Study of a class of models for self-organization: equilibrium analysis

A new class of nonlinear stochastic models is introduced with a view to explore self-organization. The model consists of an assembly of anharmonic oscillators, interacting via a mean field of system size range, in presence of white, Gaussian noise. Its properties are explored in the overdamped regime (Smoluchowski limit). The single oscillator potential is such that for small oscillator displacements it leads to a highly nonlinear force but becomes asymptotically harmonic. The shape of the potential can be a single-or double-well and is controlled by a set of parameters. Through equilibrium statistical mechanical analysis, we study the collective behavior and the nature of phase transition. Much of the analysis is analytic and exact. The treatment is not restricted to the thermodynamic limit so that we are also able to discuss finite size effects in the model. © 1983 Plenum Publishing Corporation.

Published in:
Journal of Statistical Physics, 32, 3, 585-614
Kluwer Academic Publishers-Plenum Publishers
Department of Physics, University of Toronto, Toronto, M5S 1A7, Ontario, Canada
Cited By (since 1996): 4
Export Date: 6 December 2012
Source: Scopus
Language of Original Document: English
Correspondence Address: Hongler, M.-O.; Department of Physics, University of Toronto, Toronto, M5S 1A7, Ontario, Canada
Other identifiers:
View record in Web of Science
Scopus: 2-s2.0-0006137660

 Record created 2013-01-07, last modified 2018-12-03

Rate this document:

Rate this document:
(Not yet reviewed)