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ABSTRACT
This paper presents a novel approach to acquire multichannel wire-
less intracranial neural data based on a compressive sensing scheme.
The designed circuits are extremely compact and low-power which
confirms the relevance of the proposed approach for multichannel
high-density neural interfaces. The proposed compression model
enables the acquisition system to record from a large number of
channels by reducing the transmission power per channel. Our main
contributions are the twofold. First, a CMOS compressive sensing
system to realize multichannel intracranial neural recording is de-
scribed. Second, we explain a joint sparse decoding algorithm to re-
cover the multichannel neural data. The idea has been implemented
at system as well as circuit levels. The simulation results reveal that
the multichannel intracranial neural data can be acquired by com-
pression ratios as high as four.

Index Terms— Sparsity, Compressive Sensing, Multichannel
Signal Processing, iEEG.

1. INTRODUCTION

The high data rate of wireless implantable neural recording systems
results in unacceptable transmission power. The amount of gener-
ated heat which can be tolerated in an implantable device, is strictly
limited by the safety concern of patients. Therefore, one needs to
tackle the data rate problem using a low power compression tech-
nique. Compressive sensing is a popular compression method that
has superiority over traditional compression schemes because of the
low power consumption and complexity of the encoder in addition
to the universality with respect to the signal model. Compressive
sensing samples a high dimensional signal through smaller number
of linear measurements than dictated by Nyquist sampling theorem.
The intracranial EEG (iEEG) signals, which are recorded through
electrodes placed on the exposed surface of the cortex, are highly
important in applications such as seizure detection for epilepsy mon-
itoring. Compressive sensing has been studied in the context of bio-
logical signals such as action potentials, EEG and ECG [1, 2, 3]. The
iEEG signals provide higher spatial resolution and diagnostic infor-
mation compared to scalp EEG. Compressive sensing can potentially
satisfy the low complexity and low power consumption requirement
of the implantable neural recording systems and significantly impact
the design of future implantable iEEG signal recorders.
Considering a single channel neural data, the simplest compressive
sensing scheme can be realized by taking few linear measurements
of the signal in a defined time frame [1, 3]. The concept can be im-
plemented either in the analog domain prior to digitization or down-
stream the ADC. The multiplication by measurement matrix and in-
tegration are performed in parallel paths which are loaded by the
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rows of the measurement matrix and have a separate mixer and in-
tegrator per path. This multipath structure results in a large circuit
area per channel. Therefore, the complexity of the single channel
compressive sensing disqualifies the approach when we deal with a
multichannel recording interface as this strategy includes large cir-
cuits in a limited die area.
To tackle the complexity and area inefficiency of the single chan-
nel compressive sensing, we propose a new measurement scheme
for multichannel neural data along with a multichannel compressive
recovery scheme to exploit the inter- and intra-dependencies in the
multichannel neural data. As opposed to the single channel measure-
ment scheme which needs to have access to the whole data to acquire
measurements, in the proposed measurement model, as a significant
advantage, the compressive measurements are acquired in real-time.
The spatial sparsity of the signals generated by different channels on
the electrode array is efficiently exploited in the proposed scheme.

2. COMPRESSIVE SAMPLING

Consider a signal x ∈ Rn and an orthogonal basis Ψ ∈ Rn×n in
which x = Ψα can be sparsely represented. A signal is said to be
sparse in a basis if it can be represented by k non-zero coefficients,
i.e. k � n.
The Compressive Sensing [4, 5, 6] methodology employs the spar-
sity condition to reconstruct signals from low-rate linear compres-
sive measurements. The linear measurements of the signal are ac-
quired by the projection of the signal onto a small set of random
vectors. The measurement vector y ∈ Rm, m� n, is defined as

y = A(x) + z, (1)

whereA : Rn → Rm is the linear map which acquires the compres-
sive measurements and z is the measurement noise. We can write the
linear map in matrix form, i.e. A(x) = Ax where A ∈ Rm×n. An
approach to recover x from noisy measurements vector y is the so-
called Basis Pursuit DeNoising problem (BPDN) [5, 6] in which the
reconstruction casts into the following convex minimization problem

argmin
x∈Rn

‖ΨTx‖1 subject to ‖y −Ax‖2 ≤ ε, (2)

where ε is a bound over measurement noise. The lq norm of a vector
α ∈ Rn is defined as ‖α‖q =

(∑n
i=1 |αi|q

)1/q .

