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Abstract: In this paper a new method for fixed-order output-feedback Linear Parameter
Varying (LPV) controller design is presented. First, a set of stabilizing LPV controllers is given
as an inner convex approximation of the non-convex set of all stabilizing LPV controllers with the
same order. This characterization is based on the decoupling of the state and Lyapunov matrices
appearing together in the derivative of the Lyapunov function. As a measure of performance the
decay-rate related to exponential stability is considered. The efficiency of the proposed method
is illustrated on an appropriate simulation example.

1. INTRODUCTION

In recent years the modeling and control of LPV systems
has become a very important area of research (e.g. Leith
and Leithead [2000]). The motivation is to use of linear
systems theory tools on a wide class of nonlinear systems
(Shamma and Athans [1991]). Over the years, the theory
of LPV systems was successfully used for modeling and
control in practical applications, e.g. for wind turbine
control (F. D. Bianchi et al. [2004]), turbofan engines (W.
Gilbert et al. [2010]), wafer stage (Wassink et al. [2005])
and active braking control (G. Panzani et al. [2012]).

LPV systems are characterized by linear-like models de-
pending on time-varying measured signals which we usu-
ally refer to as scheduling parameters. One of the im-
portant aspects is the way the scheduling parameters
are handled in the design process. In some of the ap-
proaches (e.g. Apkarian and Gahinet [1995]) Linear Frac-
tional Transformation (LFT) framework is used to isolate
the scheduling parameters, which allows the small-gain
theorem to be used for the analysis of system’s stability. In
this approach conservatism stems from the fact that the
scheduling parameters are collected into an uncertainty
matrix of a very specific structure, while the small-gain
theorem provides stability for a system interconnected
with “any” uncertainty from a bounded set. The use of
a single quadratic Lyapunov function guarantees stability
even for infinitely fast variations of scheduling parameters.
In (F. Wu et al. [1996]), however, it is shown that there
exist some LPV systems that are not stabilizable using
a single quadratic Lyapunov function. So, considering a
bound on the variation rate of scheduling parameters,
which is realistic in most practical applications, will cer-
tainly relax the controller synthesis problem.

Parameter Dependent Lyapunov Functions (PDLF) are
used in (F. Wu et al. [1996]) and (Apkarian and Adams
[1998]). In (F. Wu et al. [1996]) both state-feedback
and full-order output feedback are treated in a relatively
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general setting. All the stability constraints are polynomial
in the scheduling parameters, and their satisfaction over
the whole polytope is approximately ensured by gridding
in the parameter space. This is justified by the fact that in
practice often the number of scheduling parameters does
not exceed 3. Also, as a consequence of the way the original
stability constraints are transformed into Linear Matrix
Inequalities (LMIs), controller matrices will depend on
the derivative of the scheduling parameter, which is not
measurable in the general case. In (Apkarian and Adams
[1998]) similar problems appear, but dependence of the
output-feedback controller on the scheduling parameters’
derivative can be avoided by fixing part of the structured
Lyapunov matrix over the polytope. The conservatism
of the approach can be reduced by the use of a scaling
matrix. An iterative approach is proposed that leads to a
local performance optimum. This approach is improved in
(Sato [2011]) by slightly different structuring of Lyapunov
matrix and the addition of a scalar parameter. It is proven
that this approach will give at worst the same performance
as the one in (Apkarian and Adams [1998]), but at the cost
of increased computation time related to the line search
over the space of the scalar parameter.

In paper (J. C. Geromel et al. [1998]) sufficient stability
condition for the continuous-time systems with polytopic
uncertainty is derived. Stability is proven through the
existence of PDLF. Conditions for the stability of whole
polytope are represented by the means of finite number
of matrix inequalities, which is enabled by decoupling
of state and Lyapunov matrix by the means of slack
variable matrices. Obtained stability conditions are similar
to conditions derived in this paper, however the idea
that leads to conditions is different. These conditions are
further developed in the literature, e.g. for the robust
output feedback controller design for the continuous-time
polytopic systems in (Geromel et al. [2007]).

