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Abstract. We prove that the blow up solutions of type II character constructed
by Krieger-Schlag-Tataru [21] as well as Krieger-Schlag [20] are unstable in the
energy topology in that there exist open data sets whose closure contains the data
of the preceding type II solutions and such that data in these sets lead to solutions
scattering to zero at time t � �8.

1. Introduction

We consider the quintic focussing wave equation on R3�1, of the form

�u � u5, � � B2
t � 4 (1.1)

in the radial context, i. e. upt, xq � vpt, |x|q. This equation is of energy critical
and focussing type and serves as a convenient model for more complicated energy
critical models, such as Wave Maps in 2 � 1 dimensions with positively curved
targets, or Yang-Mills equations in 4 � 1 dimensions as well as related problems
of Schrodinger type. In fact, for example recent progress on (1.1) in [4] has led
to analogous progress for the energy critical focussing NLS in 3 � 1 dimensions,
[26]. The focussing character of (1.1) leads to finite time blow up, which is most
easily manifested by the explicit solutions of ODE type

upt, xq � p 3
4q

1
4

pT � tq 1
2

for arbitrary T . Truncating the data of these solutions at time t � 0 to force finite-
ness of

³
R3ru2

t p0, �q � |∇xup0, �q|2s dx, one easily verifies that

lim
tÑT

»
R3
ru2

t pt, �q � |∇xupt, �q|2s dx � �8

One says the blow up is of type I. By contrast, a finite time blow up solution with

lim sup
tÑT

»
R3
ru2

t pt, �q � |∇xupt, �q|2s dx   �8
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where T is the blow up time is called of type II. Existence of the latter type of
solution for (1.1) is rather subtle and appears to have first been accomplished in
[21], see also [20], and Hillairet-Raphael’s paper [11] for more stable blow up
solutions in the 4�1-dimensional context. The works [21], [20] show that denoting

uλpt, xq :� λ
1
2 upλt, λxq, λ ¡ 0

problem (1.1) admits type II blow up solutions (of energy class) of the form

upt, xq � Wλptqpxq � εpt, xq, λptq � p�tq�1�ν, t P r�t0, 0q, t0 . 1, (1.2)

for ν ¡ 0, with Wpxq denoting the ground state static solution

Wpxq � 1�
1 � |x|2

3

� 1
2

More precisely, the solutions constructed in [21], [20] admit a precise description
of the radiation term εpt, xq inside the light cone tr ¤ |t| of the form

εpt, xq � Opλ 1
2 ptq R

pλptq|t|q2 q, R � λptq|x|,

and furthermore εpt, �q P 9H1 with

}pε, εtq}p 9H1�L2qp|x|¤tq . pλptq|t|q�
1
2

By contrast, outside of the light cone, we can only assert that

}∇t,xε}L2p|x|¥tq ¤ δ�

where we may arrange for δ� to be arbitrarily small. Indeed, this is consistent with
the fact proved in [5] that type II blow up solutions must have energy strictly larger
than that of the ground state.
We also mention that analogous infinite time blow up solutions were constructed
in [4]. See also [11] for type II blow up with a different rate for the energy critical
NLW in 4 � 1 dimensions.

The remarkable series of papers [5] - [8] recently gave a complete classification
of the possible type II solutions, on finite or infinite time intervals, in the radial
context for (1.1). These works show that any type II solution decouples as a sum
of dynamically rescaled ground states �W at diverging scales, plus an error that
remains regular at blow up time (or radiates to zero in the infinite time case). In
these works, it is intimated that all such type II solutions ought to be unstable in
the energy topology, and in fact ought to constitute the boundary of both the set of
solutions existing globally and scattering to zero, as well as those blowing up of
type I. Indeed, it is only the latter two which are readily observable in numerical
experiments.
The recent work [18] gives a rather precise description of the instability of the static
solution W with respect to a suitably strong topology.
Here, we show that the solutions constructed in [21], [20] are unstable in the energy
topology, provided ε has sufficiently small energy. Specifically, we have
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Theorem 1.1. There exists δ� ¡ 0 with the following property: let upt, xq be one
of the type II blow up solutions constructed in [21], [20]

upt, xq � Wλptqpxq � εpt, xq, λptq � p�tq�1�ν (1.3)

satisfying the a priori condition

lim sup
tPr�t0,0q

}∇t,xεpt, �q}L2
x
  δ�, t0 . 1

Then there exists an open set of data U in the energy topology at time �t0, with�
up�t0, �q, utp�t0, �q

� P U,

and such that all data in U lead to solutions existing globally and scattering to
zero in forward time. Also, there is an open set of data V with�

up�t0, �q, utp�t0, �q
� P V ,

with the property that all data in V lead to finite time blow up.

