes) provenant de smartphones. Un modèle de mesure probabiliste est
construit pour calculer la vraisemblance de la mesure, c’est-à-dire la vraisemblance que
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la localisation GPS observée est générée en suivant un chemin donné. Le modèle de
mesure probabiliste utilise des équations structurelles comme technique de modélisation,
et le statut latent de chaque mesure est défini comme étant la vraie localisation où la
mesure est observée. Un modèle de mesure pour le capteur GPS associe le statut à chaque
mesure GPS ; un modèle structurel de mobilité (« travel model » en anglais) déduit le
statut dans le réseau à travers le temps. Avec cette approche, en plus des coordonnées
géographiques, la vitesse et le temps enregistrés à partir du GPS contribuent aussi à
l’identification du chemin réellement parcouru. Des applications et des analyses sur des
données réelles illustrent la robustesse et l’efficacité de l’approche proposée.

En s’appuyant sur le cadre défini pour l’identification de chemin dans le cas unimodal,
une méthode « map-matching » multimodale est développée pour résoudre le problème
plus général où les trajets peuvent être effectués à l’aide de différents modes et que ce
dernier est inconnu. Nous déduisons à la fois le chemin et le mode simultanément à partir
de données variées. L’algorithme de génération de chemins candidats est étendu pour
gérer les réseaux multimodaux, et pour générer des chemins multimodaux, où un mode
de transport est associé à chaque tronçon de route. Le statut latent contient le mode et le
lieu, and la corrélation entre les deux est utilisées. Par exemple, si le mode de transport
est le bus, the chemin doit suivre les lignes de bus existantes. En plus du signal GPS,
l’accélération et le signal Bluetooth participent aussi à la collecte d’information sur la
mobilité, et ils sont donc intégrés dans le modèle probabiliste de mesure à l’aide d’un
modèle de mesure correspondant à chaque capteur. Le modèle pour l’accélération fournit
un indicateur de déplacement qui peut être utilisé pour déterminer le mode de transport.
Les données du signal Bluetooth fournissent le nombre d’appareils Bluetooth dans les
environs, ce qui peut-être exploité par exemple pour identifier l’utilisation des transports
publics dans le cas d’un grand nombre d’appareils identifiés. Cette approche est flexible
pour deux raisons. D’abord, d’autres types de données de capteurs peuvent être intégrés,
pour autant qu’un modèle de mesure correspondant au type de capteur est fourni. Ensuite,
tout réseau de transports publics peut être ajouté ou supprimé en fonction des besoins et
de la disponibilité. Les données enregistrées lors d’un trajet ne nécessitent pas de subir
un prétraitement sous forme de segment de mobilité unimodal ; ainsi, le risque de fausse
segmentation est atténué. Des expériences numériques présentent des visualisations sur
carte de certains exemples de trajets, et une analyse de la performance de la détection
du mode de transport.

Dans la dernière partie de la thèse, nous développons un cadre pour un modèle de choix
d’itinéraire opérationnel et complet pour estimer des modèles de choix d’itinéraires à
partir de données GPS. Cela comprend trois éléments : la méthode probabiliste unimodale
« map-matching » pour générer des observations de chemins probabilistes à partir de
données GPS ; l’approche « network-free » proposée par Bierlaire et Frejinger (2008) pour
estimer des modèles de choix d’itinéraire à partir d’observations de chemin probabilistes ;
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et un nouvel algorithme d’échantillonnage préférentiel pour échantillonner des chemins
alternatifs pour l’estimation du modèle de choix. L’algorithme d’échantillonnage de
chemin proposé génère plus d’alternatives pertinentes en exploitant les données GPS. Des
analyses numériques utilisant un réseau de transport réel et des choix synthétiques montre
empiriquement que l’algorithme d’échantillonnage des chemins fournit des estimateurs
plus précis des paramètres que d’autres algorithmes d’échantillonnage préférentiels.
Le cadre proposé tient compte de l’imprécision des données GPS. Les modifications
nécessaires de chaque méthode pour les données GPS sont présentées. Un modèle de choix
d’itinéraire estimé à partir de données GPS issues de smartphones montre la viabilité de
l’application du cadre de modélisation du choix d’itinéraire proposé à partir de données
réelles.
Mots-clés : modèle de choix d’itinéraire, données de smartphones, données GPS, modèle
probabiliste de mesure, map-matching, déduction du mode de transport, échantillonnage
d’alternatives.
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1 Introduction

Route choice models study individual behavior in making decisions about which route
to travel from one location to another. Individual route choice decisions aggregated in
the transportation network result in the demand on the transportation infrastructures.
Congestion occurs when the demand is concentrated in a geographical area at the same
time and exceeds the capacity. So new infrastructures need to be built in order to meet
the increasing demand. Transportation service providers want the demand to be well
distributed temporally and spatially. For the sake of the environment, policy makers
try to attract people to use public transport in order to improve the transportation
efficiency. Understanding individual route choice behavior is a fundamental step towards
these objectives.

In a real transportation network, there are a large amount of available paths that connect
two locations. People evaluate theses alternatives in terms of many factors, such as
length, travel time, monetary cost, traffic lights, etc., and choose the overall best one
according to her preferences. Discrete route choice model is the most widely used
approach for capturing this decision making process based on observed route choice
decisions. However, traditional survey methods using interviews are expensive, and are
not able to collect long-term or large scale revealed preference (RP) route choice data.

Nowadays, people also try to understand the traffic situation better by accessing real
time traffic information through smartphone applications (APP), e.g. Inrix (Inrix 2012).
People are not just satisfied with homogeneous information services, but they also want
customized services. Therefore, some APPs even support customized configurations,
for example, home and work locations, in order to provide information in a more user-
friendly and efficient way. Different people have different preferences. For example,
many people do not just deterministically prefer the fastest path, but instead, they make
trade-offs among different factors, such as travel time and monetary cost. Apparently,
quantitatively specifying such behavior in an APP is an infeasible task for the smartphone
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user, and an automatic behavior learning algorithm is needed.

The developing GPS technology and the popularity of smartphones have revolutionized
the RP route choice data collection. Smartphone is not just an information terminal, but
can be also used as a sensor to learn its user’s travel behavior. Nowadays, smartphones
are embedded with various kinds of sensors, such as global positioning system (GPS),
accelerometer (ACCEL) and bluetooth (BT). These sensors provide “rich” data that can
be used to reveal context information, in particular mobility information that interests
us. The GPS device records locations during the journeys, hence is able to provide
information about the traveled paths. ACCEL records motion status, hence it is able to
discover the transport mode sometimes and under certain conditions. BT monitors the
nearby discoverable BT devices, which can be used to analyze the immediate environment,
and obtain hints about the current transport mode. All this information is relevant to
RP route choice modeling, but the raw smartphone data has to be treated beforehand.
This thesis develops methods that link smartphone data and route choice models in an
operational framework.

In 2009, Nokia Research Center in Lausanne (NRCL) launched the Lausanne Data
Collection Campaign (LDCC) in Switzerland. They recruited 200 individuals who reside
in the Geneva Lake area, and gave a Nokia N95 smartphone to each one. Each person used
the smartphone as her personal communication tool, while an application, EPFLScope,
automatically recorded various kinds of data constantly in 2 years. EPFLScope was
jointly developed by NRCL, IDIAP Switzerland, and Transport and Mobility Laboratory
at Ecole Polytechnique Fédérale de Lausanne. It records almost all kinds of data that
are available on a commercial smartphone, including GPS, ACCEL, nearby BT, nearby
WIFI access points, SMS logs, call logs, calendar entries, etc. The full list of recorded
data is included in Appendix A.

1.1 Contributions

In order to link the smartphone data and the route choice models, route choice obser-
vations, describing the traveled path and the transport modes, are collected from the
raw smartphone data. We deal with challenges arising from the characteristics of the
smartphone data: first, the low quality due to the low cost sensors; second, the variety of
the data which comes from different sensors. We also exploit GPS data in developing a
new route choice modeling framework. The contributions are summarized based on the
outline of the thesis. For each chapter, the reference to the corresponding publication is
given.
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1.1. Contributions

Chapter 2: literature review We review the literature in route choice modeling, with
a focus on methods driven by data collection techniques. Challenges and opportunities
in using smartphone data for route choice modeling are identified.

Chapter 3: probabilistic unimodal map-matching method for GPS data The
discrete sequences of GPS data need to be associated with the transportation network,
in order to generate meaningful paths for route choice models. The poor quality of GPS
data collected from smartphones precludes the use of state of the art map-matching (MM)
methods. In this paper, we propose a probabilistic unimodal MM approach to perform
the association in a probabilistic manner, such that the errors in the GPS are taken
into account. This approach produces probabilistic path observations from a sequence
of GPS data recorded when the smartphone user traveled with a car. This approach
includes two components: a probabilistic measurement model and a candidate path
generation algorithm. The probabilistic measurement model calculates the likelihood that
a sequence of GPS data has been recorded from a traveler along a given path. It accounts
for the inaccuracy of both the smartphone GPS data and the representation of the
underlying transportation network. The candidate path generation algorithm produces a
set of candidate true paths from sparse smartphone GPS data. This method can reduce
the impact of noise in GPS readings, and provides probabilistic path observations for
further applications. Numerical experiments on real smartphone GPS data illustrate the
effectiveness and robustness of the proposed method in recognizing path from GPS data.
This chapter has been published as:

Bierlaire, M., Chen, J., and Newman, J. P (2013). A probabilistic map matching method
for smartphone GPS data, Transportation Research Part C: Emerging Technologies 26:
78 - 98.

Chapter 4: probabilistic multimodal map-matching method for rich smart-
phone data The probabilistic unimodal MM method is extended to deal with a more
general problem: the transport mode is unknown and the trip might be multimodal. The
proposed multimodal MM method identifies not only the paths, but also the transport
mode of each road. This method synthesizes multiple kinds of data from smartphone
sensors which provide relevant location or transport mode information. GPS data is
used to identify the path and the transport mode. BT data is used to collect hints
about the surrounding people. ACCEL data is used to differentiate walk, bike and motor
modes. Since path and mode are inferred simultaneously, the correlation between them
is exploited. For example if the mode is bus, the path should follow bus routes. Data
recorded from a multimodal trip does not need to be preprocessed into multiple unimodal
segments. Real smartphone data case studies illustrate that the generated multimodal
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paths resemble multimodal travels of smartphone users in different circumstances. Nu-
merical analysis shows good performance of the proposed method in identifying the
transportation mode. This chapter has been published as:

Chen, J., and Bierlaire, M. (forthcoming). Probabilistic multimodal map-matching with
rich smartphone data. Journal of Intelligent Transportation Systems.

Chapter 5: route choice models estimated from GPS data A comprehensive and
operational route choice modeling framework for GPS data is proposed. It integrates: (i)
the proposed unimodal MM algorithm for generating probabilistic path observations from
GPS data; (ii) the state of the art “network-free” model for estimating discrete route choice
models from the probabilistic path observations; and (iii) a new importance sampling
algorithm that exploits GPS data. Numerical experiments show that it yields more
precise parameter estimates than other importance sampling methods. The necessary
modifications of each method are presented such that the integrated route choice modeling
framework is applicable to real GPS data. We illustrate an example of estimating route
choice behavior of a driver from real smartphone GPS data.

Chapter 6: conclusions We conclude the thesis, and discuss future topics in research
and application.
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2 Literature review

This chapter reviews the state of the art in route choice modeling, with a focus on
methods driven by data collection techniques. For more general literature review on
discrete route choice model structures and choice set generation methods, we refer to
Bekhor, Ben-Akiva & Ramming (2006), Prato (2009) and Bovy (2009).

We start with an introduction to discrete route choice modeling, followed by an investi-
gation on existing route choice data collection techniques. With the advanced GPS and
smartphone data collection techniques, the raw measurements have to be treated in order
to obtain route choice observations. Section 2.3 reviews methods for inferring the traveled
path and transport mode. Section 2.4 discusses two different ways of conceptualizing
and specifying the route choice set. Section 2.5 discusses challenges and opportunities
that are related to the topic of this thesis.

2.1 Route choice models

This section introduces discrete choice models applied to route choice modeling problems.
We first present the basis of the random utility based discrete choice model. Different
model structures designed for route choice are discussed. In particular, we focus on the
route choice modeling methods which motivate this thesis. In this thesis, the proposed
methods are applicable to multimodal route choice modeling, hence this topic is also
introduced.

2.1.1 Discrete choice model overview

Discrete choice models assume that, in observation n, an individual chooses the best
alternative i from a discrete set of available options Cn. Each alternative j ∈ Cn
is evaluated according to a vector of variables xjn, which contains the attributes of
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alternative j and the socio-economic characteristics of the decision maker. The evaluation
is based on a linear combination of xjn, and the decision maker perceives a utility function
Vjn = βjxjn, where the parameters βj describe the importance of each factor for the
decision maker. The decision maker may not have a perfect knowledge of each alternative,
or some factors are uncertain in reality. Hence, a random error term is introduced, and
the utility function is modeled in a random form: Ujn = Vjn + εjn. The decision makers
are assumed to be utility maximizers, and the probability that i is chosen is defined as
the probability that Uin is the highest utility among all alternatives in Cn:

Pr(i|Cn) = Pr(Uin = max
j∈Cn

Ujn). (2.1)

The parameters β are estimated from choice data, which records the choice decisions
that have been made by the decision makers. The maximum likelihood estimator is used
for estimating the parameters:

β̂ = argmax
β

∏
n∈N

Pr(i|Cn), (2.2)

where β̂ denotes the estimated values, and N denotes the set of choice observations
that are used in the estimation. Depending on the assumption of the error terms εjn,
there are different forms of discrete choice models. For example, the logit model has the
independence from irrelevant alternatives property (Ben-Akiva & Lerman 1985), which
results from the assumption that εjn are independent and identically distributed (i.i.d.)
extreme value (EV). Then the choice probability (2.1) becomes:

Pr(i|Cn) =
eµVin∑
j∈Cn e

µVjn
, (2.3)

where µ is the scale parameter of the EV distribution.

Discrete choice models are suitable for the route choice behavior modeling problem. The
choice set is defined as a set of available paths that connect the traveler’s origin and
destination (OD). Travelers are assumed to be utility maximizers, and they consider
path attributes, such as length, travel time, monetary cost and traffic lights in making
route choices. The socio-economic characteristics of the traveler also affect the route
choice decisions.

2.1.2 Route choice modeling methodologies

A unique problem in discrete route choice modeling is that the path alternatives are
highly correlated, due to their overlapping. Therefore, the independence from irrelevant
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alternatives property of the logit model is not appropriate for route choice. Various
discrete choice model structures have been proposed and applied in route choice modeling.
Researchers are constantly struggling with the trade-off between validity and tractability
of the models. For example, mixed multinomial logit (Frejinger & Bierlaire 2007)
introduce a mixture of logit models where the error component corresponds to a sub-
network. The cross nested logit (Vovsha 1997) allows to capture the overlapping by nests,
but real case studies report that the estimation results often collapse to logit (Prato 2009).
The combinatorial nature of the problem excludes the usage of paired combinatorial logit
(Chu 1989) in practice. Multinomial probit assumes multivariate normal distributed
error terms (Burrell 1968, Daganzo & Sheffi 1977), however, the estimation procedure is
computationally expensive since the model does not have a closed form.

Variations of logit are commonly used, where the utility function is modified to include
a similarity measure, such as the path size (PS; Ben-Akiva & Bierlaire 1999) or the
commonality factor (CF; Cascetta, Nuzzolo, Russo & Vitetta 1996). Both CF and
PS measure the similarity of alternatives in the choice set, so as to overcome the i.i.d.
assumption. Ramming (2002) examine both methods theoretically and empirically, and
concludes that the PS method is more advantageous. The original PS specification has
the following form (Ben-Akiva & Bierlaire 1999):

PSin =
∑
a∈i

La

Li

1∑
j∈Cps δaj

, (2.4)

where a ∈ i denotes an arc on path i; La and Li denotes the length of arc a and
path i respectively; dummy variable δaj equals to one if path j contains arc a, and zero
otherwise. Variations of the PS formulation, such as the generalized path size and the path
size correction are proposed (Ben-Akiva & Bierlaire 1999, Ramming 2002, Bovy 2007).
Theoretical analyses performed by Frejinger & Bierlaire (2007) suggest that the original
PS formulation or the path size correction is preferred.

The path size logit (PSL) has the following form of the choice probability:

Pr(i|Cn;β) =
eµVin+βpsPSin∑

j∈Cn e
µVjn+βps ln PSjn

, (2.5)

where βps is the parameter associated with the PS. The original PSL model fixes βps to
one (Ben-Akiva & Bierlaire 1999). Hoogendoorn-Lanser, van Nes & Bovy (2005) suggest
that βps can capture the decision maker’s perception of the path overlapping, therefore
should be estimated. Indeed, they have found that estimating βps yields better empirical
results.

The specification of the route choice model highly depends on the route choice data
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and the network data. In different contexts, the route choice behavior is affected by
different attributes. For example, in Switzerland, each vehicle is charged for a fixed
annual fee for highway. While in China, highway is tolled according to the traveled
distance. The attributes considered in the route choice model are also subject to the
network data. For example, the travel time may not be available in the network data,
so the distance is often considered instead. The type of route choice data also affects
the route choice model specification. In particular, Bierlaire & Frejinger (2008) propose
a new discrete choice modeling framework for route choice data that is not associated
with the transportation network (“network-free” data). They suggest that the error in
the “network-free” data should be treated in a probabilistic manner. Although they also
suggest that the methodology may be applied to GPS data, they present only results
based on interview data. One objective of this thesis is to develop methods which make
this framework applicable to route choice data collected from smartphones. Indirect
inference is another approach that deals with sparse GPS data (Oshyani, Sundberg &
Karlström 2012).

2.1.3 Multimodal route choice modeling

Little attention has been paid to the modeling of multimodal route choice behavior,
which studies the combination of route and mode choice. Multimodal route choice models
are more complex than unimodal models in many respects. First, the network containing
transfers between modes is complicated, and this complexity challenges the choice set
generation. Second, the evaluation of choices is subject to more attributes than the
unimodal case. Third, the correlation among alternatives is more difficult to capture.
Recently, Bovy & Hoogendoorn-Lanser (2005) propose a method of modeling multimodal
route choice behavior for inter-urban trips, in which the train is the main transportation
mode. Relevant research in the Delft University of Technology, the Netherlands, aims at
resolving issues arising from the introduction of multimodal networks, including a super-
network approach to the generation of multimodal networks, a compatible algorithm to
generate choice sets (Fiorenzo Catalano 2007), and an adapted PS formulation to capture
the choices’ correlation in the PSL model (Hoogendoorn-Lanser 2005, Hoogendoorn-
Lanser & Bovy 2007). Transfers, important steps in multimodal trips, are modeled in
route choice behavior by Hoogendoorn-Lanser, van Nes & Hoogendoorn (2006). However,
some resolutions are not applicable to intra-urban networks, where the train is not the
main mode and there are more alternatives in the motor transportation networks. A
more practical way of modeling multimodal route choice behavior is to only study the
mode choice aspect. For example, Bekhor & Shiftan (2010) model mode choice behavior
among car, bus and train, with different access modes to bus stops and railway stations.
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2.2 Data collection for route choice modeling

Discrete route choice modeling requires that the choice observations are available for the
model estimation. Routes are represented in link by link way. Recording them from
travelers is challenging because the identification of each link is difficult. This section
reviews different techniques for collecting route choice data. In particular, we focus on
revealed preference and new data collection techniques.

2.2.1 Stated preference

Stated preference (SP) data collection is useful when the route choice situation is
hypothetical or dynamic. Conventional survey methods provide a few alternative paths
with descriptions of each one (e.g., Bovy & Bradley 1985, Dia 2002, Hess, Rose & Hensher
2008). Recent technologies enable the respondents to make route choice decisions in a
virtual environment created by computer graphics. Orlando Transportation Experimental
Simulation Program allows the respondent to drive virtually in a transportation network,
and records the route choice decisions influenced by real time traffic information (Abdel-
aty & Abdalla 2006). Everscape is a 3D multi-user computer game in which players
evacuate from one location to another with options of different modes and paths (Doirado,
van den Berg, van Lint, Hoogendoorn & Prendinger 2012). The individual choice decisions
are recorded, and can be used to study their multimodal route choice behavior under
disaster evacuations. Nonetheless, route choice modeling from SP data is relatively
standard, as the complexity of the choice set is controlled in the experimental design.

2.2.2 Traditional revealed preference methods

Before GPS technology became available, few studies on route choice behavior were
based on RP data. Traditional RP surveys ask travelers to describe the chosen paths via
mail, telephone or computer assisted tools. Some surveys use questionnaires to collect
characteristics of the traveler and attributes of the trip, rather than the actual route
(e.g., Ben-Akiva, Bergman & Daly 1984, Mahmassani, Joseph & Jou 1993, Abdel-Aty,
Kitamura & Jovanis 1997). Other surveys ask the travelers to report locations where they
have passed by during their journey. For example, Ramming (2002) ask respondents to
report streets’ names, and collect a route choice observation from 157 commuters. Vrtic,
Schüssler, Erath, Axhausen, Frejinger, Bierlaire, Stojanovic, Rudel & Maggi (2006) collect
intermediate cities of long distance trips, and get 940 trips from different individuals.
Prato, Bekhor & Pronello (2011) design a web-based interactive map, and respondents
indicate the sequence of junctions of their commuting trips. 575 trips are recorded from
236 individuals. These route choice observations include incomplete trip descriptions.