Practical implementation of LPV controllers is in general
a complex task. In the state-feedback case, in addition to
measuring/estimating the states, the scheduling param-
eters should be measured/estimated. For implementation
of full-order output-feedback LPV controllers some tedious



linear algebra has to be applied online, including matrix
inversion, which limits the use of such controllers. Also,
the order of such controllers is related to the order of
the plant, which could be very high. For these reasons,
there exists a need for fixed-order output-feedback LPV
controller synthesis methods.

In (Henrion et al. [2003]) and (H. Khatibi and A. Karimi
[2010]) some methods for stabilization of polytopic un-
certain systems by fixed-order robust controllers are pro-
posed. The type of plant models considered in these papers
is SISO rational transfer functions with their numerators
and denominators belonging to some polytope of poly-
nomials. These approaches are based on the existence
of a stable central polynomial, which is used for the
convexification of the stability constraints for the whole
polytope. These ideas are expanded to LPV systems with
a scheduling parameter dependent transfer function rep-
resentation in (W. Gilbert et al. [2010]) and (Z. Emedi
and A. Karimi [2012]). The approach in (W. Gilbert et al.
[2010]) is successfully applied to a real turbofan engine
control problem. However, the transfer function represen-
tation of LPV systems could be very limiting because
affine LPV state-space models, coming e.g. from physical
modeling, would produce transfer functions which would
be polynomial (of the order of the plant) in the scheduling
parameters. The other adverse side is the extension of the
approach to MIMO systems which could be very involved
as all transfer functions would have to be brought to the
common denominator, increasing the complexity of the
plant models.

In this paper we present a new fixed-order output-feedback
LPV controller design method for state-space LPV plant
models with affine dependence on the scheduling param-
eter vector. Some bounds on the scheduling parameters
and their variation rates are assumed through the use of
affine PDLF. As a performance measure, the decay rate
related to exponential stability of the closed-loop system
is considered. In Section 2 we introduce the class of LPV
plant models and the LPV controller structure, with em-
phasis on their interconnection. Then, in Section 3, a new
convex set of fixed-order LPV controllers, with exponential
decay rate as a performance measure is proposed. The
effectiveness of the proposed method is illustrated on a
simulation example in Section 4, with remarks on some
additional features. Finally, the content of the paper is
summarized in Section 5.

2. PROBLEM DESCRIPTION

2.1 Plant model

We consider a class of continuous-time LPV systems given
by the following model

ẋg(t) = Ag(θ(t))xg(t) +Bg(θ(t))u(t) (1)

y(t) = Cgxg(t)
where xg(t) represents the state vector belonging to R

n,
u(t) is the control input vector belonging to R

nu , y(t)
is the plant output vector belonging to R

ny and θ(t)
represents the vector of scheduling parameters:

θ = [θ1, . . . , θnθ
]T .

The plant model is strictly proper, a characteristic of all
physical systems. Proper models can be easily converted to

a strictly proper model by considering a high bandwidth
filter for the output sensors. For some technical reasons,
the scheduling parameter vector appears only in one of
the vectors Bg or Cg. Here, the results are given for the
case that Bg is a function of the scheduling parameters,
but similar results can be developed for the other case,
straightforwardly.

One important subclass of LPV systems, related to many
practical problems, are LPV systems with affine structure.
They are characterized through the affine dependence of
state-space matrices on the scheduling parameter vector:

Ag(θ(t)) = Ag0 +

nθ∑
i=1

θi(t)Agi , (2)

similarly for Bg(θ(t)). In many applications, the schedul-
ing parameter vector θ(t) belongs to a hyperrectangle
Θ ∈ R

nθ , i.e.

θi(t) ∈ [θi, θi], i = 1, . . . , nθ. (3)

The set of vertices of Θ will be denoted by Θv.

2.2 Controller structure

Our goal is to parameterize a set of fixed-order LPV
dynamic output feedback controllers K(θ(t), θ̇(t)) that
stabilize the plant G(θ(t)).