Remark 1.1. It remains to show that the any open subset of the set of blow up data
V contains data leading to type I blow up.

The idea of the proof is as follows: Fixing a smallness parameter δ1 ¡ 0, which
quantifies the smallness of the perturbation applied to the explicit type II blow up
solution, we intend to apply the ejection type argument of [16] at some time �t1 ¡
�t0, t1 � t1pδ1q, by applying a suitable small excitation in the unstable direction
of the linearization around W. The reason that we can only implement the ejection
at time �t1 comes from the fact that we need to ensure that the scaling parameter
λptq experiences sufficiently small marginal changes1 in re-scaled coordinates past
time �t1, depending on δ1. Specifically, we shall arrange that the solution exits a
suitable small neighborhood of S :� tWλuλ¡0 in forward time past t � �t1 very
quickly. On the other hand, we also need to arrange that this perturbed solution
remains stable on r�t0,�t1s and indeed is essentially δ1-close to u at t � �t0. In
fact, the solutions thus constructed will be a one parameter family (parametrized by
δ1), but a simple perturbative argument then gives the desired open set of solutions
U at time t � �t0. In fact, it is assuring that the perturbed solution remains close to
upt, �q on r�t0,�t1s which causes most of the difficulties, and forces us to exploit
the precise structure of the solutions constructed in [21], [20].
We observe here that the construction in this paper appears to be of much wider
applicability, and in particular ought to be able to handle instability if blow up
solutions with rates much closer to t�1, such as the logarithmic type corrections
considered in [11].

2. Constructing a stable solution on r�t0,�t1s.
Our point of departure are the solutions

uIIpt, xq :� Wλptqpxq � εpt, xq, t P r�t0, 0q
1This may be the reason why the type II blow up here is also referred to as slow blow up
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constructed in [21], [20]. We aim at perturbing these on an interval r�t0,�t1s with
t1 � δ1 ! t0. Let

H :� �4� 5W4

and let g0 be its unique negative eigenstate, see e. g. [19]. Introducing the re-scaled
variables

τ � 1
ν
p�tq�ν, R � λptqr,

it is then natural to consider the perturbed approximate solution

ũIIpt, xq :� Wλptqpxq � εpt, xq � ηhyppt, xq
where we put

ηhyppt, xq � ae�kdpτ1�τqg0pRq, τi � 1
ν

t�νi , i � 0, 1,

with a � �δνN
1 for some large N to be chosen. Also, �k2

d is the unique negative
eigenvalue of H , with corresponding eigenmode g0. Our first problem is to show
that this can be completed to an exact solution on r�t0,�t1s, by adding a suitable
ηpt, xq. In effect, we shall work with

η̃pτ,Rq :� Rηpt, xq
To find this function, we employ the Fourier theoretic methods developed in [21].
Thus, using terminology developed there, we write

η̃pτ,Rq � xdpτqφdpRq �
» 8

0
xpτ, ξqφpR, ξqρpξq dξ,

where the function φdpRq � Rg0pRq is the unique negative eigenmode associated
with the operator

