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ABSTRACT

We propose MATRIX ALPS for recovering a sparse plus low-rank
decomposition of a matrix given its corrupted and incomplete lin-
ear measurements. Our approach is a first-order projected gradient
method over non-convex sets, and it exploits a well-known memory-
based acceleration technique. We theoretically characterize the con-
vergence properties of MATRIX ALPS using the stable embedding
properties of the linear measurement operator. We then numeri-
cally illustrate that our algorithm outperforms the existing convex
as well as non-convex state-of-the-art algorithms in computational
efficiency without sacrificing stability.

1. INTRODUCTION
Finding a low rank plus sparse matrix decomposition from a set of—
possibly incomplete and noisy—measurements is critical in many
applications. The list has expanded over the last ten years: examples
include MRI signal processing, collaborative filtering, hyperspectral
image analysis, large-scale data processing, etc. A general statement
of the problem under consideration can be described as follows:

PROBLEM. Given a linear operator A : Rm×n → Rp and a set
of observations y ∈ Rp (usually p� m× n):

y = AX∗ + ε, (1)

where X∗ := L∗ + M∗ ∈ Rm×n is the superposition of a rank-k
L∗ and a s-sparse M∗ component that we desire to recover, identify
a matrix L̂ ∈ Rm×n of rank (at most) k and a matrix M̂ ∈ Rm×n

with sparsity level
∥∥M̂∥∥

0
≤ s such that:{

L̂, M̂
}

= arg min
L, M: rank(L)≤k, ‖M‖0≤s

∥∥y −A(L + M)
∥∥

2
. (2)

Here, ε ∈ Rp represents the potential noise term. For different lin-
ear operator A and signal X∗ configurations, the above problem
arises in various research fields. Next, we briefly address some of
the frameworks that (2) is involved.

1.1. Compressed sensing and affine rank minimization
In the standard Compressed Sensing (CS) framework, we desire to
reconstruct a n-dimensional, s-sparse loading vector through a p-
dimensional set of observations with p � n. This problem can be
solved by finding the minimizer X̂ := M̂ of:{

M̂
}

= arg min
M :M∈Dn, ‖M‖0≤s

∥∥y −AM
∥∥

2
. (3)

where we reserve Dn to denote the set of n×n diagonal matrices. To
establish solution uniqueness and reconstruction stability in (3), A
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is usually assumed to satisfy the sparse restricted isometry property
(sparse-RIP) [1] where:

(1− δs(A))
∥∥X∥∥

F
≤
∥∥AX

∥∥
2
≤ (1 + δs(A))

∥∥X∥∥
F
, (4)

∀X ∈ Dn with
∥∥X∥∥

0
≤ s and δs(A) ∈ (0, 1).

In the general affine rank minimization (ARM) problem, we aim
to recover a low-rank matrix X∗ := L∗ from a set of observations
y ∈ Rp, according to (1). The challenge is to reconstruct the true
matrix given p � m · n. A practical means to tackle this problem
is by finding the simplest solution X̂ := L̂ of minimum rank that
minimizes the data error as:{

L̂
}

= arg min
L: rank(L)≤k

∥∥y −AL
∥∥

2
. (5)

[2] provides guarantees for exact and unique solution using the rank-
RIP property for affine transformations where A satisfies:

(1− δk(A))
∥∥X∥∥

F
≤
∥∥AX

∥∥
2
≤ (1 + δk(A))

∥∥X∥∥
F
, (6)

∀X ∈ Rm×n with rank(X) ≤ k and δk(A) ∈ (0, 1).

1.2. Fusing low-dimensional embedding models
Robust Principal Component Analysis (RPCA) deals with the chal-
lenge of recovering a low rank and a sparse matrix component from
a complete data matrix. In mathematical terms, we acquire a finite
set of observations Y ∈ Rm×n according to Y = L∗ + M∗ with
L∗ ∈ Rm×n and M∗ ∈ Rm×n, defined above. The “robust” charac-
terization of the RPCA problem refers to M∗ having gross non-zero
entries with arbitrary energy. Under mild assumptions concerning
the incoherence between L∗ and M∗ [3], we can efficiently recon-
struct both the low-rank and sparse components using convex and
non-convex optimization approaches [3, 4].

1.3. Contributions
While solving the RPCA problem itself is a difficult task, here we
assume: (i) A is an arbitrary linear operator satisfying both sparse-
and rank-RIP (this assumption includes the identity linear map of
RPCA as a special case) and, (ii) the total number of observations
in y is much less compared to the total number of variables we want
to recover, i.e., p� m · n. Our contributions are two-fold:

• For noisy settings and arbitrary operator A satisfying sparse-
and rank-RIP, we provide better restricted isometry constant
guarantees compared to state-of-the-art approaches [5].