The structure of the LPV controller K(θ(t), θ̇(t)) is given
by

ẋk(t) = Ak(θ(t), θ̇(t))xk(t) +Bk(θ(t), θ̇(t))(r(t) − y(t))

u(t) = Ckxk(t) +Dk(r(t) − y(t)), (4)

with xk(t) representing the vector of controller states.

Similarly to θ(t), we suppose that θ̇(t) belongs to a
hyperrectangle ∆ ∈ R

nθ , i.e.

θ̇i(t) ∈ [δi, δi], i = 1, . . . , nθ, (5)

and by ∆v we will denote the set of vertices of ∆.

The dependence of the controller matrices on the schedul-
ing parameter vector θ(t) and its variation rate θ̇(t) is

affine, as for the plant, with matrix Ak(θ(t), θ̇(t)) given
by

Ak(θ(t), θ̇(t)) = Ak0 +

nθ∑
i=1

θi(t)Aki +

nθ∑
i=1

θ̇i(t)Akdi , (6)

and accordingly for Bk(θ, θ̇(t)). In the rest of this paper

the dependence of θ and θ̇ on time is implied.

It is important to emphasize at this stage that in practice θ̇
is not always measurable. This can simply be circumvented
by setting to zero the terms of K(θ, θ̇) related to θ̇.

2.3 Closed-loop system structure

By combining the plant model and the controller we obtain
the closed-loop system representation:[

ẋg(t)
ẋk(t)

]
=

[
Ag(θ)−Bg(θ)DkCg Bg(θ)Ck

−Bk(θ, θ̇)Cg Ak(θ, θ̇)

] [
xg(t)
xk(t)

]

+

[
Bg(θ)Dk

Bk(θ, θ̇)

]
r(t) (7)

y(t) = [Cg 0]

[
xg(t)
xk(t)

]



We can notice that the closed-loop matrices depend
affinely on both θ and θ̇. To shorten the presentation in
the rest of the text we will denote the closed-loop matrices
by Acl(θ, θ̇), Bcl(θ, θ̇) and Ccl, and the closed-loop state
vector by x = [xT

g (t) x
T
k (t)]

T , so (7) is rewriten as

ẋ(t) =Acl(θ, θ̇)(t))x(t) +Bcl(θ, θ̇)(t))r(t) (8)

y(t) =Cclx(t).

2.4 Stability conditions

Stability of a dynamical system can be examined through
the existence of an appropriate Lyapunov function. The
standard choice of a Lyapunov function candidate for an
LPV system is a quadratic function given as V (x) = xTPx
(with implicit dependence on time). The matrix P should
not depend on θ if the scheduling parameters can vary with
infinite variation rate. However, in practice it is reasonable
to assume that we can set certain bounds on θ̇, and in this
case the use of a unique P over Θ could be too conserva-
tive. So, as a Lyapunov function candidate we will consider
a Parameter Dependent Lyapunov Function (PDLF) with
affine dependence on the scheduling parameter vector:

V (x) = xTP (θ)x, P (θ) = P0 +

nθ∑
i=1

θiPi, (9)

where P (θ) > 0 for ∀θ ∈ Θ.

The following results are well known in the literature and
are listed to improve the presentation. From the fact that
V (x) is quadratic in x and P (θ) is positive definite we can
conclude that V (x) is positive for all non-zero state vectors
x and zero only for x = 0. For V (x) to be a Lyapunov
function for LPV system (7) its derivative needs to be
negative for all non-zero x, which is given by

V̇ (x) =
dV

dt
(xTP (θ)x)

= ẋTP (θ)x+ xTP (θ)ẋ+ xT Ṗ (θ)x. (10)

This combined with the dynamic equation of the unforced
system ẋ = Acl(θ, θ̇)x gives

V̇ (x) = xT [AT
cl(θ, θ̇)P (θ)+P (θ)Acl(θ, θ̇)+ Ṗ (θ)]x, (11)

where

Ṗ (θ) =

nθ∑
i=1

θ̇iPi = P (θ̇)− P0.

