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Abstract

We introduce in this thesis the idea of a variable lookback model, i.e., a model
whose predictions are based on a variable portion of the information set. We verify
the intuition of this model in the context of experimental finance. We also propose a
novel algorithm to estimate it, the variable lookback algorithm, and apply the latter
to build investment strategies.

Financial markets under information asymmetry are characterized by the presence
of better-informed investors, also called insiders. The literature in finance has so far
concentrated on theoretical models describing such markets, in particular on the role
played by the price in conveying information from informed to uninformed investors.
However, the implications of these theories have not yet been incorporated into pro-
cessing methods to extract information from past prices and this is the aim of this
thesis. More specifically, the presence of a time-varying number of insiders induces
a time-varying predictability in the price process, which calls for models that use a
variable lookback window. Moreover, although our initial motivation comes from the
study of markets under information asymmetry, the problem is more general, as it
touches several issues in statistical modeling. The first one concerns the structure of
the model. Existing methods use a fixed model structure despite evidences from data,
which support an adaptive one. The second one concerns the improper handling of
the nonstationarity in data. The stationarity assumption facilitates the mathematical
treatment. Hence, existing methods relies on some form of stationarity, for example,
by assuming local stationary, as in the windowing approach, or by modeling the un-
derlying switching process, for example, with a Markov chain of order 1. However,
these suffer from certain limitations and more advanced methods that take explicitly
into account the nonstationariry of the signal are desirable. In summary, there is a
need to develop a method that constantly monitors what is the appropriate structure,
when a certain model works and when not or when are the underlying assumptions
of the model violated.

We verify our initial intuition in the context of experimental finance. In particular,
we highlight the diffusion of information in the market. We give a precise definition to
the notion of the time of maximally informative price and verify, in line with existing
theories, that the time of maximally informative price is inversely proportional to the
number of insiders in the market. This supports the idea of a variable lookback model.
Then, we develop an estimation algorithm that selects simultaneously the order of the
process and the lookback window based on the minimum description length principle.
The algorithm maintains a series of estimators, each based on a different order and/or
information set. The selection is based on an information theoretic criterion, that ac-
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counts for the ability of the model to fit the data, penalized by the model complexity
and the amount of switching between models. Finally, we put the algorithm at work
and build investment strategies. We devise a method to draw dynamically the trend
line for the time-series of log-prices and propose an adaptive version of the well-known
momentum strategy. The latter outperforms standard benchmarks, in particular dur-
ing the 2009 momentum crash. Key words: nonstationary signal processing,
minimum description length, financial modeling, adaptive momentum.



Résumé

Cette thèse introduit l’idée d’un modèle à horizon variable, c.à.d. un modèle dont
les prédictions sont basées sur une portion variable de l’ensemble d’information. Nous
vérifions l’intuition qui sous-tend ce modèle dans le contexte de la finance expérimen-
tale. Nous proposons également un nouvel algorithme, l’algorithme à horizon variable,
et appliquons ce dernier pour construire des stratégies d’investissement.

Les marchés financiers avec asymétrie de l’information se caractérisent par la pré-
sence d’investisseurs mieux informés, aussi appelés initiés. La littérature en finance
s’est pour le moment concentrée sur des modèles théoriques décrivant ces marchés, en
particulier sur le rôle joué par le prix pour transmettre l’information des investisseurs
informés aux non informés. Cependant, les implications de ces théories n’ont à ce
jour pas été incorporées dans des méthodes de traitement qui extraient l’information
des prix passés et c’est le but de cette thèse. Plus spécifiquement, la présence d’un
nombre variable d’initiés induit une variabilité dans la prédictibilité du processus
de prix tel qu’elle requiert des modèles à horizon variable. De plus, bien que notre
motivation initiale vienne de l’étude des marchés avec asymétrie de l’information, le
problème est plus général, car il touche à plusieurs problèmes en modélisation statis-
tique. Le premier concerne la structure du modèle. Les méthodes existantes utilisent
une structure fixe en dépit des preuves tirées des données qui appuient l’hypothèse
d’une structure adaptable. Le deuxième concerne le traitement inapproprié de la
non stationnarité. L’hypothèse de stationnarité facilite le traitement mathématique.
Ainsi, les méthodes existantes sont fondées sur une forme ou autre de stationnarité,
par exemple, la stationnarité locale dans le traitement par fenêtre ou la modélisation
du processus de saut, ex. avec un processus de Markov d’ordre 1. Cependant, ces
dernières approches souffrent de certaines limites et des méthodes plus avancées, qui
tiennent compte explicitement de la non stationnarité du signal, sont souhaitables.
En résumé, il est nécessaire de développer des méthodes qui mesurent en permanence
quelle est la structure la plus appropriée, quand un modèle fonctionne et quand il ne
fonctionne plus et quand les hypothèses qui sous-tendent le modèle sont violées.

Nous vérifions notre intuition dans le contexte de la finance expérimentale. En
particulier, nous mettons en évidence le processus de diffusion de l’information dans
le marché. Nous donnons une définition précise de la notion de temps du prix maxi-
malement informatif et vérifions, en accord avec les théories existantes, que le temps
du prix maximalement informatif est inversement proportionnel au nombre d’initiés
dans le marché. Ce résultat étaie l’idée d’un modèle à horizon variable. Nous dé-
veloppons ensuite un algorithme d’estimation basé sur le principe de description de
longueur minimale. L’algorithme calcule une série d’estimateurs, chacun basé sur un
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ordre et/ou un ensemble d’information différent. La sélection s’opère selon un critère
tiré de la théorie de l’information, qui tient compte de la capacité du modèle à re-
présenter les données, pénalisée par la complexité du modèle et le nombre de sauts
entre modèles. Finalement, nous appliquons l’algorithme pour construire des straté-
gies d’investissement. Nous concevons une méthode pour dessiner dynamiquement la
ligne de tendance pour la série temporelle du logarithme du prix et proposons une
version adaptable de la célèbre stratégie du moment. Notre stratégie surperforme par
rapport aux stratégies de référence standards, en particulier durant le krach de la
stratégie du moment en 2009. Mots-clés : traitement du signal non station-
naire, description de longueur minimale, modélisation financière, stratégie
du moment adaptable.
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Chapter 1

Introduction

“Begin at the beginning,” the King
said gravely, “and go on till you
come to the end: then stop.”

Alice’s Adventures in Wonderland
Lewis Carroll

With the advance of modern computerized systems, the quantity and speed of
information availability have increased dramatically in everyday life. These technical
advances have been particularly pronounced in financial markets, where financial data
terminals with live feeds from the world’s exchanges are an imperative for a successful
investment manager. These developments have, however, not eliminated the presence
of information asymmetry in the market, on the contrary, it has become more relevant
than ever. It is with this backdrop that we started our research into the impact of
information asymmetry in financial markets. The origin of our research can be traced
back to recent contributions in the study of financial markets under information asym-
metry, both in the experimental finance and neurofinance field Bruguier et al. [2010],
as well as in the more traditional asset pricing and mathematical finance one Biais
et al. [2010]. In markets with information asymmetry, certain participants have access
to privileged private information. They are referred to as the informed investors, also
called insiders, as opposed to the uninformed ones. Biais et al. [2010] have developed a
simple investment strategy adopting the point of view of an uninformed investor. It is
solely based on price information, hence its name, price contingent strategy. Interest-
ingly, it outperforms standard benchmarks. This result proves that an immunization
against the adverse selection problem caused by the presence of better-informed in-
vestors is not only necessary but also possible. More specifically, the price contingent
strategy uses as predictor lagged relative prices. They are defined as the weights of
buy-and-hold portfolio with random starting values. Let n be the index of a stock,
n ∈ {1, . . . , N}. Let also p(t)

n be the price of stock n at time t and r(t)
n be the simple

return of stock n at time t, defined by

r(t)
n =

p
(t)
n − p(t−1)

n

p
(t−1)
n

. (1.1)

1
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The relative price of stock n at time t, p(t)
rel,n,is then given by

p
(t)
rel,n =

p
(t−1)
rel,n

(
1 + r

(t)
n

)

∑N
n=1 p

(t−1)
rel,n

(
1 + r

(t)
n

) . (1.2)

Returns are projected on relative prices lagged by one observation

r(t) = Bp
(t−1)
rel + e(t) (1.3)

and the estimated regression coefficients B are used to predict the two first moments
of stock returns. These are plugged into a portfolio optimizer, so as to obtain a mean-
variance optimal portfolio, whose ex ante volatility matches that of the market. The
statistical procedure used to estimate the model, namely generalized least-squares
(GLS), was judged “primitive”, in Peter Bossaerts’s own words. This calls for an
extension.

Moreover, Peter Bossaerts had a strong intuition on how to extend this: we should
use a variable lag of relative price instead of its value lagged by one observation. He
then coined the term variable delay model to describe such a model. Of course, his
intuition came with a justification. I can perfectly picture him explaining it to us,
while scribbling on the back of an envelope a graph that is tentatively reproduced
in Figure 1.1. The two lines represent the evolution of the price in a market where
some private information is distributed to a subset of the market participants, referred
to as the insiders, at time 0, and publicly revealed at time T . What distinguishes
the two curves is the proportion of insiders. On the one hand, when the insider is a
monopolist (blue line), information diffusion is only gradual and the time of maximally
informative price happens just before public revelation of the private information
Kyle [1985]. On the other hand, when the number of insiders increases (gold line),
there is more competition between them, the diffusion of private information is faster
and the delay between maximally informative price and public revelation of private
information increases. It took us three years to refine this initial intuition, verify
it in the context of experimental finance, develop a mathematical solution and its
applications in finance. In a nutshell, this is the topic of this thesis. Let us make this
idea more definite in the remainder of this chapter.

1.1 Problem formulation and motivation
In the first part of this chapter, we have introduced the idea of a variable delay

model, i.e., a model whose predictions are formed using a variable lag of its predictor.
Following our work with experimental data, we have refined this initial intuition,
leading to the idea of a variable lookback model. It is a model that uses a variable
portion of its information set to form its prediction. The idea of the variable delay is
essentially correct when used in conjunction with relative prices, as they constitute
an accumulated measure of past prices. If we use simply past prices instead, we
observe that an entire window of past prices should be used as a proxy for private
information. Moreover, the size of this window varies over time. This is justified by
the presence of a time-varying proportion of insiders, that affects the speed at which
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Figure 1.1: Evolution of the price following the arrival in the market of private
information at time 0, that is publicly revealed at time T . The two curves differ by
the number of informed investors: one monopolist insider (blue curve) and multiple
competing insiders (gold line). The delay between maximally informative price and
public revelation of private information at time T is proportional to the number of
insiders in the market.

private information is diffused into the price. This idea is further developed in Section
3.1.3.

Before enunciating the key problems that are at the heart of this thesis, let us
clarify the meaning of two terms, , lookback and order, that are going to constantly
come back like leitmotivs. Let us imagine we have to build a statistical model of a
financial time-series. Let us also assume this model depends on a l-dimensional vector
of parameters

θl ∈ Θl ⊂ Rl. (1.4)

We call order of a model the number of the parameters in excess of the zero order
model. For example, consider a linear factor model describing the return of stock n
at time t, reviewed in Section 2.2.1,

r(t)
n = αn + βn,1f

(t)
1 + . . .+ βn,kf

(t)
k + e(t)

n , (1.5)

where f (t)
k is the return on factor k at time t and e(t)

n the residuals at time t. This
model is parameterized by k+2 parameters, 1 for the intercept αn, k for the regression



4 Introduction

coefficients βn,1, . . . , βn,k and 1 for the variance of the residuals σ2,

θk+2 =




αn
βn,1
...

βn,k
σ2



. (1.6)

The order of the process is simply k, because the zero order model already has two
parameters, αn and σ2. Moreover, given a set of observations, a standard problem
in statistics is to estimate the model, i.e., determine from these observations an esti-
mate of the value of the parameters θl. We call lookback window the portion of the
observations used to estimate the model. In the variable lookback model, the size of
this window varies over time.

Remark. The notion of order and lookback are intricate idea, but should not
be confused. The lookback window should be larger than the order of the model, in
order to be able to compute an estimate of the parameters. For example, a lookback
of at least k + 1 observations is necessary to obtain a unique value of the maximum
likelihood estimator of the coefficients of an autoregressive (AR) process of order k.

1.1.1 Stationarity and the lack thereof

Definitions of stationarity

The problem with the idea of the variable lookback model is that it pushes us
outside of the sweet spot preferred of applied mathematicians, statisticians and signal
processing experts: stationarity. Informally, this term refers to the property of a
system that does not change over time. More formal definitions of stationarity are
given by Moura [2005]. Let Y (t) be a stochastic process, i.e., a series of random
variables indexed by discrete time t ∈ Z. In the most general terms, a stochastic
process is completely characterized by the joint cumulative distribution function of
any subset of its observations

F (y(1), . . . , y(T )) = P
(
Y (1) ≤ y(1), . . . , Y (T ) ≤ y(T )

)
. (1.7)

Here, the upper case is used to emphasize the random nature of the process, whereas
the lower case represents a specific realization of the process. A stochastic process is
strictly stationary if the joint cumulative distribution of any subset of observations is
invariant by a shift in the observations by δ

F (y(1+δ), . . . , y(T+δ)) = F (y(1), . . . , y(T )), ∀δ. (1.8)

Very few processes are strictly stationary in practice, e.g., a finite support signal is not
strictly stationary. Also, working with this general characterization of a stochastic
process is extremely tedious, and one usually resorts to using a more restrictive one.
In particular, another approach consists in focusing only on the first two moments of
the process, which constitutes a complete characterization if the process is Gaussian.
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The corresponding, weaker notion of stationarity, wide sense stationarity (w.s.s.), is
given by the two conditions

E
(
Y (t)

)
= E

(
Y (t+δ)

)
(1.9)

Cov(Y (t), Y (t+δ)) = E

((
Y (t) − E

(
Y (t)

))T (
Y (t+δ) − E

(
Y (t+δ)

)))
(1.10)

= Cov(δ) (1.11)

In plain English, the mean of the process is constant and its autocovariance function
is only a function of the lag δ. Furthermore the w.s.s. assumption is extremely
convenient in signal processing, because the filtered version of the w.s.s. process by
a linear time invariant (LTI), bounded input bounded output (BIBO) stable filter
is also w.s.s. and its autocorrelation can be easily computed in the Fourier domain
Sbaiz and Ridolfi [2006].

Absence of stationarity in financial time-series

From a finance perspective, there is compelling evidence that the market is not
stationary, even in the weaker w.s.s. sense. For example, we will see in Section 2.2.4
that there a stable set of factors describing the cross-section of stock returns does not
exist. In particular, when using principal component analysis to extract a series of
orthogonal factors, a variable number of factors is necessary to explain a fixed por-
tion of the total variance (Section 2.2.3). Furthermore, a potential justification for
the presence of nonstationarity in financial time-series is that of market participants
learn Bossaerts and Hillion [1999]. Learning acts as a feedback loop such that prof-
itable arbitrage opportunities are progressively identified by market participants and
consequently disappear. Moreover, two types of changes in the system can explain the
absence of stationarity, drifts and jumps. Drifts on the one hand refer to slow struc-
tural changes in the dynamics of the system. Techniques like adaptive filtering Sbaiz
and Ridolfi [2006], that assume some form of local stationarity, are well suited to track
drifts. On the other hand, jumps correspond to abrupt changes in the dynamics of
the system. Consider Figure 1.2 which represents the evolution of the Standards and
Poors (S&P)500 index between 2003 and 2010, sampled at daily frequency. Starting
in August 2007, the market has entered a phase of acute crisis, that started with the
burst of a real estate bubble in the United States (US). It has now evolved into one
of the worst global financial and economic crises since the 1930’s. Clearly, jumps are
better suited to describe the market entering a crisis.

Limitations of existing methods to handle nonstationarity

Despite this evidence, it is surprising to notice that, from a mathematical per-
spective, everything is done to come back to some form of stationarity when model-
ing financial time-series. The reason is certainly that this assumption facilitates the
mathematical treatment, a role comparable to the Gaussianity assumption. It is also
due to the fact that so little is known in the absence of stationarity. One way of
bypassing the problem of nonstationarity is to assume some form of local stationarity.
This means that the system stays constant over a certain portion of the most recent
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Figure 1.2: Evolution of the log-price of the S&P500 index, between 01.01.2003 and
01.01.2012, sampled at daily frequency.

observations, which is used for the estimation. This is referred to as local windowing
in signal processing. The problem is the choice of the appropriate window size. A
short window leads to quick adaptation, but the resulting estimates are noisier. Thus
there exists a trade-off between the speed of adaptation and the amount of noise in the
solution. However, windowing is intuitively unsuited to handling jumps in the system.
Consider again Figure 1.2. Let us assume a 5 year window of monthly data is used to
estimate our favorite model to predict the return on the S&P500 index just before the
crisis in July 2007. The lookback window is rolled over the observations, i.e., that, for
every new observation, we discard the oldest one, add the newest one and run again
the estimation procedure. When entering the crisis in August 2007 and in the coming
months, the window mostly contains data points which are no longer relevant for the
current dynamics of the system. Of course, managers will adapt their window size
over time, and this is one of the most often reported changes in quantitative portfolio
management by funds in 2009 Shari [2011]. This process is however prone to human
bias, and an unbiased and automated solution is highly desirable. Another way to
come back to the stationary situation is to model the switching process itself Kim
and Nelson [1998]. The example below gives conditions under which an AR process
of order 1, which switches between different modes following a Markov chain of order 1
is w.s.s.. This could be generalized to more general classes of processes Timmermann
[1999]. We discuss the limitation of this approach in 2.2.4.
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Example 1. Consider the following Markov switching AR process of order 1, which
evolves according to

y(t) = αx(t) + β1,x(t)

(
y(t−1) − αx(t−1)

)
+ σx(t)e(t), (1.12)

where the intercept αx(t) , the AR coefficient β1,x(t) and the standard deviation σx(t)

depends on the state of the system x(t) ∈ {1, . . . , x}. The residuals evolve according
to an identically and independently distributed (i.i.d.) Gaussian process with unit
variance

e(t) ∼ N (0, 1), (1.13)

and the switching process x(t), independent of e(t), is governed by a Markov chain
of order 1 with X states. This process is parameterized by a matrix of transition
probabilities whose elements are given by

Πx,x′ = P
(
x(t) = x′/x(t−1) = x

)
, (1.14)

under the constraints

0 ≤ Πx,x′ ≤ 1 and
X∑

x′=1

Πx,x′ = 1. (1.15)

Let $be the steady state probability of the transition matrix,

ΠT$ = $, (1.16)

i.e., the eigenvector of the matrix ΠT associated with the eigenvalue 1 and renormal-
ized s.t. the sum of the probabilities equals 1. Provided that $ exists and that the
system is stable,

X∑

x=1

$x|β1,x| < 1, (1.17)

let us show that y(t) is w.s.s.. The moments are computed in the stationary regime of
the switching process. Using backward substitution, we can rewrite (1.12) as

y(t) − αx(t) =

∞∑

t′=1



t′−1∏

t′′=0

βx(t−t′′)


σx(t−t′)e(t−t′) + σx(t)e(t). (1.18)

Taking the expectations on both side and by linearity of the expectation operator

E
(
y(t) − αx(t)

)
= (1.19)

∑∞
t′=1E

((∏t′−1
t′′=0 βx(t−t′′)

)
σx(t−t′)e(t−t′)

)
+ E

(
σx(t)e(t)

) (a)
= (1.20)

∑∞
t′=1E

((∏t′−1
t′′=0 βx(t−t′′)

)
σx(t−t′)

)
E
(
e(t−t′)

)
+ E (σx(t))E

(
e(t)
)

= 0, (1.21)

where (a) results from the independence between x(t) and e(t). Therefore, using the
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law of conditional expectation, the first moment of the process is given by

E
(
y(t)
)

= E (αx(t)) (1.22)

=

X∑

x=1

αxP
(
x(t) = x

)
(1.23)

= $Tα, (1.24)

which is independent of t. Furthermore, let us compute

E

((
y(t) − αx(t)

)2
)

=

X∑

x=1

E

((
y(t) − αs(t)/x(t) = x

)2
)
P
(
x(t) = x

)
. (1.25)

Let us develop the conditional expectation term in the right hand side (RHS) of the
previous equation.

E
((
β1,x(t)

(
y(t−1) − αx(t−1)

)
+ σx(t)e(t)/x(t) = x

)2)
= (1.26)

β2
1,xE

((
y(t−1) − αx(t−1)

)2
/x(t) = x

)
+ σ2

x = (1.27)

β2
1,x

∑X
x′=1E

(
(. . .)

2
/x(t) = x, x(t−1) = x′

)
P (x′/x) + σ2

x = (1.28)

β2
1,x

∑X
x′=1E

((
y(t−1) − αx(t−1)

)2
/x(t−1) = x′

)
Πx′,x$x′

$x
+ σ2

x. (1.29)

Therefore, to ensure stationarity, we have

E

((
y(t) − αx(t)

)2
)

=

∑X
x=1 σx$x

1−∑X
x,x′=1 β

2
1,xΠx′,x

$xi′ =
$Tσ2

1−$TΠTβ2
1,.

. (1.30)

Using this result, the variance of the process can be expressed as

V ar
(
y(t)
)

= E

((
y(t) − E

(
y(t)
))2

)
(1.31)

= E

(((
αx(t) −$Tα

)
+
(
y(t) − αx(t)

))2
)

(1.32)

= E
((
αx(t) −$Tα

)2)
+ E

((
y(t) − αx(t)

)2
)

(1.33)

=

X∑

x=1

$x(αx −$Tα) + E

((
y(t) − αx(t)

)2
)

(1.34)

= $T
(
α−$Tα1

)
+

$Tσ2

1−$TΠTβ2
1,.

. (1.35)

Therefore, the variance does not depend on time t. Similarly, the autocovariance at
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the lag 1 is given by,

E
((
y(t) − E

(
y(t)
)) (

y(t−1) − E
(
y(t−1)

)))
= (1.36)

E
((
αx(t) −$Tα+ β1,x(t)

(
y(t−1) − αx(t−1)

)
+ σx(t)e(t)

) (
y(t−1) −$Tα

))
=(1.37)

E
((
αx(t) −$Tα

) (
αx(t−1) −$Tα

))
+ E

((
y(t−1) − αx(t−1)

)2)
= (1.38)

∑X
x,x′=1 Px′x$x′(αx −$Tα)(αx′ −$Tα) + E

((
y(t−1) − αx(t−1)

)2)
. (1.39)

Again, this does not depend on time t. This can be generalized to show that the
autocovariance at lag δ is only a function of δ Timmermann [1999].

1.1.2 Key problems
Our discussion on the nonstationarity inherent to financial time-series and the

limitations of the current approaches to handle it calls for the development of new
signal processing techniques. This is at the heart of this thesis. The goal is to monitor
when a model works and when it fails. Moreover, although our initial motivation
came from the study of financial markets under information asymmetry, our proposed
solution is more general, as it aims to handle nonstationarity in a broader context.
The only assumption that we make is that of piecewise stationarity. It simply means
that there exists a series of switching times t0 = 1 < t1 < . . . < tS ≤ T such that the
data are generated by a model of order ks ∈ {0, . . . ,K} in the interval [ts−1; ts). The
difficulty comes from the fact that we make no assumption on the number of switches
S, the positions at which they happen ts, s ∈ {1, . . . S} or the switching process itself.
See Figure 1.3 for an illustration a piecewise stationary processes. We are willing to
put ourselves in the more complicated situation of nonstationarity and abandon any
knowledge on the underlying switching process, because we are solely interested in
deriving evidence from data. Also, as is the case with all financial signals, we only
have access to one realization of the process and we want to draw conclusions just
from that. Furthermore, our solution does not rely on the ergodicity assumption.

1.1.3 Key questions
Following our discussion in the previous sections, there are three questions at the

heart of this thesis.

Can we verify the intuition of the variable lookback model in experimental
finance?

We have introduced the idea of a variable lookback model, initially motivated by
the theory of financial markets under information asymmetry. Experimental finance
constitutes an ideal setup to verify the intuition underlying the model for various
reasons. Firstly, experimental markets represent a simplification of a real world sce-
nario, and it is possible to disentangle competing effects. This is not always possible
in field data. Secondly, experiments are run in a controlled setup; each independent
replication depends on a set of parameters, and the experimenter can vary the values
of the parameters so as to study their impact on the outcome. Finally, when ana-
lyzing the result, the experimenter has access to quantities not directly observable in
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field data, that serve as ground truths, for example, the private information signal, or
the proportion of insiders. In particular, we need to verify the theoretical prediction
that the delay between the time of maximally informative price and full revelation
of information is correlated with the number of insiders. The problem of measuring
information and maximally informative price also needs to be addressed.

How can we estimate the variable lookback model?

The second question deals with the estimation of the variable lookback model. Al-
though, the model was originally motivated by the study of financial markets under
information asymmetry, our solution is more general. Indeed, we are interested in the
development of new signal processing algorithm, that are able to handle nonstationar-
ity inherent to financial signals, beyond the existing limited approaches. Furthermore,
the solution should be general, independent of the choice of model, so as to avoid turn-
ing this thesis into a data mining exercise. Finally, the solution is solely based on the
assumption of piecewise stationarity.

How do the resulting strategies perform compared to standard bench-
marks?

We are aiming to demonstrate the added value of the proposed algorithm. Adopt-
ing a practitioner’s perspective, the goal is to put the proposed method to work to
build investment strategies. To assess the performance of a strategy, backtest, i.e.,
replication of investment decisions in the past using historical data, is the method of
choice. We review this evaluation methodology in Section 2.1.4. The performance of
the proposed strategy is compared with standard benchmarks, for example, the pas-
sive indexing strategy or the strategy that is based on a simpler estimation technique.

1.1.4 Unique contributions of this thesis

We have just presented the three key questions at the heart of this thesis, and,
logically, unique contributions of this thesis reflect this tripartite structure.

Contributions in the area of experimental finance

The first contribution of this thesis is the novel analysis of experimental market
data. Note that we have not conducted the experiments ourselves, but we instead use
an existing dataset obtained by Bruguier et al. [2010] and Bossaerts et al. [2010]. In
particular, we first develop a method to highlight the diffusion of information into the
price using the cross-section of experiments that have the same number of insiders.
One may argue that this analysis is already contained in Bossaerts et al. [2010], by
“mentally combining” Figure 1 and Figure 4, so as to obtain the time-varying regres-
sion coefficients. Our approach has the advantage of making this explicit and visually
convincing. This small contribution also immediately rules out the hypothesis that
experimental data contain only noise and no useful information. More importantly,
we develop a mathematical definition of the intuitive notion of time of maximally
informative price and use the Context algorithm Rissanen [2005] to identify it from
individual time-series of prices. We stress here that the Context algorithm already
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existed, but its use to analyze experimental finance datasets is, to the best of our
knowledge, new. Finally, we verify that the time of maximally informative price is
inversely proportional to the proportion of insiders in the market, as predicted by
both Bayesian-Nash and noisy rational expectations equilibrium theories. We also
demonstrate the existence of long-lived informational inefficiencies.

