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Abstract

Safety-critical software systems can only support a limited number of failures. Exten-
sive testing is good at catching errors, however that will never certify their absence. Formal
verification is an alternative to testing that can (automatically) provide a mathematical
proof of correctness of programs. In this thesis, we present a verification procedure for
imperative programs. Our procedure reduces imperative programming to functional pro-
gramming and uses a semi-decision procedure that can reason modulo recursive functions.
As a complementary method, we propose an algorithm to generate test cases that attain
a high coverage of the program statements or can force the execution of some very refined
control paths. We have implemented these algorithms and have integrated them in the
Leon verification system. Leon can be used to verify programs written in a proper subset
of Scala.
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Chapter 1
Introduction

Writing good and reliable software is a difficult art. Software tend to contain bugs, and,
unfortunately, bugs can have expensive consequences. Basic software engineering princi-
ples suggest a number of specific guidelines to follow. These guidelines are certainly likely
to reduce the density of errors in a program, however they cannot guarantee the total
correctness of the software.

The most common approach to reduce the number of faults is to manually test the
program under development. Some values are selected and used as inputs for the program,
then some properties of the system, or its output, are asserted and dynamically checked.
This process can be automated to some extend: the collection of tests can be recorded
and automatically run and checked each time the program is modified. This certainly
improves productivity, but this does not replace the need to painfully compose a good set
of test values.

In addition, one single test can only exercise one path in the control flow of the program.
But the number of different paths of executions a program can take is gigantic. Indeed,
for each occurrence of a conditional expression with k branches, the number of possible
paths of executions is multiplied by k. If we simply consider a program containing n
if-then-else statements, which have k = 2 branches, there are already 2n possible
paths: an exponential growth. Actually, the complete story is even worse: in the presence
of loops or recursive functions, there is an infinite number of paths. Not to mention that
a total coverage of all paths of executions, if at all possible, would not ensure the absence
of bugs. It is possible for distinct values to lead to the same execution through the control
flow.

Nevertheless, testing is still very important. In the absence of more formal methods,
it is mandatory to have a decent test suite that can at least give some confidence in
the correctness of the software. Testing is also very cost effective compared to many
formal methods that usually involve massive user assistance. This last point is slightly
less relevant when the testing is done manually, forcing the user to write good test cases
that have good code coverage.

Since testing can never prove the correctness of the software and can at best exhibits
erroneous behaviour. We need to turn to formal verification if we want stronger guar-
antees. Formal verification can provide a mathematical proof that a program meets its
specification. Such a proof would ensure, assuming the specifications correctly capture the
intended behaviour, that the software absolutely cannot fail to complete its task.

The general question of determining if a program meets its specification is undecidable.
So, to tackle this problem, one has either to identify decidable subproblems, or accept to
rely on semi-decision procedures and heuristic methods.

In this work, we focus on software verification of imperative programs. We leverage
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12 Chapter 1. Introduction

an existing semi-decision procedure for verification of purely functional programs with
recursive functions [59]. We apply a series of successive transformation passes to the input
program, each pass eliminating some imperative features by mapping them to an equivalent
functional feature. In the end, the input imperative program is entirely transformed to a
functional program, and we can fall back on the procedure we mentioned above.

Our verification system has the property to be complete for finding counter-examples.
It is a semi-decision procedure because it can loop forever on some valid instances, but it
is still able to sometimes provide a proof of correctness. However, in practice, we often
need inductive reasoning to prove complex properties. To take advantage of the efficient
detection of bugs, we advocate the use of our system to actively check properties while
developing the software. If the tool finds a counter-example, then the developer obtains
a concrete input on which the property is not true, hence he can hopefully address the
issue. If the tool is not able to quickly find a counter-example, one should assume that
the property holds and continue with the development.

One persistent critic targeting formal verification is that the use of any of its tools
requires to be an expert and that mere programmers will never be able to do verification
on their own. For example, writing specifications usually requires knowledge about first
order logic, a skill that average programmers may lack. The need to learn an additional
syntax can also be problematic. In our system, the specification language is actually
identical to the implementation language, using existing facilities of the host language to
provide specifications. In that setting, writing specifications feels natural, and we think
this is an important step towards encouraging the wide adoption of formal verification.

As a complementary method, we extend our system to automatically generate test cases
for the program under verification. Automatic test cases generation has the cheap cost
of manual testing without having its need for extensive user participation. If the verifier
times out, this likely means that the property is valid but the system is not able to prove it
so. At that point, we can attempt to generate a collection of test cases that provide a high
coverage of program statements. Our technique is actually able to guarantee a complete
coverage of all program statements that are reachable starting from an annotated function.

1.1 Motivation

Program verification has a lot of practical and important applications. In a perfect world,
any system would be formally verified. In a close to perfect world, any life-critical system
would be formally verified, since, in such systems, a single bug can not only cause damage
worth billions of dollars but also take some invaluable human lives. Unfortunately, we
are not living in either of these worlds, and formal verification of complex systems is very
difficult. When a system is too difficult to be completely verified, testing is a good and
acceptable alternative.

It is sadly true that the process of formally verifying software can be very expensive in
developer time. This usually requires to write down specifications in some formal language
like first order logic. Those specifications can often be tricky to get right, and can be an
additional source of mistakes. Sometimes the verifier needs hints in order to complete
the proof, and, usually, only experts are able to annotate the program exactly the way it
should be.

In some applications, errors are more acceptable than in other ones. For such applica-
tions, software verification can sometimes reveal itself to be too expensive to compensate
for the added value of having lower risk of errors. This is a place where completely auto-
matic tools, like test cases generators, can shine.