Looking at the matrix inequality

AT
cl(θ, θ̇)P (θ) + P (θ)Acl(θ, θ̇) + Ṗ (θ) < 0,

∀θ ∈ Θ ∧ ∀θ̇ ∈ ∆ (12)

we can observe that the left hand side of the inequality
is polynomial in (θ, θ̇). This means that in general the
infinite number of inequalities in (12) cannot be straight-
forwardly replaced by a finite inequality set without loos-
ing either the full guarantee of stability or introducing
some conservatism. On the other hand, the controller
parameters in Acl are multiplied by P which makes the
above inequality bilinear. As it will be presented in the
following section, we will replace the given infinite set
of bilinear matrix inequalities with a finite set of linear
matrix inequalities in which Acl(θ, θ̇) will be decoupled
from P (θ).

3. FIXED-ORDER LPV CONTROLLER DESIGN

Our idea is to present an inner convex approximation
of the stability condition (12) for affine LPV state-space

plants by decoupling Acl(θ, θ̇) from P (θ). To perform this,
similarly to (W. Gilbert et al. [2010]) and (Z. Emedi and A.
Karimi [2012]), but taking into account that we treat state-
space models, we are looking for a “decoupling matrix”
whose stability will be related to the stability of the given
LPV system.

To proceed, we will in short present some definitions and
lemmas which will be useful for the representation of the
convex set of fixed-order LPV controllers.

The KYP lemma for continuous-time systems states that
the transfer function H(s) = C(sI−A)−1B+D is Strictly
Positive Real (SPR) transfer function if and only if there
exists a matrix P = PT > 0 such that[

ATP + PA PB − CT

BTP − C −D −DT

]
< 0. (13)

By the Schur complement lemma (Boyd et al. [1994]) the
SPRness of the system implies its stability in Lyapunov
sense. We will use the expression “Hurwitz stable” for a
matrix with all of its eigenvalues in the left-hand side of
complex plane. The following lemma relates the SPRness
of a transfer function with the SPRness of its inverse.

Lemma 1. These two statements are equivalent:

1) H(s) =

[
A B
C I

]
is SPR.

2) H−1(s) =

[
A−BC B
−C I

]
is SPR.

Proof. According to the KYP lemma and using the Schur
complement lemma, Statement 1 is equivalent to the
existence of P = PT > 0 such that

ATP + PA+
1

2
(PB − CT )(BTP − C) < 0. (14)

This inequality can be rearranged to

(A−BC)TP +P (A−BC)+
1

2
(PB+CT )(BTP +C) < 0,

(15)
which is equivalent to Statement 2. �

The following consequence of Lemma 1 will be of great
importance for stating the main result of this paper.

Lemma 2. The following two matrix inequalities are equiv-
alent: [

MTP + PM P −MT +AT

P −M +A −2I

]
< 0 ⇔ (16)

[
ATP + PA P −AT +MT

P −A+M −2I

]
< 0. (17)

Proof. Set B = I and C = A−M for the transfer function
H in Lemma 1. Now, writing the KYP lemma conditions
for the SPRness of transfer functions H−1 and H and
taking into account their equivalence, we obtain (16) and
(17). For the fact that in the first inequality there is no
product of the matrices A and P we will refer to matrix
M as a “decoupling matrix”. �



The next lemma will be used to represent the convex set of
controllers as a finite number of Linear Matrix Inequalities
(LMIs).

Lemma 3. Consider a symmetric matrix L which is affine
in the parameter vector φ, i.e.

L(φ) = L0 +

nφ∑
i=1

φiLi, (18)

where φ belongs to the polytope Φ, and the finite set of
vertices of Φ is denoted by Φv = {φv1 , . . . , φvq}. Then the
infinite set of matrix inequalities

L(φ) < 0, ∀φ ∈ Φ (19)

is equivalent to the finite set of matrix inequalities

L(φ) < 0, ∀φ ∈ Φv. (20)

The proof is easily derived using convex combinations of
the vertices.

Finally, we can state the paper’s main result.