Contributions in the area of nonstationary signal processing

The second contribution of this thesis is in the area of signal processing for nonsta-
tionary signals. We develop an online, universal algorithm for the joint identification
of the order of a process and the relevant lookback window. Our approach draws from
a large body of literature, but differs from existing approaches. Firstly, our approach
is rooted in the information theoretic learning literature, referred to as the minimum
description length (MDL). Most model selection criteria developed in this context
assume that the underlying sequence of observations is stationary. Also, as studied
in van Erven [2006], if one nevertheless applies the criterion on sequences with jumps
in their dynamics, the MDL criterion will ultimately adapt and recognize the new
dynamics. However, there exists a momentum effect in MDL selection, i.e., a delay
between an underlying jump in the system and its detection. This calls for a better
method to handle jumps explicitly. Secondly, there are also similarities with the work
of Cover and Ordentlich [1996] dealing with universal portfolios. These dynamical
portfolios are called universal because they achieve a performance close to the best
static portfolio chosen in hindsight within a certain class of portfolios, namely, that
of constant rebalanced portfolios. Cover’s algorithm is however exponential in the
number of assets, which makes it inpractical for concrete applications. Moreover, it
is true that the portfolio maximizing the growth rate of wealth is indeed a constant
rebalanced portfolio, if investors have power utility functions, in particular log-utility
function in their terminal wealth. A constant rebalanced portfolio is however not a
target preferred by practitioners. Thus, trying to reach a performance close to it does
not seem attractive in the eyes of practitioners, who are typically subject to other
investment benchmarks, like the market index. Thirdly, the paper of Willems [1996]
is a main source of inspiration, in particular the use of the quadratic tree diagram to
maintain in an organized manner competing models of the data. Willems’s algorithm
is developed to handle binary sequences only, and his approach is Bayesian. That
is, he computes a mixture of prediction models over the choice of switching times.
The weighting applied to each prediction model is given by the Krichevsky-Trofimov
estimator of the probability that this series of switching times occurs Krichevsky
and Trofimov [1981]. In comparison, our approach is valid for more general alpha-
bets, including continuous random variables, and we use a selection over the choice
of switching times. The main argument in favor of the Bayesian approach is that, if
two models are good at predicting a sequence, a combination of the two, for example,
by equally weighting each prediction, is also a good predictor. While we completely
agree with this idea, it is only valid if the models are good. If some prediction models
are particularly bad, this dilutes the predictive power of good models. This is in
particular true when the weighting scheme used for combining them does not depend
on the predictive power of each model. From a finance perceptive, a Bayesian mix-
ture will result in a strategy that makes only mild bets, and it could not perform
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correctly. Also, another reason to select the switching times is that we are interested
in the identification of the switching process itself, and would like to relate it to other
economic variables. A fourth related work is that of Kozat and Singer [2008], which
is developed for sequences taking values in a general alphabet. But their approach is
also Bayesian, the algorithm uses a simpler linear tree diagram and the model is more
constrained, as it does not allow switches between the order of the process within
the same period of piecewise stationarity. Finally, the algorithm is not fully data-
dependent, and requires the addition of a parameter; this is further discussed in 4.2.2.
Finally, Yamanishi [2007] and Yamanishi and Sakurai [2010] have recently proposed a
method for dynamic model selection, that also uses the Krichesky-Trofimov estimator
to penalize switches in the model. Their approach is defined for a more constrained
structure of switches, as the order of the process is only allowed switching between
adjacent values. Also, the first version of their algorithm is offline, and more recent
versions perform their operations only in blocks.

Contributions in the area of mathematical finance

Finally, a contribution of this thesis is in the area of mathematical finance. We
backtest different strategies resulting from the applications of the proposed algorithm
and compare their performance against standard benchmarks, e.g., the market index
or the strategy based on a simpler estimation method. Adopting a practitioner’s per-
spective, we present an entire array of indicators, so as to obtain a complete overview
of the performance of the strategies. In particular, we develop an adaptive momentum
strategy. The momentum strategy is a well known investment strategy, documented
by academics’ Jegadeesh and Titman [1993] and practitioners’ Sanford and Cooper
[2006], Koo and Panigirtzoglou [2008] studies alike. Our approach resembles that
of time-series momentum of Moskowitz et al. [2012] or Hou and Moskowitz [2005].
In the latter, past prices are also used as a proxy for private information, with the
difference that their model uses a fixed lag structure, whereas we allow for a more
general model, that switches between phases where (a) momentum performs well, (b)
contrarian performs well or (c) neither momentum nor contrarian performs well. An-
other approach consists of investing in a portfolio of low correlated strategies, instead
of trying to time a strategy. This unfortunately does not work in a crisis, where all
strategies tend to correlate on the downside. Finally, our approach is also related to
Kent [2010]. But his objective is to find a hedge for the momentum strategy, whereas
our selection algorithm aims to time the strategy, and enter a contrarian strategy
that typically works when momentum fails, and this does so solely based on price
information.

1.2 Thesis outline

The remainder of this thesis is organized as follows. In Chapter 2, since we assume
that the reader has no prior knowledge in finance, we start by reviewing necessary
finance concepts. In particular, we define terms such as return, portfolio, index, etc.
We then present two existing applications of signal processing in quantitative finance.
Both deal with the problem of factor modeling, the first one is concerned with the
estimation of a factor model using the Kalman filter, the second with the extraction of
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a set of orthogonal factors using principal component analysis. We aim not to review
every existing applications of signal processing in finance. Rather we would like to
illustrate the limitations of current approaches, in particular the incorrect handling
of nonstationarity.

As already discussed, an important motivation behind this work is the study of
financial markets under information asymmetry, and this is the topic of Chapter 3.
We first review and compare two existing bodies of literature dealing with markets
under information asymmetry, namely the noisy rational expectations theory and the
Bayesian Nash equilibrium theory. We also come back to the initial intuition of the
variable lookback model. In the second part of the chapter, we present supporting
evidence for the variable lookback model in the context of experimental markets. We
first explain and comment on the setup of the experiment. We then highlight the
process of diffusion of private information into the price, by studying the evolution of
the regression coefficient of price on private information. This regression is performed
in the cross-section of experiments that have the same number of insiders. We also
make more precise the notion of the time of maximally informative price, and use the
Context algorithm Rissanen [2005] to detect it. Finally, we verify that the time of
maximally informative price is inversely proportional to the proportion of insiders in
the market.

In Chapter 4 we present our main solution to estimate the variable lookback model
and coin the term variable lookback algorithm. As this learning algorithm is based
on the minimum description length principle, we start by reviewing this large body
of literature. Then, starting from a coarse, block diagram view of the algorithm,
we further refine its design. Our discussion also encompasses study of the behavior
of the algorithm, computational aspects and implementation details. Tests of the
algorithm on simulated time-series conclude this chapter. In particular, we test the
model selection ability of the algorithm when there is no switch in the system, as well
as the detection of a jump in the simplified scenario, when the underlying process
switches form a highly correlated AR process of order 1 to an i.i.d. process, and vice
versa.

Chapter 5 deals with applications of the variable lookback algorithm in finance.
We first present an illustration of the algorithm when used to dynamically draw the
trend line for the time-series of log-prices. In that case, there is only one model and
the algorithm only decides how to segment the time-series in periods of piecewise
stationarity. We then move to a more realistic example, the adaptive momentum
strategy. The variable lookback algorithm is in that case used to simultaneously
select (a) the lookback window, (b) the type of strategy (momentum, contrarian or
none) and (c) the horizon of past returns used as predictors. Detailled evaluation is
provided, including a study of the behavior of the strategy during the 2009 crisis.

Chapter 6 contains a summary, further research directions and concluding remarks.



Chapter 2

Signal Processing for
Quantitative Finance

This is the worst signal I have seen
in my life.

Martin Vetterli

A signal is a mathematical representation of a real world phenomenon, that varies
in time and/or space Prandoni and Vetterli [2008]. For example, a sound, an image
or the electric potential measured by a biomedical sensor such as an electroencephalo-
gram (EEG) are all signals. Consequently, signal processing techniques have found
applications in a large number of fields: audio, image processing, biomedical signal
processing to name a few. Data from the stock markets, such as price, volume and
order flow, etc. can also be regarded as signals. It is thus sensible to envision appli-
cations of signal processing in finance Cont [2011], Jay et al. [2011], Ganesan [2011].
Existing applications are the subject of this chapter. Why is signal processing in
finance of particular relevance today?

(i) Availability of data: over the last 20 years, electronic stock markets have
largely replaced physical ones. And high-frequency trading, mostly computer-
driven, now accounts for 56% and 38% of equities trades in the US and Europe,
respectively Biais and Wolley [2011]. They have lead to the availability of large
quantities of data, up to a sampling period of the order of a millisecond.

(ii) Challenging problems: financial signals have unique features such as their
nonstationarity, deviation from normality, that pose unique and interesting chal-
lenges.

(iii) Lessons from the crisis: starting in August 2007, financial markets have en-
tered a phase of acute crisis, considered to be the worst one since the 1930’s.
What started as a the burst of a real estate bubble in the US has evolved into
a global financial and economic crisis. One of the reasons that have been put
forward as origin of this crisis is the increased mathematization of finance, as
well as the limitations and failures of the existing methods and models. We can

15
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therefore see the current crisis as an opportunity to suggest improvements. Fur-
thermore, the financial crisis also suggests a change in methodology in finance
research; there is a necessity to move away from theoretical evidences, obtained
by solving analytically stylized mathematical models, and dwell more on evi-
dences from data. By data, we encompass both field and experimental data.
In both cases, signal processing could contribute to the innovative analysis of
these datasets.

The remainder of this chapter is organized as follows. To make this thesis as
self-contained as possible, we start by reviewing financial concepts necessary for its
understanding. We define terms such as return and risk (Section 2.1.2), portfolio
and indices (Section 2.1.3) before introducing a special class of investment strategies,
quantitative strategies (Section 2.1.4). We then review two existing applications of
signal processing in quantitative finance. Both deals with the general problem of
factor modeling (Section 2.2.1). First, we use the Kalman filter (KF) to estimate a
factor model, which leads to improvements compared to ordinary least-squares (OLS)
(Section 2.2.2). Then, we present the principal component analysis (PCA) procedure
and apply it to extract a series of orthogonal factors driving the cross-section of stock
returns (Section 2.2.3). We do not aim to give an exhaustive treatment of all existing
applications of signal processing in finance, especially since signal processing is a large
field with blurred boundaries. Rather, we aim to point out the limitations of current
applications, in particular the limitations of the windowing approach in dealing with
nonstationarity inherent to financial signals (Section 2.2.4).

2.1 Review of financial concepts

2.1.1 Trading in the stock market
A stock is a share of ownership of a company Morellec [2008]. It gives its holder

certain rights, for example, the entitlement to a fraction of the company’s profit, a
dividend, provided it is profitable. Moreover, stockholders have the lowest seniority
on the assets of a company in the event of a bankruptcy. This means that, in that
event, the proceeds of the sales of the company’s assets are first attributed to other
securities holders, in particular bond holders. The stock market is a place where
stocks are traded. An investor takes two types of trading positions in the market,
long and short. A long position allows benefiting from soaring prices. The investor
buys the asset now and sells it at some point in the future at some hopefully higher
price. On the contrary, a short position allows benefiting from falling prices. The
investor sells immediately an asset borrowed from his broker and buys it back later at
a hopefully lower price to replace the originally borrowed asset. There are limitations
in the short selling activity, which are determined by national or exchange regulations.
Furthermore, there is an accounting mechanism involving so-called margin account
that limits the position of an individual investor. This ensures he has enough money
to buy back the borrowed asset.

In the most general terms, investors trade in the market because they have differ-
ences in beliefs, endowments or preferences Grossman and Stiglitz [1980]. The double
auction mechanism is now the standard mechanism used by almost all exchanges to
conduct trading. An investor can submit two types of order. A limit order is an



2.1 Review of financial concepts 17

order to buy or sell a stock at a certain price SEC [2011a]. This price should be a
multiple of the minimum tick size, as determined by the exchange rules. For example,
buy stock X (in other words enter a long position on X) when it reaches 100$ is a
limit order. If the tick size is 25 cents, the next possible buy limit order is 100.25$.
Limit orders are aggregated by a central market maker and displayed in a public order
book. In an order book, rows correspond to the price level, and the number in a given
row to the number of outstanding orders at this price. See example below. The left
column contains all outstanding buy limit orders arranged in decreasing value of their
price; the one at the top is called the bid price. Likewise, the right column contains
all outstanding sell limit orders, arranged in increasing value of their price; the one
at the bottom is called the ask price. The average between the bid and ask price is
called the quote mid-price. The difference between the bid and ask price is called
the bid-ask spread and corresponds to the reward made by the market maker for his
activity. A limit order stays in the order book, unless (a) it is cancelled by its owner,
(b) it becomes stale after a certain amount of time depending on exchange rules, or
(c) it is matched by a market order. The latter represents another type of order that
is executed immediately at the best available market price SEC [2011b]. Observe the
difference in associated uncertainty between the two types of order. In a limit order,
the price is fixed but the investor does not know when the order will be executed (if at
all). In a market order, the order is executed immediately but there is an uncertainty
on the price at which this happens.

Example 2. The following table represents an example of an order book. If an
investor submits now a sell market order of 8 units, the market maker first matches
this order with the 2 outstanding buy limit orders at 99.50$, the 5 ones at 99.25$ and
1 of the 9 ones at 99.00$. This simple example shows how, by him placing a large
order in a rather illiquid market, a single trader can impact the price.

Number of outstanding orders

Buy Sell Price ($)

...
10 100.75
25 100.50
15 100.25
− 100.00

− 99.75
2 99.50
5 99.25
9 99.00

...

Table 2.1: Order book.
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2.1.2 Return and risk
By trading, investors are interested in the resulting rate of return (or simply

return) of their investments Jondeau [2009], Morellec [2008]. This is because the size
of the asset does not matter to them in perfectly competitive markets. Simple return
between (discrete) time t− 1 and t is defined as

r(t) =
p(t) − p(t−1)

p(t−1)
, (2.1)

where p(t) is the price of the stock at time t. Furthermore, since the price is a unit
root process, taking the first order difference makes the properties of returns easier
to handle than that of the price. Given this definition, the wealth of an investor at
time t + 1, W (t+1), that invests at time t all his wealth W (t) in a stock with return
r(t+1) is given by

W (t+1) = (1 + r(t+1))W (t). (2.2)

Similarly, over T trading periods, we obtain

W (t+T ) = W (t)
T∏

t′=1

(1 + r(t+t′)). (2.3)

Returns are compounded, i.e., the profits of the previous periods are reinvested in
subsequent periods. If trading and compounding takes place in continuous time, this
leads to the notion of log-returns, given by

r
(t)
log = log

(
p(t)

p(t−1)

)
. (2.4)

Observe that simple and log-returns are related by the relation

r
(t)
log = log(1 + r(t)). (2.5)

Also, when working with log-returns, the return over several periods is equal to the
sum of returns over each period, or

r
(t−h)→(t)
log ≡

h−1∑

t′=0

r
(t−t′)
log . (2.6)

Figure 2.1 represents the distribution of daily log-returns for the S&P500, observed
from 01.01.2007 until 01.01.2012, compared to a Gaussian distribution with similar
mean and variance. We observe that the distributions of daily log-returns is far from
being Gaussian; it is more skewed on the the left, and the tails are fatter than the
Gaussian distribution, indicating the presence of so-called extreme events, particularly
on the downside. Quite interestingly, this illustrates that the glorified Black-Scholes
model Karatzas and Shreve [2004], which assumes the normality of log-returns, is
rather ill-suited to describe the distribution of log-returns.

Investors also want to assess the risk of their investments. Since the seminal
work of Markowitz [1952], they do this (imperfectly) using the volatility of the assets,
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Figure 2.1: Blue: histogram of daily log-returns of the S&P500 for the period between
01.01.2007 and 01.01.2012. Gold: probability distribution function of the Gaussian
distribution fitted on the same observations. We observe that the distribution of log-
returns deviates greatly from normality. In particular, the distribution is skewed on
the left and the tails are fatter than those of the Gaussian distribution.

σ(t). This is simply the standard deviation of return. This quantity is not directly
observable and several estimators based on past observed returns have been proposed
Jondeau [2009]. Given a set of T returns observations, the unconditional volatility is
given by

σ =

√√√√ 1

T − 1

T∑

t=1

(
r(t) − r̄

)2 (2.7)

where r̄ = 1/T
∑
r(t) is the unconditional mean return. Given a window of the latest

T observations, the conditional volatility is a local estimate of the volatility,

σ(t) =

√√√√ 1

T − 1

T−1∑

t′=0

(
r(t−t′) − r̄(t)

)2
. (2.8)

where

r̄(t) =
1

T

T−1∑

t=0

r(t−t′) (2.9)
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is the conditional mean. This estimator puts the same weight on all observations. To
give more weight to most recent observations, we can use the exponential weighted
volatility computed iteratively using the following equations:

r̄(t) = κr̄(t−1) + (1− κ)r(t−1) (2.10)

σ2(t) = κσ2(t−1) + (1− κ)
(
r(t−1) − r̄(t)

)2

(2.11)

σ(t) =
√
σ2(t). (2.12)

In the equations above, r̄(t) is called the exponential weighted mean return. Note that
both exponential weighted mean return and volatility are observable at time t− 1. κ,
the forgetting factor, is set typically to 0.94, as in RiskMetrics. Figure 2.2 represents
the exponential weighted volatility of S&P500 from 01.01.2007 to 01.01.2012. We
observe the phenomenon of volatility clustering: periods of high volatility are con-
centrated together and alternate with periods of low volatility. This persistence in
the time-series of conditional volatility is well captured by generalized autoregressive
conditional heteroskedasticity (GARCH) models Bollerslev [1986].
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Figure 2.2: Exponentially weighted conditional volatility of the daily log-returns of
S&P500, the simplest form of GARCH processes, for the period between 01.01.2007
until 01.01.2012. We observe the phenomenon of volatility clustering, i.e., periods of
high volatility are concentrated together and alternate with periods of low volatility.
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2.1.3 Portfolio and index
A portfolio is a basket of N stocks Morellec [2008]. The return of the portfolio

r
(t)
p that invests a portion ω(t)

n of its wealth in stock n with return r(t)
n is given by

r(t)
p =

N∑

n=1

ω(t)
n r(t)

n (2.13)

= ωTr(t). (2.14)

That is, the return of the portfolio is the linear combination of returns of its con-
stituents, each weighted by ω(t)

n . The weights should satisfy for a fully invested port-
folio

1Tw = 1, ∀t, (2.15)

and wn < 0 corresponds to a short position. Note that the formula for the return of
a portfolio (2.13) is valid only in conjunction with simple returns, and does not apply
with log-returns.

An index is a portfolio of stocks that is used to benchmark investments. Stocks
are included in an index based on certain characteristics, such as their country or their
industry. Also, different weighting schemes are possible. In an equal weighted index,
each stock has the same weight. In a market capitalization weighted index, stocks are
weighted proportionally to their market capitalization, i.e., their outstanding total
market value. The latter scheme introduces a bias towards large companies.

It is very frequent for investors to choose their portfolio weights by performing
some sort of optimization. Of great practical interest is the mean-variance portfolio,
i.e., the portfolio with the highest expected return for a given level of risk Markowitz
[1952]. Mathematically, in its simplest form, this portfolio is obtained by solving the
following optimization problem

ω(t) = argmax
ω

ωTE(r(t))− ρ

2
ωTCov(r(t))ω, (2.16)

where ρ is the coefficient of risk aversion. From the optimization perspective, the
problem is extremely well understood and a lot of generalizations of this problem have
a clear mathematical solution Boyd and Vandenberghe [2004]. Consider for example
the introduction of optimization constraints, such as a maximum stock exposure. The
key issue, as already pointed out by Markowitz [1952], is to obtain good estimates
of the expected return and covariance matrix of returns. Several methods have been
proposed to improve these estimates, for example, shrinkage Ledoit and Wolf [2003]
or weighting the observations by an external variable Steude [2011]. The estimation
problem is even more acute the portfolio optimization takes into account higher (co-
)moments Harvey et al. [2010].

2.1.4 Quantitative strategies
With the problem of portfolio optimization, we have already briefly touched the

subject of quantitative strategies, which we develop in this section. Quantitative
strategies form a class of investment strategies that are developed by finance practi-
tioners referred to as quants. Generally speaking, they have the following character-
istics.
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(i) Statistical: the strategy is based on an underlying statistical model that cap-
tures knowledge about the financial time-series.

(ii) Rule-based: the opening and closing of long/short positions depend on a set
of trading rules, that are applied systematically, hence potentially by a com-
puter. This is a natural protection for investors against human investment bias,
documented by the theory of behavioral finance Hens and Bachmann [2009].

To evaluate a quantitative strategy, quants perform backtests. These are replica-
tions of the investment decisions faced by an investor using historical data. These
tests have to be as realistic as possible and great care must be taken to avoid intro-
ducing future knowledge in past decisions. Of course, the investment decisions must
be based solely on ex ante information. But there are more insidious forms of future
knowledge. There is the problem of the choice of strategy itself. Indeed, because
of their experience with financial markets, quants tend to select strategies that have
performed well historically, but it is not clear whether they would have chosen them
ex ante. Bossaerts and Hillion [1999] address this question, using three of the best
predictors of stock returns documented in the literature (momentum, value and size).
They conclude that an investor would not have been able to choose these strategies
ex ante, although the particular choice of predictors introduces a bias towards the
alternative hypothesis. Furthermore, another form of future knowledge is introduced
when the hyperparameters of a backtest, for example, the estimation window or the
order of the model, are determined by maximizing the performance evaluation metric
over the entire dataset. Finally, consider the choice of performance metric of a back-
test. Risk-adjusted return is the correct performance evaluation metric. Indeed it
is misleading to use generated wealth or expected return of the strategy, as different
strategies may have incurred different levels of risk. The Sharpe ratio, defined as the
ratio between the expected return and the volatility of a strategy, is commonly used.
However, risk-adjusted return is only a first approximation, and a myriad of other in-
dicators are necessary to fully comprehend a strategy. For example, the performance
of the strategy should be decomposed over several periods to test its stability or the
amount of trading should be measured, to ensure that the profits of a strategy are
not swallowed by its trading costs.

To conclude this review of financial concepts, Table 2.2 summarizes all important
notions and relates them to signal processing concepts.

2.2 Review of existing signal processing applications
in finance

In this section, we review two existing applications of signal processing in quanti-
tative finance. The first one deals with the application of Kalman filtering to estimate
factor models, the second one with the use of PCA to extract a series of orthogonal
factors.

2.2.1 Factor models
Both applications we review deal with the general problem of factor modeling.

Consider the evolution of the return of a stock, r(t)
n . This evolution could be attributed
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Name Definition and related signal processing term

Backtest Simulation of investment strategy based on historical market
data. The goal is to replicate the behavior of an investor in
the past as realistically as possible. In particular, all invest-
ment decisions must me based on information available before
the decision is taken.

Index Weighted average measure of change of a group of stocks. Stocks
are grouped in an index according to a selection criterion such as
the country or the sector the stock belongs to. Various weighting
scheme are possible, such as weighting by market capitalization
or equal weighting. signal processing (SP) term: weighted aver-
age.

Leverage Method to amplify the return of a strategy by borrowing (resp.
lending) money at a risk free rate to invest (resp. reduce invest-
ment) in a risky asset. SP term: amplifier.

Long Type of position to bet on rising prices. Open the long position
by buying the asset. Close the long position by selling it.

Momentum Generic name to designate a class of investment strategies that
bet on the presence of continuation in the return process. Past
winners are the future winners and past loosers are likewise the
future loosers.

Portfolio Basket of stocks

Return Measure of relative change in the price of a stock. SP term:
simple difference.

Sharpe ratio Measure of the return of an investment strategy per unit of risk.
SP term: signal-to-noise ratio (SNR).

Short Type of position to bet on falling prices. Open the short position
by borrowing an asset to ones broker and selling it immediately.
Close the short position by buying the asset back to replace the
borrowed asset.

Stock Share of ownership of a company. The holder is entitled a frac-
tion of the profit of the company. Synonym: equities.

Volatility Standard deviation of returns. The volatility is used as a risk
measure. SP term: standard deviation.

Table 2.2: Glossary of financial terms.
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to two distinct sources of variations: variations that are common to all stocks, called
factors, and variations that are proper to a stock, called idiosyncratic returns. For
example, it is sensible to assume that stocks belonging to the same industry have
common sources of variations, because they evolve in the same economic environ-
ment, they have a similar customer base or they face similar costs of commodities,
production, transport, etc. But stocks within an industry also evolve differently, for
example as the reaction to company specific news. Mathematically this is translated
in an stylized manner in a linear factor model

r(t)
n = αn + βn,1f

(t)
1 + . . .+ βn,kf

(t)
k + e(t)

n , (2.17)

where f (t)
k is the evolution of factor k at time t, βn,k, the sensitivity (or loading) of

stock n on factor k and e
(t)
n the idiosyncratic return of stock n at time t. Stacking

the returns of all stocks in a vector, we write in matrix format

r(t) = Bf (t) + e(t), (2.18)

where f (t) =
(

1, f
(t)
1 , . . . , f

(t)
K

)T
.

Example 3. Consider the following example of factor models from the asset pricing
literature. In the capital asset pricing model (CAPM) Sharpe [1964], Lintner [1965],
the market portfolio r(t)

m is the only source of common variations,

r(t)
n − rf = αn + βn,market

(
r

(t)
market − rf

)
+ e(t)

n , (2.19)

where rf is the risk-free rate. βn,market is traditionally simply called the beta of a
stock. The equation above is equivalent to the standard CAPM formulation if αn =
0 ∀n. Moreover, the celebrated Fama-French three factors model is an extension of the
CAPM Fama and French [1992]. It contains, beside the market factor, two factors
called size and value,

r(t)
n = αn + βn,marketr

(t)
market + βn,sizer

(t)
size + βn,valuer

(t)
value + e(t)

n . (2.20)

These additional factors are obtained by building the following long-short portfolios.
The return of the size factors, r(t)

n is obtained by ranking stocks in the universe at
time t − 1 by their market capitalization, shorting stocks above the top decile and
going long stocks below the bottom decile. The return of the value factors is obtained
by ranking stocks in the universe at time t−1 by their ratio of book to the market value
of equities and going long stocks above the top decile and going short stocks below the
bottom decile. In both cases, equal weighting between stocks is used.

From a mathematical point of view, factor models allow reducing the dimension
of a problem, as the number of stocks is typically large compared to the number of
factors, k � N . Consider the example of the covariance matrix of stock returns. In
general, it is parameterized by N(N −1)/2 values, as it is a symmetric matrix. Using
the factor model given by (2.17), we can write

Cov
(
r(t)
)

= BTCov
(
f (t)

)
B + Cov

(
e(t)
)
. (2.21)
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Then, the number of parameters drops dramatically. There are k(k−1)/2 parameters
for the covariance matrix of factors Cov

(
f (t)

)
. The idiosyncratic returns are uncor-

related by definition, such that there are only N diagonal elements in the covariance
Cov

(
e(t)
)
. The factor decomposition allows deriving from a small number of param-

eters a full rank covariance matrix of returns. Key is the introduction of the diagonal
matrix of idiosyncratic variances. Without it, the covariance matrix of returns would
be rank deficient, which poses problem, notably in subsequent portfolio optimization.

From an investment perspective, the factor decomposition can be applied in two
different manners to build quantitative strategies. On the one hand, a portfolio man-
ager can treat factors as sources of risk for which the holder is rewarded and the
idiosyncratic returns, which are not rewarded, are diversified away by construction of
a portfolio. The manager then takes a controlled exposure to certain factors, under
certain investment constraints, e.g., a limited stock or factor exposure. On the other
hand, a portfolio manager can take a long exposure of 1 in the asset and short βn,k
in each factor k. He is then only exposed to the idiosyncratic component, which
indicates whether a stock is currently over- or undervalued compared to its peers.
This strategy is called market-neutral, as its evolution is independent of that of the
factors. The timing of the exposure is done thanks to a statistical model, for example,
a mean-reverting process Avellaneda and Lee [2010].

Of course, the problem of building a factor model remains. This is the topic of the
coming sections. In both cases, we work with the Hilbert space of square summable
random processes endowed with the scalar product

〈x,y〉 = E
(

(x− E(x))
T

(y − E(y))
)
. (2.22)

2.2.2 Kalman filtering for estimation of factor models

In this section, we review the use of the KF to estimate factor models, i.e., deter-
mine the loadings of the model given a set of observations.

Kalman filter

For the sake of completeness, let us start by reviewing the Kalman-Bucy filter
in discrete time Moura [2005]. In a nutshell, this filter is used to estimate the state
of a linear system from its observations. Its block diagram is represented in Figure
2.3. The system depends on a latent, i.e., not observable vector of states x(t) whose
evolution is described by the following linear, possibly time-varying, state equation

x(t+1) = A(t)x(t) +B(t)u(t) + v(t), (2.23)

where u(t) is a vector of exogeneous input and the model noise v(t) is i.i.d., normally
distributed with covariance matrix Σv,

v(t) ∼ N (0,Σv) . (2.24)

The state is only observed through the following observation equation

y(t) = C(t)x(t) +w(t) (2.25)
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DATA GENERATION

White Noise Generator

v(t) w(t)

u(t)
State Dynamics

x(t)

Observation Dynamics
y(t)

KALMAN FILTER

Projection Step Update Step

P (t/t)

x̂(t/t)

P (t/t−1)

x̂(t/t−1)

Figure 2.3: Block diagram of the Kalman-Bucy filter. The data generating process is
modeled as a linear state space model. The KF is decomposed in two successive steps:
the projection step that projects the estimated state in the future and the update step
that updates the state given the current observation.

where y(t) is the observations, and w(t), the observation noise, is also i.i.d., normally
distributed with covariance matrix Σw,

w(t) ∼ N (0,Σw) . (2.26)

The goal is then to form estimates of the states of the system x(t) based on the
observations y(t). Suppose that the system matrices A(t), B(t), C(t) as well as the
covariance matrices Σv and Σw are known. Let us introduce the following notations.
Let

x̂(t/t−1) = E
(
x(t)/y(t−1), . . .

)
(2.27)
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be the estimate of the state given information up to time t− 1. Likewise, let

x̂(t/t) = E
(
x(t)/y(t), . . .