9



Chapter 2. Literature review

Therefore, the gaps must be filled by connecting adjacent reported locations based on
assumptions such as shortest or fastest paths.

2.2.3 GPS capable devices

Passive GPS data collection method has revolutionized the RP survey for travel behavior
study. The automatic and real time data recording is more reliable, compared to
traditional methods that rely on respondents’ memory. Respondents’ willingness to
participate in the survey is a smaller issue, because carrying a GPS device is not a heavy
burden. Especially with smartphones, people do not even have to remember to bring
an additional device. They also manage the tasks of charging it, at least as well as for
any special survey device. Murakami & Wagner (1999), Jan, Horowitz & Peng (2000),
and Wolf, Oliveira & Thompson (2003) provide more numerical evidences for favoring
GPS data in quantitative travel behavior studies. In the recent decade, more and more
route choice models are produced using GPS data. To mention a few, Broach, Dill &
Gliebe (2012) model cyclist route choice behavior; Murakami & Wagner (1999), Jan et al.
(2000) and Li, Guensler & Ogle (2005) model route choice behavior of drivers.

Embedded with various sensors, such as GPS and accelerometer, smartphones can be
utilized to understand the users’ context. They become popular as data collection tools in
studying mobility patterns and transportation network performances. González, Hidalgo
& Barabási (2008) learn from 100,000 mobile phone users’ positions that human mobility
is not random, but has a high degree of spatial and temporal patterns; Jenelius, Rahmani
& Koutsopoulos (2012) use low frequency GPS data to estimate road travel time; Due to
low-cost sensors’ poor performances and various practical constraints, the smartphone
data are usually sparse and inaccurate. For example, data recording interval for GPS
is usually set to be quit large (e.g. 10 seconds), and the smartphone GPS data are not
accurate. Moreover, retrieving and synthesizing information from various sensors is also
challenging.

There are two potential sources of biases that can be introduced in existing route choice
modeling methods using GPS data. First, a particular challenge related to GPS data is
its inaccuracy, due to the constraints of the technology. GPS points are often recorded
off-road, and they are usually deterministically map-matched to the transportation
networks. Thus potential bias can be introduced due to wrong matchings. Another issue
of RP route choice data, collected from both traditional methods and GPS devices, is
incompleteness. Indeed, usually a fixed time interval is configured for sampling from
the GPS sensor, and it ranges from 1 second to several minutes. Current transport
studies deal with incompleteness by connecting reported or map-matched locations with
some simplistic assumptions. For example, shortest path is usually used in most of the

10



2.3. Obtaining route choice observations from smartphone and GPS

map-matching procedures (e.g., Schuessler & Axhausen 2009b, Oshyani et al. 2012).
Negative exponential (Hunter, Abbeel & Bayen 2012) or normal (Liao, Patterson, Fox
& Kautz 2007) is sometimes assumed so as to fit into the mathematical form of some
machine learning methods. However, these assumptions may not correspond to the real
behavior. Consequently, bias could be introduced.

2.3 Obtaining route choice observations from smartphone
and GPS

In order to provide useful information for travel behavior studies, the mobility history
has to be recovered from the raw smartphone data. For route choice modeling, the
transport modes and the paths of trips need to be learned. Traditionally, transport
mode inference and path detection (a.k.a map-matching, MM) are applied to GPS data
only, and consist of two steps (e.g., Schuessler & Axhausen 2009a): first, split the data
into multiple unimodal segments, and infer the transport mode of each segment; second,
perform MM for each segment independently.

2.3.1 Transport mode inference

Dedicated GPS devices provide good quality GPS data in terms of high accuracy and
high density. Speed, acceleration and deceleration can be calculated from dense GPS
coordinates. Deterministic rule based methods distinguish modes by some predefined
deterministic criteria. Bohte & Maat (2009) calculate the average speed from a sequence
of GPS data to determine the transport mode of the corresponding journey. Stopher,
Clifford, Zhang & Fitzgerald (2008) use more criteria, including 85th percentile of
speed, acceleration and deceleration. They also use rail and ferry networks to recognize
these two modes. Chung & Shalaby (2005) determine the sequence of modes from a
predefined set of reasonable mode change chains. Deterministic rule based methods
suffer from data outliers, therefore, possibilistic and probabilistic approaches are often
proposed. Schuessler & Axhausen (2009a) use fuzzy logic to identify modes from speed
and acceleration. Machine learning methods are convenient because transport mode
inference can be treated as a standard classification problem. Zheng, Liu, Wang & Xie
(2008) apply decision trees, Baysian networks, support vector machine and conditional
random fields to speed data, and conclude that decision trees performs the best.

Smartphone provides more sparse and less accurate GPS data, but records more kinds
of data such as ACCEL. Machine learning methods are particularly convenient when
there are multiple kinds of data, hence they are widely used. They can exploit many
features of the raw dense and noisy ACCEL data: mean, variance, fast Fourier transform,
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time between peaks (Ravi, Dandekar, Mysore & Littman 2005, Nham, Siangliulue &
Yeung 2008, Kwapisz, Weiss & Moore 2010, Ding, Zhang & Wang 2010) They can also fuse
multiple kinds of data to infer the status of the phone carrier. For example, Reddy, Burke,
Estrin, Hansen & Srivastava (2009) use speed data from GPS, acceleration data from
accelerometer, and apply naive Bayes, decision trees, k-nearest neighbor, support vector
machine, and hidden Markov model to classify transport modes. Stenneth, Wolfson, Yu
& Xu (2011) also use the proximity to bus stops and train stations, and they have tested
naive Bayes, Bayesian network, decision trees, random forest, and multilayer perceptron.

Rule based methods are simple, but they are not robust with respect to data outliers.
Machine learning methods aim at fast inference. But the problems often have to be
modeled or simplified in a way that fits into the standard frameworks. This constraint
results in that the proposed methods might not be able to systematically or correctly
capture how the data is produced. Thus errors introduced in this procedure are difficult
to identify, and may result in biases in travel behavior studies. Both kinds of methods
produce deterministic inference results. To the best of our knowledge, BT data has not
been used in transport mode inference. But as discussed in last section, BT data can
also help to recognize the public transport environment.

2.3.2 Unimodal map-matching of a segment using GPS

The raw GPS data are usually matched to the transportation network in order to be useful
for many applications. In particular, navigation systems motivate the study of such MM
techniques. A comprehensive review of 35 MM algorithms for navigation applications
since 1989 is presented by Quddus, Ochieng & Noland (2007). And a validation strategy
for MM algorithms is proposed by Quddus, Noland & Ochieng (2005). Since they are
designed for navigation applications, current MM algorithms aim at providing on-line
deterministic identification of the real road from a single GPS point. However, they
don’t guarantee that detected roads are connected to form a meaningful path, even
if some MM algorithms (e.g., Greenfeld 2002, Ochieng, Quddus & Noland 2003) do
consider connectivity and contiguity of the arcs. In some transport studies where on-line
identification is not required and intensive computation is allowed, researchers are also
interested in the actual path for the whole trip. For example, some novel navigation
techniques learn “routing” strategies from GPS data recorded from experienced road
network users (e.g., Yuan, Zheng, Zhang, Xie, Xie, Sun & Huang 2010); “route” travel
time can be estimated from GPS data recorded from floating cars in the transportation
network (e.g., Ebendt, Sohr, Tcheumadjeu & Wagner 2010). In route choice modeling,
“path” observations are the input for route choice models (Bierlaire & Frejinger 2008).

The adaptation of multiple hypotheses technique (MHT) (Pyo, Shin & Tae-Kyung 2001)
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in MM enables modelers to generate a connected path from a GPS trace representing
geographical locations during a trip. Several algorithms (e.g., Marchal, Hackney &
Axhausen 2005, Schuessler & Axhausen 2009b) maintain at each GPS point a set of path
candidates. For each candidate, a score is calculated based on the dissimilarity between
GPS points and arcs in terms of distance, speed and/or heading difference, though
heading was found to be unreliable for this application (Schuessler & Axhausen 2009b).
The work by Schuessler & Axhausen (2009b) focuses on the computational efficiency of
the MM method, and shows excellent results along that line, with dense and accurate
GPS data. However, from the experiments that we have conducted (see Section 3.2.4), it
appears that the method is not suitable for smartphone data, where the focus should
be in managing the inaccuracy and low density of the data. Moreover, the scores
calculated by MM algorithms with MHT techniques, while often heuristically effective,
in general lack the theoretical foundation necessary to serve as the probabilities that
the corresponding paths are the true path. The simplicity of the score calculation can
not ensure its correctness if there are data outliers. Moreover, in such a post-processing
algorithm (as opposed to real time algorithm for navigation tools), “inaccurate” data is
eliminated in the process of data filtering (Schuessler & Axhausen 2009a), with the risk
that some useful information is also excluded. Conditional Random Field (CRF) based
method, proposed by Hunter et al. (2012), aims at a fast inference procedure via CRF.
A “driver model” is constructed to capture the driver’s movement in the network, but its
specification tends to favor shorter paths. Probabilistic MM algorithms in the literature
rely on Dead Reckoning equipping cars or other sensors that smartphones don’t embed
(e.g. Ochieng et al. 2003).

2.3.3 Multimodal map-matching of entire trips

The two step technique poses a high risk of yielding wrong results, because potentially
wrong segmentations in the first step are not recoverable. Many algorithms assume
that walking is necessary for a transition between different modes, and they rely on
dense GPS data (1 second interval) to detect the mode (e.g., Zheng, Li, Chen, Xie &
Ma 2008, Zhang, Dalyot, Eggert & Sester 2008, Schuessler & Axhausen 2009a). The
validity of this assumption is questionable, especially for smartphone data, because GPS
data could be missing due to the unavailability of the GPS signal while walking indoor.
Moreover, due to the sparsity of the GPS data on a smartphone, they may not provide
sufficient information for a proper segmentation and mode inference.

An integrated particle filter modeling framework for simultaneously detecting transporta-
tion modes and traveling roads is proposed by Liao et al. (2007). In their approach, a
state combines various mobility patterns, including the transportation mode and the
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current road. A Rao-Blackwellized particle filter is used as the framework, while the
probability of the traveler switching from one mode to another depends on his proximity
to available transportation facilities. A Kalman filter is used to model the dynamic
process of traveling on the network and retrieving the GPS fix. In order to fit in the
Kalman filter framework, a great deal of simplification is required.

2.4 Route choice set specification

In real transportation networks, the number of paths that connect a given pair of origin
and destination (OD) is huge and cannot be enumerated. Therefore, the identification
of the universal choice set is not feasible (Bovy 2009, Prato 2009). Hence, a subset of
path alternatives are usually generated for the model estimation. These alternatives
should contain relevant paths for the traveler in order to enable the discrete choice
model estimator to correctly identify her compensatory decision making process. Similar
to choice model structures, a good compromise between tractability and behavioral
relevance is also needed in the path generation procedure.

2.4.1 Consideration set

Some methods are based on behavioral assumptions and assume that a traveler only
considers a number of attractive alternatives in their “consideration set” when she makes
route choice decisions. The formation of the consideration set is a different mental
process, before the actual choice from considered alternatives is made (Bovy 2009).
Hence, a route choice set generation algorithm is designed to build the consideration
set. For example, shortest-path based algorithms (e.g. Ben-Akiva, Bergman, Daly &
Ramaswamy 1984, Azevedo, Santos Costa, Silvestre Madeira & Vieira Martins 1993, de la
Barra, Perez & Anez 1993) assume that people consider the shortest paths in terms
of some generalized cost functions; two stochastic variants (Ramming 2002, Bovy &
Fiorenzo Catalano 2007) randomly perturb the parameters and attributes of the cost
function according to predefined distributions, and select the shortest paths repeatedly;
constrained enumeration approach uses branch-and-bound to generate all paths satisfying
some constraints (Friedrich, Hofsaess & Wekeck 2001, Prato & Bekhor 2006). Although
these algorithms are motivated by behavioral assumptions, the modelers hardly get
information to validate that the generated choice set is the actual consideration set.
Actually, it has been often reported that the chosen alternative does not even belong to
the choice set (Ramming 2002, Bekhor et al. 2006).
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2.4.2 Importance sampling

Recent importance sampling approaches do not model the consideration set. Instead,
they assume the choice set to include all paths. Although it is clearly not consistent
with behavior, it guarantees that no important path for the decision maker is omitted.
In order to make the model tractable, a subset of paths are sampled for the model
estimation using importance sampling. Importance sampling of alternatives is just an
intermediate statistical procedure for the model estimator, unlike the “consideration set”
that captures a separate mental process. To obtain consistent estimates, the sampling
bias must be corrected in the model specification. The random walk (RW) algorithm,
proposed by Frejinger, Bierlaire & Ben-Akiva (2009), is the first importance sampling
algorithm that provides consistent model estimators in route choice context. They report
unbiased parameter estimates using a reasonable number of path samples in a synthetic
route choice experiment. However, due to the structure of the sampling probability
definition, which is link multiplicative, the RW algorithm can not avoid cyclic paths.
Paths sampled from real networks are often found to have many loops (Schüssler 2010).
These cyclic paths are in fact irrelevant to the decision maker, thus contribute very
little to the identification of the parameters. As a result, in practice, the asymptotically
consistent estimator needs prohibitively large samples of alternatives in order to achieve
unbiasedness. Recently, Flötteröd & Bierlaire (2013) propose a Metropolis-Hasting
path sampling (MHPS) technique that allows to sample acyclic paths from any given
distribution. This technique offers more flexibility than the random walk in terms of
sampling distributions.

2.5 Discussions

Although smartphone is a convenient data collection tool, inferring route choice data is
critical. Fusing various kinds of data is difficult, so usually standard machine learning
methods are used. Most of the existing methods deal with transport mode inference
and map-matching in two different stages. The risk of this approach has been identified.
They provide deterministic mode inference and map-matching results, and bias can be
introduced to route choice models if the results are wrong. Bierlaire & Frejinger (2008)
propose a new discrete choice modeling framework for route choice data that is not
associated with the transportation network (“network-free” data). They suggest that the
error in the “network-free” data should be treated in a probabilistic manner. Although
they also suggest that the methodology may be applied to GPS data, they present only
results based on interview data.

Importance sampling of alternatives provides an alternative way of specifying the route
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choice set. Especially the recent MHPS technique provides a flexible way of designing a
sampling algorithm.
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3 Probabilistic map-matching for
smartphone GPS data

An important feature of most GPS capable cell phones is Assisted-GPS, which reduces
warm-up time for getting the first GPS reading to seconds. This advantage provides more
opportunities to observe full tracks of the user’s trips without losing the beginning parts
of trips. However, the GPS device consumes a great deal of energy. Due to practical
constraints, such as limited phone storage space and expensive data transmission cost,
data cannot be recorded at a high rate. EPFLScope specifies a time interval of 10
seconds. Also, the data is not as accurate as those collected from dedicated GPS devices.
For instance, in Nokia N95, the GPS antenna is embedded under the keyboard, which is
generally covered by the screen when the phone is not being actively used. Furthermore,
most people carry the cell phone in their pocket or handbag. This weakens the GPS
signal.

We conducted an experiment where a N95 smartphone and a dedicated GPS device (a
MobilityMeter, of the type used by Flamm, Jemelin & Kaufmann (2007)), were both
carried by the same person during a day. Both devices are configured to record GPS
fixes with 1 second interval. The two tracks are reported in Figure 3.1, where the blue
circles (appearing darker on a black-and-white copy) represent the tracks provided by
the MobilityMeter, and the red x’s (appearing lighter on a b&w copy) represent the
tracks provided by the N95 smartphone. Figure 3.1a shows 6083 points from N95, and
12165 points from MobilityMeter. The availability rate of N95 is 88.7%, while that of
MobilityMeter is 99.0% 1. Throughout this thesis, the transportation network data used
is provided by OpenStreetMap (www.openstreetmap.org), which is an open source map
data service. Although statistical investigation of GPS data accuracy (e.g. Blewitt, Heflin,
Webb, Lindqwister & Malla 1992, Wing, Eklund & Kellogg 2005) is out of the scope in
this thesis, we can still observe from the visualization that, intuitively, the MobilityMeter

1Warming time is not accounted in calculating the availability rate. If a device doesn’t record data in
more than 10 minutes, it is considered as ’off’ and this time period is not accounted in calculating the
availability rate.
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GPS data are more consistent with each other in terms of continuity, while N95 GPS
data are more scattered. Also, the MobilityMeter GPS data seem closer to the roads.
The poor quality of smarpthone data precludes the use of state of the art deterministic
map-matching (MM) methods, as an example shown in Section 3.2.4.

The best MM techniques generate a unique best fitting path, but in some applications
a unique path is not required. One such application is route choice modeling with
network-free data, as presented by Bierlaire & Frejinger (2008). They have introduced an
estimation procedure for route choice models that accepts a probabilistic representation
of the observed paths, accounting for errors in measurement. An observation does not
need to be a unique path, but can be represented by a set of potential paths, along with
a probability that the location measurements are indeed recorded from each path.

This chapter proposes and implements an advanced and practical probabilistic MM
algorithm. It takes advantage of both geographical and temporal information in GPS
data to measure the likelihood that the data has been generated along a given path. The
likelihood measurement accounts for the inaccuracy of both the smartphone GPS data
and the representation of the underlying transportation network. The proposed path
generation procedure is capable of dealing with the sparsity of the smartphone GPS data.
This method can reduce the impact of noise in GPS readings, and provides probabilistic
path observations for further applications.

The next section introduces the GPS data recorded from the smartphones, and the
context where the data was recorded. Section 3.2 derives the probabilistic measurement
model for measuring the likelihood that a GPS trace is recorded while traveling on a
path. This model relies on a network performance model. Although stand-alone traffic
simulators can be used, a simple travel model using only information available from the
GPS records is presented. The probabilistic measurement model is illustrated on some
example paths with a real smartphone GPS trace. Potential paths need to be generated
before their likelihoods can be calculated. As MM algorithms are not suitable for the
smartphone GPS data, a new path generation algorithm, accounting for the sparsity of
the smartphone GPS data, is proposed in Section 3.3. The proposed approach is applied
on 25 real smartphone GPS traces, and some examples are illustrated. In Section 3.4
we perform sensitivity analyses on model parameters and GPS sampling interval. Some
conclusions are included in Section 3.5.

3.1 Context and data

Let G = (N,A) denote a transportation network, where N is the set of all nodes and
A is the set of all arcs. The horizontal position of each node n ∈ N is represented by
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5.52km

N95 phone

MobilityMeter

(a) in a region

776m

N95 phone

MobilityMeter

(b) zoom in

Figure 3.1: GPS traces from N95 and a GPS device
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xn = (lat, lon), which is a pair of coordinates consisting of latitude and longitude. The
shape of the physical route of arc a is described by an application

La : [0, 1]→ R2. (3.1)

For a point on the arc, its position x is generated from a unique number ` between 0
and 1 such that x = La (`). In particular, La (0) is the coordinates of the up-node, and
La (1) is the coordinates of the down-node of arc a. For example, if the arc is a straight
line from node u to node d, then

La (`) = (1− `) xu + `xd. (3.2)

Indeed, straight lines are used in transport network data to represent arcs in practice.
The performance of the network is characterized by a model

x = S(x−, t−, t, p) (3.3)

predicting the position x at time t of an individual at position x− at time t−, and
following path p. It is a random variable with probability distribution function

fx(x|x
−, t−, t, p). (3.4)

Typically, this model is obtained from a calibrated traffic simulator. However, for
practical purposes, analytical models can also be used (see Section 3.2.3).

EPFLScope triggers a GPS reading event every 10 seconds. A GPS measurement

ĝ =
(
t̂, x̂, σ̂x, v̂, ĥ

)
,

is extracted for each GPS reading, and it contains:

• t̂, a time stamp ; x̂ = (x̂lat, x̂lon), a pair of coordinates;

• σ̂x, the standard deviation of the horizontal error in the location measurement;

• v̂, a speed measurement (km/h) and,

• ĥ, a heading measurement, that is the angle to the north direction, from 0 to 359,
clockwise.

Sometimes, the GPS sensor fails to measure the speed and heading values for a measure-
ment, and it reports the exact same values as in the previous measurement. In this case,
the speed and heading values of the measurement have to be calculated. If we denote
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* x̂1

* x̂2North

v̂2 =
‖x̂2−x̂1‖2
t̂2−t̂1

ĥ2

Figure 3.2: Calculate speed and heading

two consecutive GPS measurements as ĝ1 and ĝ2 respectively, Figure 3.2 shows how to
calculate v̂2 and ĥ2.

We assume that the data has been preprocessed so that we have access to a sequence of
measurements (ĝ1, . . . , ĝT ), which is abbreviated as ĝ1:T 2, corresponding to a given trip.

The experiments described in this chapter use smartphone data extracted from the LDCC
database. Dataset A, presented in Section 3.2.4, contains only one GPS trace with 10
points. It has been collected by one of the authors, with known true path; Dataset B,
presented in Section 3.4, contains 25 GPS traces and has been collected by 3 anonymous
individuals, without known true paths. These GPS traces are recorded while the users
are traveling in urban and outskirt areas.

3.2 Probabilistic measurement model

In this section, we focus on the derivation of the probabilistic measurement model for a
set of GPS data. More precisely, we compute the likelihood of observing GPS points ĝ1:T
on a hypothetical path p at time t1:T respectively:

Pr(ĝ1:T |t1:T , p).