H :� �B2
R � 5W4pRq,

while φpR, ξq constitutes the distorted Fourier basis. Also, ρpξq denotes the spec-
tral measure associated with this operator. By the corresponding Fourier inversion
theorem, we have

xdpτq �
» 8

0
η̃pτ,RqφdpRq dR, xpτ, ξq �

» 8
0
η̃pτ,RqφpR, ξq dR

We shall use the H2
dR norm to control η̃pτ,Rq, which shall be handy in the section

on the ejection process. From [21] we recall that

}η̃pτ, �q}H2
dR
. }xξyxpτ, ξq}L2

dρ
� |xdpτq|

}η̃pτ, �q}H1
dR
. }xξy 1

2 xpτ, ξq}L2
dρ
� |xdpτq|

In this section, we shall write

}xpτ, �q}S :� }xξyxpτ, ξq}L2
dρ

Also, for the source terms, we use the norm

}xpτ, �q}N :� }xξy 1
2 xpτ, ξq}L2

dρ
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Proposition 2.1. There exists η̃pτ, �q, τ P rτ0, τ1s, with

}η̃pτ, �q}H2
dR
. δν1τ

�pN�1q, |Pg0 η̃pτ, �q| . δν1τ�NRg0pRq,
such that

ũII � η

solves (1.1) on r�t0,�t1s.
Proof. We first consider to what extent the expression ũIIpt, xq is an approximate
solution of (1.1). Observe that

p�B2
t � 4qũII � ũ5

II � p�B2
t � 4qηhyp � 5W4

λptqηhyp � A �: B� A,

where we put
A :�

¸
j�k�l�5,
j 4, l,0

C j,kW j
λptqε

kηl
hyp

We commence by bounding the various constituents:

The terms B: This can be written as a linear combination of terms of the form
�
tλptq�2e�k0pτ1�τqag0pRq,

�
tλptq�1λ1ptq

λptq e�k0pτ1�τqapRBRqg0pRq,
�λ1ptq
λptq

�2e�k0pτ1�τqapRBRq2g0

(2.1)

Labeling these terms Bi, i � 1, 2, 3, we then infer the following key bounds

}Rλ�2pτqBi}H1
dR
. δνN

1 τ�1e�k0pτ1�τq . δν1τ
�Ne�k0pτ1�τq, i � 1, 2, 3

The terms A: These are bounded by using

ηhyp � OpδνN
1 e�k0pτ1�τqq � Opδν1τ�pN�1qe�k0pτ1�τqq.

Thus we get

}Rλ�2pτqW3
λptqη

2
hyp}H1

dR
. λ�

1
2 pτqδ2ν

1 e�2k0pτ1�τqτ�2pN�1q

and further

}Rλ�2pτqη5
hyp}H1

dR
. δ5ν

1 λ
�2pτqe�5k0pτ1�τqτ�5pN�1q

Also, we get

}Rλ�2pτqε4ηhyp}H1
dR
. δν1τ

�N�7e�k0pτ1�τq,

}Rλ�2pτqW3
λptqεηhyp}H1

dR
. δν1τ

�N�1e�k0pτ1�τq

Observe that we have εpτ,Rq � Opλ 1
2 R
pλ|t|q2 q on τ . R but on the region |τ| & R we

get }ηhyp}H1pR&τq . e�cτ. Let us denote A�B :� e0. Then we obtain the following
equation for η:

D2η̃� βνpτqDη̃�Lη̃ � κ�2pτq�5pũ4
II � u4

0qη̃� RNpũII , η̃q � Re0
�

(2.2)
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where we have introduced the notation

L � �B2
R � 5W4pRq, D � Bτ � βνpτqpRBR � 1q,

NpũII , η̃q � pũII � η̃

R
q5 � Rũ5

II � 5ũ4
II
η̃

R
Our task is to solve (2.2) on rτ0, τ1s subject to the boundary conditions

η̃pτ1, �q � Bτη̃pτ1, �q � 0

Fortunately, the operator on the left of (2.2) admits a convenient parametrix, so we
can solve this equation by recourse to the Fourier representation. Passing to the
Fourier side, we obtain the equation

�
D2
τ � βνpτqDτ � ξ

�
xpτ, ξq � Rpτ, xq � f pτ, ξq, ξ �

�
ξd
ξ



(2.3)

where we write

η̃pτ,Rq � xdpτqφdpRq �
» 8

0
xpτ, ξqφpR, ξqρpξq dξ, x �

�
xdpτq
xpτ, ξq




and we have

Dτ � Bτ � βνpτqA, A �
�

0 0
0 Ac




as well as

Rpτ, xqpξq � �� 4βνpτqKDτx � β2
νpτqpK2 � rA,Ks �K � β1ν

β2
ν

Kqx�pξq (2.4)