)
(2.28)

be the estimate of the state at time t conditional on information up to time t. More-
over, let

P (t/t−1) = Cov
(
x(t) − x̂(t/t−1)/y(t−1), . . .

)
(2.29)

be the covariance of the error at time t conditional on information up to time t − 1
and

P (t/t) = Cov
(
x(t) − x̂(t/t)/y(t), . . .

)
(2.30)

be the covariance of the error at time t conditional on information up to time t.
The KF is represented in Algorithm 2.1. For each observation, the knowledge of

the state equation is used to project the state of the system from t−1 to t (projection
step). Then, given the actual observations, the estimate of the state is updated (up-
date phase). The update is proportional to the prediction error, y(t) −C(t)x̂(t/t−1),
as well as a matrix K(t) called Kalman gain. Finally, if the system matrices are
unknown, they have to be estimated, for example by maximum likelihood. The likeli-
hood function is computed for a given value of the system matrices from the estimate
of the residuals of the filter and it is optimized using a numerical procedure. Details
are described in Kim and Nelson [1998].

Algorithm 2.1 Kalman-Bucy filter.
1. Input: observations y(1), . . . ,y(T ) and exogeneous inputs u(1), . . . ,u(T )

2.
3. % For each observations
4. for t = 1, . . . , T do
5.
6. % Projection step
7. x̂(t/t−1) ← A(t)x̂(t−1/t−1) +B(t)u(t)

8. P (t/t−1) ←
(
A(t)

)T
P (t−1/t−1)A(t) + Σv

9.
10. % Update step

11. K(t) ← P (t/t−1)
(
C(t)

)T (
C(t)P (t/t−1)

(
C(t)

)T
+ Σw

)−1

12. x̂(t/t) ← x̂(t/t−1) +K(t)
(
y(t) −C(t)x̂(t/t−1)

)

13. P (t/t) ←
(
I −K(t)C(t)

)
P (t/t−1)

14. end for

Estimation of factor models

Consider again (2.17). One can take as factors observed portfolios or macroeco-
nomic variables suggested by finance theory. The problem is then to estimate the
loadings of the model. Of course, is is possible to use OLS regression to find the
least-squares estimator. But the KF can be applied to perform this task, with certain
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advantages. The central idea is to treat the loadings as the state of the system. Let
us stack all loadings of stock n in a vector

x(t)
n ≡




αn
βn,1
...

βn,k


 (2.31)

and subsequently loadings for all stocks

x(t) ≡




x
(t)
1
...
x

(t)
n

...
x

(t)
N



. (2.32)

The factor model (2.17) can be rewritten as




r
(t)
1
...
r

(t)
n

...
r

(t)
N




︸ ︷︷ ︸
y(t)

=




(
f (t)

)T
0 . . . 0

...
0 . . .

(
f (t)

)T
. . . 0

...
0 . . . 0

(
f (t)

)T




︸ ︷︷ ︸
C(t)




x
(t)
1
...
x

(t)
n

...
x

(t)
N




︸ ︷︷ ︸
x(t)

+




e
(t)
1
...
e

(t)
n

...
e

(t)
N




︸ ︷︷ ︸
w(t)

(2.33)
Then, in combination with a state equation describing the evolution of loadings (see
examples below), we can use the KF to obtain x̂(t/t−1) and x̂(t/t−1) which correspond,
in this case, to the conditional estimates of the loadings based on information up to
time t− 1 and t, respectively.

Example 4. In this example, the evolution of the loadings is given by the following
state equation

x(t+1) = x(t). (2.34)

Let us proceed to show that the estimates of the KF correspond to that obtained by
GLS. Because of the specific, degenerated form of the state equation

x̂(t+1/t) = x̂(t/t) (2.35)

and
P (t+1/t) = P (t/t). (2.36)

Suppose we have already computed the estimates at time t, x̂(t/t) and P (t/t). Then,
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starting from the GLS formula, the covariance of the estimates is given by

P (t+1/t+1) = (2.37)
(∑t+1

t′=1

(
C(t′)

)T
Σ−1
w C

(t′)

)−1

= (2.38)

(∑t
t′=1

(
C(t′)

)T
Σ−1
w C

(t′) +
(
C(t+1)

)T
Σ−1
w C

(t+1)

)−1
(a)
= (2.39)

P (t/t)−
P (t/t)

(
C(t+1)

)T (
Σw +C(t+1)P (t/t)

(
C(t+1)

)T)−1

C(t+1)P (t/t) (b)
= (2.40)

(
I −K(t+1)C(t+1)

)
P (t/t) (c)

=(2.41)
(
I −K(t+1)C(t+1)

)
P (t+1/t) (2.42)

In the above derivation, (a) results from the application of the matrix inversion lemma
Woodbury [1950] and from the definition of the GLS formula for P (t/t). (b) is obtained
by identifying the Kalman gain term and (c) simply follows from (2.35). Similarly,
we can derive the update rule for the estimates, starting from the GLS formula.

x̂(t+1/t+1) = (2.43)

P (t+1/t+1)

(∑t+1
t′=1

(
C(t′)

)T
Σ−1
w y

(t′)

)
= (2.44)

(
I −K(t+1)C(t+1)

)
×

P (t/t)

(∑t
t′=1

(
C(t′)

)T
Σ−1
w y

(t′) +
(
C(t+1)

)T
Σ−1
w y

(t+1)

)
= (2.45)

(
I −K(t+1)C(t+1)

)
x̂(t/t) +

(
I −K(t+1)C(t+1)

)
P (t/t)

(
C(t+1)

)T
Σ−1
w y

(t+1) (2.46)

We have simply used (2.41) and recognized the GLS formula for x̂(t/t). Let us ma-
nipulate the matrix term of the RHS

(
I −K(t+1)C(t+1)

)
P (t/t)

(
C(t+1)

)T
= (2.47)

P (t/t)
(
C(t+1)

)T ×
(
I −

(
C(t+1)P (t/t)

(
C(t+1)

)T
+ Σw

)−1

C(t+1)P (t/t)
(
C(t+1)

)T)
= (2.48)

K(t+1)
(
C(t+1)P (t/t)

(
C(t+1)

)T
+ Σw −C(t+1)P (t/t)

(
C(t+1)

)T)
= (2.49)

K(t+1)Σw (2.50)

Therefore,
x̂(t+1/t+1) = x̂(t/t) +K(t+1)

(
y(t+1) −C(t+1)x̂(t/t)

)
(2.51)

This concludes the proof that the estimates of the KF correspond in this case to the
GLS estimates. The KF rule presents the advantage of being an online update rule
which does not require to recompute and invert matrix P (t+1/t+1) for every new ob-
servation. The use of the KF is therefore computationally more efficient.
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Example 5. Consider also the following example taken from Jay et al. [2011]. The
eight factors model of Fung and Ksieh [2002] is used to track the return of a hedge
fund. The loadings evolve according to the following state equation

x(t) = x(t−1) + v(t) (2.52)

where the noise v(t) is uncorrelated and identical across stocks

v(t) ∼ N


0,




Σ 0
. . .

0 Σ





 (2.53)

Figure 2.4 compares the performance of the KF and the OLS method by measuring
the relative error , i.e., the absolute difference between the observed and estimated
returns. The improvement is by two orders of magnitude.
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Figure 2.4: Comparaison of the relative error, i.e., the absolute difference between
observed and estimated returns, using OLS (blue) and the KF (gold). The improve-
ment is by two orders of magnitude.

2.2.3 PCA for extraction of orthogonal factors

In the previous section, the factors were observed quantities, either observed port-
folios or macroeconomic variables. The problem was then to estimate the models,
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i.e., determining the value of the loadings given a set of observations. In this section,
we explore another approach called PCA which allows simultaneously finding a set of
orthogonal factors and their associated loadings.

PCA procedure

We start by reviewing the PCA procedure also called Karuhen-Loewe transform
in signal processing Sbaiz and Ridolfi [2006]. It builds a series of orthogonal factors
such that successive factors have a decreasing explanatory power. Orthogonal means
uncorrelated in this case, due to the definition of the relevant scalar product in (2.22).
The details of the procedure are presented in Algorithm 2.2. Given a set of observa-
tions, PCA starts by computing an estimate of the correlation matrix. Working with
correlation instead of covariance allows working with assets that have volatility of
different scales. Also, other estimates than the sample correlation can be used. Then,
the eigenvalue decomposition is used to find an orthogonal basis whose elements cor-
responds to the columns of matrix U . The notation reflects the unitary property of
the matrix

UTU = UUT = I, (2.54)

since the correlation matrix is positive semi-definite and symmetric. Moreover, Figure
2.5 represents the first eigenvalues of the correlation matrix, ordered in descending
order. If the system were well conditioned, there would exist a sharp drop between
significant positive eigenvalues and zero nonsignificant eigenvalues. Because of the
presence of noise, the boundary between significant and nonsignificant eigenvalues is
blurred and the system is said to be ill-conditioned. It is not entirely clear then how
many factors we should retain. The quantity

Dn,n∑N
n=1Dn,n

(2.55)

can be interpreted as the percentage of total variance explained by factor k. One
choice consists in using a fixed number of factors K. Figure 2.6a represents the
evolution over time of the variance explained by a set of 15 factors for the US equities
market. We observe that a fixed number of factors explain a variable portion of
the total variance. Another choice, described in Algorithm 2.2, consists in choosing a
number of factors so as to explain a fixed proportion of the total variance. Figure 2.6b
gives the evolution over time of number of factors necessary to explain a 75% of the
total variance of the US equities market. Finally, factors are obtained by projecting
returns onto this set of k orthogonal vectors.

Economic interpretation of factors extracted by PCA

PCA allows a simultaneous identification of the factors and their loadings. How-
ever, it comes with the disadvantage that the resulting factors are sometimes hard
to interpret. However, for financial markets data and the first factors, the following
results are well established Avellaneda and Lee [2010]. Firstly, Figure 2.7 represents
the loadings of all US stocks on the first factor. They are ordered in decreasing orders
and stocks are labeled with their industry code. We observe that all loadings are pos-
itive. Also, Figure 2.8 compares the wealth generated by investing in the first factor
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Algorithm 2.2 Principal Component Analysis.
1. Input: r(t), t = 1, . . . , T as series of observations of returns, ς, the target explained

variance
2. % Computation of the sample correlation matrix
3. for n = 1, . . . , N do
4. r̄n ← 1

N

∑T
t=1 r

(t)
n

5. σn ←
√

1
N−1

∑T
t=1

(
r

(t)
n − µn

)2

6. r̃
(t)
n ← r(t)n −r̄n

σn
, t = 1, . . . , T

7. end for
8. Σ← 1

T−1

(
r̃(t)
)T
r̃(t)

9.
10. % Eigenvalue decomposition
11. [U ,D]← eig(Σ), s.t.Σ = UDUT

12.
13. % Choice of eigenvalue
14. Choose k as the minimum such that

∑k
n=1

Dn,n∑N
n=1Dn,n

≥ ς
15. % Computations of factor
16. f (t)

k ← UT
.,kr̃

(t)

and the market capitalization index. The two curves are extremely correlated and the
minor difference is explained by a difference in volatility: the market capitalization
index has a lower volatility, as it is biased towards large stocks. Thus, we associate the
first factor with the market portfolio, like the CAPM or Fama-French’s three factors
model. Figure 2.9 and 2.10 represents the loadings of stocks on the second and third
factors, respectively. Similarly, they are displayed in decreasing order and stocks are
labeled with their industry code. Note that certain loadings have to be negative to
satisfy the orthogonality condition. Moreover, we observe that stocks that load a lot
on the same factor tend to belong to the same industry. This phenomenon, called
coherence, corresponds to the intuition that stocks in the same industry have a similar
evolution. Coherence disappears progressively as we observe loadings associated with
subsequent, smaller eigenvalues.

2.2.4 Shortcomings of existing applications of SP to finance

We have just reviewed two applications of signal processing in quantitative finance,
namely the estimation of factor models using the KF and the extraction of orthogonal
factors using PCA. Using these examples, but also other references, we proceed in this
section to illustrate the limitations of existing approaches.

Simple toolbox applications

In most existing applications, signal processing is regarded as a set of methods
and algorithms that are applied to solve problems in quantitative finance. This is
legitimate, given the success that some of these techniques have had when applied
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Figure 2.5: Eigenvalue of the correlation matrix expressed as percentage of explained
variance. Correlation is estimated from daily returns of US stocks, from 01.05.2006
until 01.05.2007.

in other fields Oppenheim et al. [1999]. However, certain of these techniques are not
adapted to the specificity of the financial signals and the constraints of investment
management. Consider the example of adaptive filtering Sayed [2003]. This technique
was developed in the context of audio applications where computational power is lim-
ited, for example due to the limited power available in the hardware implementation.
Thus, the solution of the normal equation is not obtained directly by matrix inversion
but approximated by an iteration of the steepest descent algorithm, one iteration
per observation. And to increase the adaptation speed, the signal processing expert
increases the sampling frequency of the process. In financial applications with a rel-
atively low frequency of trading, computational power is not anymore the limiting
factor as significantly more time is available to compute an update per sample. But
correlations in the filter inputs, and characteristics of the noise process such as its
heteroskedasticity and SNR pose other challenges. This simple example illustrates
why we need to move beyond toolbox applications of signal processing techniques, as
they have been developed with different sets of assumptions and design constraints
in mind. This has already been done in the history of signal processing. Think for
example of specific transforms and lossy compression scheme that takes into account
the properties of the human visual system to compress images Vetterli and Kovacevic
[1995].
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Figure 2.6: (a) Percentage of explained variance using 15 factors. (b) Number of
factors necessary to explain 75% of the total variance. Correlation in both cases is
estimated from daily returns of US stocks, using a 1-year lookback window.
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Figure 2.7: Loadings on the first factor ordered in decreasing order, compared with
the industry the stock belongs to. Correlation is estimated from daily returns of US
stocks, from 01.05.2006 until 01.05.2007.

Belief in a unique model as an absolute truth

We have seen that a quantitative strategy relies on an underlying statistical model
that represents a view on the time-series of interest, typically some function of the
returns. For example, quants use a factor model with a fixed set of factors to reduce
the dimension of the cross-section of returns, as seen in Section 2.2.1. Momentum
type strategy is another example where a fixed portion of past returns is used as
predictors for future returns Jegadeesh and Titman [1993]. More specifically, this
strategy consists in going long (resp. short) on the assets that have performed well
(resp. poorly) over the last 12 months of data, ignoring the last monthś observation.
There are no reasons to believe this specific model should hold and despite the lack
of economic understanding of why this strategy delivers outperformance, it is widely
used in practice Novy-Marx [2012]. There are two problems with this approach.

The first one is the fixed structure of the model. There are overwhelming evidences
that a fixed set of factors or predictors does not capture well the cross-section of stock
returns. For example, we have already seen in PCA that a fixed number of orthogonal
factors explains a variable portion of the total variance. Moreover, Cooper et al. [2005]
review a set 48 in-sample predictors of stock returns documented in the literature.
They apply to each of them the same out-of-sample test with the same dataset consist-
ing of more than 30 years of monthly observations. They conclude on the absence of
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Figure 2.8: Evolution of the wealth generated when investing in the first factor
compared with the evolution of the market capitalization weighted index.

out-of-sample predictability for all 48 predictors, even though each was documented
to have significant in-sample predictability. Likewise, Bossaerts and Hillion [1999]
conduct an out-of-sample study, where model selection criteria are used to select the
set of factors among the three best predictors of equities premium (momentum, size
and value). Their strategy fails to deliver any outperformance compared to index-
ing. In both cases, this failure is the symptom of the nonstationarity present in the
data. The latter is interpreted as the consequence of learning in financial markets,
which act as a feedback loop in the system and modifies it permanently Bossaerts and
Hillion [1999]. In summary, we should not be using a single fixed model, but allows
for certain adaptation among different models, including the model of order 0.

The second problem resides in the way we treat the model under consideration.
This is almost a philosophical question, but it is important since it serves as founda-
tion for our approach. Quants typically assume the existence of a true distribution
according to which data are distributed. And a model is a more or less accurate sim-
plification of this true distribution. This approach is certainty influenced by physics,
where it is sensible to assume the existence of laws, albeit complex, governing the
system. In finance, this is unlikely to be the case and we should therefore not base
our approach on this assumption.
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Figure 2.9: Loadings on the second factor ordered in decreasing order, compared with
the industry the stock belongs to. Correlation is estimated from daily returns of US
stocks, from 01.05.2006 until 01.05.2007.

Dimensionality and complexity of the model

Another problem recurrent in finance is the question of model dimensionality and
complexity. For example, consider the problem of choosing the number of factors to
include in a linear factor model (2.17). In PCA we have presented a procedure to select
the number of factors so as to explain a fixed proportion of the total variance. But
with this procedure, we run the risk of overfitting, by including factors corresponding
to noise, which goes against the idea of building a factor model. Somehow we would
like to penalize the additional complexity that represents the addition of another
factor and accept it only if the improvement in terms of explained variance matches
at least the additional complexity. Existing model selection criteria, such as the
well-known Bayesian information criterion (BIC) and Akaike’s information criterion
(AIC), offer a partial answer, but, as we will see in the coming chapters, suffer from
certain limitations. Quite interestingly, in both BIC and AIC, the complexity is
proportional to the dimensionality of the model. But, as we will see with other model
selection criteria, this should not be the case and two models with the same number
of parameters may have a different complexity.

The problem of dimensionality and the so-called curse of dimensionality is partic-
ularly apparent in certain studies. For example, Jondeau [2010] develops an extension
of the GARCH model to better capture the asymmetric behavior in the tail of the
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Figure 2.10: Loadings on third factor ordered in decreasing order, compared with
the industry the stock belongs to. Correlation is estimated from daily returns of US
stocks, from 01.05.2006 until 01.05.2007.

return distribution. But this comes at the price of introducing additional parameters
controlling the behavior of the tail. Of course, the general principle of maximum
likelihood could (and is) applied to infer from a set of observations the value of these
parameters. But the larger the dimension of the parameters space, the larger the set
of observations necessary to estimate it, which goes against the idea of handling non-
stationarity. In summary, the curse of dimensionality limits greatly the applicability
of these models..

Incorrect handling of stationarity

The problem of nonstationarity is pervasive in all financial modeling problems.
But this is typically bypassed in one way or another, as we detail below. This is
certainly because most mathematical and signal processing techniques rely on some
form of stationarity in the data and little is known otherwise.

One way of bypassing the nonstationarity problem is to assume some form of local
stationarity. That is, the system stays constant over a certain portion of the most
recent observations and is estimated using these data. This is the so-called windowing
approach. We have seen several examples across this chapter. The conditional volatil-
ity estimates is the simplest one. In applications of the Kalman filter, the parameters
of the system have to be estimated and this is done by maximization of the likelihood
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function over a window of observations. In PCA, local stationarity is implicitly as-
sumed when computing the correlation matrix over a fixed window of observations.
The problem with local stationarity is the choice of the appropriate window of data.
A short window leads to quick adaptation but the resulting estimates are more sensi-
tive to noise. There is thus a natural trade-off between the speed of adaptation and
the noise in the solution. More worryingly, one common practice is to set the window
size as a hyperparameter of the backtest and fine-tuned it based on observed data.
This corresponds to the introduction of future knowledge in the backtest. Also, this is
not suitable to handle abrupt changes in the dynamics of the system. During a stable
market phase, for example the bull market between 2003 and 2007, this procedure
will tend to use larger window size, for example, five years of monthly data. Then,
when the market jumps to a crisis mode, the estimation of the model still use a large
portion of observations that are not anymore relevant for the new market conditions.
Of course, managers will adapt their window size over time, and this is one of the
most often reported change in quantitative portfolio management by funds in 2009
after the 2008 financial crisis Shari [2011]. But this process is prone to human bias,
and an unbiased and automated adaptive solution is highly desirable.

Another way to bypass the problem of nonstationarity is to model the underlying
switches between different regimes of the system. For example, in state space model
with Markov switching, a Markov process governs the switching between state space
equations with different system matrices Kim and Nelson [1998]. With this approach,
we come back to the convenient stationarity situation and the maximum likelihood
principle is used to find the parameters of the models. This comes at the price of
introducing an additional number of parameters, such that we face again the curse of
dimensionality problem. For example with a Markov process of order 1 that switches
between X state, we have already at least X parameters for each state and X×(X−1)
parameters of the matrix of transition probabilities of the Markov switching process.
This grows quickly to unpractical numbers for models with more than three states.
Beyond the problem of dimensionality, our experience with Markov processes shows
that their dynamics is not suitable to represent processes involving humans. The
latter have usually a longer memory than just the last observation, as in Markov
process of order 1. As a result, the maximum likelihood estimation procedure can
select a system that switches often, whereas a system with less switches and longer
periods between switches better reflects reality. We somehow would like to introduce
a penalty for these excessive switches, but the theory of Markov switching processes
gives little guidance on how to achieve this, even in an ad hoc manner.
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Summary
In this chapter, we have first reviewed financial concepts necessary
for the understanding of this thesis. (Log-)return is the key quan-
tity of interest for investors. The risk of an investment is imperfectly
measured by the volatility, i.e., the standard deviation of return, and
the Sharpe ratio, defined as the ratio between expected return and
volatility, is used as a key performance metric to compare investment
strategies. We have also related financial concepts to SP ones. In par-
ticular, the Sharpe ratio corresponds to the notion of SNR, a standard
performance metric in SP. We have also reviewed two applications of
SP in quantitative finance. The first one deals with the estimation
of a factor model using the KF. Through two concrete examples,
we have illustrated that the KF offers not only better estimates of
the loadings, compared to standard OLS, but also a computationally
more efficient online update rule. The second application deals with
the use of PCA to extract a series of uncorrelated factors. The first
extracted factor is associated to the market index, a standard factor
already included in factor models from the asset pricing literature,
such as the CAPM. The next factors are associated industry indices,
as suggested by the phenomenon of coherence. Finally, we have also
illustrated the limitations of the current approaches. Two problems
are particularly important for the remainder of this thesis. The first
one concerns the fixed structure of the model that is used to model
the data, although a certain number of evidences support more adap-
tive model structures. The second one is the improper handling of the
nonstationarity inherent to financial signals, and, more specifically,
the limitations of local windowing or Markov switching processes.
Solutions to these problems are the topic of the coming chapters.



Chapter 3

Financial Markets Under
Information Asymmetry

“Private information is practically
the source of every large modern
fortune.”

An Ideal Husband
Oscar Wilde

This chapter is concerned with the general topic of information asymmetry in
financial markets. Under this assumption, certain market participants have access
to privileged, private information. We then distinguish two groups of investors, the
informed - also called insiders - in opposition to the uninformed ones. In practice,
there exists an important difference between insider and informed trading. Typically,
the latter refers to the legal collection and exploitation of private information, for
example, analysts covering a firm. In contrast, insider trading refers to the illegal ex-
ploitation of informational advantages and cases are unfortunately regularly reported
in the press Simonian [2011], Scannel [2011]. However, we use the two terms inter-
changeably in the remainder of this thesis. This is because we adopt in our investment
strategies the point of view of an uninformed investor facing informed ones. We are
therefore not concerned with the legality of insiders’ investments.

Historically, the literature in finance has first developed around the opposite as-
sumption of homogeneous information. According to it, all market participants have
access to the same level of information. Note that it was clear for its authors that
this assumption was not realistic Lintner [1965], but necessary for their mathemat-
ical treatment. Combining the optimality of the mean-variance efficient portfolio
Markowitz [1952], i.e., the portfolio with the highest expected return for a given level
of risk, with this assumption, the authors conclude that the portfolio of all invested
wealth, the market portfolio, is mean-variance efficient. Thus indexing, i.e., holding
the market portfolio is optimal in equilibrium. If the market also contains a risk-free
asset, all investors hold the same portfolio of risky securities but the specific combina-
tion of this portfolio and the risk-free asset depends on each investor’s risk appetite.

41
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There is thus a dichotomization of the investment decision, as it is divided into two
independent tasks. This is called the fund separation property. Moreover, as a direct
implication in terms of asset pricing, the CAPM Sharpe [1964], Lintner [1965] gives
the appropriate rate of return of a risky security n, r(t)

n , as a sole function of the
return of the market portfolio r(t)

market,

E(r(t)
n )− rf = βn,market

(
E(r

(t)
market)− rf

)
, (3.1)

where rf is the risk-free rate.
Departing from the homogeneous information assumption, we review and compare

two large bodies of literature in finance dealing with financial markets under infor-
mation asymmetry, namely noisy rational expectations equilibrium (REE) (Section
3.1.1) and Bayesian-Nash equilibrium (BNE) (Section 3.1.2). In noisy REE, the equi-
librium price emerges from the interaction of price-taking agents, whereas in BNE
agents strategically take into account the impact of their actions on the price. We
also establish a link between the presence of insiders and the necessity to introduce
a variable lookback in prediction model (Section 3.1.3), a potential justification for
the coming chapters. We then test and confirm our initial intuition in the context of
experimental markets, where the experimenter controls private information signal and
the number of insiders. We first highlight the information diffusion process (Section
3.2.2) before developing a method to detect the time of maximally informative price
(Section 3.2.3). The latter corresponds to the first point in time where all information
diffusion has taken place.

3.1 Theory of markets under information asymmetry
Two large bodies of literature in finance study the problem of information asym-

metry, noisy REE and BNE. Both theories deal with the following questions.
(i) Role of the price in conveying information: this role of the price, beyond

that of clearing the market, is of great importance. And although a form of
the efficient market hypothesis corresponds to the situation where prices reflect
all information, both public and private Fama [1970], little is understood on
how this is obtained. Intuitively, the information diffusion takes place because
informed agents reveal (at least partly) their private information when trading
and uninformed agents (imperfectly) infer the level of private information from
observed prices. This inference capacity is an assumption in noisy REE. Fur-
thermore, a recent neurofinance study provides a foundation for this inference
mechanism, called Theory of Mind Bruguier et al. [2010]. Interestingly, it is
related to the social skills of market participants, such as their ability to detect
others’ intentions by observing their behavior, rather than traditionally sought
after quantitative skills.

(ii) Implications of information asymmetry for portfolio choice and asset
pricing: the questions are: does the fund separation property still hold under
information asymmetry? Is there an equivalent CAPM relationship to price
risky securities? How should uninformed agents tilt their portfolio to cope with
the winner’s curse problem? Indeed, uninformed agents serve as counter-parties
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to informed ones. The market then clears, but the price at which uninformed
agents buy (resp. sell) securities is too high (resp. too low)) compared to the
level implied by private information. Winner’s curse is a term that emanates
from the theory of common value auctions and is also referred to as adverse
selection in the literature.

3.1.1 Noisy rational expectations theory

In noisy REE theory, the price emerges from the interaction of price-taking agents,
studied under the rational expectations assumption. From historical perspective, it
was developed from the pioneer work of Grossman and Stiglitz [1980]. In their paper,
they introduce the notion of a noisy rational expectations equilibrium price, as a
price that conveys private information. But it does so only imperfectly such that
informed traders are rewarded for collecting and exploiting costly private information.
The presence of noise resolves the so-called Grossman-Stiglitz (GS) paradox, i.e., the
impossibility of having an equilibrium in the market if information is costly and
price fully revealing. Then, Grossman and Stiglitz make seven conjectures regarding
the properties this equilibrium price possesses. Of particular relevance for us is the
following one.

Hypothesis 1. “The more individuals are informed, the more informative is the price
system.” Grossman and Stiglitz [1980]

Grossman and Stiglitz then proceed to prove all their conjectures in the case of a
simple analytical model, where the market only contains one risky and one risk-free
security. Moreover, interactions between informed and uninformed market partic-
ipants take place during a single trading period, with consumption at the end of
trading. Their model was later on extended to the case of multiple risky securities
economies by Admati [1985]. Admati’s model not only better reflects reality. It also
has a richer structure, such as effects that are not possible in the single security case.
This is due to the general correlation structure in her model. For example, in one of
her simulations with only two risky securities, she is able to find assets whose price
decreases while their final payoff increases or Giffen goods, i.e., assets whose demand
increases when their price increases. Her model was later extended to the case of
multiple trading period by Brennan and Cao [1997], but with only one consumption
period at the end of trading. Finally, the most recent overlapping generations models
Biais et al. [2010] constitute the ultimate refinement. The market contains multiple
risky securities that are traded over multiple periods of trading with intermediate
consumption.