We assume that the time is recorded without error. Therefore, the model will return a
non zero probability only when the sequence t1:T exactly matches the sequence of time
stamp t̂1:T in the data. This probability is an essential input for the network-free data
modeling approach (Bierlaire & Frejinger 2008). In this section, we introduce a new
modeling framework to derive this model and its components.

2This thesis deals with data sequences, and the notation follows this abbreviation convention through-
out the thesis.
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3.2.1 Measurement equations

We now derive the probability that a given path p generates the data ĝ1:T . For the sake
of simplification, we focus on the measurement equation for the locations x̂1:T , that is

Pr(x̂1:T |t1:T , p), (3.5)

which is decomposed recursively:

Pr(x̂1:T |t1:T , p) = Pr(x̂T |x̂1:T−1, t1:T , p)Pr(x̂1:T−1|t1:T−1, p). (3.6)

The recursion starts with the model Pr(x̂1|t1, p):

Pr(x̂1|t1, p) =
∫
x1∈p

Pr(x̂1|x1, t1, p)Pr(x1|t1, p)dx1, (3.7)

where the integral spans all locations x1 on path p. For the first point, if we do not have
any prior on the location, Pr(x1|t1, p) is a constant equal to the inverse of the length
Lp of p. The model Pr(x̂1|x1, t1, p) = Pr(x̂1|x1) describes the measurement error of the
smartphone device.

It is generally assumed that the errors in longitudinal and latitudinal directions (elon and
elat respectively) are independently normally distributed (van Diggelen 1998). Therefore,

the distance between the true location and the measured coordinates e =
√
e2lon + e

2
lat

follows a Rayleigh distribution. The probability that coordinates x̂1 is recorded from a
location x1 is defined as the probability that the distance between x1 and x̂1 is less than
the true error. Then, we have

Pr(x̂1|x1) = Pr(e > ‖x̂1 − x1‖2) = exp

(
−
‖x̂1 − x1‖22
2σ̂2

)
. (3.8)

As the variance σ2 is unknown, we use σ̂2 = σ2network + (σ̂x1)
2 as an estimate, where

σ2network captures the difference between the coded network and the actual roads and
paths, and (σ̂x1)

2 captures the measurement error of the GPS device. Quddus et al. (2005)
explain that errors in network data effect the quality of the MM results, therefore the
network error parameter σnetwork is introduced here.

Combining (3.7) and (3.8), we obtain

Pr(x̂1|t1, p) =
1

Lp

∫
x1

exp

(
−
‖x̂1 − x1‖22
2σ̂2

)
dx1. (3.9)
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The next step of the recursion derives

Pr(x̂1, x̂2|t1, t2, p) = Pr(x̂2|x̂1, t1, t2, p)Pr(x̂1|t1, p). (3.10)

Pr(x̂1|t1, p) is defined by (3.9). For the first term, we have

Pr(x̂2|x̂1, t1, t2, p) =
∫
x2∈p

Pr(x̂2|x2, x̂1, t1, t2, p)Pr(x2|x̂1, t1, t2, p)dx2. (3.11)

The first term Pr(x̂2|x2, x̂1, t1, t2, p) = Pr(x̂2|x2), is again modeling the measurement error
of the device, and can also be defined by (3.8), combined with the same simplifications
as described above. The second term predicts the position of the traveler at time t2. It
is written as

Pr(x2|x̂1, t1, t2, p) =
∫
x1∈p

Pr(x2|x1, x̂1, t1, t2, p)Pr(x1|x̂1, p)dx1. (3.12)

The first term in (3.12) changes to Pr(x2|x1, t1, t2, p), where we only need the true location
x1 and the time t1 when the measurement x̂1 is recorded. It models the movement of
the traveler, which is captured by (3.3), so

Pr(x2|x1, t1, t2, p) = fx(x2|x1, t1, t2, p),

where fx is the density function (3.4) of the travel model. The second term in (3.12) can
be derived from Bayes rule:

Pr(x1|x̂1, p) =
Pr(x̂1|x1, p)Pr(x1|p)∫

x1
Pr(x̂1|x1, p)Pr(x1|p)dx1

.

As Pr(x1|p) = 1/Lp is constant for a given p, we have

Pr(x1|x̂1, p) =
Pr(x̂1|x1, p)∫

x′1∈p
Pr(x̂1|x′1, p)dx

′
1

(3.13)

which is a normalized version of (3.8). This completes the definition of (3.10).

The recursion in (3.6) requires that, at iteration k, the probability

Pr(x̂k|x̂1:k−1, t1:k, p) = Pr(x̂k|x̂1:k−1, tk, p)
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is calculated. It can be generalized from the above derivation that

Pr(x̂k|x̂1:k−1, tk, p) =
∫
xk

Pr(x̂k|xk)∫
xk−1

Pr(xk|xk−1, tk−1, tk, p)Pr(xk−1|x̂1:k−1, p)dxk−1dxk, (3.14)

where Pr(x̂k|xk) is given by (3.8), and Pr(xk|xk−1, tk−1, tk, p) is the travel model fx(xk|xk−1, tk−1, tk, p).
The last part of (3.14), Pr(xk−1|x̂1:k−1, p), is the posterior pdf of the true location xk−1
given observed GPS trace x̂1:k−1 and path p. This distribution is not tractable, and we
must simplify it, and replace it by

Pr(xk−1|x̂1:k−1, p) ≈ Pr(xk−1|x̂k−1, p). (3.15)

Therefore, we can use the same derivation that leads to (3.13) to obtain

Pr(xk−1|x̂k−1, p) =
Pr(x̂k−1|xk−1, p)∫

x′k−1∈p
Pr(x̂k−1|x′k−1, p)dx

′
k−1

. (3.16)

The derivation above involves many integrals over the full path. Although these integrals
have low dimension, they can be cumbersome to compute, especially when the path p
is long. In Section 3.2.2, we describe how to decompose the integrals, and to use the
concept of Domain of Data Relevance (DDR) introduced by Bierlaire & Frejinger (2008)
to simplify the computation.

3.2.2 Computing integrals

The measurement equations involve various integrals along a path p of the form

I =

∫
x∈p

f(x)dx, (3.17)

that are complicated to compute in real applications. We describe here how to exploit
the topology of the network to compute these integrals.

First, we decompose the path into arcs to obtain

I =
∑
a∈p

∫
x∈a

f(x)dx. (3.18)
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For each arc, we use the shape model (3.1) to obtain a unidimensional integral∫
x∈a

f(x)dx =

∫ 1
`=0
f(La(`))|∂L|d`, (3.19)

where

|∂L| =

√(
d(La(`))lat

d`

)2
+

(
d(La(`))lon

d`

)2
. (3.20)

For example, if the linear model (3.2) is used, we have

|∂L| = ‖xu − xd‖2. (3.21)

Second, we truncate the domain of the integrals to save computation time where negligible
quantities are involved. For a given GPS observation x̂, Bierlaire & Frejinger (2008)
define the DDR as the physical area where the piece of data is relevant. In our context,
a point x is considered to be in the DDR of x̂ if following conditions are satisfied:

• the probability Pr(x̂|x) is above a given threshold θ;

• if v̂ > 10km/h, the difference between the GPS heading and the arc direction is
less than 60 degrees. The arc direction is approximated as the direction from its
up node to down node.

In our implementation, we have used a value θ = 0.65. It corresponds roughly to points
in a diameter of 100m when the σ parameter of the GPS device is 100m, and the σ for
the network coding is assumed to be 30m. Indeed,

exp
(
−
||x̂− x||22
2σ̂2

)
≥ θ

is equivalent to

‖x̂− x‖2 ≤
√
−2 (σ̂)2 ln θ,

and the upper bound 96.9 is obtained with θ = 0.65 and σ̂ = 104.4 =
√
1002 + 302. This

is illustrated in Figure 3.3, where the parts of arcs AB and AC represented by a solid
red line are inside the DDR of the data point x̂.

Clearly, the value of the parameters should be adjusted to account for the features of
the relevant application, and the quality of the associated data. Also, the complexity
of the computation of the integrals increases with the size of the DDR. A large DDR
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A

B

C

D* x̂96.9m

Figure 3.3: Domain of Data Relevance

means more computation. On the other hand, too small a DDR may artificially produce
a zero probability for the measurement equation, which is undesirable. As discussed
by Bierlaire & Frejinger (2008), the specification of the DDR should correspond to a
good trade-off between accuracy and computational burden. Some sensitivity analyses
regarding these parameters are performed in Section 3.4.

3.2.3 Travel model

In our framework, the travel model is designed to predict the position of the GPS device
over time. More precisely, it predicts the position xk of the device at time tk if the
position at time tk−1 is xk−1, and the device is traveling along path p.

This is the typical role of dynamic traffic simulators (such as AIMSUN (Barceló &
Casas 2005), MITSIM (Yang & Koutsopoulos 1996), DynaMIT (Ben-Akiva, Bierlaire,
Burton, Koutsopoulos & Mishalani 2001), Dynasmart (Mahmassani 2001), among many).
However, it is not always practical to use a calibrated traffic simulator in a MM context.
Therefore, we suggest to use a simple analytical model such as the one described below.

First, we define the operator that computes the distance between two points xk−1 and
xk lying on path p, and denote it by

dp(xk−1, xk). (3.22)

This operator is easily implemented using the same decomposition of paths into arcs
described in Section 3.2.2. We write the travel model in terms of speed instead of position,
considering the random variable

v =
dp(xk−1, xk)

tk − tk−1
(3.23)
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Figure 3.4: The speed distribution

with pdf

fv

(
dp(xk−1, xk)

tk − tk−1

)
. (3.24)

In our experiments, the traveling speed of the device is recorded every 10 seconds, therefore
its distribution can be derived from the observed speed data. For the distribution of
speed, we assume a mixture of a negative exponential distribution and a log normal
distribution. The first is designed to capture the instances where the vehicles are stopped
at intersections, or traveling at low speed before or after that stop. The second is designed
to capture vehicles moving at regular speed. The distribution is

fv (v) = wλ exp−λv+(1−w)
1

v
√
2πτ2

exp−
(ln v−µ)2

2τ2 , (3.25)

where w (the weighting), λ (the scale parameter of the negative exponential distribution),
µ (the location parameter of the log normal distribution), and τ (the scale parameter of
the log normal distribution) are parameters to be estimated. Dataset B, including 1041
GPS records, is used for the estimation. Following are some statistics of dataset B: total
number of GPS points (1041); number of GPS points per trace (minimum: 16, mean:
35.9, maximum: 53); duration of the trip (minimum: 180 seconds, mean: 387 seconds,
maximum: 795 seconds). Figure 3.4 shows the normalized histogram of the recorded
speed data and the estimated speed distribution. Table 3.1 reports the parameters
estimated by maximum likelihood.
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parameter estimate standard error
w 0.423 0.0636
λ 0.057 0.0097
µ 3.672 0.0314
τ 0.396 0.0282
Parameters estimated by R.

Table 3.1: Parameters estimates for the speed distribution

3.2.4 Illustration

We illustrate likelihood results for 4 example paths associated with a real GPS trace
(dataset A) recorded from a N95 smartphone. The 4 paths are shown in Figure 3.5
as red solid lines. The GPS points are also shown in each figure as blue points. The
direction of the trajectory is illustrated by the arrow besides each path and by the the
GPS points’s annotation with their orders being recorded. This particular trip is chosen
to be analyzed because it is recorded while traveling by car in a dense transportation
network. And the path is known with certainty.

Figure 3.5a shows the true path. If we look at the GPS points, the ambiguity of the
coordinates readings and the density of the transportation network makes the actual
path difficult to be recognized from the N95 data alone. It can be observed that some
of the GPS points (e.g. 7 and 8) deviate more than 30 meters from the actual path.
Consequently, another path shown in Figure 3.5b also seems intuitively reasonable
enough to be the actual path if we only compare the geographical dissimilarities. Another
path candidate shown in Figure 3.5c is intuitively less possible to be the actual path.
The last one (Figure 3.5d) seems very problematic, but is actually generated by the
deterministic MM algorithm developed by Schuessler & Axhausen (2009b) (without
using speed penalty term in the score function).

We calculate the natural logarithm of the measurement likelihood (3.5), termed the
measurement loglikelihood, for all paths 3,

ln Pr(x̂1:T |̂t1:T , p), (3.26)

where the time t̂1:T is directly taken from the GPS data.

We notice that the real path gains the highest loglikelihood, −14.1. The loglikelihood is
3If we further expand (3.6), the measurement likelihood (3.5) becomes Pr(x̂1:T |t1:T , p) =

Pr(x̂1|t1, p)
∏T
k=2 Pr(x̂k|x̂1:k−1, t1:T , p), which is the multiplication of many probability values that are

smaller than 1. Consequently, the measurement likelihood (3.5) is close to zero. Throughout this thesis
we present the logarithm of it, as it is common for likelihood.
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(a) Path 1: true path (−14.1) (b) Path 2 (−15.7)

(c) Path 3 (−16.3) (d) Path 4 (−∞)

Figure 3.5: Results from N95 GPS data

lower for paths that are intuitively less possible to be the true one (−15.7 and −16.3 for
path 2 and path 3 respectively). The value for path 4 is −∞, because the path does not
pass through DDR of some GPS points (e.g. the last one).

Path 4 generated by the deterministic MM algorithm seems strange due to the incapability
of the algorithm to deal with sparse data. In fact, the beginning of the path is correctly
identified. The path terminates earlier than the real destination because the number of
arcs in the path is constrained by the algorithm not to be higher than the number of GPS
points. Indeed, the matched path has exactly 10 arcs, and it gains the lowest MM score
among all paths with not more than 10 arcs. The drawback of this algorithm is described
in Section 3.3 in details. In fact, if the GPS data has higher density, the deterministic
MM algorithm may be able to identify the true path. For example, Figure 3.6 shows the
MobilityMeter data recorded at the same time. The deterministic MM result produced
by Schuessler & Axhausen (2009b)’s algorithm is the true path with this data.
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Figure 3.6: MobilityMeter data and deterministic MM result

3.3 Candidate path generation

The probabilistic measurement model Pr(ĝ1:T |t1:T , p) calculates the likelihood of observing
measurements ĝ1:T on a given path p at time t1:T . Given a set of candidate paths P, it
can be further used to infer how likely p is to be the true path:

q(p) =
Pr(ĝ1:T |t1:T , p)Pr(p)∑

p′∈P Pr(ĝ1:T |t1:T , p′)Pr(p′)
, (3.27)

This path probability can be used as a score function in traditional deterministic map-
matching algorithms (e.g., Schuessler & Axhausen 2009b) for determining which path is
the true one. Because we assume that the time is measured without error, the values
of t1:T are taken directly from the data t̂1:T . Considered as the prior probability, Pr(p)
represents how likely p would be traveled without having the smartphone data. It
actually models the smartphone user’s route choice behavior. A multivariate extreme
value (MEV) model estimated from historical data or external data sources can be
used4. It might not provide precise route choice behavior, or can be very simple in
model specification, but at least can give some basic information about the route choice
preferences. If no route choice model is available, as in this thesis, the distribution is
assumed to be uniform.

State of the art deterministic MM algorithms are designed for dense data, where it can
be safely assumed that nearly every arc on a path generates at least one GPS point.
For instance, Marchal et al. (2005) and Schuessler & Axhausen (2009b) generate path
candidates by considering each GPS point one by one in the chronological order. At

4 In fact, the choice probability for a MEV model contains a normalizing constant which requires
path enumeration. If a MEV model is specified, the same constant appears in both the numerator and
the denominator of (3.27). Thus, it is trivial to prove that this normalizing constant cancels out, and
the path enumeration is avoided.
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3.3. Candidate path generation

each iteration k, they generate a set Pk of path candidates assumed to match the GPS
points up to k. These paths are generated by topologically extending the paths in Pk−1
by not more than one arc. Hence, in order to allow for correctly identifying the true
path, the GPS device has to record at least one GPS point on each arc. It can clearly
be observed from Figure 3.1, Figure 3.5 and Figure 3.6 that the dedicated GPS device
data is consistent with the “high density” hypothesis, while the smartphone data is not.
Also, the example in Figure 3.5d shows that the deterministic MM algorithm is not
appropriate for smartphone GPS data.

In order to address this problem, we propose a path generation algorithm designed for
sparse data. It uses a similar iterative process as the one described above. But the path
extension procedure at each iteration is not limited to only one arc. The algorithm ignores
GPS points that have a speed lower than 8km/h, labeled as “stationary”. When the
device is more or less stationary, while it may generate data that is relevant for comparing
path likelihood, it is not generating information that is useful in path extension. Two
exceptions are the first and the last GPS points; even if their speed values are low, they
reveal information about the origin and the destination. Therefore, they are not labeled
as “stationary”. This algorithm is described in Algorithm 1. Detailed explanation of
some procedures (numbered lines) are given as follows:

12. The bound for the shortest path tree is derived from an assumption about the
maximum possible speed and the time interval between tk−1 and tk. The leaf nodes
of the bounded shortest path tree are the first nodes detected by the Dijkstra
algorithm that violate the bound. In our experiments, the bound is defined by
1.5(tk − tk−1)v̂max, where v̂max is the maximum speed value among the observed
speeds v̂k−1, v̂k, and the speed calculated by ‖x̂k − x̂k−1‖2/(tk − tk−1). The factor
1.5 is a safety margin to minimize the risk of missing a relevant observation.

21. In the update of likelihood, all the GPS points up to ĝk, including “stationary”
points, are included. As explained in Section 3.2.1, the likelihood (3.6) is updated
recursively and at each iteration, only equation (3.14) needs to be calculated.

22. The path elimination procedure limits the size of Pk at each iteration if it is too
large. After many tests, we use 20 as the threshold, which balances the tradeoff
between algorithm speed and result effectiveness. It is designed to speed up the
algorithm by eliminating less relevant branches produced from the path extension
procedure. The path elimination procedure is performed by selecting and keeping
following paths:

1. The 2 shortest paths in Pk are selected.
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Algorithm 1: Path generation algorithm
Input: A GPS trace {ĝ1:T } with non-“stationary” GPS points.
Input: The underlying transportation network G = (N,A).
Result: A set of candidate paths PT .

// Deal with the first GPS point.
1 P1 ← empty set of paths;
2 DDR1 ⇐ the DDR of the first GPS point;
3 for each arc a ∈ A do
4 if a intersects DDR1 then
5 include a as a path in P1;
6

// Iterative process.
7 for k← 2 to T do
8 Pk ← empty set of paths;
9 foreach p ∈ Pk−1 do

// Path extension procedure.
10 n← the end node of p;
1212 spt← a bounded shortest path tree rooted at n;
13 foreach arc a ∈ spt do
14 if a intersects DDRk then
15 sp← shortest path connecting p and a;
16 a0 ← first arc of sp;
17 a1 ← last arc of p;
18 if a0 ∈ DDRk or a0 is not reverse of a1 then
19 pnew ← join p, sp and a;
20 include pnew in Pk;
2222 update likelihood Pr(x̂1:k |̂t1:k, pnew);

23 if ‖Pk‖ > 20 then
2525 eliminate some paths from Pk;
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2. Paths are randomly selected from Pk according to the probability (3.27).
Path candidates are drawn using simulation until the cumulative normalized
likelihood exceeds a predefined number (e.g. 0.8).

3. For each arc a ∈ sptk and a intersects DDRk, Pak is defined as Pk’s subset
that only contains paths going via a. We then apply a similar simulation
procedure as in Step 2 on Pak, but only to draw one path. This is meant to
guarantee that each arc associated with the latest GPS point has at least a
path in Pk after the elimination procedure.

The algorithm is implemented as a software package in C++. We illustrate some results
generated from 25 real GPS traces (dataset B). Figure 3.7 shows 4 examples, and 6 more
examples are included in Appendix B. Again, each GPS trace is associated with many
path candidates, and they overlap to a large extent, as shown on the maps. The results
in general look reasonable, as each path is close to its corresponding GPS trace.

For the same trip, the differences of the generated paths show the uncertainty of the
probabilistic map matching result. On one hand, the uncertainty is due to the imprecision
of the GPS data. On the other hand, most of the uncertainty belongs to the end of the
trips. This can be explained by the mechanism of the likelihood model. The likelihood
model utilizes the dependency between adjacent GPS points. Each GPS point in fact
provides information to help in identifying its upstream trajectory. The end of a trip
always gains less information since it has less (or none) downstream GPS points.

3.4 Sensitivity analysis

In the probabilistic measurement model, some of the parameters’ values are based on
engineering intuition. These parameters are σnetwork, the standard deviation of network
error; θ, which defines the diameter of the DDR; and the heading constraint (60 degrees)
for excluding arcs from the DDR. Sensitivity analyses, presented in on these parameters
to test the robustness of the proposed probabilistic MM approach to these somehow
arbitrary values. A sensitivity analysis is also performed on the sampling interval of the
GPS data.

3.4.1 Experimental design

For any of the above mentioned parameters, although its precise value is not easy to
decide, a reasonable bound can be derived based on available information. Therefore,
the sensitivity analysis is performed as applying the proposed approach on the same
dataset with the parameter’s value varying within these bounds, and analyzing how the



Chapter 3. Probabilistic map-matching for smartphone GPS data

(a) trip 1 (17 paths) (b) trip 2 (20 paths)

(c) trip 3 (18 paths) (d) trip 10 (20 paths)

Figure 3.7: Examples for some GPS traces
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variation affects the results.