Theorem 1. Suppose that the LPV plant model is given
by (1) and (2) and that the scheduling parameters and
their variation rates belong to hyperrectangles Θ and ∆
(as in (3) and (5)), with Θv and ∆v denoting vertex sets
of Θ and ∆. Then, given a Hurwitz stable matrix M , the
controller in (4) and (6) stabilizes the LPV model for any
allowable scheduling parameter trajectory if[

MTP (θ) + P (θ)M + P (θ̇)− P0 (∗)
P (θ)−M +Acl(θ, θ̇) −2I

]
< 0, (21)

P (θ) > 0 , ∀θ ∈ Θv, ∀θ̇ ∈ ∆v.

Symbol (∗) substitutes terms which ensure the symmetry
of the matrix.

Proof. First we can observe that left-hand side of (21) can
be represented as a symmetric matrix expression affine in

vector φT = [θT θ̇
T
]. Noticing that the polytope Φ is given

by Φ = Θ×∆, we can conclude from Lemma 3 that matrix
inequality (21) is satisfied for all θ ∈ Θ and θ̇ ∈ ∆. But
now observe Lemma 2 and notice that the addition of a
term Ṗ (θ) to the upper left blocks of both matrices does
not spoil the equivalence. Therefore from (21) we obtain
the negative definiteness of[

Acl(θ, θ̇)
TP (θ) + P (θ)Acl(θ, θ̇) + P (θ̇)− P (0) (∗)

P (θ) +M −Acl(θ, θ̇) −2I

]
.

Using the Schur complement lemma we can conclude that
the following inequality is implied

Acl(θ, θ̇)
TP (θ) + P (θ)Acl(θ, θ̇) + P (θ̇)− P0 < 0

for ∀θ ∈ Θ and ∀θ̇ ∈ ∆, which means that the system is
stabilized for bounded scheduling parameter variations.�

Remark 1. As in (21) the controller and Lyapunov ma-
trices appear affinely, it is a set of LMIs as long as the
decoupling matrix M is fixed. A proposition for the choice
of M will be given in the next subsection.

The set of LMIs in (21) guarantees stability of the closed-
loop system for a bounded scheduling parameter variation
rate. We can also ensure a good exponential stability
decay-rate for the closed-loop system.

Corollary 1. Making the same assumptions as in Theo-
rem 1, the following finite set of matrix inequalities with
γ > 0

[
MTP (θ) + P (θ)M + P (θ̇)− P0 + γP (θ) (∗)

P (θ)−M +Acl(θ, θ̇) −2I

]
< 0,

(22)

P (θ) > 0 , ∀θ ∈ Θv, ∀θ̇ ∈ ∆v

describes the convex set of LPV controllers stabilizing the
LPV plant and ensuring an exponential stability decay-
rate α such that 0 < α < γ and

‖x(t)‖ ≤ c‖x(0)‖e−2αt (23)

for some c > 0. The value of γ can be maximized by the
bisection algorithm.

Proof. Based on Theorem 4.10 from (Khalil [2006]).

Remark 2. If in (22) we replace the term γP (θ) by γI, the
maximum of γ is a lower bound for the decay-rate α.

3.1 Choice of the decoupling matrix M

The choice of M is crucial in this approach. The role of
this matrix is very similar to that of “central polynomial”
in Henrion et al. [2003] and W. Gilbert et al. [2010]. For
this we propose a method based on the gain-scheduled
controllers which are closely related to LPV controllers.
As mentioned, gain-scheduling is a control paradigm com-
monly used in practice. It is based on two main steps:
design of linear controllers for some operating points of
the system and interpolation of these controllers in the
real-time to obtain the controller for a point which is not
included in the original operating point set. Now, suppose
that our set of operating points corresponds to θ ∈ Θv. For
each of these operating points we can design a controller by
any of the classical controller design approaches. However,
as the next step we will perform the calculation of M
(instead of interpolation). Based on the initial controllers,
we can compute closed-loop matrices A0

clj
, j = 1, . . . , 2nθ .