Model and notations

Before we proceed, let us introduce the following model and notations. Each
trading period extends from time t to time t + 1. There is a continuum of agents
a ∈ [0; 1] that have constant absolute risk aversion (CARA) utility function in their
wealth at the end of the trading period, W (t+1)

a ,

U(W (t+1)
a ) = exp

(
−ρW (t+1)

a

)
, (3.2)
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where ρ is the coefficient of absolute risk aversion. We consider a market with
continuously indexed agent so as to make the resulting model analytically tractable,
in particular by using the central limit theorem. Agents trade in a market that
consists of N risky securities that pay a random dividend at the end of the trading
period, zzz(t+1), and a risk-free asset with risk-free rate rf . There is also a portion λ of
agents that are informed, which could either be an exogenous or endogenous variable
of the model. In the latter case, market participants decide to become informed at
a certain cost before trading starts. Then, λ is determined in equilibrium under the
condition that the ex ante expected utility of informed and uninformed investors are
equal. Before the start of trading, insiders receive a private signal that consists of a
noisy version of the vector of final dividends

ι(t)a = zzz(t+1) + ε(t)
a . (3.3)

Each insider a receives a different signal. This combined with the multiple number
of correlated risky assets makes the resulting price informative beyond the informa-
tion already contained in an agent’s private signal. The noise ε(t)

a is such that it is
uncorrelated between agents and has zero mean in the cross-section of agents

∫ 1

0

ε(t)
a da = 0. (3.4)

Thus at the aggregate level, i.e., over all participants,
∫ 1

0

ι(t)a da = zzz(t+1). (3.5)

which means that the market overall knows perfectly the terminal dividend. The
covariance matrix of the noise, Σε, controls for the quality of the private information
signal. As noted by Grossman and Stiglitz, the better the quality of the private
signals, i.e., the lower variance Σε, the more informative the price is. In the absence
of noise, i.e., Σε = 0, the price becomes fully informative and the GS paradox is not
resolved.

(Noisy) rational expectations assumptions

The equilibrium price is obtained under the rational expectations assumption.
Under this assumption, market participants know the probabilistic structure of the
model. For example, in Grossman and Stiglitz [1980], uninformed agents know the
joint distribution between price and final dividend. Because of their probabilistic
knowledge, agents can optimally extract information from their information set I(t)

a

in the sense that the estimates they make are not systematically biased. Furthermore,
one may wonder where this probabilistic knowledge that characterize the rational ex-
pectations assumptions comes from. Suppose that market participants have already
played the game repeatedly. During this initial phase, learning takes place and ter-
minates eventually after a certain number of iterations. Then, when agents continue
playing the game, they use the same distribution they have learned to compute their
demand, such that this distribution persists. In summary, analyzing a model under
the rational expectations assumption means analyzing it in the steady phase of the
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learning process. There is however an issue with the pure rational expectations as-
sumptions. The resulting price becomes fully informative such that all participants
choose to be uninformed. But if nobody is informed, it pays some to become informed.
Thus there cannot exist an equilibrium and the GS paradox is not resolved.

There is an elegant way to resolve the GS paradox by the addition of a source of
noise. Generally speaking, it takes the form of an uncertainty in the total supply or
the demand of the securities. And it could be attributed to very different sources in
practice such as noise traders, liquidity traders, life-cycle investors or traders that have
an imperfect knowledge of the structure of the problem. For example, in Grossman
and Stiglitz [1980] the aggregate supply of the risky asset is a random variable and
the price is a linear function of it and the private information signal. As a result,
the uninformed agents, who only observe the price, are unable to disentangle the
evolution of the price driven by a change in private information from that driven
by a change in the aggregate supply. In Biais et al. [2010], the aggregate supply is
deterministic. The noise is introduced by the addition of a random endowment shock,
i.e., an additional random source of income, received only by insiders at the end of
the trading period. The component of this endowment shock spanned by the final
payoffs of securities at the end of the trading period, zzz(t+1) + p(t+1), enters in the
portfolio choice problem of insiders. In the remainder of this chapter, we loosely call
endowment shock this component of the endowment shock. This reflects the fact that
investors should diversify the risk of their income in their portfolio. For example, the
employee of a bank, whose income depends on his employer and more generally on the
financial industry, should reduce his exposure to this sector in his portfolio. Similar to
Grossman and Stiglitz [1980], the uninformed participants are unable to distinguish
variations in the price that are caused by a change in the aggregate endowment shock
from that by a change in private information. In summary, with the noisy rational
expectation assumption, market participants still make correct inferences conditional
on their information set, but they do this only imperfectly such that the price does not
fully convey private information. Therefore, the resulting equilibrium price resolves
the GS paradox.

Remark. How can we interpret the rational expectations assumption, in partic-
ular in the case where the interaction takes only place over a single period? Imagine
there exists a series of parallel economies where agents play the same game. All
probability distributions and expectations are defined in the cross-section of par-
allel economies. Then, in this cross-section the probabilistic knowledge is correct,
although single realization might differ from the mean of the distribution. This is
somehow comparable with the repeated sampling framework underlying the paramet-
ric estimation theory. In that case, the properties of an estimator are defined in the
cross-section of repeated experiments, but the performance of the estimator on an
individual realization might be quite poor.

Key results

We now explain the general method employed to find the analytical solution of
the model. Firstly, the existence of a unique, linear equilibrium price function is as-
sumed. The equilibrium price is, generally speaking, measurable in past prices, the
vector of aggregate private information signal (the final cash flow because of (3.5))
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and aggregate supply (possibly augmented with the aggregate endowment shock).
The existence and uniqueness of this equilibrium remains to be proven later. Then,
the optimal demand of agents is computed. It corresponds to the vector of portfolio
weights as a function of the price. It is obtained by maximizing the expected utility of
agents, conditional on their information set I(t)

a . In the case of informed agents, the
latter consists of the private information signal and past prices. Indeed, in multivari-
ate setting, price contains information beyond what is already contained in an insider’s
private signal. In Grossman and Stiglitz [1980], all insiders receive the same informa-
tion signal, such that they do not use price when computing their demand. But this
is particular to the one risky asset model. For uninformed agents, the information set
consists only of past prices. Note that because agents have CARA utility function
their demand does not depends on their wealth. Also, the fund separation property
does not hold anymore as informed and uninformed agents hold different portfolios
of risky securities, reflecting their different information sets. Finally, the equilibrium
price is obtained by imposing the market clearing condition, i.e., aggregate demand
equals to aggregate supply.

Numerical simulations highlight important features of the model. As already men-
tioned, the equilibrium price is a linear function of several random vectors of the
model. Let us call B be the matrix of the multivariate regression coefficients of price
on private information. Figure 3.1 represents the evolution of the diagonal element
of the matrix Bn,n as a function of the proportion of insiders λ for asset n. This is
the sensitivity of the price on its private information. It thus represents a measure of
price informativeness. When λ = 0, the coefficient Bn,n is equals to zero. If there is
no insider, the price cannot depend on private information. When λ increases, Bn,n
increases as well. Thus the larger the proportion of informed investors, the more the
price depends on private information, the more informative the price system is. This
confirms Hypothesis 1.

3.1.2 Bayesian-Nash equilibrium theory
Let us now turn our attention to the alternative theory of markets under in-

formation asymmetry, namely BNE theory Holden and Subrahmanyam [1992]. In
this theory, the equilibrium price emerges from the interaction in a repeated game of
strategic, noncooperative and rational investors. Each term characterizing an investor
in BNE is important; let us come back to each individually.
(i) Strategic: this means that market participants decide on their holdings by

taking into account the influence of their trades on the price process. They are
also aware of the presence of other strategic, potentially informed investors. As
a consequence, in BNE, a single agent can impact the price.

(ii) Noncooperative: this means that agents cannot communicate in order to
coordinate their actions. They would be better off by coordinating and colluding
against the central market maker, but this is not possible because they only
interact in an anonymous market.

(iii) Rational: this refers to the assumption that investors decide on their holdings
by maximizing their expected utility function, conditional on their information
set. Moreover, a key ingredient in the model is the introduction of an additional
source of noise, which results in a game of imperfect information. Noise traders,
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Figure 3.1: Multivariate regression coefficient of price on private information for
asset n, Bn,n, as a function of the proportion of informed investors λ. The larger
this proportion is, the more the price is sensitive to changes in private information,
thus informative. Biais et al. [2010]. Reproduced by permission of Oxford University
Press.

who also submit order to the central market maker, constitute this source of
noise. Because of their demands, an informed agent cannot infer the order
of other informed agents by observing the price. In the absence of noise, a
similar result is obtained if agents are risk averse. In that case, they hedge their
positions in risky assets and this prevent the price to become fully revealing.

The model is analyzed so as to obtain its unique linear Bayesian-Nash equilibrium.
The model is solved by backward induction, starting at the last period. The Bayesian-
Nash equilibrium of the subgame formed by the last trading period is computed under
the assumptions that agents set their demand so as to maximize their utility function
and the price clears the market, i.e., total supply equals to total demand. Then, the
Bayesian-Nash equilibrium of the ultimate period is computed similarly, but condi-
tional on the solution at the last period, etc. Figure 3.2 illustrates the central results
of the BNE theory. It represents the variance of the final dividend conditional on
price for market with different number of insiders. Intuitively, the smaller this vari-
ance is, the more informative the price is. We first note that, this variance decreases
over time, stated differently, there is diffusion of private information into the price
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process. However it does so quite differently for markets with different number of
insiders. In the case of a monopolistic insider analyzed by Kyle [1985] the unique
insider takes into account the price impact of his trades so as to optimally hide his
action. The diffusion of private information takes place at a constant, almost linear
rate. With more insiders, the decrease in variance is considerably faster. Thus, the
speed of information diffusion increases with the number of insiders, again a confir-
mation of Hypothesis 1. Moreover, unlike predicted by noisy REE, all informational
inefficiencies disappear very quickly. Even in the case of two insiders, the variance
of the final dividend drops after a couple of trading periods. This is justified by the
aggressivity of traders, who want to benefit first from their informational advantages
while not being able to coordinate their actions.

Figure 3.2: Conditional variance of the final dividend in calendar time, for markets
with different number of informed investors. The conditional variance decreases as
a function of time, but more abruptly for market with more insiders. When there is
only one insider, the variance decreases slowly, at an almost linear rate. Even in
markets with two insiders, all informational inefficiencies disappear rapidly. Holden
and Subrahmanyam [1992]. Reproduced by permission of John Wiley & Sons, Inc.
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3.1.3 Our view

Comparaison between noisy REE and BNE

We have just reviewed two existing theories of financial markets under information
asymmetry, noisy REE and BNE. Table 3.1 summarizes our discussion and compares
their frameworks, assumptions and implications. The biggest difference lies in the
presence, on the one hand, of price-taking continuously indexed agents, where no
one can impact the price, compared, on the other hand, to strategic agents, which
can individually impact the price. Moreover, whereas both theories agrees on the
fact that the larger proportion of informed investors leads to a more informative price
(Hypothesis 1), they disagree on the existence of long-lived informational inefficiencies.
BNE supports their absence, because agents trade aggressively in order to be the
first one to benefit from their informational advantages. Also, the nature of the
equilibrium that both theories approaches is different. In BNE, the equilibrium price
is defined in the sense of a form of the efficient market hypothesis, i.e., prices are
such that they reflect all information, both public and private Fama [1970]. In noisy
REE, equilibrium price is not fully revealing of private information. To anticipate the
results of the coming sections, experimental finance confirms that the nature of the
resulting equilibrium is better described by noisy REE but BNE gives a mechanism
(strategic interaction) explaining the emergence of this equilibrium.

Information asymmetry and variable lookback

Let us now establish a link between the presence of informed investors and the
idea of a variable lookback model. This is only a potential justification for it. Unin-
formed agents should make their predictions using past prices as a proxy for private
information. But how they do this depends on the relative proportion of insiders in
the market. In the extreme case of no informed agent (resp. all informed agents),
there is no (resp. immediate) diffusion of private information into the price process,
thus no predictability. From the point of view of an uninformed agent, there is no
point to try to make predictions. In the case of a unique informed agent Kyle [1985],
he can optimally hide his action when trading, because he is taking into account the
impact of his trades on the price process. The information diffusion is very slow, pre-
dictability is small and a large portion of past observations is relevant when forming
predictions. On the contrary, when the number of informed agents increases, they face
a dilemma. They want to hide their actions, while being the first to benefit from their
knowledge of private information. The information diffusion is considerably faster,
the price process more predictable and a shorter proportion of the past observations
is relevant when forming predictions. Now, suppose information arrives in the market
as a point process with both private information and public information that resolves
private information. There is consequently a time-varying random number of insiders
in the market that induces a time-varying predictability of the price. More impor-
tantly, uninformed agent should form their prediction using a time-varying portion of
past prices. This is the central idea behind our variable lookback model. Before we
study the estimation of this model in Chapter 4, let us first confirm this intuition in
the context of experimental finance.
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Noisy REE BNE

Framework of analysis

Equilibrium under the ra-
tional expectations as-
sumption

Bayesian-Nash equi-
librium of repeated
imperfect information
game

Assumptions

Investors’ Rationality ! !

Strategic % !

Price takings agents Noise traders are price in-
sensitive

Cooperative % %

Correct estimates and
conjectures

! !

Market clears ! !

Results

Nature of the equilibrium Price partially reveals
private information

Price reveals all public
and private information

Price informativeness
proportional to the
number of insiders

! !

Existence of long-lived in-
formational inefficiency

! %

Table 3.1: Comparaison of noisy REE and BNE.
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3.2 Confirmation from experimental finance

Experiments have a long tradition in sciences, in particular physics, as a way to
test theories. But, it is only relatively recently that they have found their way in
finance research. See for example the pioneer work of Plott and Sunder [1988], who
conducted at that time his experiments openly in a classroom. This delay is possibly
attributable to the large quantities of field data already available. However, unlike
field data, their experimental counterparts present several advantages. In the first
place, the experiment represents a simplification of a real world scenario. For exam-
ple, participants interact in a complete market made of a limited number of securities.
Obviously, the level of complexity has to be balanced. On the one hand, it should be
complex enough so as to rule out trivial solutions. On the other hand, it should be
simple enough, in particular, to be able to disentangle competing effects, something
not always possible in field data. Experiments retain as a central element of their
complexity the human being. This distinguish experimental data from simulations,
which, despite their complexity, remain only stylized mathematical models. In sum-
mary, an experiment is skillfully designed as to retain the essence of the problem. In
the second place, experiments are run in a controlled setup. It depends on a set of
parameters that forms its experimental condition. The experimenter then replicates
the experiment using various parameters’ value so as to study their impact on the
outcome. For example, in experimental markets with insiders, the experimenter con-
trols the number of informed participants or the quality of the private information
signal. Finally, the experimenter has access in his analysis to quantities not directly
observable in practice, for example, private information signals received by insiders.

3.2.1 Description of the experiment

In this section, we describe the setup of the experiment used to generate data
analyzed in the coming sections Bossaerts et al. [2010], Bruguier et al. [2010]. Twenty
subjects are recruited to participate in an experiment run using a computerized sys-
tem. They are either finance professionals or graduate students in finance. Before
the start of the experiment, subjects receive the following instructions. The market
in which they trade contains only two securities, called X and Z, that pay a random,
complementary dividend between 0 and 50 cents at the end of each trading period.
That means that if X pays z cents of dividend, then Z pays 50−z cents. Only trad-
ing of X is permitted and short selling is allowed, in the limit that a subject does not
become bankrupt. Overall, at the market level, there is the same amount of X and
Z. Thus the total amount of money distributed by the experimenter is fixed and the
unconditional price of X is 25 cents as there is no aggregate risk. The experimenter
makes sure the subjects understand the instructions and answers possible questions.
Then, the experiment itself starts and consists of a series of 13 independent trading
sessions. Before each session, participants receive an initial portfolio of securities X
and Z, different for each participant. Also, there is a subgroup of subjects, the in-
siders, that receive a private signal related to the realization of the final dividend z.
More specifically, the signal gives a 10 cents bound within which the final dividend
is comprised. For example, if the private signal is 40 cents, insiders know that the
final dividend lies between 35 and 45 cents. Like in noisy REE, the signal consists
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of a noisy version of the final dividend in order to prevent the price from being fully
revealing. Then, the trading session starts and last 5 minutes. Trading takes place
in a double auction market, described in Section 2.1.1. Subjects can submit buy and
sell limit orders, that accumulate in a publicly visible order book, as well as buy
and sell market orders. At the end of the trading period, the value of dividend is
publicly revealed and subjects receive an amount of money that corresponds to their
final portfolio. On average, subjects make 55$ per experiment. There are in total of
5 experiments.

A certain number of comments regarding the design of the experiment are in order.
Firstly, by design, subjects have a clear incentive to trade in the market. Indeed, as
suggested by finance theory, there exist three reasons for trading, namely differences
in endowments, beliefs and preferences, and all of them are present in the experiment.
The difference in endowments comes from the different initial portfolio of securities
X and Z received by subjects before the start of trading. The difference in beliefs
results from the introduction of a private signal for insiders. And the difference in
preferences results from the difference in risk aversion between subjects, a reasonable
assumption in practice. Risk averse subjects want to balance their portfolio so as
to equate the quantity of X and Z and reduce the risk of their holdings. Secondly,
one may argue that the subjects do not comprehend the game they are playing. As
a result, they play simple, stupid strategies (even if they are harmful for them) and
experimental data contain only spurious noise. Several ingredients in the design pre-
vent this. First of all the anonymity of the market and the relatively large number
of participants ensure that these noise effects average out. If one subject plays one
random strategy, we can assume an other one plays another random yet uncorrelated
strategy and their combined effect do not affect the outcome. The anonymity in the
market is ensured by the special design of the room where the experiments take place:
subjects seat in a cubicle and are prevented to see the screen and the keyboard of their
peers. Moreover, subjects are extensively trained before the start of the experiment.
Beside the instructions they receive, as already mentioned, they trade during a couple
of sessions to familiarize themselves with the rules of the experiments and the double
auction mechanism. Results are only registered after this initial training phase. Fi-
nally, certain critics concern the choice of the double auction as market mechanism,
in particular. that it is too complex. The use of a double auction market mechanism
produces an efficient allocation and is able to reproduce stylized facts predicted by the
theory. Moreover, the complexity of this market mechanism plays in his favor, as it is
extremely hard to strategize against it given the large set of available actions (choice
between limit and market orders, level of the limit order). Also, this is the market
mechanism used practically by every stock exchanges, which makes the experiments
closer to reality.

The experimenter registers the entire evolution over time of the order book, from
which he can compute certain quantities, such as the quote mid-price, etc. The
evolution of the price for the 13 trading sessions of experiment 1 is represented in
Figure 3.3. In general, we observe that the price tends to approach the private
information signal.
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Figure 3.3: Evolution of the quote mid-point price for the 13 trading sessions of
experiment 1. Price approaches the private signal, in general. Bruguier et al. [2010].
Reproduced by permission of John Wiley & Sons, Inc.
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3.2.2 Information diffusion
Analysis method

In a first analysis, we aim to highlight the diffusion process of private information
into the price, as well as study the influence of the number of insiders on the speed of
this diffusion. We run the cross-sectional regression of price on private information,
where time-series are grouped per experimental condition (number of insiders). More
precisely, let us define

p
(t)
i,j (3.6)

to be the price of security X at time t, in trading session i which has j insiders.
Then, let us stack in a vector p(t)

.,j all prices that have the same number of insiders
j. Likewise, let ιi,j be the private information signal received by insiders in trading
session i which has j insiders. By default, we set ιi,0 = 0, i.e., there is no private
information in markets with no insider. Then, we define the vector ι.,j by stacking all
private information signals of the trading sessions with j insiders. Then, the equation
describing the linear cross-sectional regression is then given by

p
(t)
.,j = α

(t)
j + β

(t)
j ι.,j + e

(t)
.,j , (3.7)

where e(t)
.,j represents the (vector of) residuals. The estimates of the time-varying

parameters α(t)
j and β(t)

j are obtained by OLS.

Results

The first quantity of interest is β(t)
j . It reflects the amount of private information

reflected in the price at time t in a market with j insiders. Figure 3.4 represents
the evolution over time of this regression coefficient, for different number of insiders.
The case with 0 insiders is a sanity check. There is no private information to be
reflected in the price and thus the regression is zero all the time. Except for this
case, the coefficient increases in time thus the price becomes more informative over
time, albeit differently depending on the number of informed investors. On the one
hand, when the number of insiders is large (10 for example), the coefficient increases
and stabilizes at a plateau quickly. Information is rapidly impeded in the price and
the price is almost perfectly correlated with the private information signal, as the
coefficient reaches a value close to one. On the other hand, with a small number
of insiders (6 for example), the regression coefficient increases at a slower rate and
the plateau level is lower. Information diffusion is slower and the final price is less
informative. In the case with two insiders, plateau level is not reached at the end
of the 5 minutes of trading, indicating that the diffusion process is still taking place.
In conclusion, the speed at which information is reflected in the price increases with
the relative proportion of informed investors, as predicted by both noisy REE and
BNE theory. Moreover, as illustrated by the case with two insiders, all information
inefficiencies do not disappear quickly, supporting the noisy REE theory.

Another quantity of interest is the mean squared error (MSE), defined by

MSE
(t)
j =

1

N

n∑

i=1

(e
(t)
i,j )

2. (3.8)
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Figure 3.4: Evolution over time of the cross-sectional regression coefficient of the
price on private information, as a function of the number of insiders.

A finance practionner calls the square root of the mean squared error volatility and
there are two reasons to focus on this quantity. Patterns in the volatility, in particular
GARCH-like features such as the clustering of volatility, were the only significant
patterns detected in the time-series of price that could explain how uninformed agents
detect the presence of insiders Bruguier et al. [2010]. Our results is in line with
those of Bruguier et al. [2010]. Moreover, the arrival of information in the market
is associated with an increase of volatility, followed by a subsequent decrease due to
incorporation of information Lamoureux and Lastrapes [1990]. Figure 3.5 represents
the evolution over time of the MSE of the residuals as a function of the number
of insiders. The picture looks somehow less clear than Figure 3.4 but we can still
make the following observations. At the beginning of the period, corresponding to
the arrival of private information, the volatility increases and tends to decrease over
time. That is, information is progressively impeded in the price. Interestingly, in the
case of two insiders, the MSE remains high at the end of the period. This reflects
again that the diffusion of private information into the price is still taking place at
the end of the 5 minutes of trading.

This analysis highlights clearly the diffusion process of the private information into
the price process. However, it could not be performed in field data, because we have
adopted the point of view of an omniscient experimenter. Indeed, both the number
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Figure 3.5: Evolution over time of the mean squared error, as a function of the
number of insiders.

of insiders as well as the private signals are necessary for our analysis, but they are
not observable in practice.

3.2.3 Detection of the time of maximally informative price

Analysis methodology

In a second analysis, we adopt the point of view of an uninformed investor that has
only access to a single realization of the time-series of prices. Assuming information
arrives in the market at t = 0, our objective is to detect the time of maximally infor-
mative price and relates it to the proportion of informed insiders in the market. Let
us start by clarifying this notion of time of maximally informative price. Intuitively,
this is the first point in time where all information diffusion has taken place. Consider
again Figure 3.4. We distinguish two distinct phases. The regression coefficient β(t)

j

first monotonically increases when the information gets impounded in the price and
then reaches a plateau when all information diffusion has taken place. In the presence
of risk neutral market participants, this happens but, at the same time, the price is
a martingale and there is no predictability in the price process. Conversely, in the
presence of risk averse market participants, there is predictability in the price process
during the phase of information diffusion. Indeed, during this phase, uninformed in-
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vestors perceive more risk due to the adverse selection effect. Consequently, the price
drops initially to compensate the risk averse agents for holding the risk of the asset.
On average, the expected return should be higher than in the absence of insiders.
As the information is impounded in the price, the intensity of the adverse selection
effect decreases, the risk premium decreases as well and prices increase. The pre-
dictable change in price lasts until no more information is being incorporated in the
price. Then, the time of maximally informative price corresponds to the first point
in time characterized by the absence of predictability in the price process. Moreover,
this phase of initial predictability is shorter in market with more insiders, as the in-
formation is incorporated in the price more quickly. Stated differently, the time of
maximally informative price should be smaller in markets with more insiders.

Let us now give a more formal treatment of this notion. To represent the depen-
dencies of the current price on past k prices, we could use a Markov process of order
k,

P
(
y(t)/y(t−1), y(t−2), . . .

)
= P

(
y(t)/y(t−1), y(t−2), . . . , y(t−k)

)
(3.9)

= P
(
y(t)/y(t−k)>(t−1)

)
(3.10)

where y(t) are the observations of the process, typically some function of the price.
Recall also that y(t′)>(t′′) denotes the concatenation in a sequence of the observations
from t′ to t′′. In a Markov process of order k, the emission probability of the next
symbol is conditioned on a fixed portion of k past symbols. Markov processes are
extremely versatile, but suffer from the curse of dimensionality. If y(t) can takes M
values, the Markov process is parameterized by a matrix of Mk × (M − 1) transition
probabilities. To resolve this dimensionality problem, let us consider instead tree
machine Rissanen [2005]. In a tree machine, the probability of an observation depends
on a set of past observations of different length, called context ξ. We can represent
the data generating process as an M -ary tree. Each node corresponds to a context,
in particular the root node to the empty context −. Furthermore, if edges are labeled
with the M values taken by y(t), the context of a node corresponds to the path from
the root leading to that node. Moreover, each leaf node, i.e., a node without children
stores a conditional distribution of the next symbol given its context P

(
y(t)/ξ

)
. Note

that a Markov process of order k corresponds to the completeM -ary context tree with
k levels. Also, to sample a random process from a context tree, the following method is
applied. Suppose we have already generated a set of symbols y(1), . . . , y(t−1). Then,
we climb the tree following past symbols y(t−1), y(t−2), etc. until we reach a leaf
node. The next symbol is then generated by drawing at random from the conditional
distribution stored at that node P

(
y(t)/ξ

)
.

Example 6. Suppose observations takes binary values, i.e., y(t) ∈ {0, 1}. Figure 3.6
represents an example of a binary context tree. By convention, edges from a parent
node to its left (resp. right) child is labeled with 0 (resp. 1). The second node on the
second row has context 01 which corresponds to the path of going from the root to this
node.

The Context algorithm Rissanen [2005], described in Algorithm 3.1, allows build-
ing a context tree given a sequence of observations y(1), . . . , y(T ). To simplify the
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Figure 3.6: Example of context tree.

treatment, suppose the observations take binary values. We later generalize the algo-
rithm to the case of a general, possibly continuous alphabet. Each node in the tree is
indexed by its context ξ. It also stores the number of 0 and 1 observed so far, count0,
count1 and an estimate of the distribution of the next symbol conditional on its con-
text P(y/ξ). Each node also contains a code length CL, that represents the capacity
of a node to encode observations efficiently. The link between data compression and
statistical learning will be made clear in the next chapter, with the introduction of
the MDL principle. For the time being, let us just assume that a short code length is
good. The algorithm starts with a root node, labeled with the empty context −, with
count count0(−) = count1(−) = 1 and code length CL(−) = 0. Then for every ob-
servation, the algorithm first encodes it (encoding or pruning step), and then updates
the knowledge stored in the tree (update and growth step). During the encoding step,
starting at the root, the algorithm climbs the tree by reading past symbols in reverse
order y(t−1), y(t−2), . . .. It stops when (a) it reaches a leaf node or (b) it reaches a
node whose children are not more efficient than itself. This happens when the code
length of the parent node is smaller than the sum of code lengths of its children. Be-
cause we are interested in the length of the context used for encoding, the algorithm
returns it. During the growth and update phase, the algorithm, restarting at the
root, climb the tree following past symbols in reverse order. For every node visited,
the algorithm increases their count of symbols, code length and update the estimate
of the probability distribution. The algorithm stops either (a) when it reaches a leaf
node or (b) when an internal node’s count becomes 2. This last condition allows the
tree growing only at repeated occurrences of a context. Finally, if the algorithm has
reached a leaf node, it is extended by its two children with count equals to 1 and with
code length from their parent node.
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Algorithm 3.1 Context algorithm.
1. Input: y(t), t = 1, . . . , T

2.
3. Classdef {count0, count1, CL,P(. . .)} as Node
4.
5. %Initialization
6. Node(−).count0 ← 1
7. Node(−).count1 ← 1
8. Node(−).CL← 0
9.