Ac � �2ξBξ � p5
2
� ρ1pξqξ

ρpξq q, K �
�
Kdd Kdc
Kcd Kcc



, βνpτq �

9λpτq
λpτq ,

where the symbolsKdd etc are operators defined in [21]. Finally, f pτ, ξq represents
the Fourier transform of the source terms.

f pτ, ξq � F �λ�2pτq�5pũ4
II � u4

0qη̃� RNpũII , η̃q � Re0
���

ξ
�

(2.5)

The rapid decay of the variable η̃pτ,Rq allows us to solve (2.3) via a direct iteration
scheme, essentially as in [21]. Specifically, we use

�
D2
τ�βνpτqDτ�ξ

�
x jpτ, ξq � Rpτ, x j�1q� f j�1pτ, ξq, ξ �

�
ξd
ξ



, j ¥ 1, (2.6)

with

f j�1pτ, ξq � F
�
λ�2pτq�5pũ4

II � u4
0qη̃� RNpũII , η̃q � Re0

���
ξ
�
, j ¥ 2 (2.7)

as well as f0 :� 0.
To proceed, we observe that the linear inhomogeneous problem�

D2
τ � βνpτqDτ � ξ

�
xpτ, ξq � f pτ, ξq
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can be solved completely explicitly (imposing vanishing data at infinity). In fact,
the way we have set things up, we can use (See [20])

xpτ, ξq � ξ�
1
2

» τ1

τ

λ
3
2 pτq

λ
3
2 pσq

ρ
1
2 p λ2pτq

λ2pσq
ξq

ρ
1
2 pξq

sin
�
λpτqξ 1

2

» σ

τ
λ�1puq du

�
f pσ, λ

2pτq
λ2pσqξq dσ

�:
» τ1

τ
Upτ, σ, ξqs f pσ, λ

2pτq
λ2pσqξq dσ

(2.8)

for the continuous spectral part, while we have the implicit equation

xdpτq �
» τ1

τ
Hdpτ, σq

�
fdpσq�βνpσqBσxdpσq

�
dσ, Hdpτ, σq � �1

2
|ξd|� 1

2 e�|ξd|
1
2 |τ�σ|

(2.9)
Then we have

Lemma 2.2. For N large enough and t0 small enough, we have the a priori bounds

}x jpτ, �q}S . δ
ν
1τ
�pN�1q, }Dτx jpτ, �q}N . δ

ν
1τ
�N , |x j,dpτq| . δν1τ�N ,

|Bτpx j,dqpτq| . δν1τ�N

Moreover, for the differences, we have

}px j � x j�1qpτ, �q}S . p 1
N
q j�1δν1τ

�pN�1q, |px j,d � x j�1,dqpτq| . p 1
N
q j�1δν1τ

�N ,

}Dτpx j � x j�1qpτ, �q}S . p 1
N
q j�1δν1τ

�N

Proof. We commence by observing as in [21] that

sup
τ¡τ0¡0

τN�1
�� » τ1

τ
Upτ, σ, ξqs f pσ, λ

2pτq
λ2pσqξq dσ

��
S .

1
N

sup
τ¡τ0

τN�1} f pτ, �q}N

Here we lose two powers of decay in τ due to the singular kernel and the fact that
we integrate over τ. For the first iterate, we can exploit the exponential decay to
lose only one power of τ.
For the time derivative, we get

sup
τ¡τ0¡0

τN
��Dτ

» τ1

τ
Upτ, σ, ξqs f pσ, λ

2pτq
λ2pσqξq dσ

��
S .