3. MULTICHANNEL IEEG COMPRESSIVE SAMPLING

3.1. Acquisition Model

To recover a signal from its linear measurements, the compres-
sive sensing methodology states that the measurement matrix A



should satisfy the Restricted Isometry Property (RIP) [7]. The
measurement matrices that realize the RIP condition are those ran-
domly generated from a Gaussian distribution or matrices like the
Bernoulli/Rademacher matrix. However, the aforementioned mea-
surement methods are complex for practical problems. Therefore,
the physical constraints should drive the structure of the measure-
ment matrix.
In the case of multichannel neural recording, measurement consid-
erations state that it is more efficient to consider a multichannel
compression scheme rather than dealing with each channel sepa-
rately. The sparsity of EEG signals in the spatial domain has been
previously demonstrated using equivalent current dipole source rep-
resentations [8]. Therefore, we choose a specific strategy to acquire
the signal which fulfils the physical constraints.
Let X ∈ Rn1×n2 represent the multichannel iEEG signal where
n1 is the dimension of signal in each channel and n2 is the number
of channels. The linear map obtains compressive measurements
from the multichannel iEEG signal by reshaping the iEEG signal
X into X̂ ∈ Rn2×n1 and acquiring q = p/n1 measurements from
each column of X̂ . Therefore, the multichannel linear map can be
represented in matrix form AM ∈ R(qn1)×(n1n2) as follows

AM =


Γ1 0 0 · · · 0
0 Γ2 0 · · · 0
...

...
. . .

...
...

0 0 0 · · · Γn1

 ,Γi =


γ1,1 · · · γ1,n2

γ2,1 · · · γ2,n2

...
. . .

...
γq,1 · · · γq,n2

 ,
(3)

where Γi ∈ Rq×n2 and γij ∈ {0, 1} to approximate a measurement
matrix similar to the Bernoulli/Rademacher matrix. The multichan-
nel measurement vector y ∈ Rp is defined as

y = AMvec(X) + z, (4)

where AM is the multichannel measurement matrix and vec(X)
represents the multichannel iEEG signal in vector form (vec(X) ∈
Rn1n2 ).

3.2. Recovery Scheme

Wideband neural signals consist of high amplitude spikes followed
by a long period of low activity. As a consequence, the neural signals
have a sparse structure in time domain. The lower frequency EEG
signals have a sparse representation in Gabor or wavelet domains
[1]. The multichannel neural signals have high inter-channel depen-
dencies, as the signals recorded by the adjacent channels, depending
on the spatial resolution and pitch of the electrodes, are delayed or
scaled version of each other. Therefore, it is important to consider a
model in order to employ the cross-correlations in the multichannel
iEEG signals to efficiently reconstruct the underlying neural data.
In order to recover the multichannel iEEG signal from the com-
pressive measurements, we need to employ a sparsity domain Ω ∈
R(n1n2)×(n1n2) for the multichannel iEEG signal X. As explained,
the underlying signals in channels share similar structures. There-
fore, the multichannel basis for iEEG signals is a block diagonal
matrix which has the sparsity domain along the diagonal. The mul-
tichannel iEEG basis is defined as

Ω =


Ψ 0 0 · · · 0
0 Ψ 0 · · · 0
...

...
. . .

...
0 0 0 · · · Ψ

 , (5)

where Ψ ∈ Rn1×n1 is the sparsity basis for each channel. The mul-
tichannel signal X can be recovered from the linear measurements
by using the BPDN problem as

argmin
X∈Rn1×n2

‖ΩTvec(X)‖1 subject to ‖y −AMvec(X)‖2 ≤ ε.

(6)

4. MICROELECTRONIC ARCHITECTURE

The system architecture of the proposed spatial compression scheme
to realize the multichannel sampling strategy presented in the previ-
ous Section is depicted in Fig. 1.
Each channel of the recording scheme contains a low-noise ampli-
fier (LNA) [9] for boosting the low-amplitude recorded signals in
the front-end of the system. The amplified signals of the individual
channels are sampled on CS and kept constant during q measure-
ments. The linearity of the track-and-hold circuit is guaranteed by
using PMOS source-to-bulk connected source-followers. The sam-
pled signal charges the holding capacitor in the first half cycle of the
clock. In the second half, the holding capacitors of all channels are
connected to the integrating capacitor, based on the random value
controlling the in-pixel switch. Thus, the signals of all channels
in the array are multiplied by the instantaneous random value and
summed together on CINT (CINT � CH). The compressed voltage
Vout(n) can be written as:

CHφR1(n)V1(n− 1/2) + . . .+ CHφRn2(n)Vn2(n− 1/2)

CHφR1(n) + . . .+ CHφRn2(n) + CINT
, (7)

where Vi(n) is the tracked level of the signal originating from chan-
nel number i at time nT , with T being the period of the clock signal.
φRi(n) is the level (1 or 0) of the random sequence applied to ith
channel at time nT and n2 is the number of channels.
In the proposed method, compressive samples are acquired from dif-
ferent locations and electrodes in the spatial domain, rather than over
time. As a significant advantage, this design encodes the full array to
one single data which is digitized using a single ADC. As a benefit
of compressive sensing, the sampling rate of the latter ADC is n2/q
times smaller than the sampling rate of the unique ADC which is
required in a non-compressed but time-multiplexed topology. Thus,
the cost of implementation in terms of in-pixel area and power is
much less than previous topologies, including non-compressed and
single channel compressed schemes. Using a differential topology
(Fig. 1), the non-linearity and dc components caused by the source
follower buffer circuit are partially removed. As an alternative, an
active integrator can be used to perform the full array randomized
integration and boost the signal level at the cost of an additional op-
erational transconductance amplifier. The required speed of this am-
plifier is proportional to the size of the array which dictates the mea-
surement number q. The compressed signal (Vout in Fig. 1) passes
through a variable-gain amplifier (VGA) to further boost the level of
the signal and drive the ADC.

4.1. Pseudo Random Matrix Generation

The actual implementation of compressive sensing requires an effi-
cient generation of the measurement matrix in terms of power con-
sumption and area overhead. In a single channel approach, each
channel needs to be loaded with m sequences, building the rows of
the measurement matrix. Multiplication and integration in the analog
domain (or summation in digital domain) is performed in m paths.
In the proposed spatial compression scheme on the other hand, each
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Fig. 1: Proposed multichannel compressive acquisition scheme for iEEG
recording.

channel is loaded with only one sequence. The measurement matrix
supporting the first q measurements required for recovering the first
sample of each channel is created by taking the first q values of the
in-channel sequences. Pseudorandom sequences which exhibit low
coherence with any fixed sparsity basis [1] are a proper choice for
the implementation of the measurement matrix.
In this design, the sequence generation is achieved by XORing the
multiple outputs of different length Pseudo Random Bit Sequence
(PRBS) generators (Fig. 1). Considering a test recording array of
4 × 4 and a value of q equal to 4 (Compression Ratio = 16/4), the
16 sequences driving the individual channels are generated by XOR-
ing the states of a 4-bit PRBS generator with another 5-bit PRBS
generator. True Single-Phase Clocked (TSPC) flip-flops are used
resulting in very low power consumption and a compact implemen-
tation. A small number of 9 flip-flops and 16 XOR gates is sufficient
to generate the required sequences for 16 channels. While a sin-
gle channel compression block has to be physically designed for a
specific predefined m and redesigned for different compression ra-
tios, the proposed scheme is easily adaptable for different values of
q by simply adjusting the clock frequency. The same circuit can be
used for different compression ratios and the only change is in the
reconstruction code which receives q as a parameter. Therefore, the
proposed scheme can be perfectly tuned to find the appropriate com-
pression ratio based on the diagnostic and medical considerations
which impose the acceptable level of loss in the recovered data with
respect to the original neural signal.

5. EXPERIMENTAL RESULTS

In order to demonstrate the effectiveness of the proposed acquisition
model, multichannel intracranially recorded signals of the slices of a
rat somatosensory cortex under bicuculline, which blocks the synap-
tic inhibition and consequently mimics epilepsy, have been used as
the input. This signal includes epileptiform burst activity and extra-
cellularly detected spikes with a maximum sampling rate of 6 KHz.

Methods Wavelet Transform Time Domain
Sep-model 17.38 dB 1.2 dB
Multi-model 13.74 dB 1.3 dB

Table 1: SNR comparison of two compressive neural recovery schemes for
different sparsity domains.