A probabilistic MM result for a GPS trace is a set of paths with associated measurement
likelihood values. It contains a lot of information which takes effort to read. Hence, we
have to define aggregate indicators for the sensitivity analyses. Intuitively, all paths in a
result should be almost the same, as have been illustrated with some examples in the
last section. The differences among the paths can be understood as the uncertainty of
the result, which is caused by the ambiguity in the GPS data. Hence, we first define an
aggregate similarity indicator O1(P) to measure the overall overlapping of all paths P in
a result. Second, we also want to compare results produced by different parameter values.
Therefore, another indicator O2(P1,P2) is defined to measure the similarity (overlapping)
between two sets of paths, P1 and P2.

We start by defining how one path p overlaps with all paths in a set P (p ∈ P):

O(p, P) =

1 if ‖P‖ = 1∑
a∈p

La
Lp

∑
p′∈P δap′−1

‖P‖−1 otherwise
, (3.28)

where ‖P‖ denotes the size of the path set; δap′ is a dummy variable, valued 1 if path
p′ goes via arc a, and 0 otherwise. This definition is inspired by the concept of Path
Size, which is widely used in route choice modeling (see Ben-Akiva & Bierlaire 2003) to
measure how an alternative overlaps with other paths in the choice set. The O value,
between 0 and 1, can be roughly understood as the proportion of the path p that overlaps
with all paths in P. The more the overlapping, the higher the value. If p is the only path
in P (‖P‖ = 1), i.e. perfect overlapping in P, O = 1; if p doesn’t overlap with any other
path at all, O = 0.

Based on this definition, we simply take the average to measure P’s overall overlapping:

O1(P) =
1

‖P‖
∑
p∈P

O(p, P).

So O1 also values between 0 and 1. And a higher value indicates a higher degree of
overlapping in P. We expect this indicator close to 1 because all paths in a result should
be similar. Indeed, The O1 values for example results shown in Figure 3.7 are: 0.966,
0.952, 0, 962, 0.963, which are all close to 1.We also expect that the uncertainty of the
result is insensitive to parameter variations. Hence O1 value should be stable with respect
to parameter variations.
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Similarly, O2 indicator for comparing two path sets is defined as:

O2(P1,P2) =
1

‖P1‖
∑
p∈P1

O(p,P2 ∪ {p}).

In particular, if P1 = P2, then O2(P1,P2) = O1(P1) = O2(P2). Similar to O1, O2
indicator also values between 0 and 1. A higher value indicates a higher degree of
overlapping between the two path sets. If any path in one set does not overlap with
any path in the other set, O2 = 0. If all paths in P1 and P2 are identical, O2 = 1. In
the sensitivity analysis for a parameter, P2 is always set to be the path set produced
by the default value. For example, in analyzing σnetwork, P2 is fixed to be Pσnetwork=30,
which is the path set produced by using σnetwork = 30 (we follow the same notation
convention throughout this section). Then, O2 always indicates the overlapping of the
paths generated from an alternative setting (e.g., σnetwork=5) against Pσnetwork=30. We
expect the proposed method is robust in the sense that results produced by different
parameter values are similar to each other. Therefore, this indicator should have high
value (close to 1) for any parameter value being used in the analyses.

3.4.2 Network error

There are two sources of the network error. First, the OpenStreetMap network data are
collected from GPS devices, so the error in the GPS records is introduced. The amplitude
of this error is difficult to be estimated because many people contribute to the network
data and they use different kinds of GPS devices. A survey on commercial GPS devices
suggests that the error from commercial GPS receivers is less than 15m in 95% of all cases
(Ehsani, Buchanon & Salyani 2009). Second, in the network data, a road is represented
as an abstract line without width. Therefore, we need to account for the width of the
real road in the network error. This part of the error is also difficult to estimate because
the details about the infrastructure are not easily accessible. In Switzerland, a third
class road with one lane has minimum 2.8m width and a first class road with 2 lanes
has minimum 6m width (Swisstopo 2011). A motorway has not more than 4 lanes
per direction (according to Swiss motorway website, http://www.autobahnen.ch), and
according to Switzerland standard (3.20m− 3.75m width per lane, OFROU (2011)), the
maximum width per direction is 15m.

Based on the above analysis, we believe that in most of the cases, σnetwork is very unlikely
to go beyond 50m or below 5m. So we perform a sensitivity analysis on σnetwork with
values 5m, 10m, 20m, 30m, 40m and 50m.

Figure 3.8 reports the distribution of O1 and O2 across the 25 trips in dataset B, using
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(a) O1 (b) O2

Figure 3.8: Sensitivity analysis for network error parameter

a boxplot representation. We can notice from this figure that O1 is in general close to
1, which indicates a high degree of overlapping and a low degree of uncertainty in the
path results. And this indicator is insensitive to the σnetwork value variation. Moreover,
no mater which parameter value is used, all the paths generated from the same trip
should be, by the DDR definition, close to the GPS points, and hence, similar to each
other. This is verified by Figure 3.8b, in which high value of O2 shows that all the path
results are similar to Pσnetwork=30. So, we can conclude that the probabilistic MM result
is robust to σnetwork variations.

3.4.3 The DDR diameter

The parameter θ defines the diameter of a GPS point’s DDR. Blunck, Kjæ rgaard &
Toftegaard (2011) conduct an experiment that studies smartphone (Google Nexus One
and Nokia N95 used) GPS data accuracy using a high performance dedicated GPS device
as the benchmark device. They report that in open-sky urban conditions, in the worst
case, at least 90% of the smartphone GPS points have the error distance less than 60
meters and 100% of them have error distance less than 100 meters. Therefore, in our
experiment, we assume the DDR diameter to be 100m.

We perform a similar sensitivity analysis as in Section 3.4.2 with θ to be 0.50 (123m),
0.60 (106m), 0.65 (97m), 0.70 (88m), 0.80 (70m) and 0.90 (48m) respectively (numbers
in parentheses denote the corresponding diameters of the DDR), with 0.65 being the
default setting. The O1 and O2 indicators are reported in Figure 3.9. Generally high
values of O1 and O2 suggest that the results are robust with respect to the variations of θ.
However, from both graphs, we notice that some indicators are close to or equal 0 with
θ being 0.50, 0.80 and 0.90. Actually, they correspond to the trip shown in Figure 3.7d.
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(a) O1 (b) O2

Figure 3.9: Senstivity analysis for θ parameter

This GPS trace is especially of low quality. It contains 15 stationary GPS points in the
beginning of the trip (shown as a cluster in Figure 3.7d), and there is a huge gap in the
GPS trace. It is intentionally selected to analyze the robustness of the algorithm. With
θ being 0.50, 0.80 and 0.90, the algorithm fails to produce any reasonable path. But the
results with θ around 0.65 (0.6, 0.65 and 0.7) are reliable.

3.4.4 Heading constraint

In the total 1041 GPS points used in our experiment, 896 of them have speed greater
than 10km/h. For these 896 GPS points, the mean of the recorded standard deviation
of the heading error is 2.85 while the maximum is 36. So we safely assume that the
heading error does not exceed 60 degrees when the speed is greater than 10km/h. It
forms a rule for excluding unreasonable arcs from the DDR. At low speed status, heading
measurements from the GPS are generally not reliable. Hence, for GPS points with
speed less than 10km/h, this heading constraint is not applied. Here, we analyze how
much the variation of the heading constraint affects the result.

The analysis is performed on the values 40, 50, 60, 70, 80, where 60 is the default setting.
The O1 and O2 indicators are reported in Figure 3.10. As expected, the results are
robust with respect to the parameter value variation, in the sense that both indicators
for most of the cases are close to 1. In Figure 3.10b, the outlier point in the boxplot for
the constraint being 40 can be understood as an exceptional case when 40 degrees is too
tight for few GPS points. Overall, we can conclude that 60 degrees is a suitable value
for the heading constraint.
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(a) O1 (b) O2

Figure 3.10: Senstivity analysis for heading constraint parameter

3.4.5 GPS sampling interval

The experiments are implemented for GPS data collected with sampling interval to be 10
seconds. However, we are also interested in applying the same method in more general
situations. Therefore, we want to test the robustness of the method with respect to the
data density. We artificially decrease the density of the data by manually increasing the
GPS data interval to be κ ∈ {20, 30, 60} seconds. The process is performed by selecting
GPS points from the original data with following procedures:

1. select the first GPS point;

2. if the next GPS point is less than κ seconds later than the last selected GPS point,
it is neglected; otherwise, it is selected;

3. repeat step 2 until the last GPS point.

We also perform a sensitivity analysis using O1 and O2 indicators. For the calculation of
O2(Pinterval=κ,Pinterval=10), the original data with interval 10s is truncated such that it
has the same first and last GPS point as the processed data with interval κ. This is to
guarantee that the GPS traces being compared have the same beginning and end, hence
correspond to the same trip.

First, we notice that the algorithm fails to proceeds at some GPS points in some cases (2
cases for κ = 20, 4 for κ = 30 and 4 for κ = 60). The temporary path set Pk produced
at a certain iteration k is empty in these cases. Figure 3.11 reports the O1 and O2
indicators for the successfully generated results. Figure 3.11a shows a trend that the
larger sampling interval, the higher uncertainty of the path result. This is consistent
with the intuition that more GPS data brings more information, thus less uncertainty.
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(a) O1 (b) O2

Figure 3.11: Senstivity analysis for GPS sampling interval

Relatively high value of O2 tells that results from different sampling interval settings are
similar to the default setting. Since the paths generated from higher sampling interval
are more heterogeneous, overall, they are less similar to the paths produced by the
default setting, as reported by O2 indicators. So, we conclude that the performance of
the proposed algorithm decreases with the density.

3.5 Conclusions

We propose a probabilistic MM method for matching a set of paths with GPS data. A
probabilistic measurement model is derived, which calculates the probability that a GPS
recording device would have generated a sequence of measurements while following a
given path. It is based on a structural model and a measurement model, which captures
the movements and the recordings of the GPS device respectively.

The uncertainty derived from the inaccuracy of both the GPS data and the transportation
network is explicitly taken into account. The application to real data shows that the
probability values of the actual path and some other paths are realistic and meaningful.

A path generation algorithm is also proposed that accounts for the sparsity of the data.
The methodology has been applied on real smartphone data collected in Switzerland.
In the probabilistic measurement model, some of the parameters’ values are based on
engineering intuition. These parameters are σnetwork, the standard deviation of network
error; θ, which defines the diameter of the DDR; and the heading constraint (60 degrees)
for excluding arcs from the DDR. Sensitivity analyses presented in Section 3.4 prove the
robustness of the proposed probabilistic MM approach with respect to these somehow
arbitrary values. A sensitivity analysis is also performed on the sampling interval of the
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GPS data. The sampling interval, originally 10 seconds, is increased to be 20, 30 and 60
seconds, thus the data become sparser. The uncertainty in the path results increases
with the sparsity of the GPS data. This is consistent with the intuition that more GPS
data brings more information, thus less uncertainty.
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4 Probabilistic multimodal map-
matching with rich smartphone
data
Last chapter deals with the map-matching problem when a trip is unimodal and the
mode is known. And we have developed an implementation for the GPS data recorded
from car trips. This chapter deals with a more general problem when a trip is multimodal,
and the modes are unknown. We aim at identifying the traveled path and modes from
various kinds of smartphone data.

The drawbacks of the two stage mode identification and map-matching approach have
been discussed in Section 2.3. In this chapter, a novel algorithm is proposed to overcome
these drawbacks. The data collected from a trip do not need to be segmented. The
algorithm infers the physical path and the transport mode of each road simultaneously.
This algorithm is called as probabilistic multimodal map-matching :

• Multimodal, because the output is a set of multimodal paths. Each arc on a path
is associated with a specific transport mode. The transport modes on different arcs
may differ (see Section 4.1 for the definition and an example of multimodal path).

• Probabilistic, because the algorithm generates a set of candidate paths, each of
which is associated with a probability to be the true one.

Smartphone data is “rich” in the sense that more than one kind of data are available from
various built-in sensors, including GPS, BT and ACCEL. For example, iPhone and Nokia
95, are usually embedded with a 3-axis accelerometer with ±2G sensitivity. It has been
found that ACCEL data from accelerometers are useful in recognizing the motion status
of the phone carrier (e.g., Reddy et al. 2009, Kwapisz et al. 2010). Moreover, the BT
sensor also provides valuable information about the smartphone’s context. For example,
the BT sensor detects more nearby BT devices in a public transport environment than
those in a private mode. We propose a framework that can exploit rich smartphone data.
Although only GPS, BT and ACCEL data are studied in this thesis, the method can be
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extended to any type of sensor, such as gyroscope, if it provides information about the
location or the transport mode.

The proposed algorithm is an extension of the unimodal map-matching algorithm
proposed in Chapter 3, which is capable of dealing with both dense and sparse GPS
data (time interval ranges from 1 second to 1 minute). In this chapter, a probabilistic
measurement model is derived for each sensor to capture the data generation process. An
integrated smartphone measurement model is constructed to integrate all sensor models
in a unified framework. The smartphone measurement model calculates the likelihood
of observing the smartphone measurements on a multimodal path. The travel model
accounts for different transport modes and mode changes in the multimodal network.
The candidate path generation algorithm deals with multimodal networks. Numerical
experiments are illustrated. Finally, discussions and conclusions are given.

4.1 Smartphone data and transport networks

Two types of inputs are used for the proposed method: a model of the transport networks,
and the smartphone data collected during travels.

4.1.1 Multimodal transport network and multimodal path

Different from the unimodal transport network defined in Section 3.1, another dimension,
transport mode, is brought into the multimodal transport network. In a multimodal
network, each arc a ∈ A represents a road segment or a rail track segment, and
accommodates one particular transport mode m. A road that can be traveled with bus
and car, is represented by two arcs. A unimodal transport network Gm contains only
arcs with the same transport mode m. In this chapter, we assume that the smartphone
data are recorded while the carrier is traveling on a multimodal transport network. A
multimodal transport network is represented by a union of several unimodal transport
networks, and virtual arcs that connect them. This multimodal network representation
is inspired by the supernetwork approach (Carlier, Fiorenzo-Catalano, Lindveld &
Bovy 2003). A virtual arc is associated with a change of transport mode, and connects
two nodes belonging to two different unimodal networks but having the same geographical
location. This chapter models urban transport modes, private walk, bike, car, and public
bus, metro.

A position x = (x,m) in a multimodal network is characterized by horizontal co-
ordinates x = (xlat, xlon) consisting of latitude and longitude, and transport mode
m ∈ {walk,bike, car,bus,metro}. A path is an ordered list of connected arcs. A multi-
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Figure 4.1: A multimodal network and a multimodal path

modal path p is a path in a multimodal network 1. A multimodal path may contain only
one single mode or several different modes. Figure 4.1 gives an example of a multimodal
network with two unimodal networks (bus and walk), and a multimodal path. For the
sake of clarity of the drawing, the arcs are represented bidirectional, and the directions
are not drawn. Dashed lines represent virtual arcs that connect two unimodal networks.
A multimodal path with direction starts from the bus network, and changes to walk
via a virtual arc connecting x−

c = (xc, bus) and x+
c = (xc,walk), where xc denotes the

coordinates of the mode change location.

OpenStreetMap is used as the source of the transport networks data. In this database,
the transport mode accessibility on each road is specified and the public transport lines
are also available. The OpenStreetMap data structure is only designed for visualization,
and the PT network data have to be pre-processed for routing and map-matching usages.
The metro stops are sometimes disconnected from other networks. We assume that
people can access/egress them by walking from/to the nearest nodes, and create walking
arcs to connect metro stops to the 5 nearest nodes. For the sake of simplicity, each arc is
created as a straight line.

4.1.2 Smartphone data

When a sensor is activated, EPFLScope triggers sensor reading events periodically and
logs the data. The availability of data is also subject to practical constraints. For example,
GPS data are observed only if the GPS signal is available. Sometimes, the user may
turn off the BT sensor. The raw sensor readings, e.g. a list of MAC addresses of nearby
BT devices, are usually not ready to be used directly. So useful measurements need to

1 In this chapter, the definition of path p is “multimodal”, which is different from last chapter. By
default , “path” refers to “multimodal path” in this chapter; “physical path” refers to a path without
mode information.
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be extracted from the raw data. This process is termed feature extraction in pattern
recognition literature. The mechanism of reading sensors, and the feature extraction
methods are explained below. The GPS data has been introduced in Chapter 3, and we
focus on BT and ACCEL data here.

Bluetooth sensor EPFLScope configures the BT sensor to scan for nearby BT
devices every 180 seconds. Each scan returns a list of nearby BT devices with their
unique identifiers (MAC addresses). Nowadays, many people carry BT-enabled personal
electronic devices, such as smartphones and tablets. These devices are visible to each
other if, they are in a range of approximately 10 meters; and they do not move out of
this range for a short time, which is about 1.92 seconds (Naya, Noma & Kogure 2005).
The number of nearby visible BT devices varies with the context. In public transport,
people are more compact in the vehicle, and they are stationary relative to each other.
Hence a smartphone has a higher chance to observe more BT devices than in private
transport. Therefore, we utilize the information about nearby BT devices in differentiating
public/private transport context. A measurement (b̂, t̂) is extracted from each BT scan,
and b̂ is equal to 1 if there is at least one BT device nearby, and 0 otherwise. It is also
associated with a time stamp t̂.

Accelerometer sensor Accelerometer readings provide motion status of the phone
user. It has been proposed in the literature to use them to detect the transport mode
of the traveler (e.g., Reddy et al. 2009). A N95 smartphone is embedded with a 3-axis
accelerometer with the sensitivity of ±2G. An accelerometer reading is a triplet that
contains the accelerations measured from 3 axes. The unit of the acceleration is 1

280m/s
2,

in which 280 is a normalization factor. EPFLScope triggers an accelerometer reading
event every 120 seconds. Every reading event lasts for 10 seconds in a frequency of 40Hz.
Therefore, it returns 400 accelerometer readings. Table 4.1 gives an example of data
returned from a reading event.

We assume random orientation of the smartphones, and calculate the acceleration for
each reading by taking the 2-norm of the triplet. Due to the high frequency of recording
noisy acceleration data, an aggregation method is needed here. The aggregation takes a
time resolution of 2 seconds, and split the 10 seconds data into 5 equal time windows.
This aggregation technique is generally used in practice in order to reduce the noise in the
acceleration data (e.g., 1 second time resolution is used by Reddy et al. 2009). In each
time window, a measurement (â, t̂) is generated with â as the mean of the accelerations
in this time window. The measurement time t̂ is set to be the middle of the time window.
Consequently, 5 accelerometer measurements are generated by each reading event.
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Table 4.1: Acceleration data returned from a reading event

index time stampa x-axisb y-axisb z-axisb

1 1272678293.03 15.0 -15.0 -324.0
2 1272678293.05 21.0 -15.0 -324.0
3 1272678293.09 21.0 -15.0 -329.0
... ... ... ... ...
398 1272678302.91 21.0 -15.0 -324.0
399 1272678302.94 15.0 -10.0 -319.0
400 1272678302.95 15.0 -15.0 -324.0
a Unix time stamp in seconds.
b Acceleration readings from 3 axes.

4.1.3 Measurements sequence from a trip

EPFLScope records data from independent sensors with a pre-defined schedule. We
assume that the data have been preprocessed so that we have access to all the measure-
ments recorded during a trip, and store them in a chronologically ordered sequence ŷ1:T ,
where T is the total number of measurements. The entire sequence is composed of 3
subsequences: the GPS, the BT, and the ACCEL. For example, we denote all the GPS
measurements as ĝ1:I, where I is the total number of GPS.

Since only GPS provides valuable geographical location information, the measurements
sequence ŷ1:T is processed such that the first and the last measurements are GPS. All
BT and ACCEL measurements recorded before the first GPS or after the last GPS are
excluded. In ŷ1:T , if different types of measurements have the same time stamp, the order
is set to be BT, ACCEL, and then GPS. If two GPS measurements have a large time
gap, they do not provide reliable location information to BT and ACCEL data observed
between them. Therefore, we decide to discard BT and ACCEL data if the time gap is
large, and 20 seconds is chosen as the threshold.

Some sensor data (dataset C) with annotated transport modes are used to calibrate sensor
measurement models and a speed distribution for each transport mode. These data are
collected from 3 smartphone users while they are traveling with various transport modes.
The true transport modes of the travels are known. The numerical experiments in this
chapter use measurements sequences (dataset D) that are collected from 2 smartphone
users while they are traveling in urban and outskirt areas. More details about the data
will be provided in the corresponding sections.
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4.2 Sensor measurement models

In this section, measurement models are defined to represent the sensors’ operations in a
multimodal transport network context. A measurement model has the form Pr(ŷ|x, t),
where the state variable x = (x,m) is the position of the phone carrier in the network,
and ŷ denotes a sensor measurement collected at time t̂. Conditional on the state x,
the measurement ŷ is derived for a value of t that equals to the time stamp t̂ of the
measurement. Therefore, the model can be denoted as Pr(ŷ|x). The rest of this section
defines a sensor measurement model for each type of measurement, i.e. GPS, BT and
ACCEL.

4.2.1 GPS measurement model

The GPS measurement model proposed here focuses on the location only, and is therefore
denoted by Pr(x̂|x). It is an extension of the measurement model proposed in Section 3.2
with one more dimension, transport mode m, in the latent status variable x. In this
multimodal context, it is assumed that the error in the GPS coordinates is indepedent
of the transportation mode,

Pr(x̂|x) = Pr(x̂|x) = exp

(
−
‖x− x̂‖22
2σ̂2

)
, (4.1)

where ‖x− x̂‖2 calculates the distance (in meters) between the recorded coordinates x̂
and the coordinates x in the transport network; the variance σ̂2 is approximated by
σ̂2 = σ2network + (σ̂x)2, where σnetwork = 30m is the standard deviation of the horizontal
error in network data (see Section 3.2 for more details).