1
N

sup
τ¡τ0

τN�1} f pτ, �q}N

where we lose one power of τ due to the integration. Thus an additional exponential
weight in f improves decay by one power.
We also use the bound��Rpτ, xqpξq��N . τ

�2�}xpτ, �q}S � |xdpτq|
�� τ�1�}Dτxpτ, �q}S � |Bτxdpτq|

�
which follows easily from the estimates in [21]; here the implicit constant is in-
dependent of N. To conclude the proof of the lemma, we now need to bound the
contributions from the source terms in f j�1. For simplicity, we suppress the sub-
script in the sequel.
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The contribution from 5λ�2pτqpũ4
II � u4

0qη̃. Recalling the definition of ũII , we
have to bound the following list of terms (omitting intermediate terms):

λ�2pτqF �W3
λptqηhypη̃

�
, λ�2pτqF �W3

λptqεη̃
�
, λ�2pτqF �η4

hypη̃
�
, λ�2pτqF �ε4η̃

�
(2.10)

For the first term, we get��λ�2pτqF �W3
λptqηhypη̃

���
N . λ

�2pτq��W3
λptqηhypη̃

��
H1

dR
. λ�

1
2 pτq}ηhyp}H2

R2dR
}η̃}H1

dR

. δ2ν
1 λ

� 1
2 pτqτ�2pN�1q

which is more than enough since 2pN � 1q ¥ N � 1 for N ¥ 3.
For the second term in (2.10) we use

λ�
1
2 εpτ,Rq � χR¤ντλ

� 1
2 εpτ,Rq � χR¡ντλ

� 1
2 εpτ,Rq

Then, use that
}χR¤ντλ

� 1
2 xRy� 3

2�εpτ,Rq}H1
dR
. τ�2,

which gives��λ�2pτqW3
λptqχR¤ντεη̃

��
H1

dR

. }λ� 3
2 xRy 3

2�W3
λptq} 9H1

dRXL8dR
}χR¤ντλ

� 1
2 xRy� 3

2�εpτ,Rq}H1
dR
}η̃}H1

dR

. δν1τ
�N�1

Next, consider the contribution of χR¡ντλ
� 1

2 εpτ,Rq. Here we simply use the ex-
plicit decay of WpRq to get��λ�2pτqW3

λptqχR¡ντεη̃
��

H1
dR
. τ�3}λ� 1

2 εpτ, �q}
9H1

R2dR
XL6

R2dR
}η̃}H1

dR

. τ�N�2δν1,

which is again better than what we need.
The third term in (2.10) is better than the first (due to the exponential decay of ηhyp)
and hence omitted. The last term in (2.10) is a bit more delicate: in the interior of
the light cone, the explicit expansion of εpτ,Rq implies that��χR¤ντλ

� 1
2 εpτ,Rq��H1

dR
. τ�

1
2 ,

and so we find��λ�2pτqε4η̃
��

H1
dR
. }λ� 1

2 εpτ,Rq}4
H1

dR
}η̃}H1

dR
. δν1τ

�N�1

On the outside of the light cone, we need to estimate��χR¡ντλ
�2pτqp∇Rεqε3η̃

��
L2

dR
� ��χR¡ντλ

�2pτqε4∇Rη̃
��

L2
dR
� ��χR¡ντλ

�2pτqε4η̃
��

L2
dR

Here we use the estimate��χR¡ντλ
� 1

2 pτqεpτ,Rq��L8dR
. τ�

1
2 }λ� 1

2 pτqεpτ,Rq}
9H1

R2dR
XL6

R2dR

as well as
}χR¡ντ

1
R
η̃pτ,Rq}L8 . τ

� 1
2 }η̃pτ,Rq}H1

dR
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Thus we obtain��χR¡ντλ
�2pτqp∇Rεqε3η̃

��
L2

dR

. }λ� 1
2 pτq∇Rε}R2dR

��χR¡ντλ
� 1

2 pτqεpτ,Rq��3
L8dR
}χR¡ντ

1
R
η̃pτ,Rq}L8

. δν1τ
�N�1

and further ��χR¡ντλ
�2pτqε4∇Rη̃

��
L2

dR
� ��χR¡ντλ

�2pτqε4η̃
��

L2
dR

.
��χR¡ντλ

� 1
2 pτqεpτ,Rq��4

L8dR
}η̃pτ,Rq}H1

dR

. δν1τ
�N�1

The contribution of the terms RNpũII , η̃q. Since we have

NpũII , η̃q � pũII � η̃

R
q5 � Rũ5

II � 5ũ4
II
η̃

R
we have to estimate terms of the form

Rλ�2pτqũ5� j
II p η̃

R
q j, j ¥ 2,

Since we have from Sobolev’s embedding
�� η̃

R

��
L8 .