10. %For each observation
11. for t = 1, . . . , T do
12.
13. %Choice of encoding node
14. Start at root node
15. repeat
16. Climb the tree following past observations y(t−1), y(t−2), . . .
17. until Node(ξ) is a leaf ∨ Node(ξ, 0).CL+Node(ξ, 1).CL > Node(ξ).CL
18. return Length of ξ
19.
20. %Update phase
21. Start at root node
22. repeat
23. Climb the tree following following past observations y(t−1), y(t−2), . . .
24. Node(ξ).county(t) ← Node(ξ).county(t) + 1

25. Node(ξ).CL← Node(ξ).CL− log2P
(
y(t)/ξ

)

26. Update model Node(ξ).P(. . .) given y(t)

27. until Node(ξ) is a leaf ∨ Node(ξ).county(t) = 2
28.
29. %Growth phase
30. if Node(ξ) is a leaf then
31. Node(ξ, 0).count0 ← 1
32. Node(ξ, 0).count1 ← 1
33. Node(ξ, 0).CL← Node(ξ).CL
34. Node(ξ, 1).count0 ← 1
35. Node(ξ, 1).count1 ← 1
36. Node(ξ, 1).CL← Node(ξ).CL
37. end if
38. end for
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Let us now generalize the Context algorithm to the case where the observations
take value in a nonbinary alphabet Rissanen [2007]. The tree is grown using a quan-
tized version of the observed symbols. For example, consider the following quantiza-
tion scheme

Q
(
y(t)
)

=

{
1 if y(t) ≥ 0

0 otherwise.
(3.11)

where Q
(
y(t)
)
corresponds to the quantized version of observation y(t). Moreover, the

model describing the data conditional on the context is defined at the same precision
as the original alphabet. For example, with continuous random variable and a context
ξ of length k we can use an autoregressive processes of order k

y(t) = α+ β1y
(t−1) + . . .+ βky

t−k + e(t). (3.12)

The model is estimated using observations whose past symbols match context ξ.
Finally, the coding distribution corresponds to a universal model for that class of
processes.

Let us come back to the problem of detecting the time of maximally informative
price. When the information diffusion has taken place and no more predictability of
price exists, the Context algorithm should encode subsequent symbols using the root
node, i.e., a model of order zero. And we equate time of maximally informative price
with the first time the algorithm comes back to a model of order zero. If this does not
happen, the algorithm does not conclude and does not output a value. More precisely,
we apply the Context algorithm on the time-series of price changes

y(t) = p(t) − p(t−1). (3.13)

A ternary tree is grown using the following quantization

Q
(
y(t)
)

=





1 if y(t) > 0

0 if y(t) = 0

−1 if y(t) < 0.

(3.14)

Each node use as model an autoregressive process, whose order equals to the length
of its context. It is estimated using observations where this context occurs. Finally
we use as universal model the probability distribution corresponding to an existing
model selection criterion, namely the normalized maximum likelihood (NML) Rissa-
nen [2007].

Results

Figure 3.7 represents the time of maximally informative price identified by the
Context algorithm. Only the first set of 13 trading sessions of experiment 1 are
used. However, there are not 13 points one the figure because the algorithm does
not always conclude. Identified times of maximally informative price are plotted
against the number of insiders and the curve represents the OLS regression of the
time of maximally informative price on the inverse number of insiders. The regression
coefficient is statistically significant. This again confirms Hypothesis 1.
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Figure 3.7: Estimated times of maximally informative price displayed as a function
of the number of insiders. Only the time-series from the first experiment are used.
The curve corresponds to the OLS regression of the time of maximally informative
price on the inverse number of insiders.

Figure 3.8 represents the same result for all 5 experiments, each with 13 trading
sessions. Each color represents a different experiment number. Similarly, we display
the estimated times of maximally informative price as a function of the number of
insiders grouped per number of insiders and plot the OLS regression of the time of
maximally informative price on the inverse number of informed investors. The black
curve represents the random coefficient regression Poi [2003]. This regression adds
to each experiment a common constant, suppose to capture the difference between
groups of participants involved in different experiments. For example, think of the
difference of aggressivity in trading of a group of participants which makes a market
with only 2 insiders in one case resembles one with 6 insiders in another case. Again,
the random coefficient regression is significant. This supports Hypothesis 1.
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Figure 3.8: Estimated times of maximally informative price, as a function of the
number of insiders. Time-series from all 5 experiments are represented by a different
color. The colored curve corresponds to the OLS regression of the time of maximally
informative price on the inverse number of insiders and the black curve to the Swany’s
random coefficient regression.



3.2 Confirmation from experimental finance 63

Summary
In this chapter, we have reviewed and compared two theories of fi-
nancial markets under information asymmetry, the noisy REE and
the BNE. Whereas in REE price emerges as the equilibrium between
price-taking agents under the rational expectations assumption, it re-
sults from the strategic interaction of investors in BNE. In both the-
ories, price plays an articulated role in conveying information from
informed to uninformed market participants. Both theories agrees
that the informativeness of the price is proportional to the relative
proportion of informed investors in the market. However, in noisy
REE, the price does not fully reveals all private information, whereas
all informational inefficiencies disappear very quickly in BNE. We
have then tested both theories in the context of experimental finance.
We were able to highlight the information diffusion process as well
as determine the price of maximally informative price using the Con-
text algorithm. Interestingly, our view reunites both theories, in the
sense that the type of equilibrium the price system converges to is
better described by noisy REE but BNE explains how this equilib-
rium emerges. The existence of long-lived informational inefficiencies
is also a good news from the uninformed agent point of view: there
is money left on the table and strategies that optimally extract infor-
mation from past prices are profitable. The aim is not to recover the
private information signal of course, but rather to characterize the
diffusion of this information so as to distinguish if the evolution of
price is driven by information or not. This is the topic of the coming
chapters.
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Chapter 4

Variable Lookback Algorithm

When I look back on my life, it’s
not that I don’t want to see things
exactly as they happened, it’s just
that I prefer to remember them in
an artistic way.

Lady Gaga

In the introduction of this thesis, we have proposed the idea of a variable lookback
model, i.e., a statistical model where a time-varying portion of the past observations
is relevant for the future. We have also seen in Chapter 3 that a potential justification
is given by the theory of financial markets under information asymmetry; the relative
proportion of informed investors controls the speed of diffusion of private information
into the price, and since this proportion varies over time, a time-varying portion of past
prices is relevant for the future. We have also verified this intuition in the context
of experimental finance. In particular, we have seen that the time of maximally
informative price, i.e., the first point in time where all information diffusion has taken
place is inversely proportional to the number of informed investors. Expressed in terms
of lookback window, this leads to the statement above. The variable lookback model
is more generally motivated by the need to develop learning methods able to handle
nonstationarity inherent to financial signals, whether or not it is the consequence of
the presence of information asymmetry. Moreover, as we have also seen in Chapter
2, current solutions, in particular local windowing, suffer from certain shortcomings.

We are now ready to introduce our new solution, a learning algorithm that selects
simultaneously the order of the process and the lookback window based on the MDL
principle. We therefore coin the term variable lookback algorithm for it. The solution
is algorithmic, which means that we describe a general procedure. It is furthermore
independent of the choice of models, so as to prevent turning this thesis into a mere
data mining exercise. Moreover, the proposed solution is universal, which informally
means that it is somehow close to the best solution in hindsight, i.e., with full knowl-
edge of the whole history of the process. We will give in this chapter a more precise
definition of this notion of universality. How close we are to the best solution in
hindsight represents the cost of learning progressively the model in an online manner.

65
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Of course, if we had a strong idea on the data generating process and the underlying
model, this is the penalty we would incur to use a universal model. But since we
work with financial time-series, this is unlikely to be the case. Finally, our solution
is only based on the idea of piecewise stationarity. This means there exists a set of
times t0 = 1 < t1 < . . . < tS ≤ T such that the data are generated by a model of
order k − S ∈ {0, . . . ,K} in the interval [ts−1; ts). We make no assumption on the
distribution of switching times, their numbers S or the positions at which they occur
{ts}Ss=1. Furthermore, the solution does not rely on the ergodicity of the time-series.

The remainder of this chapter is organized as follows. We start by reviewing nec-
essary notions of information theory (IT) (Section 4.1.1). Of particular importance,
we see how Kraft’s inequality and the information inequality establish two links be-
tween the notion of a probability distribution and that of a code length function. We
also review the existing theory of MDL as it underlies our proposed solution (Section
4.1.2). Starting with the origin of MDL rooted in Kolmogorov’s algorithmic complex-
ity theory, we give a first crude version of MDL, before enunciating a modern version
based on the idea of a universal model. Later, we present our algorithm (Section 4.2.1
and 4.2.2). Towards the end of the chapter, we present the first tests of the algorithm
on simulated time-series, whereas applications on real financial data is the topic of
Chapter 5. We first test the model selection criterion in the absence of switch in the
system (Section 4.3.1). Then, we study the behavior of the algorithm in the idealized
scenario when the underlying system switches between a highly correlated model to
and i.i.d. one, and vice versa (Section 4.3.2).

4.1 Background material

4.1.1 Basics of information theory

IT is a branch of communication theory that was developed from the work of
Shannon [1948]. We start by reviewing the basics of this theory, especially coding
theory, as it underlies the MDL principle. Of crucial importance are the links between
probability distributions and code length functions.

Code and code length function

Coding theory is a branch of IT that is concerned with the design of codes, i.e.,
binary representations of sequences of observations. From a communication perspec-
tive, a sender and a receiver exchange messages over a communication channel. The
sender encodes its original message into a bitstream, which the receiver has to decode
to recover the original message. Intuitively, the goal is to achieve a short description
length, while ensuring that the code is decodable and that no information is lost. At
first, this problem might appear quite remote from our concerns, but we will see that
there is a link between coding and learning theory.

Let us now give a more formal treatment of this notion of code Telatar [2006].
Suppose that the message to encode is a sequence of observations, whose elements,
or symbols, y(t) take value in a countable set Y, called alphabet. A code is a mapping



4.1 Background material 67

of the symbol to a sequence of binary elements or bits,

C : Y → {0, 1}∗
y(t) → C(y(t)).

(4.1)

The binary representation of symbol y(t), C(y(t)), is called its code word. A code has
to be invertible such that the decoder can recover the original symbol from its code
word. Also, a code defined over symbols is naturally extended to encode an entire
sequence of symbols by encoding each symbol of the sequence individually,

CT : YT → {0, 1}∗
y(1)>(T ) → C

(
y(1)>(T )

)
= C

(
y(1)

)
. . . C

(
y(T )

)
.

(4.2)

A code whose natural extension is invertible is called uniquely decodable. Moreover,
uniquely decodable code are called prefix-free if no code word is a prefix of another
code word. Prefix-free codes have the desirable properties of being instantaneously
decodable. The decoder does not need to wait until it receives subsequent binary
elements to disentangle which binary symbols correspond to which code words. This
holds without the introduction of a special symbol representing the limit between
different code words. We focus in the remainder solely on prefix-free codes.

As already mentioned, the resulting length of the code measured in bits is the key
quantity of interest when designing a code. Hence, we can associate to a code its code
length function that maps the original sequence to a natural number,

CL : Y → N

y(1)>(T ) → CL
(
C(y(1)>(T ))

)
.

(4.3)

The most obvious choice of code consists in describing each element of Y using log2M
bits, where M is the cardinality of the alphabet. The resulting code length for a
sequence of T observations, T log2M , is an upper bound on the achievable code
length. To achieve a better code length, we can exploit restrictions in the original
message. If certain observations are more likely than others, we can encode them
using a shorter code word such that the expected code length is reduced. Moreover,
we can encode entire sequences of symbols at once, which leads potentially to more
efficient solutions than the natural extension of a code defined on individual symbols.
For example, suppose we encode an English text. The frequency of letters is not
uniform and the vocabulary and syntax defines constraints on admissible sequences
of letters. Finally, in the remainder of this thesis, we drop the integer constraint of
the code length function, because this facilitates the mathematical treatment and the
resulting code we design is within one bit of the constrained scheme Gruenwald [2007].

Links between code length functions and probability distributions

We now review two important links between probability distributions and code
length functions, that are central for the understanding of the MDL theory Gruenwald
[2005], Gruenwald [2007]. Intuitively, when designing prefix-free codes over a given
alphabet Y, we observe that we can attribute a short code length CL to a limited
number of symbols or sequences. For example, observe that there can be at most
one symbol with a corresponding code word of less than 1 bit, 3 symbols with a
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corresponding code word of less than 2 bits, etc. Likewise, when defining probability
distributions over a given alphabet Y, we cannot associate a large probability to large
number of symbols, because the probability has to sum to 1,

∑

y∈Y
P (y) = 1. (4.4)

Again, observe that there can be only 1 symbol with probability greater than 1/2, 3
symbols with probability greater than 1/4, etc. This intuition can be made precise
thanks to Kraft’s inequality ∑

y∈Y
2−CL(y) ≤ 1. (4.5)

Suppose there exists a probability distribution P defined on Y. Let us define the code
length function CL as

CL(y) = − log2P(y), ∀y ∈ Y. (4.6)

Being a proper probability distribution, P satisfies
∑

y∈Y
P (y) = 1⇒

∑

y∈Y
2−CL(y) = 1. (4.7)

Thus the code length function satisfies Kraft’s inequality and by the converse of
Theorem 5.2.1 in Cover and Thomas [1991], there exists a prefix-free code whose code
length is given by CL. Conversely, suppose there is a prefix-free code with code length
function CL. Moreover, let us define the probability P as in (4.6). Then, by Theorem
2.5.1 in Cover and Thomas [1991], the code length function satisfies Kraft’s inequality

∑

y∈Y
2−CL(y) ≤ 1⇒

∑

y∈Y
P (y) ≤ 1. (4.8)

Which means that P is a proper, albeit possibly degenerated, probability distribu-
tion. In summary, the use of Shannon-Fano coding Cover and Thomas [1991] allows
establishing a first link between probability distributions and code length functions
given by (4.6).

There exists another important link. In the previous section, we have treated
probability distributions as mathematical objects, without assuming that data come
from this distribution. If data y are distributed according to probability distribution
P, taking the prefix-free code, whose code length given by (4.6), is optimal in some
sense. More specifically, as a consequence of the information inequality Cover and
Thomas [1991],

EP (CL(y)) = EP (− log2P(y)) (4.9)
≤ EP (− log2P

′(y)) (4.10)

where P′ is any another probability distribution defined on Y, Shannon-Fano coding
minimizes the expected code length, if data are distributed according to P.
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Entropy, a measure of information

We review in this section key quantities pervasive in IT and give their coding
interpretation Telatar [2006], Gruenwald [2007]. Suppose the observation y is modeled
by a random variable, that takes value in a discrete alphabet Y and has probability
mass function P(y) = ψ(y).The entropy of y is defined by

H(y) = E (− log2 ψ (y)) (4.11)

= −
∑

y∈Y
ψ (y) log2 ψ (y) . (4.12)

Note that the entropy is a function of the distribution ψ and not of the random variable
y itself. Given the link between probability distributions and code length functions
given by (4.6), the entropy represents the expected code length when encoding y using
the prefix-free code whose code length is given by − log2 p(y). The more the model p
is restrictive about y, the smaller the entropy is. Moreover, we can define the relative
entropy or Kullback-Leibler distance between two probability mass functions p and
p′ as

D (ψ,ψ′) = E (− log2 ψ
′ (y))− E (− log2 ψ (y)) (4.13)

= −
∑

y∈Y
ψ (y) log2 ψ

′ (y) +
∑

y∈Y
ψ (y) log2 ψ (y) (4.14)

= −
∑

y∈Y
ψ(y) log2

ψ′ (y)

ψ (y)
. (4.15)

Again we can give the following coding interpretation. Suppose that the data are
effectively generated by drawing from distribution ψ. The differential entropy then
measures the additional number of bits need to encode the data using distribution ψ′
instead of the optimal ψ.

If y is a continuous random variable, ψ(y) defines a probability distribution func-
tion and, provided it exists, we can define the differential entropy

h(y) = E (− log2 ψ (y)) (4.16)

= −
∫

y

p(y) log2 ψ(y)dy. (4.17)

Unlike the standard entropy, the differential entropy can be negative. Also, there
exists an important link between the differential entropy of a continuous random
variable and the discrete random variable obtained by quantizing y at precision q
Cover and Thomas [1991]

H (Q(y)) = h(y)− log2(q). (4.18)

where Q denotes the quantization function

Q(y) = y′ if y ∈ [y′ − q/2; y′ + q/2). (4.19)

Therefore, the differential entropy has a similar coding interpretation as the entropy.
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4.1.2 Model selection and MDL principle
We review in this section the MDL principle, a general principle for model selection

rooted in the theory of coding. Central for its understanding are the links between
code length functions and probability distributions we have reviewed in the previous
section. Generally speaking, model selection is concerned with the choice of the
“best” explanation of observed data, among a set of competing ones. For example,
if we model a set of observations with an autoregressive process, the question is how
many lags should we include in the model. Similarly, in a linear regression model,
the question is which subset of regressors should we use. From a finance practitioner
point of view, the main goal is certainly not to recover the correct order of a process.
Indeed, as seen in Chapter 2 the latter most likely does not exist. And even if we
assumed the data were distributed according to some true complex distribution, it
would be better to use a simpler model, especially if the complex model is incidental,
i.e., applies to few observations. The aim is rather to avoid overfitting and select
models with good out-of-sample predictability.

Origin of MDL

Let us start by reviewing the origin of MDL Rissanen [2005]. The traditional
approach in parametric estimation theory starts with the assumption of the existence
of an underlying true distribution, according to which observed data are distributed.
This distribution depends of a l-dimensional vector of parameters θl, which are in-
ferred from the observations either by maximization of the (log-)likelihood function
or by the minimization of the norm of the residuals. For example, the least-squares
(resp. least absolute deviation) method minimizes the l2 (resp. l1) norm of the resid-
uals. The typical problem with this approach is that, when we increase the number
of parameters, the resulting model fits the data better and one runs in the disastrous
conclusion that the best model is also the most complex one.

From an historical perspective, this problem was recognized early. But it was only
addressed using ad hoc methods, for example, in linear regression by choosing the
subset of regressors maximizing the standardized coefficient of determination Harvey
[1991]. Intuitively, the general idea consists in introducing a penalty for the additional
parameters, which compensates for the improvement in fit. Akaike [1974] was the first
to address the problem formally. Akaike’s analysis is based on the assumption of the
existence of a true distribution, which generates data. The goal is to choose among
a collection of models the best one, under the assumption that the true model lies
outside this collection. Akaike’s key idea it to measure the quality of the model by
the information theoretic Kullback-Leibler distance between the model and the true
distribution. This distance has to be estimated from the data. It turns out to be
difficult, but, quite surprisingly, there exists a very elegant and simple answer for the
asymptotic mean Kullback-Leibler distance, where the mean is taken over all models
with the same number of parameters. The resulting AIC is given by

AIC(l) = 2l − 2LLF (y(1)>(T )/θl) (4.20)

where l is the number of parameters and LLF (. . .) the log-likelihood function. Un-
fortunately, AIC suffers from several limitations. First, it is only an asymptotic result
and nothing can be said about its finite sample properties. AIC is also based on the
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assumption of the existence of a true distribution. More worryingly, AIC is not con-
sistent when the true model lies inside the collection of models under consideration.
Consistency pertains to the desirable feature of a statistical method that reaches the
correct answer given a sufficiently large number of observations. Similarly to AIC,
BIC is given by Schwartz [1978]

BIC(l) = l log(T )− 2LLF (y(1)>(T )/θl) (4.21)

where T is the number of observations. Again, this is only an asymptotic result.
Also, note that in both AIC and BIC, the complexity is directly proportional to the
dimensionality of the vector of parameters L. This is not the case in general and we
are going to see in MDL that models with the same number of parameters may have
a different complexity.

The ultimate answer to the problem of model selection is given by Kolmogorov’s
and Solomonoff’s algorithmic complexity theory Cover and Thomas [1991]. In this
theory, computer programs, that write data and stop, serve as code word. They are
described using a general purpose programming language. Also, since a computer
program cannot start by itself, a program that stops before another one is not its
prefix. Therefore, computer programs define a prefix-free code and their associated
code lengths a complexity measure. Moreover, the choice of programming language
does not affect the model selection criterion because if two programming languages are
used to describe the same data, the length of their programs asymptotically differs
only by a constant, albeit potentially large. This invariance principle removes the
arbitrariness of the choice of programming language. There is however two problems
with Kolmogorov’s complexity theory. First, the invariance principle is only valid
asymptotically but does not apply on small samples. More importantly, Kolmogorov’s
complexity is noncomputable, i.e., there exists no automated procedure to find the
shortest computer program given data or even its length. Algorithmic complexity
theory establishes a link between learning and data compression, but it also put a
serious limit on what could be achieved by a model selection scheme. There is no
automated procedure to find the best model when the latter is expressed in the most
general terms using computer programs. The next best thing to do is to restrict the
choice of coding schemes and define a model selection criterion valid for this restricted
class. This is the idea behind Rissanen’s MDL principle.

Crude version of MDL

MDL is a general framework to address the problem of model selection, first pro-
posed by Rissanen [1978], Rissanen [2005], Gruenwald [2005]. The central idea of
Rissanen’s theory is inspired by Kolmogorov’s algorithmic complexity as it equates
the problem of learning with data compression. Intuitively, learning means finding
regularities in observed data and these regularities are used by a coding scheme to
compress the sequence of observations. Also, more regularities means more com-
pression, and purely random sequences are the least compressible. In algorithmic
complexity, computer programs are used to devise a prefix-free code and a notion of
complexity is chosen to be the length of the shortest computer program. In order
not to fall back into the noncomputability problem, computer programs are replaced
by a less general class of probability distributions or equivalently statistical models.
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The MDL principle, in a first approximation, advocates to pick the model with the
smallest combined description length of the modelM and the data using the model,
informally

argmin
M

{
CL(M) + CL(y(1)>(T )/M)

}
. (4.22)

Given the link between code length functions and probability distributions re-
viewed in Section 4.1.1, the second term is given by

CL(y(1)>(T )/M) = − log2P(y(1)>(T )), (4.23)

where P is the probability distribution corresponding to the modelM. We typically
work in the framework of parametric estimation theory, where the model depends on
a l-dimensional vector of parameters

θl ∈ Θl ⊂ Rl. (4.24)

Let us denote θ̂l the maximum likelihood estimates of θl,

θ̂l = argmax
θl

P
(
y(1)>(T )/θl

)
. (4.25)

Therefore, the term that minimizes the code length function given the model (4.23)
corresponds to the opposite of the maximum log-likelihood function (4.25), and we
recognize a standard measure of fit for a model.

With MDL, there is no such things as a true distribution or not. A model is
just used to express properties about data, like the vocabulary and the syntax of a
language. Of course, this could be done at different precision levels. Certain models
allow expressing only coarse properties, while others allow for a more precise descrip-
tion, up to the point of capturing “noise”. Consider the following example to illustrate
this point. Suppose that we have to encode the very long sequence of alternating 0
and 1, 01010101010 . . .. On the one hand, we could use a Bernouilli model, i.e., a
family of i.i.d. Bernouilli random variable parameterized by ℘ = P

(
y(t) = 0

)
. Then,

P
(
y(1)>(T )

)
=

T∏

t=1

P
(
y(t)
)

(4.26)

= ℘] of 0’s(1− ℘)] of 1’s (4.27)

The achieved compression is small because the sequence is almost random. On the
other hand, we could use a Markov model of order 1 with

P
(
y(t) = 0/y(t−1) = 1

)
= P

(
y(t) = 0/y(t−1) = 1

)
= 1, (4.28)

The model perfectly describes data, a high compression is achieved and there is no
noise. The ultimate difficulty is of course to come up with a good choice of models
and model classes, but this is left to humans, based on their experience or knowledge
they have on the process at hand. This is anyway the best thing to do, since no
computable automated procedure can be devised for model selection.

Remark. Note that we use in the remainder of this thesis the term model in
an information theoretic sense, which differs from its statistical meaning. A model
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corresponds to a unique probability distribution, and in a parametric estimation the-
ory framework to a single value of parameters θl. Statisticians call an information
theoretic model a point hypothesis. A model class is a set of models with a similar
functional form, for example the autoregressive process of order k, which corresponds
to a joint hypothesis or a model in a statistical sense.

Universal model

In our first crude version of the MDL principle, we have surreptitiously ignored
the problem of encoding the code length of the model CL(M). In modern version
of MDL, this is addressed with the use of universal models, which we review now
Cover and Thomas [1991], Gruenwald [2005], Gruenwald [2007]. The universal model
for a class of models is defined as the unique representative model that is able to
represent well any models in that class. The term universal model is quite misleading,
as it corresponds to a unique probability distribution and it is only universal with
respect to a certain class of models. Let us make this idea more precise. Suppose the
model depends on a l-dimensional vector of parameters. Also, suppose the maximum
likelihood estimator of the parameters θ̂l, a function of the sequence of observations
y(1)>(T ), exists and is unique. Our definition of the universal model translates into
the following mathematical condition. For any realization y(1)>(T ), if the code length
of the best model in hindsight

− log2P
(
y(1)>(T )/θ̂l

(
y(1)>(T )

))
(4.29)

is small, in other words if the model fits the data well, the code length of the univer-
sal model CLu is small as well. The difficulty comes from the fact that the choice of
universal model should happen before observing the actual sequence y(1)>(T ). Other-
wise, this does not define a coding scheme, as the decoder is not able to perform the
same optimization as the encoder, which necessitates the knowledge of the sequence.

Is it possible to achieve a code whose code length is as good as the best in hindsight
code for all realizationa of the sequence? The answer is no. Indeed suppose such a
code exists. Its code length function CLu, with associated probability Pu, satisfies

CLu

(
y(1)>(T )

)
= − log2Pu

(
y(1)>(T )

)
(4.30)

≤ − log2P
(
y(1)>(T )/θ̂l

(
y(1)>(T )

))
. (4.31)

Then
∑

y(1)>(T )

Pu

(
y(1)>(T )

)
≥ (4.32)

∑

y(1)>(T )

P
(
y(1)>(T )/θ̂l

(
y(1)>(T )

))
= (4.33)

∑

y(1)>(T )

max
θl
P
(
y(1)>(T )/θl

)
> 1 (4.34)

(4.35)
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Thus, as the corresponding Pu does not satisfy the property of a distribution, its
associated code length CLu cannot be the code length of a prefix-free code. The next
best thing we can ask for is to achieve a performance close to the best in hindsight.
This leads to the definition of a universal model in the individual sequence sense as
a model whose code length is within a constant, albeit large, of the best solution in
hindsight. Mathematically,

CLu

(
y(1)>(T )

)
= − log2P

(
y(1)>(T )/θ̂l

(
y(1)>(T )

))
+ cst (4.36)

where the constant cst is required to grow sublinearly in the number of observations
T .

Example 7. In Bayesian statistics, the parameters θl is assumed to be distributed
according to a prior distribution Pprior.The distribution of the observations is then
given by

PBayes

(
y(1)>(T )

)
=
∑

θl

P
(
y(1)>(T )/θl

)
Pprior (θl) (4.37)

Thus the corresponding code length satisfies ∀θl

CLBayes = − log2PBayes

(
y(1)>(T )

)
(4.38)

= − log2

∑

θl

P
(
y(1)>(T )/θl

)
Pprior (θl) (4.39)

(a)

≤ − log2P
(
y(1)>(T )/θl

)
Pprior (θl) (4.40)

(b)
= − log2P

(
y(1)>(T )/θl

)
− log2Pprior (θl) . (4.41)

(a) holds because a sum of positive terms is at least as large as one of its terms and
the negative logarithmic − log2 is monotonically decreasing and (b) is true for all
values of the parameters, in particular for the maximum likelihood estimator θl = θ̂l.
Therefore, the Bayesian model is a universal model.

Refined version of MDL

In the refined version of MDL, a universal model for the class of models under
consideration is used to encode simultaneously the model and the data given the model
Gruenwald [2007], Rissanen [2005]. We have just seen one example of universal model,
but there exist others. Different universal models for a given class lead to different
MDL-based model selection criteria. One way of building universal models is by
solving an optimization problem. For example, let us define the regret of a universal
model Pu as

R = − log2Pu

(
y(1)>(T )

)
+ log2P

(
y(1)>(T )/θ̂l

(
y(1)>(T )

))
. (4.42)

The regret represents the extra number of bits necessary to encode the sequence
compared to the best fitting solution in hindsight Rissanen [2005]. Let us find the
universal model that solves the following min max optimization

min
Pu

max
y(1)>(T )

R. (4.43)
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This can be interpreted as a game against Nature, where the experimenter chooses
Pu and Nature chooses the sequence such that the experimenter incurs the largest
possible regret. Goal is to minimize the worst case regret, which is the best solution
in the individual sequence sense. The solution to this optimization, known as the
NML or Shtarkov distribution, is given by

PNML =
P
(
y(1)>(T )/θ̂l

(
y(1)>(T )

))

∑
y(1)>(T ) P

(
y(1)>(T )/θ̂l

(
y(1)>(T )

)) . (4.44)

The denominator is called the parametric complexity. NML achieves constant maxi-
mum regret, i.e., for all sequences y(1)>(T ) the maximum regret is equal to the para-
metric complexity

max
y(1)>(T )

R =
∑

y(1)>(T )

P
(
y(1)>(T )/θ̂l

(
y(1)>(T )

))
. (4.45)

Despite its attractiveness, NML suffers from certain limitations. In particular, the
sum or equivalently integral for continuous random variables in the denominator might
not be finite, in which case the NML does not exist, and another criterion should be
used. This happens for large classes of models, e.g., for the class of linear regression
models with Gaussian disturbance.