4.2.2 BT measurement model

We assume that the BT measurement b̂ only depends on whether the transport mode is
public or private, then we have:

Pr(b̂|x) = Pr(b̂|m) =

Pr(b̂|m ∈ PT) if m is PT

Pr(b̂|m /∈ PT) if m is non-PT

where PT = {bus,metro} denotes the set of public transport modes. The PT and non-PT
models are based on empirical distributions. They are calibrated from the annotated
BT data of dataset C, and reported in Table 4.2. The number of measurements used for
calibration is 869 for PT and 1826 for non-PT respectively. We observe that the chance
of observing a BT device is higher in public transport.
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Table 4.2: Probability density mass of b̂

Pr(b̂|m) b̂ = 0 b̂ = 1

m ∈ PT 0.19 0.81
m /∈ PT 0.60 0.40

4.2.3 ACCEL measurement model

Acceleration merely provides information about the transport mode, so we assume it
to be independent of the location. As for the BT data, we derive a model based on an
empirical distribution. Then we have Pr(â|x) = fa(â|m), where fa(â|m) denotes the
probability density function of the ACCEL measurement for mode m. Furthermore,
we assume that motor-based transport modes (including car, bus and metro) have a
similar pattern of acceleration. Then we calibrate a probability density function for
walk, bike and motor-based transport modes respectively, and denote them as fa(â|walk),
fa(â|bike) and fa(â|motor).

For each density function, a finite mixture of normal is used to model the distribution of
the acceleration measurement:

fa(â) =

J∑
j=1

wjφ(µj, σ
2
j ). (4.2)

The following parameters need to be estimated: J, the number of normal components;
wj, the proportion of component j (wj ≥ 0,

∑J
j=1wj = 1); µj and σ

2
j , the mean and the

variance of the normal distribution φ(µj, σ2j ). These parameters are estimated from the
annotated ACCEL data of dataset C. The estimation technique is described by Park,
Zhang & Lord (2010) where the same method is applied to model the heterogeneous speed
data. A R package mixAK using Markov chain Monte Carlo methodology is employed
for the estimation (Komárek 2009). The optimal number of components J is selected
according to deviance information criterion. The histograms of the ACCEL measurements
and the predictive densities are drawn in Figure 4.2. Table 4.3 reports the parameter
estimates. The gravity 1G corresponds to 280 in the ACCEL measurement, so deviation
from 280 means acceleration caused by the smartphone’s movement. Acceleration less
than gravity is usually caused by vertical movements. We can observe distinct patterns
from the distributions. Walk is the least stable movement status since it has a higher
chance to observe a high acceleration value. Bike has a peak near 1G, which means that
the movement is quite stable with little acceleration. Motor has a peak centered at less
than 1G, which depicts vertical movements caused by the road condition (e.g., bumps
and uphills) and the usage of the phone by the user.
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Figure 4.2: Acceleration distributions for walk, bike, and motor

Table 4.3: Parameter estimates for acceleration distributions

walk bike motor
4501a 11924a 11801a

J 3 4 4
w1 7.773e− 01 (2.782e− 02)b 2.106e− 01 (5.727e− 02) 1.922e− 01 (4.496e− 03)
µ1 3.152e+ 02 (1.202e+ 00) 2.929e+ 02 (3.038e+ 00) 2.647e+ 02 (9.726e− 02)
σ1 2.206e+ 01 (7.589e− 01) 9.907e+ 00 (1.327e+ 00) 3.496e+ 00 (7.860e− 02)
w2 2.151e− 01 (2.814e− 02) 3.217e− 01 (5.676e− 02) 7.537e− 01 (8.748e− 03)
µ2 3.712e+ 02 (2.938e+ 00) 2.766e+ 02 (1.063e+ 00) 3.102e+ 02 (2.324e− 01)
σ2 1.879e+ 01 (1.711e+ 00) 8.039e+ 00 (4.633e− 01) 1.333e+ 01 (2.061e− 01)
w3 7.668e− 03 (3.924e− 03) 2.047e− 01 (2.102e− 02) 4.450e− 02 (4.700e− 03)
µ3 3.983e+ 02 (4.307e+ 01) 3.284e+ 02 (3.289e− 01) 2.864e+ 02 (2.463e− 01)
σ3 1.059e+ 02 (2.843e+ 01) 6.411e+ 00 (4.536e− 01) 2.633e+ 00 (1.872e− 01)
w4 - 2.631e− 01 (4.501e− 02) 9.626e− 03 (5.186e− 03)
µ4 - 3.163e+ 02 (2.055e+ 00) 3.545e+ 02 (1.213e+ 01)
σ4 - 2.075e+ 01 (9.360e− 01) 2.158e+ 01 (5.339e+ 00)
a The number of measurements used for the calibration.
b The figure in parentheses reports the standard deviation of the estimate.
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4.3 Smartphone measurement model

In this section, an integrated smartphone measurement model is proposed to combine the
sensor measurement models in a unified framework. This smartphone measurement model
Pr(ŷ1:T |t1:T , p) is intended to calculate the likelihood of observing all the smartphone
measurements ŷ1:T on a multimodal path p at time t1:T respectively. As the same as in
Chapter 3, we assume that the time is recorded without error. Therefore, the model will
return a non zero probability only when the sequence t1:T exactly matches the sequence
of time stamp t̂1:T in the data.

4.3.1 Derivation of the smartphone measurement model

The derivation of the smartphone measurement model builds on the procedure described
in Section 3.2. In this chapter, we focus on the main differences introduced by the
multimodal context and the integration of various sensors.

The measurement equation is decomposed as:

Pr(ŷ1:T |t1:T , p) = Pr(ŷ1|t1, p)
∏T
k=2 Pr(ŷk|ŷ1:k−1, t1:k, p), (4.3)

where Pr(ŷk|ŷ1:k−1, t1:k, p) is the conditional probability for observing ŷk, and is calculated
iteratively. The complex dependency in the sequentially observed measurements is
modeled by this conditional probability. In order to simplify its derivation, we assume
that the observation of measurement ŷk on path p at time tk only depends on the
previous observation. Then the conditional probability for observing ŷk simplifies to

Pr(ŷk|ŷ1:k−1, t1:k, p) ≈ Pr(ŷk|ŷk−1, tk−1, tk, p), (4.4)

For the first measurement, which is always a GPS measurement by construction, we
derive

Pr(ŷ1|t1, p) =
∫
x1∈p Pr(ŷ1|x1)Pr(x1|t1, p)dx1 (4.5)

=
∫
x1∈p Pr(x̂1|x1)Pr(x1|t1, p)dx1, (4.6)

where the probability Pr(x1|t1, p) captures a prior knowledge of the initial position of
the device. If nothing is known, it can for instance be defined as 1

Lp
where Lp is the

51



Chapter 4. Probabilistic multimodal MM with rich smartphone data

length of path p. For each subsequent observation k ≥ 2, we have

Pr(ŷk|ŷk−1, tk−1, tk, p) =
∫
xk∈p

Pr(ŷk|xk)Pr(xk|ŷk−1, tk−1, tk, p)dxk, (4.7)

where Pr(xk|ŷk−1, tk−1, tk, p) represents the prior probability that the device is at (mul-
timodal) position xk at time tk given the last observed measurement ŷk−1 at tk−1, and
can be derived by:

Pr(xk|ŷk−1, tk−1, tk, p) =
∫
xk−1∈p

Pr(xk|xk−1, tk−1, tk, p)Pr(xk−1|ŷk−1, p)dxk−1, (4.8)

where Pr(xk−1|ŷk−1, p) is the posterior distribution of xk−1 from last iteration,

Pr(xk−1|ŷk−1, p) =
Pr(ŷk−1|xk−1)∫

xk−1∈p Pr(ŷk−1|xk−1)dxk−1
. (4.9)

Putting everything together, we have

Pr(ŷk|ŷk−1, tk−1, tk, p)

=

∫
xk∈p

∫
xk−1∈p Pr(ŷk−1|xk−1)Pr(xk|xk−1, tk−1, tk, p)Pr(ŷk|xk)dxk−1dxk∫

xk−1∈p Pr(ŷk−1|xk−1)dxk−1
. (4.10)

There are two kinds of essential components in this equation. One is the sensor measure-
ment models, Pr(ŷ1|x1), Pr(ŷk−1|xk−1) and Pr(ŷk|xk), which are already described; the
other is the travel model Pr(xk|xk−1, tk−1, tk, p), which we define next.

4.3.2 Travel model

The travel model with the form

Pr(xk|xk−1, tk−1, tk, p) (4.11)

essentially predicts the position xk = (xk,mk) at time tk, given that the state at time
tk−1 is xk−1 = (xk−1,mk−1), and the smartphone user is traveling along path p. There
are several ways of implementing the travel model, for instance, via a traffic simulator or
real-time traffic information. In this chapter, we extend the empirical model proposed
in Section 3.2.3 to multimodal context. It is based on the speed distribution for each
transport mode.

52



4.3. Smartphone measurement model

Table 4.4: Parameter estimates for speed distributions

mode measurementsa wm λm µm τm

walk 9350 0.46 (0.01)b 0.20 (0.00) 4.41 (0.03) 1.51 (0.03)
bike 11899 0.39 (0.01) 0.09 (0.00) 2.88 (0.00) 0.30 (0.00)
metro 1142 0.52 (0.02) 0.17 (0.01) 3.51 (0.03) 0.43 (0.02)
bus 1669 0.48 (0.07) 0.13 (0.03) 3.16 (0.05) 0.46 (0.02)
car 2069 0.20 (0.03) 0.12 (0.03) 3.76 (0.03) 0.62 (0.02)
a The number of measurements used for the calibration.
b The figure in parentheses reports the standard deviation of the estimate.

Speed distributions

Researchers have been using speed profiles to infer transport modes (e.g., Liao et al. 2007,
Zheng, Li, Chen, Xie & Ma 2008, Reddy et al. 2009, Bohte & Maat 2009). Studies have
also been performed on estimating the speed profiles of transport modes (e.g., Knoblauch,
Pietrucha & Nitzburg 1996, Thompson, Rebolledo, Thompson, Kaufman & Rivara 1997).

A speed distribution for car has been estimated in Section 3.2.3. The distribution is
assumed to be a mixture of a negative exponential and a log-normal. The first is designed
to capture the period when the traveler is stopped, or traveling at low speed before or
after that stop. The second is designed to capture the traveler moving at regular speed.
In this chapter, this method is adapted to estimate a speed distribution fv(v|m) for each
transport mode. Speed measurements from dataset C are used for the estimation. And
the probability density function for mode m is written as:

fv(v|m) = wmλme
−λmv + (1−wm)

1

v
√
2πτ2m

e
−

(ln v−µm)2

2τ2m . (4.12)

Our data analysis shows that a mixture of negative exponential and normal fits better
for walk. The distribution for walk is therefore

fv(v|walk) = wwalkλwalke
−λwalkv + (1−wwalk)

1√
2πτ2walk

e
−

(v−µwalk)2

2τ2walk . (4.13)

The parameters to be estimated are: wm, the weight for the mixture; λm, the scale
parameter of the negative exponential distribution; µm, the location parameter of the
normal and log-normal distributions respectively; τm the scale parameter of the normal
and log-normal distributions respectively. Figure 4.3 shows the normalized histograms of
the recorded speed data and the estimated speed distributions for all modes. Table 4.4
reports the parameters estimated by maximum likelihood.
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Figure 4.3: Speed distributions of 6 transport modes.

Derivation of the travel model

A multimodal path differs from a unimodal path in that there are possible mode changes
along a path. Therefore, there are two situations that need to be considered in deriving
the travel model: the presence or absence of a virtual mode transfer arc between xk−1
and xk along p.

If there is no mode change between xk−1 and xk. The smartphone carrier travels
from xk−1 to xk along path p with the same mode mk = mk−1. Then the probability
density function of the travel model (4.11) can also be written as

fx(xk|xk−1, tk−1, tk,mk, p), (4.14)

which predicts the next location xk of the unimodal (mk) travel along path p since the
previous location xk−1. We assume that the travel speed follows the speed distribution
of the transport mode mk being used in this uni-modal travel segment, then we have the
following model:

fx(xk|xk−1, tk−1, tk,mk, p) = fv(
dp(xk−1, xk)

tk − tk−1
|mk), (4.15)
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where dp(xk−1, xk) calculates the distance from xk−1 to xk on path p; so that dp(xk−1,xk)
tk−tk−1

calculates the travel speed; and the probability density function fv is given by Equa-
tion (4.12) or (4.13).

If there are mode changes between xk−1 and xk. Considering the fact that the
GPS data are recorded every 10 seconds, we assume that it is not possible to have more
than one mode change in such a short time. The mode change between xk−1 and xk is
represented by a virtual arc on p, associated with coordinates xc. We denote upstream
node of the virtual arc by x−

c = (xc,mk−1) and the downstream node by x+
c = (xc,mk).

The time at which the mode change happens is unknown and denoted by tc ∈ [tk−1, tk].
Then, we have the following model:

Pr(xk|xk−1, tk−1, tk, p)

=

∫ tk
tc=tk−1

Pr(tc|xk−1, tk−1, p)Pr(xk|xk−1, tc, tk, p)dtc, (4.16)

The two probabilities in the right hand side (RHS) of (4.16) describe the two unimodal
travel segments before and after the mode change. The first predicts the mode change
time tc; the second predicts the position xk at time tk given the mode change time tc.
Following the derivation of (4.15), we also assume that the travel speed of each segment
follows the speed distribution of the corresponding transport mode. Then, they can be
re-written as:

• Pr(tc|xk−1, tk−1, p) = fv(
dp(xk−1,xc)
tc−tk−1

|mk−1),

• Pr(xk|xk−1, tc, tk, p) = fv(
dp(xc,xk)
tk−tc

|mk).

4.3.3 Computing integrals

The above formulations involve a lot of integrals along path p with the form of
∫
x∈p f(x)dx.

In order to save computation time, Section 3.2.2 defines a Domain of Data Relevance
(DDR) of each GPS point as a physical area nearby. Then, the domain of the integral is
truncated to the part of the path that is inside the DDR.

Obviously, this simplification method only works for GPS data, because other data do not
contain location information. In this chapter, the domain of integral for BT and ACCEL
measurements is illustrated in Figure 4.4. For each BT or ACCEL measurement ŷk, its
previous and next GPS measurements are denoted as ŷkg− and ŷkg+ (tkg− ≤ tk ≤ tkg+).
Since measurements are observed sequentially, ŷk’s state xk ∈ p has to be downstream
of xkg− and upstream of xkg+ . Then, the domain of integral for xk only includes the
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Figure 4.4: Integral domain for Bluetooth or Acceleration measurement ŷk

domains of integral for xkg− and xkg+ (part 1&2 in Figure 4.4), plus the part of p that
connects xkg− and xkg+ (part 3). This definition highly relies on the two adjacent GPS
measurements. If the GPS measurements happen to have a large time gap, they do not
provide reliable location information for BT and ACCEL data observed between them.
Therefore, as mentioned earlier, the BT and ACCEL measurements observed between
them are discarded. For the implementation of the DDR of GPS measurements and the
integral, we refer to Section 3.2.2 for more details.

4.4 Candidate path generation

We propose a multimodal candidate path generation algorithm as an extension of
the unimodal algorithm described in Section 3.3. This algorithm has special features
compared to the conventional map-matching and transport mode inference algorithms:

• The algorithm builds the physical path and the transport modes simultaneously.

• Smartphone data recorded from a trip are not required to be preprocessed into
several unimodal segments.

• Transport networks also contribute to the inference of the transport mode, especially
in differentiating PT and non-PT modes.

The algorithm produces a set of multimodal paths, denoted as P , along with a likelihood
for each one. Based on P , the probability for each path being the one can be calculated:

q(p) =
Pr(ŷ1:T |t1:T , p)Pr(p)∑

p′∈P Pr(ŷ1:T |t1:T , p′)Pr(p′)
, (4.17)

Again, because we assume that the time tags are measured without error, the values of
t1:T are taken directly from the data t̂1:T . The prior probability Pr(p), representing a
route choice model, is specified as uniform.

Usually, a map-matching algorithm takes two sources of information: location data, and
transport networks data. In this algorithm, although BT and ACCEL measurements do

56



4.4. Candidate path generation

not contain significant location information for generating path candidates, they are im-
plicitly used in the process that eliminates paths according to the path probability (4.17).
The output is a set of candidate multimodal paths. For each path, the likelihood (4.3) of
observing the smartphone measurements on it, and the probability (4.17) that it is the
true path are also calculated.

The algorithm iterates over the sequence of GPS measurements ĝ1:I. At each iteration
i, it generates a set of candidate paths Pi that are matched to the sequence of all
measurements (including BT and ACCEL) up to ĝi. In the next iteration i + 1, each
path is extended from its end node, and downstream segments are appended in order
to map the new measurements up to the next GPS ĝi+1. In fact, this iterative method
connects the DDR of the GPS points to build candidate paths. Practically, the number
of candidate paths grows exponentially because each DDR is relatively large with about
100m radius. Therefore, heuristics are proposed to reduce the computational burden.
The result from the last iteration I is the final output of the algorithm. The pseudo-code
is briefly described as Algorithm 2. Detailed explanations of some steps are given as
follows:

9. At iteration i, the path extension process is carried out only when the GPS point
ĝi is far enough away from ĝi′ , where i′ corresponds to the last iteration when a
path extension happened, and 100m is chosen as the distance threshold. Otherwise,
the traveler is considered to be immobile, and a path extension is not necessary.

15. The path extension from end node n takes place in each unimodal network Gm,
if n appears in Gm or connects to Gm with a virtual arc (mode change). A new
path candidate pnew is created by joining the current path candidate p ∈ Pi′ with
the newly discovered downstream segment (see line 22). The transport mode m of
the downstream segment is the mode of Gm. It can be different from the mode
of the last arc on p. In other words, a mode change is allowed to happen at the
connecting node n, which is the end node of p.

16. Each transport mode has a speed limit. For example, walk is not expected to have
a speed over 18km/h. If the observed speed v̂i of the GPS exceeds the maximum
speed of a transport mode m, the corresponding unimodal transport network Gm
is neglected. This is mainly designed to neglect walk and bike networks when
the GPS is in fact observed from higher speed motor modes, hence to reduce the
amount of irrelevant paths as candidates. The maximum speed for walk and bike
is set to be 18km/h and 40km/h respectively, while no constraint is imposed to
motor modes. These values correspond to 99% percentile in the speed data of
dataset C.

57



Chapter 4. Probabilistic multimodal MM with rich smartphone data

Algorithm 2: Candidate path generation algorithm
Input: The smartphone measurements sequence ŷ1:T with GPS subsequence ĝ1:I
Input: The underlying multimodal transportation network G with multiple unimodal networks Gm,

m ∈ {walk,bike, car,bus,metro}.
Result: A set of candidate paths PI.

// Deal with the first GPS point.
1 P1 ← empty set of paths;
2 DDR1 ← the DDR of the first GPS measurement;
3 for each arc a ∈ A do
4 if a intersects DDR1 then
5 include a as a partial path in P1;
6

7 i′ ← 1: the temporary index for processed GPS;

8 for i← 2 to I do
// Iterative path extension process.

9 if ‖x̂i − x̂i′‖ > 100m then
10 i′ ← i;
11 foreach p ∈ Pi′ do
12 if p intersects DDRi then
13 include p in Pi;

14 n← the end node of p;
15 foreach unimodal network Gm do
16 if v̂i ≤ the maximum speed of mode m then
1818 spt← a bounded shortest path tree rooted at n in Gm ;
19 foreach link a ∈ spt do
20 if a intersects DDRk then
21 sp← shortest path connecting p and a;
22 pnew ← join p, sp and a;
23 include pnew in Pi;

24 limit the size of Pi;
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18. Shortest path trees are used to link the DDRs of adjacent GPS points. For the sake
of computational efficiency, the shortest path trees are bounded. The leaf nodes of
a bounded shortest path tree are the first nodes detected by the Dijkstra algorithm
that violates the bound. The bound is the same as in Section 3.3. It is based
on an assumption about the maximum possible speed of the traveler within the
time interval [ti′ , ti]. In our experiments, the bound is defined by 1.5(ti − ti′)v̂max,
where v̂max is the maximum speed value among the observed GPS speeds v̂i′ and
v̂i, and the speed value calculated from the coordinates: ‖x̂i − x̂i′‖2/(ti − ti′). The
factor 1.5 is a safety margin to minimize the risk of missing a relevant observation.

24. The path elimination procedure is designed to speed up the algorithm by eliminating
less relevant branches. It eliminates unreasonable paths deterministically according
to various criteria. The deterministic elimination procedure includes:

1. We assume that walk is necessary for mode changes. Therefore, if a path has
a mode change without walk involved, it is eliminated.

2. A path with loops is considered to be unreasonable, hence is excluded, unless
the loops involve walk.

3. A path might be too long to be consistent with the observed travel time
approximated by tI − t1. The mean travel speed v̄m for each mode m is taken
from the speed data of dataset C. Then the mean travel time for a path can
be calculated by summing up the mean travel time La

v̄ma
for each arc a, where

ma is the mode of arc a and La is the length of the arc. We assume the lower
bound of a path’s travel time as half of the mean travel time. If the observed
travel time is lower than the lower bound, the path is considered too long to
be realistic, and removed.