�� η̃
R

��
H2

R2dR
� }η̃}H2

dR
,

and also λ�
1
2 ũII P 9H1

dR X L8, we find
��Rλ�2pτqũ5� j

II p η̃
R
q j
��

H1
dR
. δ2ν

1 τ
�2pN�1q, j ¥ 2

which is again more than enough. This concludes the proof of the lemma, up to the
statement about the differences and the better decay for the discrete spectral part.
The gains of N�1 follow from integrating the weights τ�pN�1q (and better). The
better decay for the discrete spectral part is a consequence of the exponential decay
of the kernel Hdpτ, σq in (2.9). �

The proof of the proposition follows by a simple iteration argument using the
lemma.

�

3. Ejection past time t � �t1.

We next need to show that the solution constructed above with

upt, xq � Wλptqpxq � εpt, xq � ηhyppt, xq � ηpt, xq, t P r�t0,�t1s
leads to a controlled exit past time t � �t1 from a suitable neighborhood of S :�
tWλuλ¡0. Specifically, we shall re-scale by λpt1q and shift the new time origin to
time �t1, which changes the solution to

ũpt, xq � W λp�t1�tλ�1p�t1qq
λp�t1q

pxq � ελ�1pt1qp�t1 � tλ�1p�t1q, xq � η̃, (3.1)



10 JOACHIM KRIEGER, JOULES NAHAS

and now we need to track the evolution of η̃ in forward time but on a scale of size
at most | log δ1|. In fact, the equation for η̃ becomes

p�B2
t �Hqη̃ � 5pW4 � W4

λp�t1�tλ�1p�t1qq
λp�t1q

qη̃� Npη̃q, H � �4� 5W4

with data at the new time origin corresponding to t � t1 given by�
η̃, Btη̃

�|t�0 �
�
λ�

1
2 pt1qηhyppτ1, �q, λ� 1

2 pt1qBτηhyppτ1, �q
�

where we write

�Npη̃q � �
W λp�t1�tλ�1p�t1qq

λp�t1q

pxq � ελ�1pt1qpt, xq � η̃
�5

� �
W λp�t1�tλ�1p�t1qq

λp�t1q

pxq � ελ�1pt1qpt, xq
�5 � 5W4

λp�t1�tλ�1p�t1qq
λp�t1q

η̃

Re-labelling
uII :� W λp�t1�tλ�1p�t1qq

λp�t1q

pxq � ελ�1pt1qpt, xq,
we then obtain the equation

p�B2
t �Hqη̃ � 5pW4 � W4

λp�t1�tλ�1p�t1qq
λp�t1q

qη̃� A � B (3.2)

where we put

A :� 5
�pW λp�t1�tλ�1p�t1qq

λp�t1q

pxq � ελ�1pt1qpt, xqq4 � W4
λp�t1�tλ�1p�t1qq

λp�t1q

pxq�η̃

B :�
5̧

j�2

C ju
5� j
II η̃ j

Note that while in the preceding section the coordinate change t Ñ τ � λptqt, |x| �
r Ñ R � λptqr was time dependent, here we have a time-independent coordinate
change

t Ñ λp�t1 � tλ�1p�t1qq
λp�t1q , r Ñ |x| � λp�t1qr

We then split
η̃ � δptqg0p|x|q � η̃c, η̃c � PgK0

η̃

Observe that
δp0q � λ�

1
2 p�t1qa, η̃cp0, �q � 0

Then we have the following

Lemma 3.1. There is some δ0 ¡ 0 sufficiently small but independent of δ1 with the
following property: denoting

b :� aλp�t1q� 1
2 ,

if bekdT ¤ δ0, 0   T,

δptq � bekdt, }η̃cpt, �q}H2
x
! |b|ekdt
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Proof. We use a simple bootstrap argument, exploiting the fact that this is a pertur-
bative statement. Thus we make a bootstrap assumption of the form

|δptq| ¤ 2|b|ekdt, }η̃cpt, �q}H2
x
¤ 2|b|

K
ekdt (3.3)

for some suitable large K(absolute constant, which is large but small enough com-
pared to δ�1

0 ), and then improve these bounds by a factor 2. We start with the
bounds for η̃c, for which we have the equation

p�B2
t �Hqη̃c � PgK0

�
5pW4 � W4

λp�t1�tλ�1p�t1qq
λp�t1q

qη̃� A � B
� �: F (3.4)

From Duhamel’s principle, we infer

η̃cpt, �q � �
» t

0

sinprt � ss
?
Hq?