• We introduce MATRIX ALPS, an accelerated, memory-based
algorithm along with preliminary convergence analysis.

The organization of the paper is as follows. In Section 2, we
describe the algorithms in a nutshell and present the main theorem
of the paper in Section 3. In Section 4 we briefly study accelera-
tion techniques in the recovery process. We provide empirical sup-
port for our claims for better data recovery performance and reduced
complexity in Section 5.



1: Input: y, A, A∗, Tolerance η, MaxIterations
2: Initialize: {L0,M0} ← 0, {L0,M0} ← {∅}, i← 0
3: repeat
4: SLi ← DLi ∪ Li where DLi ← ortho

(
Pk(∇f(Xi))

)
5: SMi ← DMi ∪Mi where DMi ← supp

(
PΣs(∇f(Xi))

)
6: Low rank matrix estimation:
7: VLi ← arg minV:V∈span(SLi )

∥∥y −A(V + Mi)
∥∥2

2

8: Li+1 ← Pk(VLi ) with Li+1 ← ortho (Li+1)
9: Sparse matrix estimation:

10: VMi ← arg minV:V∈supp(SMi )

∥∥y −A(V + Li)
∥∥2

2

11: Mi+1 ← PΣs(VMi ) with Mi+1 ← supp (Mi)
12: Xi+1 ← Li+1 + Mi+1

13: i← i+ 1
14: until ‖Xi −Xi−1‖2 ≤ η‖Xi‖2 or MaxIterations.

Algorithm 1: SpaRCS

Notation: We reserve lower-case letters for scalar variable rep-
resentation. Bold upper-case letters denote matrices while bold cal-
ligraphic upper-case letters represent linear maps. We reserve plain
calligraphic upper-case letters for set representations. We denote a
set of orthonormal, rank-1 matrices that span the subspace induced
by X as ortho(X). Given a matrix X and a subspace set S such that
span(S) ⊆ span(ortho(X)), the orthogonal projection of X onto
the subspace spanned by S is given by PSX while P⊥S X represents
the projection onto the subspace, orthogonal to span(S). Given a
matrix X and an index set U , (X)U denotes the (sub)matrix of X
with entries in U while (X)Uc denotes the (sub)matrix of X with
entries in the complement set of U . The best s-sparse and rank-k
approximations of a matrix X are given by PΣs(X) and Pk(X),
respectively. For any two subspace sets S1, S2, we use the short-
hand PS1\S2 to denote the projection onto the subspace defined by
S1, orthogonal to the subspace defined by S2—similar notation is
used for index sets. We use Xi ∈ Rm×n to represent the current
matrix estimate at the i-th iteration. The rank of X is denoted as
rank(X) ≤ min{m,n} while the non-zero index set of X is given
by supp(X). The empirical data error f(X) := ‖y −AX‖22 has
gradient ∇f(X) := −2A∗(y − AX), where A∗ is the adjoint
linear operator. I represents the identity matrix.

2. THE SPARCS ALGORITHM
Explicit description of SpaRCS [5] is provided in Algorithm 1

in pseudocode form. This approach borrows from a series of vector
and matrix reconstruction algorithms such as CoSaMP [6] and AD-
MiRA [7]. In a nutshell, this algorithm simply seeks to improve the
current subspace and support set selection by iteratively collecting
extended sets SLi and SMi with |SLi | ≤ 2k and |SMi | ≤ 2s, respec-
tively. Then, s-sparse and rank-k matrices are estimated to fit the
measurements in these restricted subspace/support sets using least
squares techniques.

3. IMPROVED CONVERGENCE GUARANTEES
An important ingredient for our matrix analysis is the following
lemma—the proof can be found in [5].
Lemma 1. Let F be a support set with |F| ≤ s and assume L ∈
Rm×n is a rank-k matrix. Then, given a general linear operator
A : Rm×n → Rp satisfying both sparse- and rank-RIP, we have:∥∥(A∗AL)F

∥∥
F
. δs+k(A)

∥∥L∥∥
F
, for min{m,n} � s� k.

where δs+k(A) denotes the RIP constant of A over (disjoint)

sparse index and low-rank subspace sets where the combined cardi-
nality is less than s+ k.