Clearly, more behavioral rules could be considered here, possibly involving a
calibrated behavior model, or a Markov sequential conditional probability for mode
changes (e.g., Zheng, Li, Chen, Xie & Ma 2008).

In order to control the complexity of the algorithm, the number of paths generated
at each iteration should be reasonably small. For example, Marchal et al. (2005)
and Schuessler & Axhausen (2009b) suggest to maintain 30 paths at each iteration
for unimodal map-matching. We use a random sampling procedure to select paths
according to the path probability (4.17). Since the algorithm is multimodal, we
decide to maintain more paths, but not more than 60 paths in our experiments.
The random selection procedure includes three steps.

1. Randomly draw some paths from Pi according to the path probability (4.17).
In our experiments, 20 paths are selected.
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2. Let P1i ⊆ Pi denote the set of paths with the least mode changes. Then,
randomly sample some paths from P1i according to the path probability (4.17).
Before the random sampling, the probabilities are normalized such that they
sum up to one for the paths in P1i . In this step, paths with the least mode
changes are favored because they are more behaviorally reasonable. In our
experiments, 10 paths are selected in this step.

3. The likelihood that the GPS measurement is observed on a is defined:

Pr(x̂|a) =
∫
x∈a

Pr(x̂|x)Pr(x|a)dx =
1

La

∫
x∈a

Pr(x̂|x)dx. (4.18)

We create the set of arcs that intersect with DDRi and have the transport
mode m, and denote the set as Aim. For each mode m, we sample some
arcs according to the likelihood (4.18) (as in Step 2, the normalization of the
likelihood is required before the random sampling). In our experiments, 5
arcs for each mode are selected. For each sampled arc a, we denote Pia ⊆ Pi
as the set of paths that go via a and have the least mode changes. We then
apply a similar random sampling procedure as in Step 2 on Pia, but only
to draw one path. In this step, the sampled paths go through different arcs
with different modes that intersect with DDRi. Therefore, this step ensures
sufficient variability in the generated paths.

If a trip is unimodal and the mode is known, the algorithm can be used to only identify
the physical path. It is simply accomplished by supplying the unimodal transport
network of the known mode. Since this technique is essentially unimodal map-matching,
it is denoted as Algorithm-U, while the original multimodal algorithm is denoted as
Algorithm-M. In the next section, the results generated by Algorithm-U with the correct
transport mode will be used as the benchmark when we analyze the mode inference
performance of Algorithm-M.

4.5 Numerical experiments

The proposed method is implemented as a software package in C++. It reads smartphone
data and OSM network data as inputs, and produces probabilistic map-matching results.
In this section, numerical experiments are performed with smartphone data collected
in different circumstances. Some examples are first illustrated with map visualization
to gain an intuitive impression of the results. Then, numerical analyses focus on the
performance in inferring the modes. The contributions of BT and ACCEL data are also
analyzed.
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4.5.1 Result illustration

Some common trip patterns are chosen for the illustration, including bike, car, and public
transport with changes. Using information from dataset C, the main transport modes
for each trip are known while the exact path is unknown.

The first example in Figure 4.5(a) shows a complex multimodal trip with metro → walk→ bus → walk. The total travel time is 20 minutes, and there are 91 GPS measurements
generated, with 8 BT, and 395 ACCEL. The background network is shown in gray
lines, while a generated path is drawn with color. According to the smartphone user
who provided the data, this path resembles the trip that he made. The graph without
background network shows the same path. The red arrow shows the direction of the trip.
There are 43 paths generated by the multimodal map-matching algorithm (Algorithm-M).
The measurement log likelihood ln(Pr(ŷ1:T |t1:T , p) for each path is plotted in Figure 4.6,
and the x-axis shows the id of each path. We notice that some paths have much higher
log likelihood than the others. The path 22 drawn in Figure 4.5(a) gains the highest log
likelihood (−347.9).

The differences of the generated paths show the uncertainty of the result. On the one
hand, the uncertainty is due to the imprecision of the smartphone data and the network.
On the other hand, the uncertainty mainly belongs to the end of the trip, since we notice
that the generated paths mainly differ at the end of them. This can be explained by the
mechanism of the smartphone measurement model. The model utilizes the dependency
between adjacent measurements (see Equation 4.4). Each measurement in fact provides
information to identify its upstream trajectory. The end of a trip always gains less
information since it has less (or none) downstream measurements. We focus on the
differences of the paths by showing the end of them in Figure 4.5(b). Graph 1 shows path
22’s end; Graph 2 shows path 23’s end, which has a different destination (log likelihood
−348.7); Graph 3 shows path 14, of which a part is identified as car (log likelihood
−384.0); Graph 4 shows path 40 with its end identified as bike (log likelihood −381.9).

The second example in Figure 4.7 shows a car trip. All the generated 30 paths are drawn
in the figure, and they greatly overlap with each other. Except for the uncertainty of the
trip end, there is also uncertainty (marked by a circle) due to the data noise and the
density of the network.

The third example in Figure 4.8 shows a trip with bike as the main mode. There are
33 paths generated, the left graph draws a path with the highest log likelihood −117.7.
The same path without background network is drawn in the top right graph. The end of
the path is identified as walk because the smartphone user is entering a parking place.
The bottom right graph shows another representative path, which gains a little lower log
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(a) Data and a generated path.

(b) Trip end uncertainty.

Figure 4.5: A multimodal trip.
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ŷ 1

:T
|p

))

Figure 4.6: Measurement log likelihood for paths

Figure 4.7: A car trip
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Figure 4.8: A bike trip

likelihood −118.0. The differences between two paths are highlighted in circles.

In these examples, the paths with the highest likelihoods are chosen for illustration
purpose only. In practice, we suggest to carry the uncertainty in the application, together
with the associated probability. For example, in route choice modeling, the probabilistic
path observations from the map-matching results can be used with network-free method
(Bierlaire & Frejinger 2008).

4.5.2 Performance analysis

In order to gain more systematic understanding of the performance of the algorithm,
analysis with more data is provided. The analysis focuses on the most important aspects
of the method proposed in this chapter: the identification of the modes, and the usage
of various kinds of data. For the sake of convenience, we extract from dataset C data
sequences that are known to have one single mode. 36 data sequences are used for the
analysis. The transport mode, the travel time, the number of GPS, BT and ACCEL
measurements for each data sequence is given in the left part of Table 4.5.

Since each data sequence has a known transport mode, Algorithm-U with the known
mode can be applied to generate unimodal paths that have the correct transport mode.
Algorithm-M are then applied, and the map-matching results (path sets) are denoted as
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follows:

P0: Algorithm-U is applied to only GPS data, with known mode.

P1: Algorithm-M is applied to only GPS data.

P2: Algorithm-M is applied to GPS and BT data, if BT data are available.

P3: Algorithm-M is applied to all data, if ACCEL data are available.

Since we don’t have access to the ground truth of the traveled path, we use uni-modal
map-matching result P0 with correct transport mode as the benchmark. We refer to
Chapter 3 for more discussion on the route identification accuracy of the probabilistic
unimodal map-matching algorithm.

The performance of Algorithm-M with different data is evaluated by comparing P1, P2,
P3 against P0. We expect that P1, P2 and P3 are similar to P0, if Algorithm-M correctly
identifies the paths and the modes. In order to compare the path sets, we first define
quantitative similarity indicators.

Similarity indicators

First, the overlapping indicator O(p, P) is defined to measure how much a path p overlaps
with all the paths in a path set P:

O(p, P) =
∑
a∈p

La

Lp

∑
p′∈P

q(p′)δap′ , (4.19)

where δap′ is a dummy variable, valued 1 if path p′ contains arc a, and 0 otherwise; La and
Lp are the lengths of arc a and path p respectively; q(p′) is the path probability (4.17).
This definition is similar to (3.28), but we take the path probability into account such
that the outliers in the results are not overrepresented in the similarity indicator. For
example, the result may contain a path with totally different modes than other paths,
and this path may gain very low probability. Then, this path contributes less to the
similarity indicator due to the probability term. This overlapping indicator is valued
between 0 and 1, and can be roughly understood as the average proportion of the path p
overlapping with all paths in P. When p is the same as any path in P, then the overlap
is total and O(p, P) = 1; when p does not overlap with any path in P at all, O(p, P) = 0.

Then S(P′, P) is defined to compare another path set P′ against P,

S(P′, P) =
∑
p∈P′

q(p)O(p, P). (4.20)
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S is also valued between 0 and 1. When all paths in both P and P′ are the same,
S(P′, P) = 1; when all paths are distinct without any overlap, S(P′, P) = 0. If P′ = P,
S(P, P) in fact calculates the similarity of the paths in the same set. When P is a map-
matching result, S(P, P) indicates the level of the uncertainty in the result. The higher
the similarity, the lower the uncertainty. For example, S(P, P) for the public transport
trip shown in Figure 4.5 is 0.967, for the car trip (Figure 4.7) is 0.956, while for the bike
trip (Figure 4.8) is lower 0.854 because more uncertainty is observed.

For the comparison of the different results, we select P0 as benchmark, and analyze the
values S0 = S(P0, P0), S1 = S(P1, P0), S2 = S(P2, P0), S3 = S(P3, P0). The uncertainty of
the unimodal matching result S0 tells the degree of the data noise and the density of the
network. S1, S2, S3 are expected to have a high value, but not higher than S0.

Analysis

Table 4.5: Numerical comparisons of results

mode time (s) GPS BT ACCEL S0 S1 S2 S3

1 bus 479 12 0 19 0.99 0.07 - 0.15
2 bus 399 40 0 25 0.98 0.93 - 0.93
3 bus 234 24 1 11 0.96 0.64 0.65 0.93
4 bus 499 47 0 23 0.98 0.81 - 0.98
5 bus 255 24 0 23 0.96 0.96 - 0.97
6 bus 412 42 0 41 0.97 0.94 - 0.86
7 bus 417 39 2 34 0.98 0.98 0.98 0.98
8 bus 479 35 0 7 0.98 0.27 - 0.50
9 car 229 20 0 23 0.97 0.95 - 0.96
10 car 180 16 0 0 0.95 0.87 - -
11 car 241 23 0 23 0.92 0.91 - 0.90
12 car 229 24 0 0 0.93 0.93 - -
13 bike 290 29 0 0 0.91 0.55 - -
14 bike 289 27 0 0 0.80 0.68 - -
15 bike 313 32 0 0 0.93 0.80 - -
16 bike 369 38 1 23 0.83 0.76 0.77 0.76
17 bike 1153 115 0 98 0.96 0.89 - 0.81
18 bike 1021 100 4 73 0.97 0.95 0.95 0.77
19 metro 892 62 1 34 0.99 0.99 0.99 0.97
20 metro 560 34 1 23 0.99 0.77 0.82 0.85
21 metro 259 16 0 0 0.98 0.94 - -

Continued on next page
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mode time (s) GPS BT ACCEL S0 S1 S2 S3

22 metro 409 33 1 23 0.98 0.99 0.98 0.99
23 metro 594 49 2 40 0.99 0.95 0.96 0.96
24 metro 716 38 2 0 0.96 0.80 0.91 -
25 metro 601 16 0 20 0.97 0.13 - 0.89
26 metro 449 39 0 20 0.99 0.98 - 0.99
27 metro 230 22 0 23 0.95 0.76 - 0.94
28 metro 579 7 0 10 0.98 0.08 - 0.48
29 walk 1269 114 0 0 0.88 0.71 - -
30 walk 719 62 0 0 0.65 0.58 - -
31 walk 659 47 0 0 0.76 0.80 - -
32 walk 998 97 5 0 0.93 0.90 0.88 -
33 walk 240 21 0 0 0.72 0.59 - -
34 walk 359 27 1 0 0.80 0.75 0.73 -
35 walk 488 38 0 0 0.85 0.84 - -
36 walk 490 35 2 26 0.83 0.81 0.77 0.61

The similarity indicators for all trips are reported in Table 4.5. A empty cell means that
the corresponding data is not available, hence no result is generated. S2 is empty when
BT data are unavailable, S3 is empty when ACCEL data are unavailable.

We first notice that all S0 have high value with low uncertainty in the results. The value
is 0.921 in average. Since the uncertainty is mainly due to the error of the GPS data and
the density of the transport network, S0 for walk data is lower because the walk network
is usually denser.

When Algorithm-M is applied with the multimodal network, we have S1, S2, S3 < S0,
because the algorithm is not aware of the true mode and there is a chance of mis-
identifying it. However, in the majority of the cases, S1 is close to S0, and the average
of S1 is 0.757, which is 82.2% of the average of S0. Considering the complexity of the
multimodal network and the sparsity of the GPS data, Algorithm-M achieves quite high
accuracy in the transport mode inference. We observe some exceptional cases (case 1, 8,
25, and 28), where S1 has very low value. They are mainly due to two reasons. First,
in case 1, 25 and 28, the GPS data are too sparse, therefore the measurements do not
provide enough information to find out the correct mode. Indeed, in case 1, there are only
12 GPS measurements observed in 479 seconds. Second, in case 8, the data are observed
when the bus was running slowly in peak hour in the city center. Therefore, the chance
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of identifying the mode as bike increases. In these two cases, some generated paths have
very strange mode change behavior, such as, using both bike and car in 10 minutes.
We believe that if an appropriate route choice behavior model is incorporated in the
candidate path generation algorithm, such paths will be less favored by the algorithm.

By comparing S1 among different modes, we observe that non-PT cases have high values,
because people do not follow the PT lines during the entire trip when they use private
mode. Hence the chance of mis-identifying the mode as public transport (bus and metro)
is low. In this situation, the transport network helps in identifying the mode. From
another perspective, if a route choice behavior model can consider the fact that private
mode travel does not follow PT lines, the results could further be improved.

In 12 cases where BT data are available, the average of S2 (0.888) is greater than the
average of S1 (0.858). In 22 cases where ACCEL data are available, the average of S3

(0.826) is greater than the average of S1 (0.751). Therefore, in general, the additional
BT and ACCEL data contribute to the accuracy of the results. Additional ACCEL data
are particularly helpful when S1 has very low value (case 8, 25 and 28). In some cases,
although there are drops in S3 with additional data, the values are still acceptable. Still,
ACCEL data need to be used more carefully. We notice that ACCEL changes a lot when
the vehicle is traveling at low speed, because the vehicle is accelerating or decelerating
frequently then. This information can be used to improve the ACCEL measurement
model in the future. The candidate path generation procedure involves random sampling
of a subset of candidates, thus stochasticity is introduced. We run P3 for the second time
and compare the resulted S3 indicators to the ones reported in Table 4.5. It is found
that the absolute value of the relative difference is only 8.1% in average, which indicates
that the results are not sensitive to the stochasticity.

This chapter aims at a mathematically sound probabilistic measurement model, and it
involves numerical integrations that are computational intensive. The computation time
is roughly linear to the number of GPS points involved in the candidate path generation
algorithm. In each path extension iteration for a GPS point, the computation time
depends on the complexity of the network and the amount of ACCEL and BT data
recorded since the previous GPS point. It varies from less than a second for car trip in
suburban area, to a couple of minutes for bus trip in city center, on a MacbookPro using
single thread (CPU 2.66 GHz).

The numerical experiments with real smartphone data show that the proposed multimodal
map-matching algorithm performs well in identifying the multimodal paths from the
smartphone data. The algorithm works when at least GPS data is available. The
inclusion of BT and ACCEL data improves the inference accuracy. We have tested the
proposed method on relatively sparse GPS data with 10 seconds time interval. In fact,
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the proposed method should also work with denser or sparser GPS data. Section 3.4.5
provide some evidence that the same framework performs well in unimodal map-matching
for both dense and sparse data (time interval ranges from 1 second to 1 minute).

4.6 Conclusions and discussions

This chapter proposes a probabilistic method to infer the path and the modes of a
trip from smartphone data. A smartphone measurement model is derived to calculate
the likelihood that a smartphone would have generated a sequence of measurements
while traveling on a multimodal path. It is based on a structural travel model that
captures the dynamic of the smartphone user’s state in the transport network, and sensor
measurement models that capture the sensors’ operation. This smartphone measurement
model synthesizes information available from various sensors, such as GPS, BT and
ACCEL.

An algorithm is developed to generate candidate paths from the smartphone data. This
algorithm identifies the physical path and the modes of a trip simultaneously. Hence, the
transport network information is also utilized to identify the transport modes of a trip.
Data recorded from a multimodal trip do not need to be divided into unimodal travel
segments. The result of the algorithm is a set of candidate multimodal paths, along with
a probability for each being the true one.

The proposed method is flexible in two aspects. First, in the smartphone data aspect,
this method works when at least GPS data is available, but richer data, e.g. with BT
and ACCEL, results in better accuracy. For example, under congested traffic conditions,
a car might have the similar speed pattern as a bus, then the travel model might not
be sufficient to distinguish between car and bus, although it could recognize with high
confidence that the mode is not walk. Nonetheless, we expect that a car driving may
not always follow a bus line. Even if it does, a smartphone observes less BT devices in a
car than in a bus. In extreme cases that the car behaves exactly as a bus, the result is
still probabilistic with several candidates, possibly containing both car and bus. The
probabilistic result avoids deterministic wrong identification, thus further information
will be able to be supplemented to improve the inference precision. For example, the bus
schedule will help in this case. Second, in the transport network aspect, we can remove
or add networks depending on need and availability. For instance, if we know that a
travel is absolutely not bike, the bike network can be removed. For another example, if
we want to distinguish between local bus and express bus, the lines can be defined in two
different networks. Since different services usually do not have large physical overlaps,
the type of the service can be recognized from the GPS location data. Moreover, we can
construct different travel models for different types of bus services, if such information is
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available, e.g., from the bus companies.

The visualized examples show that the results are intuitively reasonable, and the mea-
surement likelihood values are realistic and meaningful. A complex multimodal trip
example shows the capability of the algorithm in dealing with mode changes. Numerical
analysis shows the performance of the algorithm in identifying the transport modes.
Apart from the most useful GPS data, BT and ACCEL also contribute in identifying the
transport mode.

Future works involve more investigations on the usage of BT and ACCEL data. They
need to be used more carefully, because they do not contain any location information,
and highly rely on the adjacent GPS measurements to have prior information about
where they are observed. More sophisticated BT measurement model can be considered.
In particular, we may want to capture the fact that walk might happen in a crowded
place where BT devices are observed. In this case the location and time of the day should
play roles in the BT measurement model. The measurement variable can be defined as
the number of nearby devices in order to utilize more information from the BT data.
Besides the mean, more features of the ACCEL data can also be used. The travel model
can adopt more external information, for instances, the timetable of public transport,
and the real time traffic information observed from sensors such as loop detectors. If a
route choice model, e.g. estimated from historical observations, can be supplied for the
prior probability in candidate path generation, the results will be further improved. The
computation speed will be improved with more efficient approximation to the integration,
and better behavioral roles in the elimination procedure of the candidate path generation
algorithm. Finally, the probabilistic map-matching results will be used to estimate
multimodal route choice behavior.
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5 Route choice models estimated from
GPS data

Bierlaire & Frejinger (2008) propose a new discrete choice modeling framework for route
choice data that is not associated with the transportation network (“network-free” data).
They suggest that the error in the “network-free” data should be treated in a probabilistic
manner. Although they also suggest that the methodology may be applied to GPS
data, they present only results based on interview data. The Metropolis-Hastings path
sampling (MHPS) technique proposed by Flötteröd & Bierlaire (2013) is an importance
sampling algorithm where the sampling probability can be specified explicitly. They
mention the generation of choice sets for route choice models as a motivation for the
work, but do not investigate it further. We have proposed probabilistic MM methods
for smartphone data. In particular, the unimodal MM method proposed in Chapter 3
generates probabilistic route choice observations from GPS data recorded during car
trips. In this chapter, these three methods are adapted to the use of GPS data and
integrated in a comprehensive and operational route choice modeling framework. We
only deal with unimodal route choice, so by default, MM method refers to unimodal MM
method presented in Chapter 3, and path refers to unimodal path.

The choice set for route choice model is assumed to include all paths. We propose a
new importance path sampling algorithm which is built upon the MHPS technique.
Importance sampling of path alternatives is just an intermediate statistical procedure
for the route model estimator, unlike the “consideration set” that captures a separate
mental process. It yields a consistent model estimator with respect to the universal
choice set. Discrete choice models imply compensatory decision making process, in
which the decision maker balances the trade-off among attributes of alternatives. Of
course, she makes such balances mostly among relevant alternatives. Consequently,
relevant alternatives are more useful in identifying the parameters during the model
estimation procedure. The new path sampling algorithm is designed to generate relevant
alternatives by exploiting GPS data. It yields more precise parameter estimates than
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other importance sampling based algorithms.

This chapter is organized as follows. A comprehensive and operational route choice
modeling framework for GPS data is proposed in section 5.1, with a focus on the path
sampling algorithm. The consistency of the estimated route choice model is empirically
tested in section 5.2, and compared with route choice models based on other importance
sampling algorithms. Section 5.3 presents a route choice behavior model that is estimated
from real smartphone GPS data. Finally, conclusions and future works are discussed in
section 5.4.

5.1 Methodologies

We start this section by presenting a route choice modeling framework for GPS data. A
logit model with importance sampling of alternatives and path size correction is then
introduced. A new sampling algorithm based on MHPS technique is motivated and
derived.