H
PgK0

Fps, �q ds

We estimate each of the constituents of Fps, �q, making use of the bootstrap as-
sumptions:

(i) The contribution of F1 :� PgK0

�
5pW4�W4

λp�t1�tλ�1p�t1qq
λp�t1q

qη̃�. Here we use the

algebraic structure of the scaling parameter λptq to infer

��λp�t1 � tλ�1p�t1qq
λp�t1q � 1

�� � Op t
t1λpt1qq

Then restricting t to r0,C| log δ1|s, we get the bound

�� » t

0

sinprt � ss
?
Hq?

H
F1ps, �q ds

��
H2

x
. |b|

» t

0
pt � sq s

t1λpt1qekd s ds

! |b|
K

ekdt

Next, we continue with the contributions of the terms A and B:

(ii) The contribution of the term A. These terms fall under the general form

F2, j :� W4� j
λp�t1�tλ�1p�t1qq

λp�t1q

ε
j
λ�1pt1q

η̃, 0   j ¤ 4

Observe as in the preceding section that

ελ�1pt1qp�t1 � tλ�1pt1q, xq � Op R
pλp�t̃qt̃q2 q, t̃ :� �t1 � tλ�1pt1q

provided
λpt̃q|t̃| � t1λpt1q " t, R . t1λp�t1q

Thus imposing these restrictions we get the uniform bounds

}χR.t1λp�t1qF2, jps, �q}H1
x
. rt1λpt1qs�2|b|ekd s
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On the other hand, in the region R & t1λp�t1q we can use the uniform 9H1
R2dR

X
L6

R2dR
-bound on ελ�1pt1q, from which we infer in particular the bound

��χR&t1λp�t1qελ�1pt1q
��

L8 .
�
t1λp�t1q

�� 1
2

and then again

}χR&t1λp�t1qF2, jps, �q}H1
x
. rt1λpt1qs�2|b|ekd s

In summary, we obtain

�� » t

0

sinprt � ss
?
Hq?

H
PgK0

F2, jps, �q ds
��

H2
x
! |b|

K
ekdt, j � 1, 2, 3, 4

provided t ! t1λp�t1q, which is the case due to t � Op| log δ1|q .

(ii) The contribution of the term B. Here we use the bound

}u5� j
II η̃ jps, �q}H1

x
. |b|2e2kd s,

which leads to

�� » t

0

sinprt � ss
?
Hq?

H
PgK0

�
u5� j

II η̃ jps, �q� ds
��

H2
x
! |b|

K
ekdt, j � 2, 3, 4, 5

since |b|ekdt ¤ δ0 ! 1 by assumption. This concludes the bootstrap for the contin-
uous spectral part η̃c.
We next turn to the discrete part, i. e. the evolution of the function δptq. As in [16],
we can write

δptq � p2kdq� 1
2 rn�ptq � n�ptqs,

where we have

n�ptq � pkd

2
q 1

2 be�kdt �
» t

0
e�kdpt�sqxFps, �q, g0y ds

It remains to bound the integral term in the right. We control the various ingredi-
ents of F:

(i) For the contribution of f1ptq :� x5pW4 � W4
λp�t1�tλ�1p�t1qq

λp�t1q

qη̃, g0y, we have

�� » t

0
e�kdpt�sq f1psq ds

�� . |b|ekdt
» t

0

s
rt1λpt1qs2

ds ! |b|
K

ekdt

(ii) For the contribution of f2ptq :� xA, g0y, we obtain the exact same bound by
exploiting

��xW4� j
λp�t1�tλ�1p�t1qq

λp�t1q

ε
j
λ�1pt1q

η̃, g0y
�� . |b|ekdt

rt1λpt1qs2
, j � 1, 2, 3, 4
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In effect, here one obtains exponential temporal decay in the region R & t1λp�t1q,
due to the exponentially decaying g0.
(iii) For the contribution of f3ptq :� xB, g0y, we have the bound

| f3ptq| . b2e2kdt,

whence » t

0
e�kdpt�sq| f3psq| ds . |b|2e2kdt ! |b|

K
ekdt

where we used the assumption |b|ekdt ¤ |b|ekdT ¤ δ0.