We provide improved conditions for convergence for Algorithm
1. The details of the proof will be included in an extended version of
the paper. The following theorem characterizes Algorithm 1:

Theorem 1. Given the problem configuration described in (1) and
(2), assume the linear operator A satisfies the sparse-RIP and rank-
RIP for δ4s(A) ≤ 0.075, δ4k(A) ≤ 0.04 and δ2s+3k(A) ≤ 0.07.
Then, the (i+ 1)-th matrix estimate Xi+1 of Algorithm 1 can be de-
composed into a superposition of low-rank and sparse components
as Xi+1 = Li+1 + Mi+1, satisfying the recursions:∥∥L∗ − Li+1

∥∥
F
≤ ρL1

∥∥L∗ − Li
∥∥
F

+ ρM1
∥∥M∗ −Mi

∥∥
F

+ γ1

∥∥ε∥∥
2∥∥M∗ −Mi+1

∥∥
F
≤ ρL2

∥∥L∗ − Li
∥∥
F

+ ρM2
∥∥M∗ −Mi

∥∥
F

+ γ2

∥∥ε∥∥
2

where ρL1 = 0.1605, ρL2 = 0.3431, ρM1 = 0.3376, ρM2 = 0.1414,
γ1 = 4.36 and, γ2 = 4.45.

To compare with state-of-the-art approaches, [5] provides the
following constants for the same RIP assumptions: ρL1 = 0.479,
ρL2 = 0.474, ρM1 = 0.47, ρM2 = 0.324, γ1 = 6.68 and, γ2 = 6.88.

Next, we sketch the proof of Theorem 1 in a modular fashion
and use key ingredients to analyze our MATRIX ALPS algorithm.

3.1. Subspace and support exploration
Lemma 2 (Active subspace expansion). At each iteration, the Active
Subspace Expansion step (Step 4) captures information contained in
the true matrix L∗ with L∗ ← ortho(L∗), such that:∥∥PL∗\SLi (L∗ − Li)

∥∥
F
≤ (2δ2k(A) + 2δ3k(A))

∥∥L∗ − Li
∥∥
F

+ 2δ2k+2s(A)
∥∥M∗ −Mi

∥∥
F

+
√

2(1 + δ2k(A))
∥∥ε∥∥

2
.

Lemma 2 states that, at each iteration, the Active subspace ex-
pansion step identifies a 2k rank subspace in Rm×n such that the
amount of unrecovered energy of L∗—i.e., the projection of L∗ onto
the orthogonal subspace of span(SLi )—is bounded as shown above.
Similarly, the next Corollary holds for the sparse estimation part:

Corollary 1 (Active support expansion). At each iteration, the Ac-
tive Support Expansion step (Step 5) captures information contained
in the true matrix M∗ withM∗ ← supp(M∗), such that:∥∥(M∗ −Mi

)
M∗\SMi

∥∥
F
≤ (δ2s(A) + δ4s(A))

∥∥M∗ −Mi

∥∥
F

+(
δ2k+s(A) + δ2k+2s(A)

)∥∥L∗ − Li
∥∥
F

+
√

2(1 + δ4s(A))
∥∥ε∥∥

2
.

3.2. Least-squares estimates over low rank subspaces
Lemma 3 (Least-squares error norm reduction over a low-rank sub-
space). Let SLi be a set of orthonormal, rank-1 matrices such that
span (SLi )≤ 2k. Then, the rank-2k solution VLi in Step 7 identifies
most of the energy of L∗ over SLi such that:∥∥VLi − L∗

∥∥
F
≤ 1√

1− δ2
3k(A)

∥∥P⊥SLi (VLi − L∗)
∥∥
F

+

(1 + 2δ2k(A))

1− δ2
3k(A)

(
δ2k+2s(A)

∥∥M∗ −Mi

∥∥
F

+
√

1 + δ2k(A)
∥∥ε∥∥

2

)
.

Assuming A is well-conditioned over low-rank subspaces, the
main complexity of this operation is dominated by the solution of
a symmetric linear system of equations. Using Lemma 3 and the
following inequality:
‖Li+1 −VLi ‖F ≤

∥∥PSLi (VLi − L∗)
∥∥
F
≤
∥∥VLi − L∗

∥∥
F
,



1: Input: y, A, A∗, Tolerance η, MaxIterations, τi, ∀i
2: Initialize: {Q0,M0,L0} ← 0, {L0,M0} ← {∅}, i← 0
3: repeat
4: Low rank matrix estimation:
5: DLi ← ortho

(
Pk(∇f(Qi))

)
6: SLi ← DLi ∪ Li
7: VLi ← QLi −

µLi
2
PSLi ∇f(Qi)

8: Li+1 ← Pk(VLi ) with Li+1 ← ortho (Li+1)
9: QLi+1 ← Li+1 + τi(Li+1 − Li)

10: Qi+1 ← QLi+1 + QMi
11: Sparse matrix estimation:
12: DMi ← supp

(
PΣs(∇f(Qi+1))

)
13: SMi ← DMi ∪Mi

14: (VMi )SMi
← (QMi )SMi

− µMi
2

(∇f(Qi+1))SMi
15: Mi+1 ← PΣs(VMi ) with Mi+1 ← supp (Mi+1)
16: QMi+1 ←Mi+1 + τi(Mi+1 −Mi)
17: Qi+1 ← QLi+1 + QMi+1

18: i← i+ 1
19: until ‖Xi −Xi−1‖2 ≤ η‖Xi‖2 or MaxIterations.