5.1.1 Route choice modeling framework for GPS data

Bierlaire & Frejinger (2008) propose a route choice modeling framework for “network-free”
route choice data that is not directly associated with the transportation network. The
main idea is that the association between the data and the network should be probabilistic
to avoid major errors that path imputation using MM algorithms may produce.

A set of route choice data includes multiple route choice observations. Each observation n
records a choice decision, measured in “network-free” data i, plus the context information,
such as the set of relevant OD pairs Sn. Then the choice probability for the observation
n is written as Pr(i|Sn), and it can be decomposed as:

Pr (i|Sn) =
∑
s∈Sn

Pr (s|Sn)
∑
p∈U(s)

Pr (i|p)Pr (p|U(s);β) , (5.1)

where

• Pr (s|Sn) is the probability that the actual OD pair is s.

• U(s) is the choice set corresponding to OD s.

• Pr (i|ti, p, ) is a measurement likelihood that calculates the probability that mea-
surement i has been generated by the traveler along path p at time ti.

• Pr (p|U(s);β) describes a route choice model with unknown parameters β to be
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estimated.

Pr (i|ti, p) is the most important component that is introduced in this framework. We
have derived this probability in Chapter 3 when i is GPS data, i.e. i = ĝ1:T and
ti = t̂i. It deals with the incompleteness and the inaccuracy of the smartphone GPS
data without introducing potential biases. The incompleteness is solved by a more
realistic probabilistic travel model that captures the traveler’s movements in the network,
instead of an arbitrary shortest path assumption. The inaccurate data is dealt with in
a probabilistic manner. The probabilistic unimodal MM algorithm produces, from a
sequence of GPS measurements, a set of candidate paths Pn. Pr (i|ti, p) = 0 if p /∈ Pn.
Each candidate path has a pair of OD, Sn is then defined as the collection of them.

The maximum likelihood estimation is applied to this formulation in order to estimate
β from multiple route choice observations. In this thesis, we assume that U(s) is the
universal choice set that contains all acyclic paths that connect OD s. The rest of this
section deals with the discrete choice model Pr (p|U(s);β).

5.1.2 Logit model with sampling of alternatives

McFadden (1978) proves that the logit model can be consistently estimated using a subset
of alternatives Cn(s) ∈ U(s) by introducing a sampling correction term. In route choice
context, this approach had not been applicable until Frejinger et al. (2009) attempt to
construct a path sampling protocol using the random walk (RW) algorithm. Following
Ben-Akiva (1993) and Frejinger et al. (2009), for a candidate chosen path p associated
with observation n, a general sampling protocol for building a subset Cn(s) is: first,
drawing Ψn alternatives with replacement using a sampling algorithm such that the
sampling probability q(j) of each path j ∈ U(s) is known; and second, deterministically
adding the chosen alternative p. Then, a sampling correction term is added to the
deterministic part of the utility function:

lnq(Cn(s)|j) = ln
kjn

q(j)
, (5.2)

where kjn is the number of times that path j appears in Cn(s). Here, we want to emphasize
that Cn(s) is merely a set of sampled alternatives from Un(s), and the actual choice set
is still the universal choice set Un(s). In the sampling correction term, the sampling
probability q(j) can be replaced by its unnormalized form b(j). If we write q(j) = b(j)

K ,
where K =

∑
j′∈U(s) b(j

′) denotes the normalizing constant. It is trivial to prove that
in the logit model, the normalizing constant K cancels out. Thus path enumeration is
avoided.
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The consistent estimator requires an adequate number of sampled alternatives in order
to achieve sufficient precision for the parameter estimates. The estimator identifies the
parameters using Cn(s), therefore, the relevance of alternatives in Cn(s) is important
for correctly identifying the parameters. Hence, the sampling algorithm should be
designed to have a higher probability for sampling relevant alternatives, such that a good
composition of Cn(s) can be generated with a reasonably small number of samples.

The above sampling correction derivation works if only one path p is deterministically
added to Cn(s) in the second step of the sampling protocol. However, it is possible
that several observations with different chosen paths are collected; moreover, if the raw
choice decision measurement i is GPS, the probabilistic unimodal MM method generates
multiple candidate chosen paths. These paths are of course relevant to the traveler, hence
would be better to be included in Cn(s). However, deterministically adding multiple
paths will invalidate the sampling correction derived above. Therefore, in this thesis, we
rely on simulation, and design a sampling algorithm that assigns higher probabilities to
these paths that are available from route choice data. It is based on the MHPS technique
that offers a flexible way of constructing a path sampling algorithm.

5.1.3 Sampling of alternatives using RP data

Flötteröd & Bierlaire (2013) propose a Metropolis-Hastings (MH) algorithm to sample
paths between a given OD from a predefined sampling distribution. The most important
feature of this method is that the path sampling distribution can be defined in an
unnormalized form, and path enumeration is avoided. Flötteröd & Bierlaire (2013)
propose an exponential function for the unnormalized sampling weight:

b(j) = exp(ω1δ(j)), (5.3)

where, ω1 is a parameter to be specified by the modeler, and δ(j) denotes the generalized
cost of path j. In route choice context, the path length is often the most convenient and
reasonable attribute, hence, Flötteröd & Bierlaire (2013) suggest to use:

b(j) = exp(ω1Lj), (5.4)

where Lj denotes the length of path j. The ratio of the probabilities for two different
paths being sampled only depends on their length difference. It results in that, with
the same ω1, the sampled alternatives for a longer trip is more concentrated around the
shortest path, compared to those for a shorter trip. This is an undesired property thus
ω1 should be adjusted according to the scale of the route choice problem. Flötteröd &
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Bierlaire (2013) suggest to use a “scale-invariance” parameter ζ to parameterize ω1,

ω1 =
ln 2

(ζ− 1)Ljsp
(5.5)

The underlying assumption is that a path with the length of ζLjsp has half of the
probability as the shortest path jsp. This concept is more intuitive, and modelers only
need to tune ζ once for all observations instead of tuning ω1 for each one.

We propose an algorithm that requires a smaller size of Cn, in order to achieve precise
parameter estimates. The idea is to include more relevant alternatives in the choice set,
because they contribute more to the parameter identification. Intuitively, the (candidate)
chosen alternatives available in or generated from RP route choice data are relevant to
the traveler. Therefore, we suggest to exploit GPS data to assist the generation of Cn(s).
We calculate the score factor Pj, called observation score, from GPS:

Pj =
1

|Ns|

∑
n∈Ns

qn(j), (5.6)

where Ns is the set of all route choice observations associated with the same OD s. qn(j)
denotes the probability that j is the chosen path given the observation n, and can be
calculated by Equation (3.27) derived in Section 3.3. The observation score also works
for route choice observations with real chosen paths. Then the probability qn(j) becomes
deterministic, and qn(j) = 1 if j is the chosen path in observation n, and 0 otherwise.

We then define the weight function as

b(j) = exp(ω1Lj +ω2λPj), (5.7)

where Lj is the length of path j; Pj is the observation score defined above; ω1 and ω2
are parameters to be specified. ω1 can also be parameterized by using Equation (5.5). λ
is calibrated such that when ω2 = 1, the sampling weight of the shortest path jsp and the
path with highest observation score, jo = argmaxj∈U(s) Pj, are the same: b(jo) = b(jsp),
then we have:

λ =
ω1(Ljsp − Ljo)

Pjo − Pjsp
. (5.8)

Note that (5.4) is a special case of (5.7), since they are equivalent if ω2 = 0.

Note that it is inappropriate to use observed choices as an input to the procedure for
the generation of the choice set. This introduces endogeneity. It is not the case here, as
the choice set is composed of all paths linking the OD and, therefore, its definition does
not depend on the observed path. It is only the sampling procedure which is exploiting
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the observations. In the next section, numerical experiments show that the proposed
algorithm achieves unbiased parameter estimates, even requiring less number of samples
than other importance sampling approaches.

This method is capable of dealing with GPS data, and it is integrated with the “network-
free” data approach (Bierlaire & Frejinger 2008), and the probabilistic unimodal MM
approach to form a comprehensive route choice modeling framework for GPS data. This
framework is applied to a set of real smartphone GPS data in section 5.3.

5.2 Numerical analysis

In this section, we aim at evaluating the performance of the importance sampling
algorithm that exploits GPS data. The experiment method is described, followed by a
case study. The parameters of the proposed sampling algorithm, ζ and ω2, are discussed.
ζ is used to parameterize ω1, and the discussion on ζ is transferable to ω1 according to
Equation (5.5).

5.2.1 Design of the experiment

We focus on the precision of the parameter estimates. The precision of a parameter
estimate can be empirically assessed by a t-test against its true value. If a parameter
estimate is significantly different from its true value at 5% significance level (critical
value 1.96), we report it as imprecise.

The procedure to perform such an analysis for an algorithm is inspired by Frejinger et al.
(2009):

1. Define a transportation network and an OD, where a traveler makes route choice
decisions.

2. Postulate a route choice model for the traveler with the specification of each
parameter’s true value.

3. Generate a number of synthetic choices according to the postulated model.

4. Sample a set of alternatives Cn(s) for each synthetic choice.

5. Estimate the route choice model, and empirically analyze the precision of each
parameter estimate by computing the t -test statistic against its true value.

For the sake of simplicity of this experiment, we don’t introduce errors into the choice
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data, so the route choice observations are deterministic and consist of the real chosen
paths. GPS data are introduced when we process real data in section 5.3.

In this thesis, we want to analyze the performance of different importance sampling
based algorithms. The first candidate is the random walk (RW) algorithm, which is the
first one that can provide a consistent estimator, and the only one before the MHPS
technique is proposed. Based on the MHPS technique, we test different specifications:

• MHg: the algorithm proposed in this chapter.

• MH`: MHPS algorithm with only the length factor, i.e. ω2 = 0, corresponding to
(5.4), as proposed by Flötteröd & Bierlaire (2013).

• MHe: MHPS algorithm with equal probability for every path, b(j) = 1. It is pure
random sampling instead of importance sampling. This is used as a benchmark, as
it is not expected to perform well in practice.

• MHt: sampling with the true choice probability. Lemp, Ridge & Kockelman (2011)
propose a strategic sampling method that suggests to use a choice model, which is
estimated with a simple choice set generation algorithm, to approximate the true
choice probability distribution. Then the approximated choice probability is used
to sample the choice set so as to refine the choice model estimation. We also want
to test this method in route choice context when the true choice model is provided.
In this case, the sampling weight is defined as b(j) = eVjn , if a logit model is
specified, and a specification of the deterministic part of the utility function Vjn is
provided.

5.2.2 Conducting an experiment

We conduct a numerical experiment according to the procedure described above.

Step 1: Brief introduction of the experiment scenario

The experiment scenario is defined as: a traveler makes route choice decisions between
an OD in a real transportation network. The network and the OD is shown in Figure 5.1.
The network is in Lausanne city center, and there are some traffic lights. The traveler
tries to avoid them in making route choice decisions.
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Figure 5.1: The experiment network

Step 2: Postulating a route choice model

We postulate a path size logit (PSL) model (Model A) with the deterministic part of
the utility function for path p and observation n as

Vpn = β`Lp + βsSp + βps lnPSp, (5.9)

where Si denotes the number of traffic lights along path p; Lp is the length in meter;
β = {β`, βs, βps} are the parameters with the values {−0.03,−3, 3}. The ratio between
βs and β`, i.e. 100, implies that the traveler would compensate 100 meters of additional
drive in order to avoid a traffic light. Throughout this chapter, the scale parameter
for the MNL model is set to be 1. PSi calculates the path size which measures the
overlapping between alternatives (Ben-Akiva & Bierlaire 1999):

PSp =
∑
a∈p

La

Lp

1∑
j∈Cps δaj

, (5.10)

where Cps denotes a set of paths for the path size calculation; a ∈ p denotes an arc on
path p; dummy variable δaj equals to one if path j contains arc a, and zero otherwise.
Frejinger et al. (2009) argues that the path size should be computed from the universal
choice set, and suggests to use a large set of paths for Cps in practice. Therefore, we
decide to sample 1000 paths using MHPS algorithm. The sampling weight for path j is
chosen to be b(j) = e−0.01∗Lj−1.0∗Sj , where the magnitude of the parameters for Lj and Sj
is smaller than the ones in the route choice model specification. The objective is to have
a higher variance in the sampling probability distribution, thus to generate more distinct
paths which have a good coverage over the relevant part of the network (see Figure 5.2
for the visualization). After 1 ′000 ′000 burn-in samples, every 10 ′000th sample is drawn
and kept.

78



5.2. Numerical analysis





0 500 1000 m

Legend
signal

paths

network

Figure 5.2: Paths Cps sampled for path size calculation. They overlap in the network
and cover the relevant part of the network.

Step 3: Generating synthetic choices

Given the postulated route choice model, we simulate 50 route choice decisions using
MHPS algorithm. Every 100 ′000th sample is drawn as an route choice decision after
a burn-in period of 1 ′000 ′000. These numbers are both much larger than what are
suggested (10 ′000 and 10 ′000) by Flötteröd & Bierlaire (2013). Thus independent
samples (choices) are guaranteed. The generated choices, along with the shortest path
which is not chosen, are plotted in Figure 5.3. We notice that the traveler takes longer
paths in order to avoid traffic lights.

Step 4: Sampling alternatives

Section 5.2.1 introduces the importance sampling algorithms to be analyzed. For each
algorithm, different specifications of parameters are tested. For RW algorithm, we have
tested different Kumaraswamy parameters (Frejinger et al. 2009), (30, 0) and (50, 0)

respectively. For MH based algorithms, including MH`, MHg, MHt and MHe, the burn-in
is 1 ′000 ′000 and every 100 ′000th sample is drawn as an alternative. The specifications
of MHt and MHe are straightforward, and do not involve any parameter that needs to
be calibrated. We refer to (5.7) for the formulation of the sampling weight function
of MH` and MHg algorithms. When ω2 = 0, the algorithm is MH` indeed. Different
specifications of parameters are tested by varying ζ to be 1.052, 1.026, 1.013, and 1.009
(corresponding ω1: -0.005, -0.01, -0.02, and -0.03), together with ω2 to be 0, 1, 2, and 3.

We draw 100 random samples for each observation and each specification of each algorithm.
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Figure 5.3: Synthetic choices and the (unchosen) shortest path

A set of alternatives Cn(s) is composed of a number of random samples, plus the chosen
alternative. In order to test the effect of the the size of Cn(s), we draw different numbers
of random samples: 5, 10, 20, 30, 50 and 100 respectively.

Step 5: Estimating the models

The model specification is the same as the postulated PSL model. The sampling correction
term is added to the deterministic part of the utility function:

Vpn = β`Lp + βsSp + βps lnPSp + ln
kpn

b(j)
(5.11)

The parameters β`, βs and βps are estimated. The sampling weight b(p) is calculated
according to the corresponding sampling algorithm. The results are analyzed below.

5.2.3 Result analysis

The overall performance is first illustrated with the best results that have been obtained
from each algorithm. Detailed analyses on the proposed algorithm are then presented.

Overall performance

Table 5.1 provides an insight about the performance of different algorithms. Each Cn(s)
takes 100 random draws. First, although different parameter settings are tested for
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Table 5.1: Comparison among all algorithms with 100 random draws

True RW MHe MHt MH`(1.026, 0)a MHg (1.026, 2)
β̂ps

b 3.00 -c - 3.1(0.64)d 2.2(2.2)*e 3.0(0.032)

β̂s −3.00 - - −3.3(1.5) −2.5(0.94) −3.1(0.14)

β̂l −0.03 - - −0.038(2.5)* −0.027(0.35) −0.033(0.77)

a The figures in parentheses are the values of (ζ,ω2) for algorithms MH` and
MHg.

b β̂ denotes the estimate of parameter β.
c A cell with “-” indicates that the estimate is unavailable because the corre-
sponding model is unidentifiable.

d The figure in parentheses is the t-test of the estimate against its true value.
e * is noted, if the parameter estimate is statistically different from its true
value at 5% significance level (t-test > 1.96).

RW, the model is unidentifiable. In fact, the sampled paths contain a lot of loops with
u-turns and detours, so are not realistic. This confirms the findings of Schüssler (2010).
Algorithm MHe generates uniformly random paths, most of which are too long to be
relevant for the decision maker. Therefore, the corresponding model is not identifiable
either. MHt algorithm with the true choice probability yields one imprecise parameter
estimate, i.e. β`. The reason is that the sampling distribution has a smaller variance,
thus the sampled alternatives do not contain an adequate number of distinct paths for
correctly identifying the parameters.

Several settings for MH` and MHg are tested, the detailed results are reported in Table 5.2.
Table 5.1 presents the best results of them. The best result obtained from MH`, with
settings (ζ,ω2) = (1.026, 0), still contains imprecise parameter estimates. The proposed
algorithm MHg performs the best as all the parameter estimates are precise, with settings
(ζ,ω2) = (1.026, 2) .

Comparison between MH` and MHg

We analyze the added value of using route choice data in alternative sampling, and
compare the performance of MH` and MHg with different settings. The effect of the
sample size is also analyzed, by drawing different numbers of random paths in Cn(s).
Table 5.2 reports the parameter estimates and their t -test statistics.

We first find that when the magnitude of ζ is too low (ζ = 1.009) or too high (ζ = 1.052),
it is difficult to get an identifiable model and precise parameter estimates, although
different values of ω2 are tried. Precise parameter estimates are achieved only when
ζ = 1.026 or ω2 = 1.013. ζ controls the spread of the sampling algorithm, hence the
heterogeneity of the drawn alternatives. Figure 5.4 visualizes random paths produced
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by MH` using different ζ settings, while fixing ω2 = 0. Although Ψn = 100 is set for
each of them, different numbers of distinct paths are generated. When ζ is small, e.g.
ζ = 1.009, the sampled paths tend to concentrate around the shortest path, and they do
not cover relevant paths in terms of other factors, e.g. less traffic lights. The larger the
value of ζ, e.g. ζ = 1.052, the wider the paths spread in the network. Consequently, the
sampled alternatives include too many unattractively long paths that do not contribute
to reveal the decision maker’s trade-off. ζ should be in a reasonable range, in this case
ζ ∈ [1.013, 1.026], such that Cn(s) includes an adequate number of distinct relevant
alternatives that help to identify the compensatory decision process.

When ζ = 1.026 or ζ = 1.013, MHg (ω2 > 0) in general performs not worse than MH`

(ω2 = 0). Even if Cn(s) contains 100 random draws, MH` still gets imprecise parameter
estimates for all settings. However, several MHg settings yield precise parameter estimates,
including (ζ,ω2) being (1.026, 1), (1.026, 2), (1.026, 3) and (1.013, 1). The performances
of both algorithms are sensitive to ζ, and setting ω2 = 1 in general yields better results.
This is due to the intuitive motivation of ω2, i.e. when ω2 = 1, the path with the highest
observation score gets the same sampling weight as the shortest path.

The impact of the sample size has two aspects. First, the variance of a parameter estimate
decreases as the sample size increases, as expected. Second, MHg requires less samples in
order to achieve an identifiable model and precise parameter estimates. We can conclude
that MHg has an overall better performance than MH` and other importance sampling
based algorithms. We also tried to construct probabilistic observations by introducing
detours to the deterministic choices, and the results are still robust. However, the
performance is sensitive to the ζ parameter which controls the spread of the sampled
alternatives. Hence, the specification of this parameter is discussed below.