This concludes the bootstrap, and the lemma easily follows from this. �

The precise statement which shall imply Theorem 1.1 is now furnished by

Proposition 3.2. Let ũpt, xq be the solution considered in (3.1). Then there exists
a time T ¡ 0 with

|b|ekdT � δ0 " δ�

and a decoupling
ũpT, �q � WαT � ṽαT , |1 � αT | ! 1,

and such that
xṽαT ,Λ

�gαT y � 0, Λ � RBR � 1
2

and furthermore
xṽαT , gαT y � bekdT

Here gαT is the negative eigenmode of the linearization around WαT .

Proof. The argument here is essentially the same as in [18]. In light of (3.1), we
have to satisfy the vanishing condition

xW λp�t1�Tλ�1p�t1qq
λp�t1q

� WαT � ελ�1pt1qp�t1 � Tλ�1p�t1q, xq � η̃pT, �q, Λ�gαT y � 0

(3.5)
with T chosen to satisfy |b|ekdT � δ0. Since we have the bound��ελ�1pt1qp�t1 � Tλ�1p�t1q, xq � η̃pT, �q��

9H1
R2dR
. δ0 ! 1,

and the non-degeneracy condition��xBλWλ|λ�1, Λ�gλ|λ�1y
�� � 1

holds, see [18], an application of the implicit function theorem implies the exis-
tence of αT δ0-close to 1 such that (3.5) is satisfied. Furthermore, since��xW λp�t1�Tλ�1p�t1qq

λp�t1q

� WαT , gαT y
�� � δ2

0,

we also find

xW λp�t1�Tλ�1p�t1qq
λp�t1q

� WαT � ελ�1pt1qp�t1 � Tλ�1p�t1q, xq � η̃pT, �q, gαT y

� bekdT ,

as desired. �



14 JOACHIM KRIEGER, JOULES NAHAS

4. Proof of Theorem 1.1

Having fixed a very small δ1 ¡ 0 and constructed the solution ũ on the time
interval r0,T s as in the preceding proposition, and recalling that this solution, when
re-scaled by λp�t1q, can be extended from time �t1 backwards to time �t0 as
described in the last section but one (i. e. the solution uII � η constructed there), a
simple continuous dependence argument reveals that perturbing the data of uII � η
at time t � �t0 by a sufficiently small amount in the energy topology, we obtain
another solution which extends to time t � �t1 and such that re-scaling and shifting
the time origin at to time t � t1 as in the preceding section, the corresponding
solution also extends all the way up to time t � T , and satisfies the conclusion
of Proposition 3.2. Now let ũpt, xq be as in the preceding section. Then denoting
S :� tpWλ, 0quλ¡0, we have2

dist
9H1�L2

�
ũr0s,SY�S� . δ�;

In fact, this can be arranged by picking δ1 small enough. On the other hand, by
Proposition 3.2, we have

dist
9H1�L2

�
ũrT s,SY�S� � δ0 " δ�

This is a consequence of [16], Lemma 2.2. But then equation (3.44) as well as
Proposition 5.1, Proposition 6.2 in [16] imply that picking a   0 in the definition
of ηhyp in the last section but one leads to a solution ũpt, xq which exists globally in
forward time and scatters towards zero. On the other hand, picking a ¡ 0 leads to
ũpt, xq blowing up in finite forward time. Since we have��ũII � ηpt, xq � �

Wλptq � εpt, xq�r�t0s
��

9H1�L2 . δ
ν
1

according to Proposition 2.1 and δ1 ¡ 0 was arbitrary, Theorem 1.1 is proved.
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