Algorithm 2: MATRIX ALPS Instance

which is due to the best rank-k subspace selection on VLi (Step 8),
the following inequality holds true:∥∥Li+1 − L∗

∥∥
F
≤

√
1 + 3δ2

3k(A)

1− δ2
3k(A)

∥∥P⊥SLi (VLi − L∗)
∥∥
F

+

(√
1 + 3δ2

3k(A) · 1 + 2δ2k(A)

1− δ2
3k(A)

+
√

3
)(
δ2s+2k(A)

∥∥M∗ −Mi

∥∥
F

+
√

1 + δ2s(A)
∥∥ε∥∥

2

)
. (7)

Combining Lemma 2 with the inequality (7), we obtain the first in-
equality in Theorem 1.

3.3. Least-squares estimates over sparse support sets
Using similar techniques descibed above for the sparse matrix esti-
mate, we derive the following result:

Corollary 2 (Least-squares error norm reduction over sparse support
sets). Let SMi ⊆ {(i, j) : i ∈ {1, . . . ,m}, j ∈ {1, . . . n}} be a 2s-
sparse index set. Then, the 2s-sparse matrix VMi (Step 10) identifies
energy of M∗ over SMi such that:∥∥VMi −M∗∥∥

F
≤ 1√

1− δ2
4s(A)

∥∥(VMi −M∗)
(SMi )c

∥∥
F

+

(1 + 2δ2s(A))

1− δ2
4s(A)

(
δ3s+2k(A)

∥∥L∗ − Li
∥∥
F

+
√

1 + δ3s(A)
∥∥ε∥∥

2

)
.

In sequence, we follow the same motions to obtain an inequality
analogous to (7) for the sparse matrix estimate part.

4. THE MATRIX ALPS FRAMEWORK
To accelerate the convergence speed of SpaRCS, we propose

MATRIX ALPS algorithm based on acceleration techniques from
convex analysis [11, 12]. At each iteration, we leverage both low
rank and sparse matrix estimates from previous iterations to form a
gradient surrogate with low-computational cost. Then, we update
the current estimates using memory to gain momentum in conver-
gence as proposed in Nesterov’s optimal gradient methods. A key
ingredient is the selection of the momentum term τ—constant and

adaptive momentum selection strategies can be found in [12]. We
reserve the analysis for the adaptive case for an extended paper.

To further improve the convergence speed, we replace the
least-squares optimization steps with first-order gradient descent
updates—the step size µLi , µ

M
i selections follow from [12].

The best projection of an arbitrary matrix onto the set of low
rank matrices requires sophisticated matrix decompositions such as
Singular Value Decomposition (SVD). Using the Lanczos approach,
we require O(kmn) arithmetic operations to compute a rank-k
matrix approximation for a given constant accuracy—a prohibitive
time-complexity that does not scale well for many practical applica-
tions. Alternatives to SVD can be found in [4,13]. Furthermore, [14]
includes ε-approximate low rank matrix projections in the recovery
process and study their effects on the convergence.

The following theorem characterizes Algorithm 2 for the noise-
less case using a constant momentum step size selection strategy.

Theorem 2. Let A : Rm×n → Rp be a linear operator satisfy-
ing rank-RIP and sparse-RIP with constants δ4k(A) ≤ 0.09 and
δ4s(A) ≤ 0.095, respectively. Furthermore, assume constant mo-
mentum step size selection with τi = 1/4, ∀i. We consider the
noiseless case where the set of observations satisfy y = AX∗ for
X∗ := L∗ + M∗ as defined in PROBLEM. Then, Algorithm 2 satis-
fies the following second-order linear system:

x(i+ 1) ≤ (1 + τ)∆x(i) + τ∆x(i− 1), (8)

where x(i) :=

[ ∥∥Li − L∗
∥∥
F∥∥Mi −M∗∥∥
F

]
and ∆ :=

[
∆11 ∆12

∆21 ∆22

]
depends

on RIP constants δ4k(A) and δ4s(A). Furthermore, the above in-
equality can be transformed into the following first-order linear sys-
tem:

w(i+ 1) ≤
[
(1 + τ)∆ τ∆

I 0

]i
︸ ︷︷ ︸

∆̂

w(0), (9)

for w(i) := [x(i + 1) x(i)]T . We observe that limi→∞w(i) = 0

since |λj(∆̂)| ≤ 1, ∀j.

