3.5-D Integration: A Case Study

Two diverse manufacturing techniques for building 3-D integrated systems are vertical integration with Through-Silicon-Vias (TSVs), also referred to as 3-D TSV integration, and 3-D monolithic integration. In this paper, we present a hybrid integration scheme that combines these two approaches, taking into account their existing technology limits, into a disruptive paradigm called 3.5-D integration. Our novel integration supports circuit-partitioning both at the gate and block level with unprecedented benefits in cost. To demonstrate the effectiveness of 3.5-D integration, we chose as case study a 288-core MPSoC and we made hypothesis on the manufacturing and test cost. We argue a potential 20% decrease in the manufacturing cost and 30% decrease in the test cost when compared to 3-D TSV integration. In order to study the performance improvement of the MPSoC, we benchmarked various blocks of the core and the on-chip interconnection network, connecting all the cores. Our study shows large improvement in performance of the core (average of 11.5%) and latency (average of 24%) of the Network-on-Chip (NoC) for the 3.5-D integration when compared to the corresponding 3-D TSV implementation.

Published in:
Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS)
Presented at:
IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, May 19-23, 2013

 Record created 2013-01-15, last modified 2019-03-16

Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)