In order to further evaluate the proposed measurement scheme, we
deal with the multichannel iEEG signal with two different strategies.
First, we sample each channel of the multichannel signal x ∈ Rn1

separately with a Bernoulli {0, 1}measurement matrix A ∈ Rm×n1

and the sampling ratio of m/n1 = 0.25, then each channel is recov-
ered by (2) (denoted as Sep-model). Therefore, we use a single
channel basis Ψ ∈ Rn1×n1 to reconstruct the underlying neural sig-
nal. Second, we reconstruct the multichannel signal from the mea-
surements recorded by our proposed circuit using a sampling ratio of
p/(n1n2) = 0.25. The multichannel signal is recovered as a whole
by (6) (denoted as Multi-model). We consider the wavelet trans-
form and time domain as two different sparsity domains for each
channel. The recovery SNR of the reconstructed signal (x̂) with re-
spect to the original signal (x) is calculated from

SNR = −20 log10‖x− x̂‖2/‖x‖2. (8)

Table 1 compares the average SNR of the recovered iEEG sig-
nal for both methods. It is clear that iEEG signals are sparser in
the wavelet transform than time domain, thus both recovery meth-
ods have better reconstruction quality using the wavelet transform.
Moreover, the Sep-model has a better reconstruction quality than
Multi-model. However, this slight improvement comes at the
cost of extra power consumption and area overhead per channel for
the Sep-model. The power consumption and area usage asso-
ciated with the compression block in the Multi-model scheme
is significantly improved, due to the real-time acquisition of mea-
surements from full array in the spatial domain. This basically
circumvents the need to place several multiplication and integration
paths per channel, resulting in power and area savings while pre-
serving acceptable reconstruction performance.
Fig. 2 demonstrates a qualitative comparison of the reconstructed
neural signals using the output of the proposed circuit (Vout in
Fig. 1) for five channels with respect to the original signals, when
the channel sparsity domain is the wavelet transform. It is evident
that the quality of spike reconstruction for Multi-model is quite
good and the recovered neural signals correspond to the originals.
Finally, in order to evaluate the performance of the measurement ma-
trix generated by the circuit, the multichannel measurement matrix
is generated from a Bernoulli distribution with the same structure
as the proposed measurement mechanism, with a sampling ratio of
0.25. We use the multichannel recovery model (Multi-model)
and the wavelet transform as the sparsity basis to recover the under-
lying multichannel signal. The recovery SNR is equal to 14.4 dB,
which reveals the accuracy of our measurement circuit.

6. PREVIOUS WORKS

The work presented in this paper focuses on the multichannel com-
pression of neural signals recorded on an array of electrodes. The
work by Chen [1] performs the compressive sensing in the digital
domain on a single channel synthetic EEG data. Laska and Chen
([10, 11]) consider the same single channel compressive sensing ap-
proach in analog domain, prior to ADC. The method presented in
this paper is shown to be significantly more efficient in terms of im-
plementation area per channel while achieving comparable compres-



0 50 100 150 200 250
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time [msec]

A
m

p
lit

u
d
e
 [
V

]

 

 

Reconstructed

Original

(a)

0 50 100 150 200 250
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time [msec]

A
m

p
lit

u
d
e
 [
V

]

 

 

Reconstructed

Original

(b)

0 50 100 150 200 250
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time [msec]

A
m

p
lit

u
d
e
 [
V

]

 

 

Reconstructed

Original

(c)

0 50 100 150 200 250
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time [msec]

A
m

p
lit

u
d
e
 [
V

]

 

 

Reconstructed

Original

(d)

0 50 100 150 200 250
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time [msec]

A
m

p
lit

u
d
e
 [
V

]

 

 

Reconstructed

Original

(e)

Fig. 2: Reconstruction quality of the different iEEG channels for the proposed multichannel iEEG compressive sampling scheme with sampling ratio of 0.25.
(a) Channel 1 of the multichannel iEEG, reconstruction SNR = 19.75 dB. (b) Channel 2 of the multichannel iEEG, reconstruction SNR = 13.1 dB. (c)
Channel 3 of the multichannel iEEG, reconstruction SNR = 9.07 dB. (d) Channel 6 of the multichannel iEEG, reconstruction SNR = 17.5 dB. (e) Channel
15 of the multichannel iEEG, reconstruction SNR = 13.59 dB.

sion and power reduction performance to the previous circuit-level
compressive sensing systems for neural recording.

7. CONCLUSION

This paper presents a new microelectronic system for compressive
recording of multichannel high density intracranial neural signals.
We developed a reconstruction model to efficiently reconstruct the
multichannel neural signal based on a multichannel basis. To avoid
the power and area overhead of placing an individual random se-
quence generator per channel, an efficient method for multi-output
sequence generation is also presented. Finally, without applying
any thresholding or signal-dependent preprocessing, the potential
interest of our proposed scheme is evaluated through system and
circuit level simulations.
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