Due to space constraints, we reserve the proof as well as the
noisy analog of Theorem 2 for an extended version of the paper.

5. EXPERIMENTS
Robust matrix completion:1 The rank-k X∗ ∈ Rm×n is synthe-
sized as X∗ := URT where U ∈ Rm×k and R ∈ Rn×k and∥∥X∗∥∥

F
= 1. We subsample X∗ by observing p = 0.3mn en-

tries, drawn uniformly at random. The set of observations satisfies:
y = AΩX∗ + ε. Here, Ω denotes the set of ordered pairs that rep-
resent the coordinates of the observable entries and AΩ denotes the
linear operator (mask) that subsamples a matrix according to Ω.

We generate various problem configurations, both for noisy and
noiseless settings. All the algorithms are tested for the same signal-
matrix-noise realizations and use the same tolerance parameter η =
10−4. For fairness, we modified all the algorithms so that they ex-
ploit the true rank. For low-rank projections, we use PROPACK
package [15], except [9] which is SVD-less. We changed the maxi-
mum number of cycles in [9] from 150 to 30 to improve its speed. A
summary of the results can be found in Fig. 1. We observe that MA-
TRIX ALPS has better phase transition performance over various
k. A complete comparison using randomized, low-rank projection
schemes in MATRIX ALPS is provided in the extended paper.

1Codes are available for MATLAB at http://lions.epfl.ch/MatrixALPS



m× n k
∥∥ε∥∥

2
Iterations Relative Error :=

∥∥X̂−X∗
∥∥
F
/
∥∥X∗∥∥

F
(10−3) Time (sec)

200× 400 5 0 29 / 24/− /46/11 0.134/0.18/0.002/0.78/0.04 2.26/0.27/0.95/0.36/0.21
200× 400 5 10−2 29/24/− /45/11 0.127/0.164/0.01/0.76/0.05 2.16/0.26/0.96/0.36/0.23
200× 400 10 10−2 700/33/− /63/15 6.7/0.5/0.01/1.2/0.1 36.38/0.45/1.13/0.64/0.37
200× 400 15 0 700/48/− /88/22 150/0.93/340/2.1/0.15 98.12/0.82/1.29/1.08/0.68

1000× 5000 10 0 −/22/− /30/6 −/0.09/0.008/0.34/0.03 −/10.8/27.6/10.2/5.5
1000× 5000 50 10−4 −/24/− /48/10 −/0.2/0.002/0.73/0.11 −/23.4/171.37/35.5/17.2
1000× 5000 120 0 −/63/− /118/26 −/0.52/0.07/1.22/0.077 −/139/501/228/101

Fig. 1. Comparison table for the matrix completion problem. Table depicts median values over 50 Monte-Carlo iterations. To separate the
results, we use “

/
”. The list of algorithms includes: SpaRCS [5]

/
ALM [8]

/
GROUSE [9]

/
SVP [10]

/
MATRIX ALPS. Bold numbers

highlight the fastest convergenvce in execution time. “−“ denotes either no information or not applicable due to slow convergence.

Original Low rank Sparse

GoDec

MATRIX ALPS

Fig. 2. Background subtraction in video sequence. Median exe-
cution times over 10 Monte-Carlo iterations. GoDec: 34.8 sec—
MATRIX ALPS: 15.8 sec.

RPCA: We consider the problem of background subtraction in
video sequences: static brackground scenes are considered low-rank
while moving foreground objects are sparse data. Using the com-
plete set of measurements, this problem falls under the RPCA frame-
work. We apply the GoDec algorithm [4] and the MATRIX ALPS
scheme on a 144 x 176 x 200 video sequence. Both solvers use the
same low-rank projection operators based on randomized QR factor-
ization ideas [4, 13]. Representative results are depicted in Fig. 2.

6. CONCLUSIONS
We study the general problem of sparse plus low rank matrix recov-
ery from incomplete and noisy data. In essence, the problem under
consideration includes various low-dimensional models as special
cases such as sparse signal reconstruction, affine rank minimization
and robust PCA. Based on this algorithm, we derive improved con-
ditions on the restricted isometry constants that guarantee success-
ful reconstruction. Furthermore, we show that the memory-based

scheme provides great computational advantage over both the con-
vex and the non-convex approaches.
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