Using MDL for model selection presents several advantages over other approaches.
First of all, MDL is based on sound philosophical foundations, as it does not assume
the existence of a true distribution according to which the data are distributed. This is
of particular interest in finance where the existence of an underlying true distribution
is rather unlikely to exist. In MDL, there is no such thing as a correct or a wrong
model. A model or a model class is simply used to express properties about data
and MDL offers a fair mean of comparison between them. Also, since the complexity
is defined as the code length function associated with a probability distribution, the
unit is bits. This allows comparing models and model classes that have different
structure or number of parameters. Furthermore, the only principle underlying MDL
is Occam’s razor, a very general principle found throughout sciences and engineering
that advocates to use the simplest best explanation. Secondly, MDL selection criteria
are developed in the individual sequence sense. This is again very important in
finance where we have access to a single realization of the process and do not want
to make the assumption of ergodicity of financial markets. Moreover, in some cases,
the formula for the constant appearing in the universal model definition is exact on
small samples and we can be confident about the selection decision on small samples
as well. Finally, MDL is related to the Bayesian approach but it avoids some of its
interpretation problems, in particular when the experimenter has no knowledge on
the underlying prior distribution.

MDL in finance

As already noted, MDL-based model selection criteria present several advantages.
It is surprising to note they have not been widely adopted by the finance research
community. A notable exception is the predictive least-squares (PLS) criterion, that
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is used, e.g., in the paper of Bossaerts and Hillion [1999]. This paper studies various
statistical model selection criteria to select the best out-of-sample set of predictors
of stock returns among the three best predictors of stock returns. PLS belongs to
the more general family of plug-in models. Consider the class of models of order k
parameterized by the l-dimensional vector of parameters θl. Let m be the minimum
number of observations such that the maximum likelihood θ̂l exists. Then, a universal
model for that class is given by the plug-in model

PPLS

(
y(1)>(T )

)
= P0

(
y(1)>(m)

) T∏

t=m+1

P
(
y(t)/θ̂l

(
y(1)>(t−1)

))
, (4.46)

This is called a plug-in model because we are plugging in as value of the parameters
the maximum likelihood estimator based on observations up to time t − 1. Also,
PLS is a prequential scheme, a term coined by Dawid [1984] to describe a model
which is sequentially formed using information up to time t−1 and evaluated against
observation at time t, ∀t = m + 1, . . . T . The PLS criterion corresponds to the
accumulated log-loss of the prequential model where the loss function is measured by
the density function

P
(
y(t)/ŷ(t)

)
. (4.47)

Intuitively, if the prediction of the model is good (resp. bad), the distribution
P(y(t)/ŷ(t)) is large (resp. small) and the corresponding code length small (resp.
large). The idea is also related to cross-validation, where a portion of the information
is used to estimate the model and another one to test the model. But unlike cross-
validation, the prequential approach works sequentially and a point is predicted only
once. Note also that another estimator than the maximum likelihood one can be used
to define a plug-in distribution. Moreover, for the class of linear regression models
with Gaussian disturbance, the plug-in model defines a universal model, called PLS

PLS(k) =

T∑

t=m+1

(
y(t) −

(
f (t)

)T
θ̂

(t−1)
l

)2

, (4.48)

where f (t) is the vector of regressors. It is well known that PLS has a poor perfor-
mance in practice Wei [1992], Rissanen et al. [2010]. But this is not a general feature
of MDL-based model selection criteria. Indeed, we can build different model selec-
tion criteria, each corresponding to a different universal model for the class of models
under consideration, with different associated performance.

We have introduced MDL with the aim of finding models with good out-of-sample
performance in terms of prediction. We have phrased the problem using models,
their corresponding probability distributions and associated code length functions.
Somehow this seems quite remote from the concerns of a finance practitioner, whose
ultimate goal is to design strategies with good out-of-sample performance. We see
that this is not the case. Firstly, it is tempting to use standard measure of perfor-
mance of the strategy, like the Sharpe ratio, to select the best strategy. But there
is no theoretically sound approach to take into account the complexity of the model
underlying the strategy and the resulting method could only be ad hoc. Secondly, the
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strategy of a good investor should inspire a good data compressor, and conversely.
On the one hand, Cover and Thomas [1991] develops a coding scheme where the log-
wealth of the strategy betting on a sequence of outcome is used as codeword for that
sequence, such that a good gambler is also a good data compressor. On the other
hand, Kelly’s gambling establishes another link between data compression and gam-
bling Kelly [1956], Cover and Thomas [1991]. In gambling, the goal is to maximize
the growth rate of the investment, given by the expected value of the terminal log-
wealth at time T . This is achieved by Kelly’s gambling, that bets on each outcome
proportionally to the conditional distribution on that outcome conditional on side
information, for example past observations. Hence, Kelly’s gambling is also called
proportional gambling. Therefore, a good predictor, in other words a good compres-
sor, is also a good gambler. Finally, observe that the growth rate of the investment,
the measure being maximized by Kelly’s gambling, corresponds to the opposite of the
code length of the distribution, the measure being minimized in MDL.

4.2 Variable lookback algorithm

Following our review of MDL in the previous section, which underlies our proposed
solution, we are now ready to present the variable lookback algorithm. Remember
that it is only based on the assumption of piecewise stationarity, that replaces the
stationarity assumption. This means there exist a series of switching times t0 =
1 < t1 < . . . < tS ≤ T such that the data are represented by a model of order
ks ∈ {0, . . . ,K} in the interval [ts−1; ts). Recall that there are no assumption on the
switching process, the number of switching times S or their positions ts.

4.2.1 Basics of the algorithm

In this section, we describe a coarse version of the algorithm, whereas additional
details are treated in the next section.

Coding of observations

We consider first the problem of selecting the order of the process ks ∈ {0, . . . ,K}
within a period of piecewise stationarity t ∈ [ts, ts+1). Based on our review of MDL,
we have to design a universal code for the class of processes of order up to K to
encode the sequence of observations within that period. Also, the code length of this
scheme serves as a measure of complexity of the model and the MDL principle advo-
cates to pick the model with the shortest code length. We choose to use an existing
universal model, the recently proposed conditional normalized maximum likelihood
(CNML) Rissanen et al. [2010]. We describe it briefly. Consider the class of para-
metric models of order k parameterized by a l-dimensional vector of parameters θl.
Let m be the smallest number of observations t − ts + 1 such that the maximum
likelihood θ̂l

(
y(ts)>(t−ts+1)

)
can be computed uniquely. Let us also define the two

sequences y0 = y(ts)>(ts+m−1) and y1 = y(ts+m)>(ts+t−1). Conditional on y0, the
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CNML criterion is given by

PCNML(y1/y0, k) =
P
(
y0,y1/θ̂l(y0,y1)

)

∑
y1
P
(
y0,y1/θ̂l(y0,y1)

) . (4.49)

The CNML was obtained as a solution of an optimization problem, namely the min-
imization of the maximum conditional regret, mathematically

min
P̄

max
y1

{
− log2

(
P̄ (y1/y0)

)
+ log2

(
Pθ̂l(y0,y1) (y0,y1)

) }
(4.50)

The term inside the curly brackets, called conditional regret, measures the difference
in bits between coding the sequence y1 using probability P̄ and coding the same
sequence using the best fitting model in hindsight, corresponding to the maximum
likelihood estimator of θ̂l. Several reasons motivate the choice of the CNML criterion.
First, the criterion minimizes the maximum conditional regret and is thus a universal
model in the individual sequence sense. Second, it is a very practical MDL-based
model selection criterion. It not only avoids the problem of infinite complexity of
the NML criterion, but it is considerably easier to evaluate. Indeed, the integral
term in the denominator of (4.50) can be evaluated analytically for large classes of
processes, in particular, for the class of linear regression models with Gaussian or
Laplace residuals Rissanen et al. [2010]. Note also that, unlike NML, the CNML
criterion defines a prequential coding scheme. This can be verified by showing that
the probability distribution associated with the CNML criterion satisfies




PCNML (−/y0, k) = 1
PCNML (y1/y0, k) > 0, ∀y1∑
y(ts+t) PCNML

(
y1, y

(ts+t)/y0, k
)

= PCNML (y1/y0, k) .
(4.51)

Let us verify the last consistency condition.

∑
y(ts+t) PCNML

(
y1, y

(ts+t)/y0, k
) (a)

= (4.52)
∑
y(ts+t) PCNML

(
y(ts+t)/y0,y1, k

)
PCNML (y1/y0, k)

(b)
= (4.53)

PCNML (y1/y0, k)
∑
y(ts+t) PCNML

(
y(ts+t)/y0,y1, k

) (c)
= (4.54)

PCNML (y1/y0,y1, k)
∑

y(ts+t) P(y0,y1,y
(ts+t)/θ̂(y0,y1,y

(ts+t)))∑
y(ts+t) P(y0,y1,y(ts+t)/θ̂(y0,y1,y(ts+t)))

= (4.55)

PCNML (y1/y0, k) . (4.56)

(a) corresponds to the definition of conditional expectation P(A/B) = P(A,B)/P(B).
(b) holds because PCNML (y1/y0, k) does not depend on y(t+ts). (c) is obtained by
using the definition of the CNML criterion (4.50).

Remark. Consider two classes of models with a similar functional form, one of
order k1, the other of order k2. Let m1 and m2 be the respective minimum number
of observations such that the maximum likelihood can be computed. It is important
to compare these two model classes using the same number of observations, thus
m = maxi=1,2{mi}. Otherwise the model selection criterion does not correspond to
the code length of a prefix-free code Gruenwald [2007].
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Coding of switches

Let us now introduce switches between periods of piecewise stationarity. Let us call
pattern of switches the collection of switching times t0 = 1 < t1 < t2 < . . . < ts ≤ T .
The central idea behind the variable lookback algorithm is to use a two-part code to
jointly encode the observations and the pattern of switches. Given a certain pattern
of switches, we have just seen that the CNML criterion is used to encode observations
over each period of piecewise stationarity. Let us now describe how we encode the
pattern of switches. Remember that we make neither assumption on the number of
switches in the system nor on the positions at which they happen. To each pattern of
switches, we can associate a binary sequence that contains a 1 where a switch occurs
and a 0 otherwise. Mathematically,

z(t) =

{
1 if t ∈ {t0, . . . , ts}
0 otherwise. (4.57)

One candidate for modeling a binary sequence is the Bernouilli process, i.e., a se-
quence of i.i.d. Bernouilli distributed random variable parameterized by the proba-
bility ℘ that a zero occurs

P
(
z(t) = 0

)
∼ i.i.d B(℘). (4.58)

In this case θ = ℘ and the maximum likelihood estimator θ̂ is given by

θ̂
(
z(1)>(t)

)
=
] of 0’s in z(1)>(t)

t
. (4.59)

which is not defined at t = 0. We need to associate to a pattern of switches a measure
of complexity, and the MDL theory suggests to use the code length of a universal
model for that class of processes. We choose to use the Krichevsky-Trofimov (KT)
Krichevsky and Trofimov [1981] probability distribution

PKT

(
z(t+1) = 0/z(1)>(t)

)
=
] of 0’s in z(1)>(t) + 1/2

t+ 1
, (4.60)

which is a universal model for the class of Bernouilli process. Observe that the KT
estimator is a prequential plug-in model, where the maximum likelihood estimator is
replaced by the maximum likelihood estimator of the original dataset augmented by
half a 0 observation and half a 1 observation. This avoids the problem of infinity of
the standard maximum likelihood estimator. Finally, note that the fact that we use a
universal model for the class of Bernouilli model does not imply that we assume that
z(t) follows a Bernouilli process.

We can associate to each pattern of a node in a quadratic tree diagram as in
Willems [1996]. This allows organizing in a structured manner the different pattern
of switches in the variable lookback algorithm. A node in the corresponding quadratic
tree is parameterized by three variables:

(i) t : the time of the current observation,

(ii) s : the number of switches so far,
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(iii) ts : the time of the first observation in the current period of piecewise station-
arity.

A portion of the quadratic tree is represented in Figure 4.1 for the first 4 iterations
of the algorithm. By default, when we move up in the tree, we introduce a switch
and when we move down along a branch, there is no switch. Each node in the tree is
labeled with a visual representation of the corresponding segmentation of the sequence
in periods of piecewise stationarity. Each square represents a different observation and
the shade of grey the model used to encode the observation. For example, consider
node (2, 1, 2), that has only two observations. The first observation is associated with
one period of piecewise stationarity, the second one with another period of piecewise
stationarity. Similarly, consider node (4, 2, 3), that has 4 observations. The first one
corresponds to one period of piecewise stationarity, the second one to another one
and the last two to yet another one. On the one hand, the number of models grows
linearly in the number of observation t. This can be checked visually for example at
the fourth iteration where there are only four different shades of grey representing all
model conditional on information from time 1, 2, 3, and 4, respectively, up to time
4. On the other hand, the number of nodes grows in the the square of the number of
observations. To be precise, the number of nodes at time t is given by

t(t− 1)

2
+ 1 (4.61)

This is significantly smaller than 2t, because several paths in the tree lead to the same
node. See, for example node (4, 2, 4) in Figure 4.1.

Block diagram

We are now ready to present our algorithm, whose block diagram is depicted in
Figure 4.2. The top block represents an idealized data generating process. The signal
y(t) is obtained by filtering a white noise process, to which an additive white noise
e(t) is added. The two white noise sources are uncorrelated. A switch controls the
choice of the filter such that only one is active at every time t. Note that we make no
assumption on the process controlling the switch (e.g., exponential switching process)
so as to obtain a nonstationary output. The bottom block represents the estimation
and model selection procedure. The series of inverse lag operators allow aligning the
sequence so as to obtain models depending on different portions of the information
set. For example the first one on the top one selects all information from time 1 to
t, the second one from 2 to t, etc. The estimation is conducted by a series of T − 1
adaptive filters. Each is based on a different information set; in particular, filter i
is based on information from time i to t. One of the output of the adaptive filter,
the estimated residuals of the model, controls its adaptation, which is depicted by
the arrow from the output of the filter and crossing the filter box diagonally. The
outputs of the adaptive filters serve as inputs to a dynamic programming algorithm,
the Viterbi algorithm, which determines an estimate of the order of the process k̂(t)

and the last time before which a switch happens t̂(t)s , conditional on information at
time t.

Let us now describe the operations of the dynamic programming algorithm Viterbi
[1967]. The algorithm is best described using a trellis diagram, which, in this case,



4.2 Variable lookback algorithm 81

(4, 0, 1)

(4, 1, 4)

(4, 1, 3)

(4, 1, 2)

(4, 2, 4)

(4, 2, 3)

(4, 3, 4)

(3, 0, 1)

(3, 1, 3)

(3, 1, 2)

(3, 2, 3)

(2, 0, 1)

(2, 1, 2)

(1, 0, 1)

Figure 4.1: Portion of the quadratic tree diagram for the first 4 iterations of the
algorithm. Each node in the tree is parameterized by three variables: t, the time
of the current observation, s, the number of switches so far, and ts, the last time
before which a switch happens. Nodes of the quadratic tree are used to maintain in an
organized manner competing explanations of data.
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Figure 4.2: Block diagram of the variable lookback algorithm: idealized data gener-
ating process and corresponding estimation and model selection procedure.
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takes the form of the quadratic tree. Consider Figure 4.3 which represents the first 4
iterations of the algorithm. It looks similar to Figure 4.1, but this time, we would like
to focus on the operations of the dynamic programming algorithm. On the one hand,
each node is labeled with the code length corresponding to encoding the current
observation y(t) using the CNML distribution estimated using observations in the
current period of piecewise stationarity up to time t − 1. On the other hand, edges
are labeled with the code length of encoding the binary representation of the pattern
of switches z(t) using the KT probability. When moving along a path in the tree,
we cumulate the cost of the nodes (code length of coding observations) and the cost
of the edges (code length of coding switches). Finally, the dynamic programming
algorithm is a shortest path algorithm that selects the path in the tree with the
smallest accumulated cost.

4.2.2 Details of the algorithm

Pseudo Code

We now give in this section a detailed version of the variable lookback algorithm.
As suggested by the block diagram, we need to (a) maintain a series of estimators of
nested model classes of order k = 0, . . . ,K, each depending on a different portion of
the information set and (b) perform a dynamic programming task to find the path of
shortest cost in the quadratic tree. Our implementation of the Viterbi algorithm cor-
responds to a full expansion of the trellis diagram, similar to Djikstra’s shortest path
algorithm Dijkstra [1959]. Consider the pseudocode of the variable lookback algo-
rithm given in Algorithm 4.1. We use the formalism of object-oriented programming.
There are two classes of objects, Node andModel. The object Node describes a node
in the quadratic tree diagram. Each node stores a pointer to its parent, ts−1, used
for backtracking. Each node also maintains and updates up to K+ 1 model classes of
order 0, . . . ,K in the form of an array ofModel objects. Furthermore, a node contains
also the code length corresponding to the encoding of symbols from previous periods
of piecewise stationarity, CLpast and the code length associated with the KT proba-
bility of reaching that node in the quadratic tree, CLswitch. The object Model stores
the current estimate of the model parameters θl and the CNML criterion for all model
classes of order up to k = 0, . . . ,K. The objectModel also instantiates two functions,
a constructor and a function to update the parameters and the CNML criterion given
a new observation, updateModel(...). Given these two objects, the algorithm works
as follows. The algorithm starts at node (1, 0, 1). Given a new observation, the algo-
rithm crosses every existing node and splits it in two nodes, one corresponding to a
restarted estimation procedure, one corresponding to a continuation of the estimation
procedure. The estimate of the parameters of the model, θl, the CNML criterion and
the code length associated with the KT probability are updated accordingly. Finally,
the total score associated with each node is the sum of the code length of encoding
symbols from past and current periods of piecewise stationarity and CLswitch. Then,
the MDL principle advocates to pick the model that minimizes this quantity.

Remark. Consider line 41 of Algorithm 4.1, where, following the MDL principle,
we select the best node and order of the process. The minimization is also over the
choice of order k for the current period of piecewise stationarity. The term CNML in
the pseudo code corresponds to the accumulated cost of coding symbols in the current
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Figure 4.3: Trellis diagram of the Viterbi algorithm for the first 4 iterations. Labels
of the nodes correspond to the code length of coding the current observation using the
CNML criterion estimated using data from the current period of piecewise stationarity
up to time t − 1. Labels on the edges correspond to the code length of coding the
binary representation of the pattern of switches using the KT probability. The Viterbi
algorithm finds the path of shortest accumulated cost.
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period of piecewise stationarity. Suppose that at some point the best order is k1, i.e.,

k1 = argmin
k

Node(t, s, ts).Model(k).CNML (4.62)

At a later point, another order k2 minimizes this quantity. Compared to our descrip-
tion with the trellis diagram, this corresponds to a relabeling of the cost of the node
for the current period of piecewise stationary, without affecting the cost reported
from previous period of piecewise stationarity, CLpast. This illustrates that the trellis
diagram does not fully reflects all subtleties of the variable lookback algorithm.

Coding until the CNML is available

There is an important detail we have ignored so far in the description of the vari-
able lookback algorithm. When we restart the estimation procedure, i.e., introduce
a switch in the process, the CNML criterion is not immediately available. Typically
m = Kmax+1 is the minimum number of observations such that the maximum likeli-
hood estimator can be computed for all model classes up to order K. Then, for node
(t, s, ts), the first CNML criterion can be computed for t such that t− ts + 1 ≥ m+ 2.
Furthermore, observe that, even if we knew the position of the switches ts, there
would exist a tradeoff between the accuracy in estimation and the accuracy in cod-
ing. Indeed, a model immediately available for coding is estimated using data from
the previous period of piecewise stationarity, whereas a model available later is esti-
mated using the correct data, but use the former model to code observations in the
meantime. Given that we do not know the position of the switching times ts, we can
think of different solutions to handle this problem. We have chosen the one where the
algorithm in the meantime uses the model of the preceding period of piecewise sta-
tionarity to encode observations until the CNML of the new period can be computed.
Alternatively, we could have chosen the one where the model of the current period
is initialized using data from the previous period, which makes the criterion immedi-
ately available. However, the two solutions are equivalent, as they simply correspond
to a different parametrization of the index of the nodes in the quadratic tree. Indeed,
with the second solution, a node at time t that is just restarted, (t, s, t) is estimated
using data at time t − 1, . . . , t − m − 2. This is equivalent, with the first solution,
to node (t, s, ts) where ts = t −m − 2. These two nodes have the same code length
of coding symbols. Also, since the cost of switching only depends on the number of
observations t and the number of switches so far s, but not on the actual position of
switches ts, the two nodes have the same total code length. It is up to the algorithm,
in a completely data-dependent fashion, to decide whether it chooses the accuracy in
coding or that in estimation. Actually, there exists a third solution to this problem
used by Kozat and Singer [2008]. The solution consists in replacing the maximum
likelihood estimator by a ridge regressor estimator, also called penalized least-squares
estimator Gruenwald [2007]. It is obtained by minimizing the standard least-squares
function penalized by the Mahalanobis distance µT0 Σ−1

0 µ0. This is equivalent to add
to the original set of observations a set of artificial observations with mean µ0 and
variance Σ0. This makes the criterion available immediately, at the cost of intro-
ducing an extra parameter, µT0 Σ−1

0 µ0. We choose our approach because it is fully
data-dependent.
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Algorithm 4.1 Variable lookback algorithm.

1. Input: observations {y(t)}t=1,...,T , regressors of order k {F (t)
k }t=1,...,T,k=0,...,K

2. %Class definition
3. Classdef { θ, CNML } as Model
4. Classdef { ts−1, CLpast, CLswitch,Model() } as Node
5.
6. %Initialization
7. Node(1, 0, 1).CLpast ← 0
8. Node(1, 0, 1).CLswitch ← 0

9. Node(1, 0, 1).Model(0)← new Model
(

(y(1),F
(1)
0

)

10.
11. %For each observation
12. for t = 2, . . . , T do
13.
14. %For each existing node in the tree at t− 1
15. for s = 0, . . . , t− 2 do
16. for ts = s+ 1, . . . , t− 1 do
17.
18. %Restarted node
19. Node(t, s+1, t).ts−1 ← (Node(t, s+1, t).ts−1; Node(t−1, s, ts).ts)

T

20. Node(t, s+ 1, t).CLswitch ← Node(t− 1, s, ts).CLswitch − log2

(
s+1/2
t+1

)

21. Node(t, s+ 1, t).Model(0).← new Model
(

(y(t),X
(t)
0

)

22.
23. %Continued node
24. Node(t, s, ts).CLswitch ← Node(t− 1, s, ts).CLswitch − log2

(
t−s−1/2
t+1

)

25. for k = 0, . . . , t− ts − 1 do
26. Node(t, s, ts).Model(k) ← Node(t −

1, s, ts).Model(k).updateModel (y(t),F
(t)
k )

27. end for
28. if t− ts + 1 ≤ m then
29. Node(t, s, ts).Model(t− ts)← newModel(y(ts∧t),F (ts>t)

t−ts )
30. end if
31.
32. end for
33. end for
34.
35. %Update code length of symbols of past periods of piecewise stationarity
36. for all Node(t, s, ts) : t− ts = m do
37. [Node(t, s, ts).CLpast, Node(t, s, ts).ts−1] ←

mint′∈Node(t,s,ts).ts−1,kNode(t, s, t
′).CLpast+Node(t, s, t′).Model(k).CNML

38. end for
39.
40. %Model selection by MDL principle
41. return argmint,s,ts,kNode(t, s, ts).CLpast +Node(t, s, ts).Model(k).CNML+

Node(t, s, ts).CLswitch
42. end for
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The report of the cost of coding symbols from the previous period of piecewise
stationarity is described in line 37 of Algorithm 4.1. It takes place at time t =
ts + m + 1, i.e., at the iteration preceding the availability of the CNML criterion.
Observe that a selection is performed among competing path in the tree leading to
that node. Whatever switching or symbols appear in the future, all these paths have
a similar future evolution. Following the MDL principle, it is valid to select the best
of them, i.e., the smallest, and discard the other strictly dominated solutions.

Remark. Both CNML and KT are prequential schemes, and their combination
is prequential as well. However, it seems that, because we perform a selection among
past paths, the consistency condition (4.51) is not respected. This issue is resolved
by noting that a code word is implicitly reserved for suboptimal solutions, but not
explicitly stored in the quadratic tree.

Cost of switching

We have seen that the variable lookback algorithm attributes to each node in the
quadratic tree an information theoretic score, or cost function, given by

mink {Node(t, s, ts).Model(k).CNML}+

Node(t, s, ts).CLpast +Node(t, s, ts).CLswitch. (4.63)

It is the sum of code length resulting from the encoding of nodes in the past and
current periods of piecewise stationarity and the code length of encoding the switching
pattern using the KT distribution. Furthermore, the MDL principle advocates to find
the node that minimizes this quantity. Let us first understand how the algorithm
changes from selecting one node to another. Let (t, s − 1, ts−1) be the index of a
node in the quadratic tree diagram and (t, s, ts) be the index of the restarted node
on the same path, where the restart happens at time ts. Figure 4.4 represents the
evolution of the code length of these two nodes, as of time ts. The total code length
is decomposed, following (4.63), into the code length of the past and current periods
of piecewise stationarity, and the code length of switching. Up to time t = ts, the two
nodes are identical and have the same cost functions. At time t = ts, the restarted
node (ts, s, ts) has a higher cost of switching, because it contains one more switch
compared to (ts, s − 1, ts−1). Indeed, the encoder needs to transmit the information
to the decoder that there is a switch in the system. Also, since the CNML criterion
of the restarted node is not available, the cost of coding symbols is the same for the
two nodes until ts + m + 2 and the algorithm never selects the restarted node until
then. At time t = ts + m, we can compute for the restarted node the first estimate
of the parameters of all model classes up to order K and at time t = ts +m+ 1, the
code length of the previous periods, CLpast is updated

min
t′∈ts−1,k

Node(t, s− 1, t′).CLpast +Node(t, s− 1, t′).Model(k).CNML (4.64)

At time t = ts +m+ 2, the CNML criterion is now available and the restarted node
is fully operational. As of this point, a competition between the two nodes begins. If
the model of the restarted node represents the data well, its cost of coding symbols
increases at a lower rate than that of the continued node. Ultimately, at some point
t′, the improvement in coding symbols is such that it compensates the additional cost
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of switching and the total code length of the restarted node becomes smaller. The
algorithm selects it then. This clearly corresponds to our intuition we phrased in
Section 2.2.4 where the improvement in the fit of the model should be penalized by
a certain complexity measure. But, unlike in other ad hoc method, the value of the
threshold is given by a theoretically sound quantity and not by an arbitrary parameter
value.
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Figure 4.4: Evolution of the cost function of continued (1) and restarted (2) model.
The underlying process switches at t = ts between an i.i.d. process to a highly cor-
related autoregressive process of order 1. Total code length is decomposed into code
length of symbols from past periods of piecewise stationarity (grey), code length of sym-
bols from current period of stationarity (blue) and code length of switching (gold). At
time t = ts+m+2, the restarted model is operational and at time t = t′, the restarted
model is selected over the continued one, as it has a smallest total code length.

We will see, when we move to applications of the variable lookback algorithm in
Chapter 5, that the first term in the CNML criterion resembles the entropy of the
process. Also, since we are interested in the time-series of returns, the random variable
y(t) are continuous and the associated differential entropy might be negative. Also,
if we scale the initial sequence by a factor a, the differential entropy is consequently
scaled by factor log2(a) Cover and Thomas [1991]. Then, it seems we are not defining
a consistent model selection criterion. In particular, the CLswitch does not appear to
be a consistent penalty for switches in the structure of the system. This is however
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not the case. Indeed, in practice continuous variable are quantized at precision level
q. And the differential entropy of the random variable X, h(X), is related to the
entropy of the quantized version of the variable, H(X) by the relation Cover and
Thomas [1991]

H(X) = h(X)− log(q). (4.65)

Suppose we fix a desired precision level. If we scale the original sequence by a, we can
adapt the precision level so as to represent the same quantity of information. Also,
since accounting for the quantization implies adding a term −t log2(q) to each node
in the tree, we do not include it explicitly in the score of our algorithm as it does
not impact the final selection. Thus, the cost of switching given by the code length
corresponding to the KT probability is a valid penalty for the switches in the system.