5.2.4 Discussions on the parameters’ specification

In the above experiment, taking ζ between 1.013 and 1.026 yields best results. This
conclusion is valid for another postulated route choice model (Model B) with the same
specification except that the traffic light is not considered as a factor, i.e. βs = 0. We
have performed the same experiment for Model B, as we have done for Model A, and
report the results in Table 5.3. We first notice that many settings yield precise parameter
estimates, and less samples are needed than Model A. The results also suggest that
the performances of MH` and MHg algorithms are less sensitive to the ζ parameter.
With a sufficient number of samples, e.g. 100, some MH` specifications also achieve
precise parameter estimates, such as ζ being 1.026, 1.013 or 1.009. Especially when the
value of ζ is very small (ζ = 1.009), the parameter estimates are also precise, although
higher variance is observed. In Model B, length is the only factor that affects the choice
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Table 5.2: Estimation results for Model A

ζ,ω2a β̂ 5b 10 20 30 50 100
1.052, 0 -c - - - - -
1.052, 1 - - - - - -
1.052, 2 - - - - - -
1.052, 3 - - - - - -

1.026, 0

β̂ps - - - 2.2(1.5) 2.3(1.3) 2.2(2.2)*
β̂s - - - -2.5(0.91) -2.9(0.21) -2.5(0.94)
β̂l - - - -0.029(0.12) -0.032(0.16) -0.027(0.35)

1.026, 1

β̂ps - - - - 3.5(0.82) 2.4(1.6)
β̂s - - - - -2.9(0.12) -2.7(0.67)
β̂l - - - - -0.03(0.077) -0.03(0.069)

1.026, 2

β̂ps - 2.7(0.88) 2.4(3.0)* 2.4(3.5)* 2.6(2.1)* 3.0(0.032)
β̂s - -6.0(2.9)* -4.2(1.3) -2.9(0.27) -2.7(1.3) -3.1(0.14)
β̂l - -0.042(1.9) -0.028(0.38) -0.025(1.7) -0.025(1.6) -0.033(0.77)

1.026, 3

β̂ps 2.8(0.87) 2.6(2.3)* 2.8(0.56) 2.9(0.45) 2.8(0.81) 2.8(0.78)
β̂s -3.7(1.3) -3.7(2.0)* -2.7(0.66) -2.9(0.27) -3.6(0.56) -3.6(0.9)
β̂l -0.028(0.72) -0.024(1.7) -0.027(0.4) -0.027(0.27) -0.028(0.3) -0.026(0.55)

1.013, 0

β̂ps - - - - - 5.4(1.8)
β̂s - - - - - -5.6(2.0)*
β̂l - - - - - -0.056(2.2)*

1.013, 1

β̂ps - - 5.0(2.1)* 5.0(2.1)* 3.0(0.08) 3.1(0.41)
β̂s - - -5.3(2.1)* -5.5(2.0)* -2.8(0.46) -3.0(0.035)
β̂l - - -0.057(2.3)* -0.056(2.0)* -0.032(0.23) -0.03(0.098)

1.013, 2

β̂ps 3.4(0.57) 0.36(1.1) - 2.8(0.39) 2.8(0.21) 3.4(0.64)
β̂s -9.4(8.1)* -9.0(5.6)* - -7.3(4.8)* -6.2(3.2)* -6.0(2.6)*
β̂l -0.043(1.2) 0.0093(0.86) - -0.03(0.0072) -0.025(0.24) -0.037(0.41)

1.013, 3 - - - - - -

1.009, 0

β̂ps - - - - 7.6(24.0)* 4.5(3.9)*
β̂s - - - - -9.2(52.0)* -6.1(10.0)*
β̂l - - - - -0.07(10.0)* -0.047(3.2)*

1.009, 1

β̂ps 5.4(3.5)* 4.8(3.4)* 4.2(4.2)* 3.8(4.6)* 3.2(1.2) -
β̂s -6.1(3.4)* -5.4(3.5)* -5.1(3.9)* -5.5(4.5)* -4.6(3.1)* -
β̂l -0.065(5.4)* -0.059(5.0)* -0.054(4.5)* -0.052(4.4)* -0.04(1.4) -

1.009, 2 - - - - - -
1.009, 3 - - - - - -
a If ω2 = 0, the algorithm is MH`; otherwise, it is MHg.
b Number of random samples in Cn(s).
c A “-” cell indicates an unidentifiable model.
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(a) ζ = 1.052, 100 distinct paths





0 500 1000 m

Legend
signal

choice set

shortest

network

(b) ζ = 1.026, 100 distinct paths





0 500 1000 m

Legend
signal

choice set

shortest

network

(c) ζ = 1.013, 89 distinct paths
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(d) ζ = 1.009, 64 distinct paths

Figure 5.4: 100 random samples from MH` with different ζ. Different numbers of distinct
paths are generated.
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decisions, therefore, only short paths are relevant to the decision maker. As a result, even
though ζ = 1.009 results in sampled alternatives that concentrates around the shortest
paths, it still yields precise parameter estimates. However, in Model A where traffic light
is also an important factor, longer paths with less traffic lights may also be relevant to
the decision maker. Thus, the value of ζ should be larger such that the sampling spreads
wider in the network, and relevant longer paths, possibly having less traffic lights, have
higher chance to be sampled.

Comparing the estimation results for Model A and Model B, we can find that ω2
plays more important roles when the chosen paths deviate more from the shortest
path. In Model B, only short paths are relevant to the traveler, so even without the
usage of route choice data, MH` algorithm samples relevant short paths for the sampled
alternatives, and yields precise parameter estimates. Model A relies on MHg to sample
relevant alternatives available from route choice data. In summary, we suggest that
the specification of the algorithm should depend on the route choice behavior. If the
observed route choice decisions deviate from the shortest path, then: the value of ζ
should be small (low magnitude of ω1 correspondingly); ω2 > 0 is suggested; a large
number of sampled alternatives should be used.

5.3 Route choice modeling application on real GPS data

In this section, the proposed route choice modeling framework is applied to a set of
real smartphone GPS route choice data, which are extracted from the Lausanne Data
Collection Campaign database. The dataset contains traces about 19 trips performed
by the same driver, over a period of 2 months, mostly commuting and shopping. The
experiment is performed in three steps according to the proposed framework. First, the
probabilistic unimodal MM method is used to generate probabilistic path observations
from GPS data. Second, MHg algorithm generates a sample of alternatives Cn(s) for each
candidate path observation. The burn-in period is 500 ′000. After that, every 100 ′000th
sample is drawn as an alternative. Each Cn(s) is composed of 100 draws. ζ = 1.026 and
ω2 = 1. Third, a route choice model is specified and estimated based on the “network-
free” likelihood estimation. The transportation network is the Switzerland road network
extracted from OpenStreetMap.org (OSM). Table 5.4 reports some statistics about the
trips, as well as the probabilistic path observations and the sampled alternatives.

The deterministic part of the utility function of candidate path p is specified as:

Vpn = βps lnPSp + βllLLp + βhlHLp + ln
kpn

b(p)
. (5.12)

The set of paths for calculating the path size PSp is the sampled alternatives Cn(s). The
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Table 5.3: Estimation results for Model B

ζ,ω2 5 10 20 30 50 100
1.052, 0 - - - - - -
1.052, 1 - - - - - -
1.052, 2 - - - - - -

1.052, 3

β̂ps - - - - - 3.0(0.045)
β̂s - - - - - 0.62(1.9)
β̂l - - - - - -0.037(1.0)

1.026, 0

β̂ps - - - 3.2(0.4) 3.4(0.88) 3.2(0.49)
β̂s - - - -0.37(2.7)* -0.15(0.97) -0.12(0.84)
β̂l - - - -0.034(0.97) -0.036(1.6) -0.033(0.91)

1.026, 1

β̂ps - - - - 2.6(1.4) 2.7(1.3)
β̂s - - - - -0.059(0.39) -0.2(1.5)
β̂l - - - - -0.027(1.2) -0.028(0.86)

1.026, 2

β̂ps - - - - 3.2(0.58) 3.6(1.5)
β̂s - - - - -0.28(2.2)* -0.22(1.8)
β̂l - - - - -0.031(0.59) -0.034(1.6)

1.026, 3

β̂ps - 3.7(0.56) 3.0(0.031) 2.8(0.45) 2.7(0.88) 3.0(0.08)
β̂s - 0.26(0.64) -0.02(0.09) -0.011(0.054) -0.015(0.085) -0.11(0.7)
β̂l - -0.034(0.52) -0.03(0.13) -0.028(0.64) -0.028(0.99) -0.029(0.39)

1.013, 0

β̂ps 7.0(1.1) 4.2(1.1) 3.4(0.89) 3.4(0.93) 3.7(1.4) 3.3(0.8)
β̂s -2.7(1.4) -0.75(1.2) -0.063(0.21) -0.12(0.39) -0.15(0.61) -0.16(0.81)
β̂l -0.05(1.2) -0.039(1.5) -0.034(1.2) -0.033(0.86) -0.034(1.2) -0.032(0.66)

1.013, 1

β̂ps - 4.5(1.2) 4.5(1.3) 3.5(1.1) 3.1(0.2) 3.1(0.37)
β̂s - 0.6(1.8) 0.42(1.3) 0.07(0.17) -0.091(0.29) 0.006(0.029)
β̂l - -0.04(1.2) -0.038(1.2) -0.031(0.23) -0.028(0.61) -0.03(0.12)

1.013, 2

β̂ps 4.9(1.7) 3.4(0.59) 3.6(1.1) 3.5(1.2) 3.1(0.48) 3.1(0.38)
β̂s -1.0(3.4)* -0.45(1.4) -0.54(2.0)* -0.48(2.4)* -0.28(2.0) -0.2(1.3)
β̂l -0.045(2.6)* -0.034(0.65) -0.035(1.0) -0.034(1.3) -0.031(0.29) -0.029(0.31)

1.013, 3

β̂ps 2.2(2.4)* 2.6(1.4) 3.4(0.41) 3.3(0.45) 3.5(0.78) 3.8(1.5)
β̂s 0.53(2.5)* 0.33(1.5) -0.14(0.25) -0.12(0.25) -0.15(0.52) -0.17(0.87)
β̂l -0.018(2.8)* -0.019(4.5)* -0.03(0.013) -0.029(0.15) -0.031(0.18) -0.035(1.3)

1.009, 0

β̂ps - 4.2(0.73) 4.7(1.1) 4.6(1.0) 4.9(1.3) 4.3(1.2)
β̂s - 0.49(2.0)* 0.64(2.2)* 0.42(1.7) 0.46(1.8) -0.88(1.2)
β̂l - -0.035(0.52) -0.027(0.32) -0.024(0.88) -0.024(0.98) -0.032(0.33)

1.009, 1

β̂ps 10.0(3.5)* - 6.5(3.0)* 4.0(0.79) 3.6(0.61) 2.4(1.5)
β̂s 3.6(4.1)* - 1.9(3.4)* 1.1(3.5)* 0.062(0.098) 0.016(0.054)
β̂l -0.029(0.095) - -0.018(1.4) -0.02(2.3)* -0.019(2.3)* -0.023(1.6)

1.009, 2

β̂ps - 4.0(0.8) 4.0(0.73) 3.1(0.075) 3.1(0.15) 2.7(0.74)
β̂s - 1.4(4.0)* 0.57(1.8) 0.26(1.0) 0.09(0.29) -0.32(1.0)
β̂l - -0.021(1.6) -0.034(0.5) -0.032(0.32) -0.031(0.31) -0.027(0.72)

1.009, 3

β̂ps 2.2(1.5) 2.0(2.1)* 2.4(1.2) 2.6(1.3) 3.2(0.22) 3.5(0.78)
β̂s 1.2(2.8)* 0.96(2.9)* 0.44(1.4) 0.39(1.4) -0.044(0.079) -0.25(0.55)
β̂l -0.025(0.57) -0.025(0.72) -0.025(0.87) -0.025(1.3) -0.029(0.13) -0.03(0.059)
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Table 5.4: Statistics of the 19 trips

Min Average Max
Number of GPS points per trip 16 36 58

Approximateatravel time per trip [second] 179 397 795
Number of candidate path observations 5 22 50

Number of relevant OD pairs 1 9 19
Averageblength of candidate path observations [m] 1‘930 3‘980 6‘420

Number of distinct sampled paths 1 62 100
a The travel time is approximated by the difference between the timestamps of
the first and the last GPS points.

b Weighted by the candidate path probability.

Table 5.5: Estimation result

Coefficient Value Robust Std. Error Robust t-test p value
βps 2.41 0.780 3.10 0.00
β` -0.0293 0.00780 -3.76 0.00
βh -0.0268 0.00701 -3.83 0.00

Number of observations: 19
Null log likelihood: -774.976
Final log likelihood: -733.951
Adjusted rho-square: 0.049
Model estimated by BIOGEME (Bierlaire 2003)

roads in the transportation network are classified into two categories. The high class is
fast roads, including the following types that are described by OSM (2012): motorway,
trunk, and primary roads. The low class includes the rest. LLp and HLp denotes the
length (in meter) of low class and high class roads on path p respectively. ln kpn

b(p) is the
sampling correction term.

Table 5.5 reports the coefficient estimates. All coefficients have their expected signs.
Positive path size coefficient is consistent with the established route choice theory. The
magnitude of β`` is higher than βh`, indicating that people are more sensitive to the
length of the lower class roads. In order to test the significance of the difference, another
model is specified with a null hypothesis β` = βh`. The likelihood ratio test suggests
that the null hypothesis should be rejected at 90% significance level, thus the difference
is statistically significant.

The data set in this experiment is relatively small, due to the limited computational
capability of the implementations of the probabilistic MM algorithm and the MHPS
algorithm. Indeed, it takes 25 hours to sample alternatives for the total 414 candidate
chosen paths of 19 trips, on a computing server using 24 CPUs (3.33GHz). Moreover,

87



Chapter 5. Route choice models estimated from GPS data

although we have access to a large smartphone data set, we have little information about
the true transport mode of the data. It is the only dataset that is known to have been
produced from driving of a person. However, we have illustrated the feasibility of the
overall approach on a real data set. Better computational efficiency will be targeted in
the future.

5.4 Conclusions and future works

In this chapter, we have presented a comprehensive and operational route choice modeling
framework for RP GPS data. This framework integrates three major components, and
includes necessary modifications to each such that they are applicable to GPS data.
First, the probabilistic unimodal MM method is used to process the GPS data. Second,
the “network-free” data approach defines a model estimation framework. Third, a new
algorithm for sampling path alternatives is proposed to exploit RP route choice data.

We have performed experiments for analyzing the performance of different importance
sampling algorithms using a real transportation network. We have empirically analyzed
the precision of the parameter estimates resulted from each algorithm, and compared
the number of samples that is needed for achieving precise parameter estimates. The
conclusion is that the proposed algorithm exploiting GPS data performs the best,
especially when the route choice decisions often deviate from the shortest path. We have
also discussed the calibration of the parameters of the proposed algorithm. The proposed
route choice modeling framework is applied to a set of real smartphone GPS data. It
shows the viability of applying the proposed methods to real GPS data.

Future work includes more investigations on the ω1 or ζ parameter which controls the
spread of the sampled alternatives. The proposed algorithm gives higher probability
only to chosen paths, however, similar paths in terms of physical overlaps will also be
considered in the future. The proposed algorithm will be tested on larger problems with
more observations. The computational speed of the prototype software must first be
improved.
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6 Conclusions and discussions

This section concludes the thesis, followed by discussions on future directions in research
and application.

6.1 Conclusions

Through a literature review, we identify the challenges and opportunities in the field of
using smartphone data for route choice behavior modeling. They motivate the research
objective of this thesis, which is exploiting smartphone data for route choice models.

Path observations are essential input for discrete route choice models. Thus, the traveled
paths need to be inferred from the GPS data, by matching it to the transportation
network. In order to account for the inaccuracy and sparsity of smartphone GPS data, a
probabilistic unimodal map-matching method is proposed to generate probabilistic path
observations. Each probabilistic path observation is produced from a sequence of GPS
data recorded during a unimodal travel, and is composed of a set of candidate paths
and a measurement likelihood for each path. The measurement likelihood is realistic,
and can be applied with “network-free” ’ route choice modeling approach. The numerical
experiments show that this method is effective and robust in dealing with sparse and
inaccurate smartphone GPS data.

The unimodal map-matching assumes that the corresponding travel is unimodal and
the mode is known. In reality, however, the travel can be multimodal and the modes
are usually unknown. Therefore, the unimodal map-matching method is extended to
multimodal context. The multimodal map-matching method infers the traveled path
and the mode of each road simultaneously from various kinds of data. The proposed
framework is capable of dealing with any type of data as long as it provides relevant
location or transport mode information. This thesis implements GPS, BT and ACCEL
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data. Because the path and the mode are inferred simultaneously, the structure of the
network also helps to identify the transport mode. Several examples are visualized to
illustrate the effectiveness of the proposed method in dealing with multimodal trips.
Empirical analyses show the capability of the proposed method in correctly identifying
the transport mode, and the contributions of rich smartphone data.

The path observations inferred from the proposed map-matching methods are applied in
route choice modeling. We further exploit GPS data to specify the route choice set. We do
not attempt to generate a “consideration set”, but instead to employ importance sampling
of alternatives for the model estimation. Based on the MH path sampling technique,
relevant path alternatives are sampled by exploiting GPS data. Empirical analysis shows
that this algorithm yields more precise parameter estimates than other importance
sampling based algorithms. Probabilistic unimodal map-matching method, “network-
free” route choice modeling approach, and the new importance sampling algorithm are
integrated to build a complete route choice modeling framework for GPS data. This
framework is operational, as we show a route choice model estimated from a set of real
smartphone GPS data.

6.2 Future directions

The methods proposed in this thesis link the smartphone data and route choice models.
This section discusses future topics that can further exploit rich smartphone data and
the proposed methods in the research and applications of route choice models.

Information inference

In this thesis, we infer route choice decisions from various kinds of smartphone data,
including GPS, BT and ACCEL. The inference methods also exploit transport networks.
The proposed inference methods should be extended so as to account for more external
data sources. For example, instead of specifying the uniform distribution for the prior
probability in the candidate path generation algorithms, simple route choice models
estimated from historical or external data sources will improve the results. In many
cities, public transport schedules and real time public transport information are available.
Such information is particularly useful in recognizing the public transport.

Rich smartphone data can also be used to understand the route choice context and
the smartphone user’s socio-economic characteristics. For example, the social network
interaction can be learned from call logs and SMS logs, and this information is useful
in predicting future destinations (De Domenico, Lima & Musolesi 2012). The location
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data can be combined with the point of interest data so as to reveal the smartphone
user’s activity at the destination. Calendar entries even provide more precise information
about activities. The personality and the emotional status of the smartphone owner can
be learned from the played songs (North & Hargreaves 2008). The BT sensor can detect
accompanying persons during travels, via their BT capable smartphones. These factors
may affect the route choice decisions, and should be considered for building more precise
route choice models. Systematic methods must be developed for inferring them from the
raw data.

Route choice models

This thesis presents a complete route choice modeling framework with a rather simple
example of the model specification. Future work should aim at more precise route choice
models by including more path attributes, route choice context information, and the
traveler’s socio-economic characteristics. Some of them can be added to the utility
function directly, such as path attributes. But as the same problem that we encounter in
inferring route choice decisions, some information is not explicitly observable, and the
measurements are recorded with errors. For example, in discrete choice modeling, we are
also interested in psychometric variables that affect the choice decisions. Latent variable
models should be specified using smartphone data to be indicators of unobservable
psychometric variables.

With the multimodal MM method proposed in Chapter 3, route choice decisions for
multimodal route choice models are available. But multimodal route choice models
capture more complex behavior, which requires more variables for the model specification.
The feasibility of inferring adequate information from smartphone data needs to be
investigated.

Application

Based on the smartphone platform, the proposed methods can be used in various
applications. First, people update their route choice decisions under the influence of
real time traffic information provided by smartphone APPs. This dynamic route choice
decision can be observed by recording the smartphone user’s access to real time traffic
information, and her corresponding route choice decisions. Second, navigation APPs can
incorporate route choice models to provide customized route recommendations. The
smartphone user’s preferred route can be predicted by the route choice model estimated
using data from the phone. The predicted route incorporates both the real time traffic
information and the smartphone user’s preferences, and is recommended to the user
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instead of the simple fastest or shortest route recommendations.

Privacy is a major concern when we collect data from smartphones. By just visualizing
the rich smartphone data, a lot of private information becomes straightforward. For
example, where are the smartphone owner’s home and office; what are her most visited
shopping places; when did she go to ski last time, etc. Nonetheless, since smartphones
have more and more powerful computing units, the behavior learning process will be
able to be performed locally, without uploading sensitive raw data to a centralized server.
Modelers only need to acquire abstract route choice models which have already been
estimated on the smartphones.
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A List of available smartphone data

The following lists the data recorded by EPFLScope in the Lausanne Data Collection
Campaign. The descriptions involve standard terminologies, and we suggest the readers
to look up the detailed explanations from the Internet.

• gps

– coordinates

– speed, heading

– accuracy indicators

– time since the gps was booted

• wlan: wifi access points in range

– SSID

– mac address

– channel

– security

– opmode

• gpswlan: fake gps records which is
actually the gps of nearby wifi

– coordinates

– mac: wifi used for the fake gps
record

• gsm: cell tower which the phone is
connected to

– cell id, network code, area code,
country code

– signaldbm: real reception signal
strength

– signal: displayed signal level
level

• bt: bluetooth devices in range

– mac

– name

• ambient sound

• accelerometer: acceleration recorded
from the 3-axis acceleromter

• calllog: phone calls and messages

– status: only for messages (sent
or not)

– direction: incoming or outgoing

– description

– number

– name

– contact: pointer to contacts data
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Appendix A. List of available smartphone data

– duration

• sms: sms specific information

– box: folder in which the sms is
located

– status

– total length

– letternbr: statistics on word
length

– address: the receipient or the re-
ceiver number

• calendar

– begin of the event

– title

– location

– status: confirmed or not

– type, class

– last_mod: last modification
time of the entry

– history of modification

• contact

– first name, last name

– mobile, tel: list of phone num-
bers

– last_mod: last modification
time of the entry

– history

• media: created media files (pictures,
movies)

– time: creation time

– file name

– file size

• mediaplay: played songs and videos

– Album, artist, title, tracks, tags

– Uri: file location

– State: play, pause, etc

– Duration

• users: list of participants

– username, userid

– source: IMEI of phone

– pointer to phone number and
MAC address

– consumer segment

• process: current processes

– application: information about
front application

– event: started, closed, view, fore-
ground

– uid: unique application id as-
signed by Symbian

– name: application name

• state: collection client internal state

– state: client internal state

– reason: event that triggered
state changes

• sys: information from operating sys-
tem

– profile: general, silent, etc

– battery: percentage of available
battery

– charging: yes or no

– c,d,e,y,z: free space on different
long-term storage space

– inactive: time since last interac-
tion

– ring: ringer type

– freeram
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B Unimodal map matching examples

Figures B.1 to B.6 show 6 more probabilistic MM results, in addition to the 4 shown in
Section 3.3.
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Appendix B. Unimodal map matching examples

Figure B.1: trip 3 (29 paths)

Figure B.2: trip 5 (22 paths)
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Figure B.3: trip 6 (6 paths)

Figure B.4: trip 7(12 paths)

97



Appendix B. Unimodal map matching examples

Figure B.5: trip 8 (13 paths)

Figure B.6: trip 9 (36 paths)
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