Then, using Lemma 2 we propose the following semi-
definite programming problem:[

(A0
clj )

TPj + PjA
0
clj + γI (∗)

Pj +M − A0
clj −2I

]
< 0. (24)

If this problem is feasible, considering M and Pj , for
j = 1, . . . , 2nθ as optimization variables, we choose the M
for which the value of γ is maximized using the bisection
algorithm.

This means that the presented LPV controller design
algorithm comprises of the following steps:

Step 1 : Design of initial controllers, using some classi-
cal controller design approach, one per vertex of the
scheduling parameter space;

Step 2 : Calculation of the decoupling matrix M from
(24), based on these initial controllers;

Step 3 : Design of the LPV controller and Lyapunov
function using (21), based on M from Step 2.

4. SIMULATION EXAMPLE

The efficiency of the proposed method is verified on
the simulation example taken from (Wu [2001]). The
simulation plant represents a simple two-disc system with
the following LPV model



ẋg =




0 0 1 0
0 0 0 1

θ1 − k0
m1

k0
m1

b0
m1

0

k0
m2

θ2 − k0
m2

0
b0
m2



xg +




0
0
0.1

m1
0


u (25)

y = [ 0 1 0 0 ]xg,

with constants k0 = 200N/m, b0 = 1kg/s, m1 = 1kg
and m2 = 0.5kg. The scheduling parameters θ1 and θ2
belong to the intervals [0, 9] and [0, 25], respectively. For
bounds on the scheduling parameter variation rate we

choose the reasonable values of [δ1, δ1] = [−30, 30]
rad

s2

and [δ2, δ2] = [−50, 50]
rad

s2
. Analysing the plant for frozen

values of θ we can easily observe that for [θ1, θ2] = [0, 0]
there is one pole at 0, and for the other 3 vertices of
the hyperrectangle Θ, the open-loop system is unstable.
Our aim is to compute a second-order LPV controller
that guarantees the exponential stability of the closed-loop
system with a good decay rate.

The first step is to design simple initial controllers for 4
vertices of Θ. As a tool, the Frequency-domain Robust
Controller Design Toolbox (Karimi [2012]) is used. To
show that simple tuning of initial controllers gives good
results we choose to design PID controllers, as this is still
the first choice of control engineers in practice (Visioli
[2006]). The controllers are designed by an open-loop
shaping method that guarantees a maximum of 4.5 for
the magnitude of the sensitivity function. In this manner
we obtain the following controllers:

K0
1 (s) =−828.73

(s+ 0.3278)(s+ 5.32)

s(s+ 50)
for θ = [0, 0]T

K0
2 (s) =−992.27

(s+ 0.5496)(s+ 17.19)

s(s+ 50)
for θ = [0, 25]T

K0
3 (s) =−919.68

(s+ 0.7045)(s+ 15.4)

s(s+ 50)
for θ = [9, 0]T

K0
4 (s) =−948.97

(s+ 0.1187)(s+ 24.58)

s(s+ 50)
for θ = [9, 25]T .

Obviously, if we could obtain a unique Lyapunov matrix
P for 4 closed-loop systems based on these 4 controllers,
then any interpolation between these controllers would
produce an LPV controller stabilizing the LPV plant for
any possible variation of θ. However, examining the system
of 4 LMIs in unknown matrix P gives no feasible solution.
Therefore, we can conclude that it makes sense to design
an LPV controller for given bounds on the scheduling
parameter variation rate.

Using initial controllers, the decoupling matrix M is ob-
tained from the 4 LMIs in (24) related to the 4 vertices of
Θ.

The next step is to verify the existence of an affine LPV
controller K(θ) and an affine Lyapunov matrix P (θ) in
(22). All controller state-space matrices, i.e. Ak, Bk, Ck

and Dk are chosen to depend affinely on θ. Note that since
matrices Bg and Cg are independent of θ, this choice will
not change the affineness of Acl with respect to θ. The
number of LMIs appearing here is 16, representing the

number of vertices of Θ × ∆. For solving the described
semidefinite programming problem, SDPT3 (Toh et al.
[1999]) can be used as a solver, with YALMIP (Löfberg
[2004]) as a Matlab environment for describing convex
programming problems. The maximum value of γ obtained
by the bisection algorithm is 0.6789. The state-space
description of the resulting controller K1 is:

Ak(θ) =

[−3.9959 −0.9679
−1.1207 −46.2523

]
+ θ1

[−0.0994 0.2436
−0.2160 −0.0359

]

+θ2

[
0.1112 0.0277
0.2213 −0.0066

]

Bk(θ) =

[
10.7943
177.6351

]
+ θ1

[−1.0236
0.0678

]
+ θ2

[−0.1847
−0.0736

]

CT
k (θ) =

[
12.2934
109.0334

]
+ θ1

[
2.7138
−2.6864

]
+ θ2

[−1.0924
−0.2185

]

Dk(θ) =−639.2795+ 5.5746θ1 − 3.5194θ2.

Remark 3. The results can be improved if we use a differ-
ent choice of decoupling matrix M based on the LPV con-
troller K1. This means that matrices A0

clj
in the algorithm

step (A2) are computed based on the LPV controller K1

(and not on the initial controllers). Obtained decoupling
matrix M1 leads to a new controller K2 with γ = 1.0769.
If we continue redesigning M followed by the controller in
this manner, after 4 more iterations we obtain controller
K6 with γ = 1.8034. To see how an increased value of γ
affect the response of the system, we can perform simula-
tions with a step signal as a reference for the closed-loop
system with LPV controllersK1 and K6. In both cases the
step is applied at t = 1s, while θ1 and θ2 take exponential
trajectories as follows:

θi =

{
θi , t < 1

θie
−(t−1)/τi , t ≥ 1

, i = 1, 2.

which corresponds to moving exponentially from θ1 = 9
and θ2 = 25 to θ1 = 0 and θ2 = 0, respectively. Taking
the equation of parameter trajectories into account, we
can conclude that the absolute value of the variation rate
of θi will be maximum for t = 1s where it reaches the
value θi/τi. So, to bring the system to the design limits we

choose τi = θi/δi, i.e. τ1 = 0.3s and τ2 = 0.5s. Figure 1
illustrates the step response for K1 (red) and K6 (blue).
The second one is much less oscillatory (no undershoot
and shorter settling time). Note that the open-loop model
is unstable and an overshoot of 100% with a second order
controller is a reasonable response very close to the limit
of achievable performance.

Remark 4. As previously explained, this approach allows
us to obtain controllers that depend on both θ and θ̇, if
variation rate measurements are also available. This pro-
vides some additional degrees of freedom that may lead to
better decay-rate performance. For this example, however,
using the same initial M we can obtain a new controller
K(θ, θ̇) with only a small improvement in γ(=0.7117),
which does not significantly change the closed-loop per-
formance.

Remark 5. In this approach, some of the poles of the
controller can be fixed to a predefined value. For example,
to ensure the integral action of the LPV controllers to
track the step for frozen values of scheduling parameter, we
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Fig. 1. Step response for two different LPV controllers.
Red line: using initial PID controllers; Blue line: after
5 iterations.

could simply constrain one column (or row) of the matrices
Aki to be identically equal to zero.

5. CONCLUSIONS

In this paper a new method for designing fixed-order LPV
controllers with state-space representations affine in the
scheduling parameters is presented. A set of LMI con-
straints that guarantee the stability of the LPV system
for bounded variation rates of the scheduling parameters
is proposed, and a recommendation for the choice of a
decoupling matrix is given. An upper bound on the expo-
nential stability decay-rate is also treated. The efficiency
of the proposed method is illustrated by means of a
simulated example from the literature. It is shown that,
by simple application of the proposed method, a fixed-
order LPV controller which ensures stability for all values
of the scheduling parameters and the given bounds on
their variation rates can be computed. The performance of
the closed-loop system depends on the choice of a decou-
pling matrix based on some initial non-LPV controllers.
In future work the effect of this choice will be studied
and other methods will be investigated. Other types of
performance (H2 and H∞) will also be considered as well
as robustness to uncertainty in the measurement of the
scheduling parameter vector.
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