Computational aspects

The pseudo-code of the variable lookback algorithm given by Algorithm 4.1 main-
tains a quadratic number of nodes in the quadratic tree diagram. In particular, the
number of nodes at time t is equal to

t(t− 1)

2
+ 1 = O(t2). (4.66)

There exist alternatives to the full expansion of the trellis diagram, which amount
to use a different shortest path algorithm than Dijkstra’s algorithm. For example,
we have developed an implementation of the variable lookback algorithm using A*
algorithm Hart et al. [1968]. In A*, a heuristic function is used to estimate of a
lower bound on the remaining cost up to time T . Then, the algorithm expands first
the nodes that have the smallest actual incurred cost augmented by this heuristic
function. The choice of the heuristic function is crucial for the performance of A*. In
our case, there exists no good candidate. We have used as heuristic function the cost
of encoding with the KT distribution the T − t sequence of zeros, given the current
path in the tree

− log2PKT

(
0 . . . 0/z(t)

)
(4.67)

which constitutes a lower bound on the cost of coding swicthes until time T . Our
experience shows that, in conjunction with this heuristic function, A* is not compu-
tationally more efficient than Dijkstra’s algorithm, because we are expanding almost
all nodes and the overhead of keeping track of which nodes are expanded makes the
algorithm performs poorly. Also, from a memory usage perspective, the full expansion
requires to store only an array of nodes at time t, whereas we have to store a tree of
nodes with A*.

Moreover, in the pseudo code of Algorithm 4.1, each node is storing a model and
it seems that the number of models grows also in O(t2). This contrasts with the block
diagram where the number of models grows linearly. As can be seen in Figure 4.1,
several nodes use the same model for their current period of piecewise stationary. For
example, node (4, 1, 4) and (4, 2, 4) both use model restarted at time 4. Therefore,
unlike in the pseudo code of Algorithm 4.1, we can maintain a linear number of models
and store in a node only a pointer to the relevant classes of models. The latter is
actually simply given by ts, the last time before which a switch happens. This remark
concludes our description of the variable lookback algorithm.
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4.3 Test on simulated data
We aim to ultimately apply the variable lookback algorithm to problems in finance,

and this is the topic of Chapter 5. It is however of great importance to first test the
behavior of the algorithm on simulated time-series. First, when using simulation,
there exists an underlying ground truth against which the output of the algorithm
can be compared. Think for example of the order of the process generating the data
or the actual position of a switch. This comparison ensures that the algorithm is not
systematically flawed. Secondly, like in experimental finance, a simulated time-series
corresponds to an idealized, simplified and controlled scenario. There is no problem
of model misspecification and it is possible to disentangle competing effects, unlike in
field data. Also, by varying the values of the parameters, typically the variance of the
observation noise, the experimenter can study how the performance of the algorithm
degrades in the presence of noise.

4.3.1 Test of the CNML criterion
Description of the experiment

This first test aims to assess the ability of the CNML criterion to identify the
correct order of the process k ∈ {1, . . . , 10}. The experiment consists of a series of
independent iterations. At each iteration, a time-series of T = 100 observations is
obtained by sampling an AR process of order k

y(t) = β1y
(t−1) + β2y

(t−2) + . . .+ βky
(t−k) + e(t), (4.68)

where the residuals e(t) are i.i.d., standard normal

e(t) ∼ N (0, 1) . (4.69)

The coefficients of the filter are obtained by sampling uniformly at random the k roots
of the polynomials in z−1

1− β1z
−1 − β2z

−2 − . . .− βkz−k (4.70)

such that (a) all roots lie strictly inside the unit circle, so as to obtain a strictly stable
system, and (b) complex roots come in complex conjugate pairs, so as to obtain real
coefficients β1, . . . , βk. Then, considering the nested model classes of AR process of
order up to K = 10, the CNML criterion is computed sequentially for the simulated
time-series. Following the MDL principle, an estimate of the order is chosen, so as to
minimize at every time t the CNML criterion,

k̂
(t)
i = argmin

k
CNML(k, t), (4.71)

where k̂(t)
i denotes the estimates of the order of the AR process at time t for the ith

iteration of the experiment. There are I = 100 iterations and we compute an estimate
of the probability that the CNML criterion correctly infers the order, given by

P
(
k̂(t) = k

)
=
] of times k(t)

i = k

I
. (4.72)

Similarly, we can compute an estimate of the probability that this criterion over- and
underestimates the correct order k.
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Results

Figure 4.5 represents the estimate of the probability that the CNML criterion un-
derestimates (light blue), correctly estimates (medium blue) and overestimates (dark
blue) the correct order of the process k as a function of the number of observations
t = 20, 30 . . . 100. Different plots correspond to different orders k = 0, . . . , 5. The
results are in line with those of Rissanen et al. [2010]. We observe that the probabil-
ity of correctly estimating the model increases with the number of observations; this
indicates some form of consistency of the criterion which, given a sufficient amount
of data, finds the correct order of the process. But, comparing across plots processes
with different orders k, this increase occurs at a slower rate for processes of higher
order k. We also observe that the light blue area tends to be larger than the dark
blue one for almost all number of observations and orders. Thus, the CNML criterion
has a tendency to underestimate the true order of the process. Stated differently,
the CNML criterion is rather conservative in its selection and selects a higher order
model only when it is fairly confident. This is good for financial applications, where
overfitting is a serious concern.

Remark. We have observed that the probability to identify the correct order of
the process increases with the number of observations of the process. Intuitively, this
probability also depends on the intensity of the effect, i.e., how correlated the process
is, and small effects take more time to detect. To illustrate this, consider the two
classes of AR models of order k = 1, one where the AR coefficient is constrained to
be small,

|β1| ∈ (0; 0.1], (4.73)

and one where the AR coefficient is constrained to be large,

|β1| ∈ [0.9; 1). (4.74)

Figure 4.6 represents the result of the same experiment when the time-series is gen-
erated by sampling from these two model classes. This confirms our intuition: the
correct order is identified more quickly for highly correlated processes. By sampling
the roots uniformly at random in the unit circle, Figure 4.5(b) averages out qualita-
tively different results.

4.3.2 Test of switching point detection
Description of the experiment

The second test aims to assess the ability of the variable lookback algorithm to
detect a switch in the underlying dynamics of the system. The experiment consists of
a series of independent iterations. At each iteration, a time-series of T = 100 observa-
tions is generated by sampling to an AR process, that switches after 50 observations
between an i.i.d. process to a highly correlated AR process of order 1, or vice versa.
See example in Figure 4.3.2. The regression coefficient is constrained to be in the
interval

|β1| ∈ [0.9; 1), (4.75)

so as to obtain a strongly correlated process. Let us justify this choice. The quality of
the estimation has a direct influence on the selection of the variable lookback algorithm
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(a) k = 0
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(b) k = 1
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(c) k = 2
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(d) k = 3
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(e) k = 4
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(f) k = 5

Figure 4.5: Estimate of the probability that the CNML criterion underestimates (light
blue), correctly estimates (medium blue) and overestimates (dark blue) the correct
order of the process, k, after t observations. The underlying process is a stable,
autoregressive process with real coefficients of order k = 0 in (a), k = 1 in (b), k = 2
in (c), k = 3 in (d), k = 4 in (e) and k = 5 in (f). The probability to detect the
correct order increases with the number of observations, but at a slower rate for higher
order processes.
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(b)

Figure 4.6: Estimate of the probability that the CNML criterion underestimates (light
blue), correctly estimates (medium blue) and overestimates (dark blue) the correct
order of the process, k, after t observations. The process is a stable, autoregressive
process with real coefficients of order k = 1 with small (a) and large (b) correlation.
Stronger effect are detected more quickly.
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and it might be hard to disentangle whether a switch is not detected because there is
a flaw in the variable lookback algorithm or in the underlying estimation procedure.
With such a strong correlation effect, it is extremely likely going to be picked by
the estimation algorithm and we can focus on the ability of the variable lookback
algorithm to detect a switch. Note also that it is not sufficient to simply append
two independent time-series, the second one has to be initialized using data from
the first one. Then, considering the nested model classes of autoregressive process
of order k = 0, 1, we use the variable lookback algorithm to compute an estimate of
the switching time t(t)s,i at each iteration i. There are I = 100 iterations and we can
compute in the cross-section of iterations an empirical histogram of the estimated t(t)s

P
(
t(t)s = t′

)
=
] of times t(t)s,i = t′

I
, (4.76)

which is a function of the number of observations.
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Figure 4.7: Sample path of a process that switches at time t = 51 between an i.i.d.
process to a highly correlated AR process of order 1, β1 = 0.92.

Results

Consider first the case where the system switches from an i.i.d. to a highly corre-
lated AR(1) process. Figure 4.8 represents the histogram of the estimated switching
time ts as a function of the number of observation. The histogram is seen by tak-
ing a slice of the figure for a fixed number of observations. Ideally, if the algorithm
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perfectly and immediately identifies the correct ts, the histogram has a single peak,
at ts = 0 for t < 51 and ts = 51 otherwise. Let us compare this ideal case with
what we observe in practice. Up to time t = 50, we see that the histogram is almost
only concentrated on ts = 0. There is no switch in the system and the system does
not detect one. In technical terms, the number of false positive is negligible. After
the switch has happened at t = 51, the system starts detecting a switch. Then, the
histogram of ts is more dispersed compared to the situation before the switch, but it
is centered approximately on the value of 50. Moreover, as explained in Section 4.2.2,
the detection of a switch is not immediate, and, e.g., there is with 70 observations
still approximately 30% of the iterations that do not detect a switch. The number of
false positive is large, but decreases as we use more observations of the process, again
a form of consistency of the algorithm. The same comments applies for Figure 4.9.

There is a form of duality between the two scenarii, and it is legitimate to wonder
whether this duality is reflected in the output of the algorithm. This is indeed the
case. Remember that, when the system chooses the position of a switching time,
it also chooses in a completely data-dependent manner between the accuracy in the
estimation and the accuracy in the coding. On the one hand, when the system
switches from an i.i.d. to a strongly correlated AR(1) process, the algorithm tends
to select 51 as the position of the switching time. In that case, the AR(1) process
is estimated using correct data, and an i.i.d. process is used to encode the process
in the meantime (accuracy in the estimation). On the other hand, when the system
switches between an AR(1) to an i.i.d. process, the algorithm tends to select 47 as
the position of the switching time. In that case, the i.i.d. process is estimated using
data from the previous period, but it is immediately ready for coding observations at
time 51 (accuracy in coding). In both case, the length of the period where an i.i.d.
process is used is inflated. This indicates again a certain form of conservatism in the
decision of the algorithm, which selects a higher order process only when it is fairly
confident.
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Figure 4.8: Histogram of the identified switching time ts as a function of the number
of observations t. The underlying process switches at t = 51 from an i.i.d. process to
a highly correlated AR(1) process.
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Figure 4.9: Histogram of the identified switching time ts as a function of the number
of observations t. The underlying process switches at t = 51 from a highly correlated
AR(1) process to an i.i.d. process.
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Summary
In this chapter, we have introduced our solution to estimate the vari-
able lookback model based on the MDL principle. Since this principle
underlies our solution, we have started by reviewing it. MDL equates
the problem of learning with data compression: a statistical model
aims to capture the regularities used by a data compression engine to
compress a sequence of observations. The measure of complexity is
given by the code length of a universal model for a class of processes,
i.e., the unique probability distribution that is able to represent well
any model in that class. Finally MDL advocates to choose the model
class minimizing this measure. We have then described the variable
lookback algorithm, which is based on the joint coding of the se-
quence of observations and the underlying binary representation of
the pattern of switches. The algorithm combines a series of estima-
tors with a dynamic programming algorithm to select the order and
the lookback window. Finally, we have tested the algorithm on simu-
lated time-series, to check its ability to select the correct order of the
process and to detect the presence of a switch in the underlying dy-
namics of the system. Applying the algorithm to financial problems
is the topic of the coming chapter.



Chapter 5

Applications to Finance

Noémie, please meet Lionel. He
works in finance. One day he will be
rich [or not].

Martin Vetterli

In the preceding chapters, we have introduced the idea of a variable lookback
model, a model where a variable portion of the information set is relevant for fu-
ture predictions. We have also proposed an algorithm based on the MDL principle
to estimate it, the variable lookback algorithm. We have described this algorithm
in the most general terms, in particular, independently of the choice of models and
model classes. Furthermore, our solution is solely based on the assumption of piece-
wise stationarity. Moreover, it works as follows. It maintains various model classes,
each based on a different portion of the information set, whose number grows linearly
in the number of observations. This set of estimators is combined with a quadratic
dynamic programming algorithm resembling the Viterbi algorithm, so as to select
simultaneously the order of the process and the relevant lookback window by mini-
mizing an information theoretic score. The latter measures the ability of the model
to fit data penalized by the model complexity and the complexity of the underlying
switching process between different regimes. From a learning perspective, the algo-
rithm decides sequentially either to keep and update the current model based on the
latest observation (continued estimation) or to restart the learning procedure and
forget all properties learned so far (restarted estimation). The restarted model is
chosen over the continued one, when it is better by a certain threshold, whose value
is not a parameter of the algorithm, which can later be fine-tuned to fit a certain
dataset. Rather, it corresponds to the complexity of encoding an additional switch in
the system associated with a chosen description method.

In this chapter, we would like to demonstrate the added value of the proposed
algorithm by applying it to concrete problems in finance. In the most general terms,
any applications of the algorithm should start with the specification of model classes
to describe the data at hand. Remember that, as seen in our review of MDL in Section
4.1.2, the choice of models and model classes is left to humans. Indeed there are no
automated procedures to find the shortest description when the latter is expressed
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using a computer program, that prints data and stops. Moreover, it is of great interest
to reinterpret the output of the algorithm, the selected order and lookback window, in
the context of each application. Finally, observe that the difficulty in the applications
of the algorithm comes from the fact that it does not depend on hyperparameters,
which can be fine-tuned by the experimenter. At the same time, this is the main
interest of this chapter. This is not a mere data mining exercise. The proposed
strategies are fully out-of-sample and as such could have been identified and applied
by an investor ex ante.

The remainder of this chapter is organized as follows. We start by describing an
application of the algorithm to dynamically draw the trend line for the time-series
of log-prices (Section 5.1.1 and 5.1.2). This aims to be more an illustration of the
algorithm and of its underlying concepts rather than the basis for investment strate-
gies. Therefore, our analysis does not contain a formal evaluation of the resulting
predictions. We then consider a more realistic example and apply the variable look-
back model to make the well known momentum strategy adaptive. We describe the
methodology (Section 5.2.1) and relate it with other existing approaches (Section
5.2.2), since momentum is a well documented investment strategy. We also evaluate
the output of the algorithm using a backtest. We build a strategy that leverages in-
vestments in the risky asset based on the sign of the prediction of next period’s return
(Section 5.2.3). We also highlight the behavior of the strategy in 2009, which like the
1930’s, is known to be one of the historical periods where momentum strategies have
dramatically failed.

5.1 Dynamic trend line

5.1.1 Description of the methodology
The first application of the variable lookback algorithm aims at drawing dynami-

cally the trend line for the time-series of log-prices. The trend line is a tool commonly
used by investment professionals, which makes the output of the algorithm compre-
hensible by a large audience of them. We aim to mimic the behavior of a portfolio
manager observing a time-series on Bloomberg in a completely automated and data-
dependent manner. The class of models that we consider to describe the evolution of
the log-prices over a period of piecewise stationarity is simply given by

log p(t) = α+ βt+ e(t), (5.1)

where the residuals e(t) are assumed to be i.i.d. Gaussian with zero mean and constant
variance σ2. Hence the vector of parameters is given by

θ =




α
β
σ2


 . (5.2)

We should not talk about piecewise stationarity, as the trend line model is non-
stationary over [ts−1; ts), but we do so in a loose way. Over a period of piecewise
stationarity, the value of the parameters that corresponds to the best fitting line in
the least-squares sense is computed. Note that it also corresponds to the maximum
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likelihood estimator of the parameters θ, because of the Gaussianity assumption on
the residual process. Furthermore, let us reinterpret the output of the algorithm in the
context of this experiment. In that particular case, there is no choice of order, since
there is only one model class. Also, the selection of the lookback window corresponds
to a segmentation of the original time-series in periods of piecewise stationarity, where
a different trend line is fitted on each period. The role of the algorithm is then to
decide, given a new observation, whether to carry on using the current trend line and
update its slope and intercept, or to completely forget the past and restart a new
trend line. This happens if the improvement in the fit of the new line compensates
the added complexity of introducing a switch in the system.

Let us also briefly compare our approach with other automated trend line proce-
dures. One alternative consists in finding the best fitting line over a certain window
of the latest observations. Another one, current in technical analysis and also referred
to as support trend line, consists in joining the lowest low with the next highest high
over a certain lookback window, provided no significance crossing has already hap-
pened Schwager [1995]. In both cases, the window size is a parameter of the procedure
and its choice is problematic, since the optimal window size appears to change over
time. On the contrary, our approach does not suffer from this drawback, as it is fully
data-dependent and no parameters can be fine-tuned to control the output.

The algorithm is applied on the 10 Morgan Stanley Capital International (MSCI)
World global industry classification standard (GICS) sector total return indices, sam-
pled at monthly frequency from January 1995 until July 2011. Each time-series rep-
resents the weighted average returns of a large basket of stocks belonging to a certain
sector. The grouping of stocks in a sector follows the GICS classification and the
weight of each stock depends on its market capitalization.

5.1.2 Results

Figure 5.1 and 5.2 represent the output of the algorithm for the MSCI World
Financials index (MXWOFN) after July 2007 and March 2009, respectively. These
two dates are obviously not chosen at random. The first one corresponds to the last
observation before the start of the subprime crisis in the US, the second one to the
lowest observation in the market, preceding an important rebound particularly acute
for all financials stocks. Each plot contains the evolution of the log-price of the index
(solid blue line), as well as various trend lines (gold line) conditional on information
up to time t. Observe the difference between two types of trend lines. The trend lines
of the previous periods of piecewise stationarity are represented using a dashed line,
whereas the trend line of the current period of piecewise stationarity is represented
using a solid line. This emphasizes the fact that only the trend line in the current
period of piecewise stationary is active: its slope and intercept are updated given a
new observation. Firstly, we observe that the algorithm is extremely responsive. For
example, in March 2009 the index reaches its lowest point and only after two observa-
tions in April and May 2009 does the algorithm introduce a switch and a new positive
trend line. It is then well positioned to benefit from the rebound of the market as of
June 2009. This should be compared against the output of a windowing algorihm,
which uses a fixed rolling lookback window. Of course, this other algorithm will pro-
gressively adapt, and update the slope of the trend line until it reaches a positive
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value, as the lookback window contains more and more points corresponding to the
rebound. But this is never as rapid as our proposed solution. Also, observe that the
algorithm can introduce a switch and later on revert its decision. For example, this
happens in Figure 5.1 between February 2008 and May 2008. Given the information
up to February 2008, the algorithm has chosen to introduce a new trend line, whose
improvement in fit compensates the additional cost of encoding an additional switch.
At a later point in May, this does not hold anymore and the algorithm reverts its
decision. With this example, our aim was mainly to illustrate the variable lookback
algorithm and its underlying concepts. Therefore, we do not perform any further eval-
uation of the output of the variable lookback algorithm beyond this visual inspection,
in particular the backtest of the strategy based on its predictions.

5.2 Adaptive momentum strategy
The second application of the variable lookback algorithm aims to develop an

adaptive momentum strategy. Momentum generally refers to an investment strategy
that bets on continuation in the return process. Informally, past winners are the
future winners, and past losers the future losers. We also use the term momentum-
type strategies to encompass more general forms of this strategy, in particular the
contrarian strategy: past winners are the future losers, and past losers the future
winners. Despite its widespread use in practice, it is quite disconcerting to note
that there is only a rather limited economic understanding of this strategy Kelsey
et al. [2011]. The most convincing explanation of momentum so far is given by Hong
and Stein [1999]. Their study develops a model where only two types of market
participants interact in the market: news watchers, that observe only information,
and momentum traders, that trade solely based on price information. Because news
watchers are prevented to observe the price, there is an underreaction of the price
to information. Therefore, it is economically profitable for momentum traders to
start chasing trends and trade on them. The difficulty for a momentum trader is to
distinguish price changes due to a change in information from those caused by other
momentum traders. Hence, “early momentum traders impose a negative externality
on future momentum traders”. Because of this, the presence of momentum traders
induces a subsequent overreaction of the price to information.

5.2.1 Description of the experiment
Let us start by describing the setup of the experiment. As before, we first need

to define model classes to describe data over a period of piecewise stationarity. As
the goal is to capture persistence in the time-series of returns, we consider the class
of autoregressive processes of order k = 0, . . . ,K given by

r
(t)
log = α+

K∑

k=1

βkr
(t−k)
log + e(t). (5.3)

that form a collection of K+1 nested model classes. The residuals e(t) follow an i.i.d.
Gaussian distribution with zero mean and constant variance σ2. The Gaussianity
assumption is not necessary to compute an estimate of the parameters but used in



5.2 Adaptive momentum strategy 103

01.1994 01.1996 01.1998 01.2000 01.2002 01.2004 01.2006 01.2008
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) July 2007

01.1994 01.1996 01.1998 01.2000 01.2002 01.2004 01.2006 01.2008
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b) August 2007

01.1994 01.1996 01.1998 01.2000 01.2002 01.2004 01.2006 01.2008
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(c) September 2007

01.1994 01.1996 01.1998 01.2000 01.2002 01.2004 01.2006 01.2008
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(d) October 2007

01.1994 01.1996 01.1998 01.2000 01.2002 01.2004 01.2006 01.2008
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(e) November 2007

01.1994 01.1996 01.1998 01.2000 01.2002 01.2004 01.2006 01.2008
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(f) December 2007

01.1995 07.1997 01.2000 07.2002 01.2005 07.2007 01.2010
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(g) January 2008

01.1995 07.1997 01.2000 07.2002 01.2005 07.2007 01.2010
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(h) February 2008

01.1995 07.1997 01.2000 07.2002 01.2005 07.2007 01.2010
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(i) March 2008

01.1995 07.1997 01.2000 07.2002 01.2005 07.2007 01.2010
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(j) April 2008

01.1995 07.1997 01.2000 07.2002 01.2005 07.2007 01.2010
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(k) May 2008

01.1995 07.1997 01.2000 07.2002 01.2005 07.2007 01.2010
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(l) June 2008

Figure 5.1: Dynamic trend line, sequential plot from July 2007 until July 2008,
MSCI World Financials index.
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Figure 5.2: Dynamic trend line, sequential plot from March 2009 until February
2010, MSCI World Financials index.
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the derivation of the CNML criterion. We restrict attention to a simpler version of
this model class that is obtained by constraining all regression coefficients to be equal.

βk = β1 = β, ∀k. (5.4)

In that case,

r
(t)
log = α+

K∑

k=1

βr
(t−k)
log + e(t) (5.5)

= α+ βr
(t−k)→(t−1)
log + e(t), (5.6)

where we have used the property of log-returns reviewed in Section 2.1.2 according to
which the sum of returns over a given period is equal to the return over this period.
Then, the vector of parameters is given by

θ =




α
β
σ2


 . (5.7)

These very simple model classes correspond to the one commonly used in momentum-
type strategies where returns are projected on past returns over a given horizon,
typically over the last 12 months. When the coefficient β > 0 (resp. β < 0), we
obtain a momentum (resp. contrarian) strategy. Hence, the basic building block
of our algorithm corresponds to a well-established strategy understood and applied
by a large number of investment professionals. The output of the variable lookback
algorithm is thus easily comprehensible and does not suffer from the black box problem
of other quantitative strategies. Moreover, the role of our proposed algorithm is to
select optimally and simultaneously the order of the process and the lookback window.
The order in this case corresponds to the horizon of past returns over which returns
are projected. The choice of the lookback window corresponds to a segmentation of
the sequence into segments where different “modes” can be identified, namely: (i)
momentum strategy works (ii) contrarian strategy works (iii) neither momentum nor
contrarian strategy work. It is safe to include this latter option in our model selection
scheme. If the system detects this mode, an investor enters a neutral position and
avoids taking risky bets.

For the considered classes of models, the CNML criterion is readily available and
we report here the equations for the sake of completeness. Details can be found in
Rissanen et al. [2010]. Define the vector of regressors

f (t) =

(
1

r
(t−k)→(t−1)
log

)
. (5.8)

The following equations are used to update the estimator of the parameters of the
model sequentially

θ̂(t) = θ̂(t−1) + ê(t)V (t−1)x(t) (5.9)

ê(t) =

(
r(t) −

(
x(t)

)T
θ̂(t−1)

)
/
(

1 + c(t)
)

(5.10)
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V (t) =

(
I − V

(t−1)f (t)
(
f (t)

)T
(
1 + c(t)

)
)
V (t−1) (5.11)

c(t) =
(
f (t)

)T
V (t−1)f (t), (5.12)

where ê(t) represents the prediction error estimates, V (t) the inverse of the covariance
matrix of the regressors and 1 + c(t) the relative increase of (Fisher) information
induced by the observation at time t. (5.9) and (5.11) define an online update rule
for the estimation of the ordinary least-squares estimator of the parameters of the
model. The latter is given by

θ̂(t) =

((
F (t)

)T
F (t)

)−1 (
F (t)

)T
y(t). (5.13)

where

F (t) =

((
f (1)

)T
, . . . ,

(
f (t)
)T)T

. (5.14)

Also, since the residuals are Gaussian, the least-squares estimator corresponds to the
maximum likelihood estimator of the parameters. The online rule is derived from
this definition following the same methodology as Example 4. That is, the regression
coefficients are treated as latent state variables of a system whose state equation is
given by

θ(t) = θ(t−1) (5.15)

and observation equation by

y(t) =
(
f (t)

)T
θ(t) + e(t). (5.16)

(5.9) and (5.11) result from the application of Kalman filter equations to the above
state space model. Moreover, the CNML criterion is in this case given, for t ≥ m+ 2,
by

CNML(t, k) =
t−m

2
log2 τ

(t) − log2 ê
(m+1) − log2

Γ( t−m2 )

Γ( 1
2 )

+

t∑

t′=m+2

log2

(√
π(1 + c(t

′))
)
, (5.17)

where Γ is the Gamma function and τ (t) is the sum of squared prediction error esti-
mates

τ (t) =

t∑

t′=m+1

(
ê(t)
)2

. (5.18)

Note that (5.17) criterion is not an approximation. We can obtain one by applying
Stirling’s formula for the Gamma function Whittaker and Watson [1990]

log2 Γ(t) ≈ 1

2
log2

2π

t
+ t log2

t

e
. (5.19)
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Then, since Γ(1/2) =
√
π, the CNML criterion can be rewritten as

CNML(t, k) =
t−m

2
log2(2πe

τ (t)

t−m ) +

t∑

t′=m+1

log2

(
1 + c(t

′)
)

+
1

2
log2 t+O(1), (5.20)

where all constants are grouped in the generic O(1) term. We recognize the first term
in the glsrhs that corresponds to the entropy of a Gaussian process with variance
τ (t)/(t − m). The first term also resembles the cusum of squares, a test statistic
used to identify a change in regression relationships Brown et al. [1975]. But our
approach is purely data-dependent and does not contain any parameter, in particular,
an arbitrarily chosen test size.

5.2.2 Comparison with other momentum-type strategies

Momentum-type strategies are not only documented by numerous academic stud-
ies but also applied by a large number of investment professionals. It is thus of great
interest to compare our approach with existing ones. This is the topic of this section.

Firstly, we distinguish two large classes of momentum-type strategies, namely
cross-sectional and time-series momentum. On the one hand, cross-sectional momen-
tum, documented by Jegadeesh and Titman [1993], uses the relative performance of
stocks to identify past winners and losers. The strategy is obtained by building a
zero investment portfolio as follows. At every time t, stocks in the universe are sorted
based on their last 12 months performance and a portfolio going long (resp. short)
stocks in the top (resp. bottom) decile is constructed. This strategy generates a
significant positive performance. The performance is even increased when measuring
past performance ignoring last month’s observation. Furthermore, this performance
is interpreted as a reward for a distinct source of risk, and it is thus included in many
factor models. On the other hand, time-series momentum, reviewed by Moskowitz
et al. [2012] for future contracts on various assets and by Sanford and Cooper [2006]
or Koo and Panigirtzoglou [2008] for European fixed income instruments, identify
past winners based on their absolute performance. Our approach is closely related to
time-series momentum, but differs in various aspects. Our model is richer as it allows
more complex dynamics: our algorithm identifies based on the significance of β and
its sign, which is the most appropriate strategy to play: momentum strategy (β > 0),
contrarian strategy (β < 0) or none (β not significant). Moreover, the horizon of our
strategy is not a parameter, potentially fined-tuned on a certain dataset, but selected
by our algorithm.

Secondly, the idea of using past returns as proxy for private information is already
found in Hou and Moskowitz [2005], but their model uses a fixed structure with the
last 5 lagged monthly returns. Our approach is more adaptive and decides on the
appropriate structure in a completely data-dependent manner.

Thirdly, our strategy is also related to an older strand of finance literature that
studies the autocorrelation in the time-series of returns Lo and MacKinlay [1988]. This
study concludes on the presence of a small but significant effect up to high lag. There
are two shortcomings in this approach. Firstly, the test of autocorrelation allows
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only testing static effect: a fixed lag of past return is correlated with returns over
a given investment horizon. Secondly, the analysis technique implicitly assumes the
underlying time-series is stationary and tends to average out effects. For example, if
the underlying time-series switches between two modes both characterized by a high
autocorrelation but of opposite sign, an analysis over the entire time-series is not
going to detect any effect, despite its significance over each period. By allowing a
flexible structure and departing from the stationarity assumption, our approach does
not suffer from these limitations.

Finally, it is well recognized that momentum, like any other quantitative strategies,
does not work consistently over time and various studies try to address this issue. For
example, Kent [2010] studies methods to hedge the momentum strategy, so as to
reduce losses when momentum fails. Also, Kelsey et al. [2011] study the influence
of external variables on the performance of momentum. One of these variables is a
measure of volatility of the market and the authors conclude that when the volatility
increases, the performance of momentum decreases. It has proven wrong in 2009,
when the level of volatility was very high and momentum extremely profitable. Our
approach is a contribution to this effort, but it bases its decision solely on price
information and past performance of the momentum strategy.

5.2.3 Results
We discuss in this section the results of the experiment and evaluate the output

of the variable lookback algorithm by backtesting the resulting investment strategy.

Illustration of algorithm output

Figure 5.3 illustrates the output of the algorithm for one of the time-series of
log-returns, the MSCI World Information Technology Index (MXWOIT). On the one
hand, the plots on the left are pertaining to the choice of lookback window. The
top left plot 5.3(a) represents the segmentation of the time-series in periods of piece-
wise stationarity. The segmentation points are indicated by the vertical lines whose
thickness is proportional to the number of times a switching point is selected. This is
compared against the evolution of the log-price and the exponential weighted volatil-
ity estimate. We observe that the algorithm segments periods not according to the
general directions of the index (alternating growth and decrease of the log-price), but
according to the volatility of the index (alternating high and low volatility). This
makes sense since the estimation procedure is driven by the second order character-
istics of the process. Also, crisis periods are typically characterized by an increase in
the volatility. The bottom left plot 5.3(c) represents a complementary image of the
top left one. It represents the evolution over time of the selected ts value, the last
time before which a switch happens. Compared to the top left plot, this one not only
indicates where the switching point is detected but also when this happens.

On the other hand, the plots on the right are pertaining to the choice of model
for the current period of piecewise stationarity. The top right plot 5.3(b) represents
the type of strategy employed when making prediction of returns at time t, green
for momentum and red for contrarian, depending on the sign of the coefficient ˆbeta
conditional on information at time t − 1. The type of strategy is again compared
against the log-price and exponential weighted volatility of the index. Note that



5.2 Adaptive momentum strategy 109

the figure does not permit to conclude whether the strategy outperforms or not the
index. Indeed, the experimenter could be tempted to check visually whether red
areas correspond to falling prices and green areas to soaring ones. However, the
experimenter tends to select areas in the graph confirming his preconceived idea and
ignoring the others. This well documented bias is known as the confirmation biais
Taleb [2008]. Going back to the figure, the bottom right plot 5.3(d) represents the
evolution of the selected order of the process. In this case, an order of 12 means that
return is projected on the return over the last 12 months. Although in our model
the order is supposed to remain fixed over periods of piecewise stationarity, we see
that in this plot, the order varies within these periods. This is because we expect
the estimate of the order to be imprecise, especially just after a switch has happened.
Moreover, we observe that periods of decrease of the log-price are associated with a
drop of the order of the process. This is interesting since these extreme drop of prices
are typically driven by investors’ panic or liquidity shocks hence not by fundamental
information. The algorithm correctly concludes that there is no information that can
be extracted from these prices, hence the reduction in the order of the process. The
effects we have observed are not particular to the information technology sector and
apply more generally to other ones. For example, Figure 5.4 illustrates the output of
the algorithm for MSCI World Financials index.

Backtest

Let us now describe the method used to test formally the output of the algorithm.
At every time t, the algorithm selects the relevant lookback, or alternatively the last
time before which a switch happens t̂(t)s , and the order of the process k̂(t). The
resulting prediction of the next period return is then given by

r̂
(t+1)
log = β̂

(
k̂(t), t̂(t)s

)
r

(t−k̂(t))>(t)
log , (5.21)

which is observable at time t. In order to build a strategy, the following trading rule
is applied, where the leverage depends on the sign of the prediction at time t. We go
long 130% (resp. 70%) of the asset at time t when our prediction is positive (resp.
negative). Also, we go long 100% of the asset when no prediction is made, i.e., when
a model of order 0 is selected. Mathematically, the weight of the portfolio at time t,
w(t), is given by

ω(t) =





1.3 if k̂(t) > 0, ŷ(t+1) > 0

0.7 if k̂(t) > 0, ŷ(t+1) < 0

1 if k̂(t) = 0.

(5.22)

This change of leverage is implemented in practice by borrowing or lending money
at a risk-free rate, rf = 0 for the sake of simplicity. Also, the value of the potential
leverage is fixed and is not scaled by an estimate of the volatility. Scaling the leverage
by the volatility is a well-known practitioners’ trick to inflate the Sharpe ratio of a
strategy. Here we would like to test solely predictions and disentangle whether the
improvement in Sharpe ratio is caused by our algorithm or by a scaling of the leverage.
The adaptive momentum strategy is compared against two standard benchmarks,
namely the passive indexing strategy and the simple 12 months momentum. In the
simple passive strategy, the exposure in the asset is maintained at 100% for all time.
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This strategy bets on the absence of momentum effect. In the simple 12 months
momentum strategy, we go long 130% (resp. 70%) when the return over the last 12
months is positive (resp. negative). In other terms, we assume β̂ > 0,∀t and this
strategy bets on the omnipresence of the momentum effect. We run the backtest
on the time-series of log-returns of the 10 MSCI World total return sector indices
sampled at a monthly frequency from January 1995 until July 2011. Each time-series
represents the weighted average returns of a large basket of stocks belonging to a
certain sector. The grouping of stocks in a sector follows the GICS classification and
the weight of each stock depends on its market capitalization.

Backtest results

Figure 5.5 represents the result of the backtest for MSCI World Financials (MX-
WOFN) for all three strategies, namely passive indexing (grey), simple 12 months
momentum (blue) and adaptive momentum (gold). We present a whole array of indi-
cators, so as to build a complete overview of the performance of the strategy. Let us
detail each now. The top left plot 5.5(a) represents the evolution of the log-wealth for
all strategies. A strategy outperforms another one when the slope of their log-wealth
significantly diverges, because this reflects a significant difference in their growth
rate. For example, we observe that both standard and adaptive momentum strategies
outperform the passive strategy between the end of 2005 and July 2007. Likewise,
adaptive momentum outperforms simple momentum between the first quarter of 2010
and the first quarter of 2011. The top right plot 5.5(b) decomposes the return of the
strategy on an annual basis. Ideally, a strategy should outperforms the market in
both directions, i.e., have a higher positive return during positive years and a lower
negative returns during negative years.. The aim of this plot is also to analyze the
stability of the outperformance of a strategy against its benchmarks. The question
is whether the outperformance is stable over time, or concentrated on a couple of
extreme values. The latter are likely to bias summary statistics, which are reported
in the legend. In particular, we give the average annual return, the average annual-
ized volatility and the average annualized Sharpe ratio. The latter is defined as the
ratio between the average of monthly return and the standard deviation of monthly
return, scaled by

√
12 so as to obtain an annualized measure. We observe that the

adaptive momentum strategy outperforms the simple indexing in almost all years and
even outperforms the simple 12 months momentum during the present crisis. What is
particularly striking is the ability of the adaptive momentum strategy to outperform
indexing during the negative year of 2008, like the simple momentum strategy, but
to also outperform both strategies during the consecutive positive years in 2009. We
come back to the analysis of the behavior of the strategy in 2009 in the next section.
Moreover, the bottom left plot 5.5(c)represents the evolution of the portfolio weight
for simple and adaptive momentum strategies. The turnover, defined as the sum of
the absolute difference between consecutive portfolio weights,

TO =

T∑

t=2

|ω(t) − ω(t−1)|, (5.23)

measures the amount of trading incurred by a strategy. We report this number, since
the profits generated by a strategy might be consumed by trading costs, which are not
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included in our analysis. Note that the turnover of the adaptive momentum strategy
is approximately equal to that of simple momentum. Finally, the bottom right plot
5.5(d) represents the drawdown of the strategy. This is defined as the difference
between the current maximum value of the wealth and the current value,

DD(t) = maxt′∈{1,...,t}
{
W (t)

}
−W (t), (5.24)

and is expressed in percentage term. It is commonly used to assess the risk of a
strategy. The drawdown of the strategy is similar to the drawdown of indexing and
simple momentum before the 2008 crisis and is significantly better afterwards. Again,
the comments we have made are not particular to the financials sector and we report
as well the complete performance analysis for the Information Technology index in
Figure 5.6.

The annualized Sharpe ratio is our key performance measure when comparing
strategies. Furthermore, recall that leverage does not affect the Sharpe ratio, as
reviewed in Section 2.1.4. This is similar to the situation in signal processing where
the amplification of a signal does not modify its SNR ratio. Therefore, a strategy that
constantly leverages its investments has the same Sharpe ratio as passive indexing.
Also, a comment regarding the use of Sharpe ratio in conjunction with log-returns is in
order. In a static context, the use of log-returns implicitly correct for risk by assuming
log-utility. Indeed, if an investor has log-utility, he maximizes the logarithm of his
terminal wealth, which is equal to the sum of log-returns. Thus there is no need to
correct for risk and expected log-return is the correct performance evaluation metric.
In an intertemporal context, where one wants to adjust for risk period-by-period,
and probably also for changes in the investment opportunity set, Rubinstein’s CAPM
Rubinstein [1976] offers a framework within which to think about this. An investor
with a log-utility maximizes the sum of the logarithm of its intermediate consumption.
Assuming joint log-normality of the asset or portfolio return and the market portfolio,
there exists a relationship resembling Sharpe’s CAPM, where the beta needs to be
doubled (and corrected by a factor proportional to the variance term that is likely
going to be small). Again, the use of log-returns correct for risk. However, the
widespread use of Sharpe ratio in conjunction with log-returns in practice explains why
we use it as our key performance measure. Figure 5.7 represents the annualized Sharpe
ratio of the three strategies for all sectors. Adaptive momentum outperforms its two
benchmarks in almost all assets. Figure 5.8 represents also the annualized Sharpe
ratio for all sectors, when returns are projected on past cumulated returns ignoring
last month’s observation. In this case, the outperformance of adaptive momentum
compared to its two benchmarks is even more evident. This is somehow related to the
already mentioned method of ignoring the last month’s observation in cross-sectional
momentum strategy. This is also related to the recent paper of Novy-Marx [2012] that
advocates that in the simple 12 months strategy, the first 6 months portion explains
most of the predictive power of the strategy. It seems to be a stable feature of data,
but there is yet only partial economic justification for it. With daily data, market
microstructure effects have been put forward to explain it, but they are unlikely to
persist at a monthly level Jegadeesh and Titman [1993]. This has also been interpreted
as a consequence of the short-term contrarian effect caused by market overreaction
de Bondt and Thaler [1985].
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Figure 5.7: Sharpe ratio of the indexing (grey), simple 12 months momentum (blue)
and adaptive momentum strategy (gold) for all MSCI World GICS level 1 sectors.
The adaptive momentum outperforms the two benchmarks.

Behavior during the 2009 momentum crash

2009 was certainly a challenging year for investment managers. The market started
with a sharp decline in the first quarter, followed by an important rebound. For exam-
ple, in Switzerland, the Swiss market index (SMI) index has doubled between March
and October 2009. This period was particularly difficult for quantitative strategies, in
particular momentum strategies. Together with the 1930’s, it is one of the historical
periods where momentum has failed dramatically. In this section, we highlight here
the behavior of our adaptive momentum strategy during this particular phase.

Figure 5.9 represents our analysis of the strategy between January 2007 and Jan-
uary 2010 for MSCI World Financials index (MXWOFN). The top left plot 5.9(a)
represents the type of strategy used, green for momentum, red for contrarian, against
the log-wealth of the strategy and its two benchmarks. The shade of the color is
proportional to the significance of the effect. The top right plot 5.9(b) represents the
sign of the predicted return, green for positive, red for negative values, against the
log-wealth of the strategy and its two benchmarks. Again the shade of the color is
proportional to the absolute value of the predicted return. The bottom left plot 5.9(c)
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Figure 5.8: Sharpe ratio of the indexing (grey), simple 12 months momentum (blue)
and adaptive momentum strategy (gold) for all MSCI World GICS level 1 sectors.
The outperformance is even stronger when removing the last month observation.

pertains to the choice of lookback window conditional on information up to time t,
whereas the bottom right one 5.9(d) to the choice of order of the process conditional
on information up to time t. In the case of MXWOFN, we see that the algorithm
decides to use a momentum strategy during the whole period. Generally speaking,
playing a momentum strategy is a good idea when there is a clear trend in the market,
either positive or negative, but not during turning points. At the beginning of 2007,
the algorithm is already using a momentum strategy with an order of 12, in other
words, with an horizon of 12 months. It is well positioned to benefit from the current
rising market condition. When the market enters a crisis in August 2007, past cumu-
lated returns become quickly negative. The algorithm is again well positioned with a
momentum strategy, as the market carries on moving downward. In February 2009,
the algorithm decides to change the lookback window and consider that only observa-
tions as of March 2008 are relevant for the current environment and simultaneously
reduces the horizon of momentum to three months. This decision is solely based on
data and cannot be further justified. When the market starts to rebound in March
2009, the adaptive momentum uses a shorter horizon than the simple 12 months
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momentum, past cumulated returns becomes quickly positive, and the algorithm is
correctly positioned to benefit from the rebound as of May 2009. On the contrary,
simple momentum is lagging behind, and takes more time to adapt. This change
of order explains why adaptive momentum outperforms simple momentum as of this
point. Figure 5.10 represents the same analysis for the Utilities sector (MXWOUT).
The outperformance is not explained in this case by a change of order, that more
or less stays constant during the whole analysis period, but by a change of lookback
window. This change happens in May 2009, and the type of strategy moves from
being a momentum strategy to a contrarian one. As already noted, the cumulated
returns over the past 12 months is negative, such that the algorithm predicts positive
returns and is correctly positioned for catching the rebound. This decision lasts for
three months, and is then reverted to a momentum strategy, which is again correct
since the past cumulated 12 months return has become positive and the algorithm
still bets on a positive return value. Simultaneously, the lookback window goes back
to its original value. In summary, these two figures illustrate two mechanisms, namely
change of order and change of lookback, used by the algorithm to adapt to current
market conditions.
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Summary
In this chapter, we have reviewed two applications of the variable
lookback algorithm to finance. In the most general terms, the algo-
rithm is used to sequentially and simultaneously identify the various
modes of the market by segmenting the original time-series in dif-
ferent periods of piecewise stationarity, as well as the appropriate
structure of the model over each period. More specifically, the first
application results in an automated and data-dependent algorithm to
draw the trend line for the time-series of log-prices. This is mainly an
illustration of the algorithm and its underlying concepts, rather than
the basis for a realistic investment strategy. The second application
results in an adaptive version of the momentum strategy. We backtest
the strategy that levers the portfolio depending on the significance
of the identified effect and the sign of predicted returns. The strat-
egy outperforms standard benchmarks, passive indexing and simple
12 months momentum strategy. Moreover, because of its ability to
vary the lookback window and the order the process, the strategy
performs particularly well during the 2009 momentum crash.
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Chapter 6

Conclusion

I have come to the conclusion, after
many years of sometimes sad
experience, that you cannot come to
any conclusion at all.

In Your Garden Again
Vita Sackville-West

6.1 Summary

We have started this thesis with the introduction of the idea of a variable look-
back model, a statistical model where a time-varying portion of the information set
is relevant when forming predictions. The introduction of a variable lookback is an
implication of information asymmetry in the market; the presence of a time-varying
number of informed investors, which controls for the speed of diffusion of private in-
formation into the price, justifies a time-varying lookback. We have also seen that
the model is more general, as it aims to handle nonstationarity inherent to financial
time-series. More specifically, our aim was to derive a general procedure that con-
stantly monitors when a model works and when not, what are the appropriate model
structure and lookback, and this in a purely data-dependent manner.

We have further motivated our approach in two different manners. On the one
hand, we have reviewed existing applications of signal processing in quantitative fi-
nance, with the intention to illustrate the shortcomings of existing approaches rather
than provide an exhaustive treatment. Both applications we have reviewed are con-
cerned with the general problem of factor modeling; the first one uses Kalman filtering
to improve the estimation of the model, the second one principal component analysis
to automatically extract a series of orthogonal factors and their associated loadings.
The first shortcoming pertains to the structure of the model. The questions are what
is the appropriate order of the model? is the effect significant? When the model is
estimated by maximum likelihood, increasing the number of parameters increases the
fit of the model. As a consequence, the conclusion that the most complex model is
also the best one is unavoidable. This calls for the development of theoretically sound
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complexity measure; a model of higher order is chosen over one of lower order if the
improvement in fit at least compensates the additional complexity. Another approach
consists in introducing new parameters in the model, so as to better capture stylized
facts present in the time-series of interest. But the curse of dimensionality limits the
practical impact of this approach. The second shortcoming pertains to the nonsta-
tionarity of the signals. The current methods bypass the problem, by either assuming
some form of local stationarity, as in local windowing, or by modeling the switching
process itself. With local windowing, the choice of window size is problematic, as the
optimal window size changes over time. And modeling the switching process suffers
quickly from the curse of dimensionality. Furthermore, Markov switching processes
not only quickly suffer from the curse of dimensionality but are also not well suited to
capture long term memory effects characteristic of processes where humans beings are
involved. On the other hand, since our initial motivation came from studies of mar-
kets under information asymmetry, we have reviewed and compared two larges bodies
of literature, the noisy REE and BNE. Whereas in REE price emerges as the equi-
librium between price-taking agents under the rational expectations assumption, it
results from the strategic interaction of investors in BNE. In both theories, price plays
an articulated role in conveying information from informed to uninformed market par-
ticipants. Both theories agree that the informativeness of the price is proportional
to the relative proportion of informed investors. However, in noisy REE, the price
does not fully reveals all private information, whereas all informational inefficiencies
disappear very quickly in BNE. Interestingly, our view reunite both theories, in the
sense that the type of equilibrium the price system converges to is better described
by noisy REE but strategic interaction explains how this equilibrium emerges. We
have also tested our initial intuition in the context of experimental finance. We have
highlighted the process of diffusion of information into the price. We have also defined
the notion of time of maximally informative price and used the Context algorithm to
estimate it. We have verified that the time of maximally informative price is inversely
proportional to the number of informed investors, a supportive evidence for the idea
of a variable lookback model.

We have then developed a general algorithm to estimate the variable lookback
model and coined the term variable lookback algorithm for it. It is solely based on
the assumption of piecewise stationarity. This means that the system switches be-
tween different regimes at unknown point in time and there are no assumptions on the
number of switches or their positions. The algorithm is rooted in the MDL approach,
that equates learning with data compression. The code length of the universal model
with respect to a class of models defines a complexity measure. Furthermore, the
choice of models and model classes is left to humans, since Kolmogorov’s complex-
ity, which is based on a more general description method using computer programs,
is noncomputable. Moreover, the variable lookback algorithm works as follows. It
maintains various model classes, each based on a different portion of the information
set, whose number grows linearly in the number of observations. This set of estima-
tors is combined with a quadratic dynamic programming algorithm resembling the
Viterbi algorithm, so as to select simultaneously the order of the process and the
relevant lookback window by minimizing an information theoretic score. The latter
measures the ability of the model to fit data, penalized by the model complexity and
the complexity of the underlying switching process between different regimes. From
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a learning perspective, the algorithm decides sequentially either to keep and update
the current model based on the latest observation (continued estimation) or to restart
the learning procedure and forget all properties learned so far (restarted estimation).
The restarted model is chosen over the continued one, when it is better by a cer-
tain threshold, whose value is not a parameter, which can later be fine-tuned to fit a
certain dataset. Rather, it corresponds to the complexity of encoding an additional
switch in the system associated with a chosen description method. Furthermore, our
solution is characterized by a certain number of features

(i) Purely data-dependent: we aim to only derive evidence from data, there are
no parameters that can be fine-tuned on a specific dataset.

(ii) Individual sequence sense: we have access to only one realization of the
process and conclude from there.

(iii) Sequential learning: the algorithm forms sequential predictions that are com-
pared against realizations; we learn properties from the data on the fly.

(iv) Model diversification: we consider in parallel several nested model classes,
the appropriate one is chosen in a completely data-dependent manner. We
constantly monitor when a model works and when not. The latter case allows
entering a neutral position in our investments.

(v) Complexity and dimensionality: our approach explicitly takes into account
the model complexity in a theoretically sound manner.

Finally, we have conducted various tests of the algorithm, first on simulated time-
series then on field data. The first test was designed to assess the ability of the CNML
criterion to detect the correct order of the process. The second test was assessing the
ability of the algorithm to detect a switch when the underlying model switches from a
highly correlated autoregressive process of order 1 to an i.i.d. process and vice versa.
We have then presented two applications of the variable lookback algorithm in finance.
In the most general terms, the algorithm is used to sequentially and simultaneously
identify the various modes of the market by segmenting the original time-series in
different periods of piecewise stationarity, as well as the appropriate structure of the
model over each period. More specifically, the first application results in an automated
and data-dependent algorithm to draw the trend line for the time-series of log-prices.
This is mainly an illustration of the algorithm and its underlying concepts, rather
than the basis for a realistic investment strategy. The second application results in
an adaptive version of the momentum strategy. We have backtested the proposed
strategy that levers the portfolio depending on the significance of the identified effect
and the sign of the predicted returns. The strategy outperforms standard benchmarks,
passive indexing and simple 12 months momentum strategy. Moreover, because of its
flexibility in varying the lookback window and the order the process, the strategy
performs particularly well during the 2009 momentum crash.

6.2 Future research

Our work like any research projects calls for various extensions, which, mainly for
the lack of time, could not further be explored. This is the topic of this section. They
are ordered by fields of contribution.



126 Conclusion

Future research in experimental finance and neurofinance

Certain extensions of our research lie in the area of experimental finance and neu-
rofinance. A first extension of our research is the design of experimental markets,
whose information process is more realistic and the analysis of the resulting datasets.
We have seen in the description of the experiments in Section 3.2.1 that the informa-
tion arrival process used is extremely simplistic; private information is revealed to the
insiders before trading starts and is resolved by the revelation of the final dividend
at the end of the trading period. On the one hand, this is inspired by the theoretical
model of Brennan and Cao [1997] or Holden and Subrahmanyam [1992]. Thus there
exists a detailed theoretical analysis whose implications can be compared against the
results of the experiment. On the other hand, this is too simplistic to reflect the
complexity of the information process in financial markets. Usually, information ar-
rives as a point process, where subsequent pieces of information either subsume or
complement existing ones. Therefore, there is a need to design experiments whose
information process better reflects this complexity. Towards this goal, we can imag-
ine an experiment where subsequent pieces of private information are revealed to the
insiders, such that the precision of the private information signal, i.e., the inverse of
the variance of the noise of this signal, is increased over time in a controlled manner.

Experimental finance is also an ideal setup to address the question of how hu-
mans beings perform model selection tasks. We have seen in this thesis that, from a
mathematical perspective, the minimum description length approach presents several
advantages. The principle is rooted on sound epistemological foundations, in partic-
ular, as it does not assume the existence of a “true” distribution according to which
observed data are distributed. The only principle underlying MDL is Occam’s razor,
a general principle in sciences and engineering that advocates to pick the simplest
best explanation. MDL is also related to the Bayesian approach, but it avoids some
of its interpretation difficulties. From a neuroscience perspective, there is a consensus
around the idea that humans estimate statistical models by reinforcement learning.
Intuitively, this means that humans perform the estimation task by trial an error.
Starting from an initial guess, the parameters are progressively updated at an adap-
tation speed proportional to the prediction error. This is similar to the method of
Kalman filtering. Whereas the estimation question has been addressed, the question
remains on how do human beings choose among competing explanations of data. In
particular, is there a neuroscience foundation for the theory of MDL? More specifi-
cally, this could be addressed by designing an experiment where subjects are asked
to make sequential predictions. Their predictions can then be compared against the
predictions made by automated model selection procedures, in particular Bayesian or
MDL-based ones. Intuitively, predictions that match closely one approach support it.
There are various challenges that should be addressed. First, it is better to ask sub-
jects to elicit a prediction, rather than a model order, as this notion is more intuitive.
But the prediction has to be linked unambiguously with the underlying order of the
model. Moreover, the experiment should be designed in such a way that its is possible
to disentangle various automated model selection criteria. Observe, for example, that
both MDL and Bayesian criterion explore the entire set of predictors, but differ in
the way they are combined. Bayesian approach uses a mixture of various predictors,
whereas MDL selects a single one.
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Future research in signal processing

Our work also calls for various extensions in the area of signal processing. Firstly,
the version of the variable lookback algorithm we have developed is univariate, as
it processes each time-series individually. Of course, it is possible to combine them
to form a portfolio of univariate strategies. But, because a great deal of effects is
present in the cross-section of stocks, the development of a multivariate version of
the algorithm is desirable. Certainly, the extension of the model selection criterion
used to encode observations over a period of piecewise stationarity to a multivariate
setting is not problematic. The problem comes from the rapidly impractical number
of possibilities, when both the order of each process and their lookback window is
allowed varying simultaneously. One obvious solution is to allow only the order of
each univariate process varying. At a monthly frequency and at the index level,
this is motivated by the fact that the univariate algorithm usually picks dates that
corresponds to major events that affect the cross-section of stocks. But this is hard to
reconcile this approach with our initial justification for the variable lookback model,
where the lookback window is a proxy for the relative speed of information diffusion
in the market, created by a time-varying number of informed investors.

Secondly, it is of great interest to develop a measure of the confidence in the
selection performed by the algorithm. Of course, the compression factor, i.e., the ratio
of code length between two models, offers a mean of pairwise comparison between two
models. Intuitively, the larger this factor is, the more confidence we can have in the
selected model. But a theoretical rooted measure, similar to the one found in Thomas
et al. [1995], is desirable.

A third generalization is the development of new MDL-based model selection cri-
teria, in particular the conditional normalized maximum likelihood for more general
classes of models. So far, all the models we have used can be casted as a linear regres-
sion model, for which the CNML criterion can be evaluated analytically. However, a
considerable number of models in finance, for example the celebrated GARCH model
Bollerslev [1986] or the autoregressive conditional duration model for high frequency
data Engle and Russel [1998] cannot be framed as a linear regression model. Also,
an estimate of the parameters of these models are obtained by (quasi-)maximum like-
lihood methods, where the optimization is performed numerically. Therefore, the
evaluation of the denominator in the definition of the CNML criterion (4.49) is also
numerical, and efficient scheme must be developed to estimate this integral, for ex-
ample, by cleverly sampling the sample space.

Future research in mathematical finance

Other extensions lie in the area of mathematical finance. Firstly, we can extend the
backtest we have documented in different ways. First, the backtest we have presented
scale the leverage only based on the sign of the prediction, and more elaborate trading
rules could be considered. We can also perform the same test on other asset classes,
sampled at different frequencies. Gold for example is particularly challenging for
current methods, therefore of potential interest. We shall as well consider other
equities indices, for example based on countries or regions, as they exhibit different
statistical features.

Secondly, our experience shows that the quality of the estimator has an impact on
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the selection performed by the variable lookback algorithm. So far, we have used the
ordinary least-squares estimator, which is the best linear unbiased estimator if the
error is zero-mean, uncorrelated and homoskedastic. Since these properties do not
hold for financial time-series, it is of interest to test other estimators. One approach
consists in renormalizing the original time-series, so as to compute a weighted max-
imum likelihood estimator Steude [2011]. For example, we can give more weight to
the most recent observations and this can be generalized to include other variables
that proxy for the arrival of information in the market. Another approach consists
in using the feasible weighted least-squares estimator. This is a two-pass procedure.
The first pass corresponds to the OLS estimator and is used to compute an estimate
of the variance of the residuals. The latter is used as renormalizing factor in the
second pass. Various heteroskedastic consistent covariance estimators that have been
proposed in the literature White [1980] should be compared.
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