Automatic generation of test cases is a very useful method to help in the development of
software. Of course, it is neither complete for proving validity or finding counter-example,
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but it provides a very cheap way to obtain a collection of input values that can exercise
the program and give good confidence in its correctness. This is cheap since it does not
need any formal specification to be given by the programmer, it can work out of the box
on any program.

1.2 Contributions

This thesis makes the following contributions:

1. We present a method to convert an imperative program into an equivalent functional
one. We describe the transformation formally using rewrite rules.

2. We show how our transformations can be used to build a verification system for
programs written with a mixture of imperative and functional features.

3. We demonstrate how similar methods can be used to automatically generate test
cases with a high coverage of program statements.

4. We have implemented the algorithm presented in this thesis in a robust and usable
system. The system works on a well-defined subset of Scala. It will clearly flag
unsupported constructs Our system can thus be used to develop and check programs
as long as they are restricted to the accepted language.

1.3 Outline

The structure of the thesis is as follows. In Chapter 2, we present some important existing
techniques in program verification and decision procedures. Our work takes advantage of
the availability of these methods. Then, in Chapter 3, we present a high level view of
our approach to the verification of imperative programs. In the following two chapters,
we delve into the specifics of our method: Chapter 4 explores the different transformation
phases that we apply to the input program and Chapter 5 explains how to automatically
generate test cases with maximum coverage of statements.

We detail the integration in the existing Leon system in Chapter 6. Chapter 7 then
describes how the system behaves on a collection of selected test cases. Finally, Chapter 8
concludes with a discussion of the results and lessons learned from this work.





Chapter 2
Background

In this chapter, we present some existing results that we build upon. First we look at
theorem provers and their important applications. Theorem provers are the mandatory
building blocks on top of which we can construct verification systems. Then, we will
discuss the general problem of software verification. These sections are intended as a
high-level introduction to those important topics and not a review of advanced literature.
Finally, in the last section, we cover literature on related work.

2.1 Theorem Provers

Theorem provers are specialized software that automate mathematical proofs. They can be
entirely automatic, or only partially in the case of interactive theorem provers. Depending
on the underlying logic, the problem can vary from easy to undecidable.

In general, proving formula of First-Order Logic (FOL) is undecidable. Despite this
issue, FOL is very expressive and, thus, is often used as the specification language for
software verification. One pragmatic approach is taken by interactive theorem provers.
Here, only some parts of the proof are automated, while the user is required to provide
indications for the other parts.

An alternative way to work around the undecidability is to identify decidable fragments
that are of interest. Perhaps the most studied such provers are SAT solvers, that only
consider propositional logic. SAT is one of the quintessential NP-complete problems. Sat-
isfiability Modulo Theories (SMT) is a generalization of SAT to other theories. There also
exists some fully automated first-order theorem provers, which attempt to solve arbitrary
first-order logic formula, but they only offer a semi-decision procedure.

2.1.1 Satisfiability Modulo Theories

The SMT problem is the generalization of the SAT problem to any mathematical theory.
It has great applications in software analysis, where one usually needs to be able to reason
at the word-level: integers, booleans, and data structures.

Specialized theories to answer questions about most of the different fundamental types
of objects programming languages use have been developed for many years. A decision
procedure for a theory usually takes advantage of some particular knowledge about the
theory, to quickly determine the validity of the input formula.

Despite the absence of quantifiers, the expressive power of SMT solvers remains high
enough for a lot of practical applications. First note that formulas such as:

∃−→x .F

15



16 Chapter 2. Background

can be solved by asking whether F is satisfiable. Similarly the following kind of formulas:

∀−→x .F

is equivalent to:
¬∃−→x ¬F

which can be solved by asking whether ¬F is unsatisfiable. Verification conditions ex-
tracted from programs are generally of a similar form and can be solved using an SMT
solver. In conclusion, SMT solvers work as long as there are no quantifier alternations.

Satisfiability Modulo Recursive Function

One theory of interest is the one of recursive functions. Recursive functions are expressive
enough to give full Turing-completeness power to a programming language, without the
need for loops. Most functional programs rely heavily on recursive functions and make
only minor to no use of classical imperative looping constructs.

There exists a semi-decision procedure for the theory of recursive function [59]. We only
give a high level overview of the algorithm, we refer the reader to the original presentation
for additional details.

The procedure is based on successive unrolling of the definition of functions, adding
each time more information about how the function behaves. A top level loop alternate
over-approximation and under-approximation of the formula, asking an underlying solver
each time, until it converges to a solution (or it loops forever).

In the over-approximation phase, all function invocations appearing in the formula are
replaced by uninterpreted functions and then the complete formula is sent to a solver.
Since the solver actually has the freedom to assign any meaning to the functions, if it still
returns that the formula is unsatisfiable, then the actual formula is really unsatisfiable.
On the other hand, if the solver says that the formula is satisfiable, we cannot be sure
that the meaning chosen for the functions is consistent with their definitions, so we need
to continue with the under-approximation phase.

In the under-approximation phase, the formula is crafted in such a way that the model
is forced to take only branches that correspond to terminal cases of recursive functions.
Such branches always exist, unless the recursive function is non terminating. This means
that if this modified function is satisfiable, then the actual function is satisfiable as well.
However, if the solver says it is unsatisfiable, we cannot conclude anything about the
formula.

2.2 Program Verification

Program verification aims at formally proving the correctness of a program. In general,
one can only define the correctness of a program with respect to some specifications. So,
given a specification, a software is said to be partially correct if, for each terminating
execution, the specification are met. We say that a software is (totally) correct if it always
terminates and the specifications are always met.

The goal is to provide mathematical evidences that an input program meets its spec-
ifications. In this work, we will assume that the specifications are given by an external
source, usually the programmer. Note that some techniques are known to automatically
discover some of these specifications [41, 25].

Figure 2.1 illustrates the general settings of software verification. As we can see, a
verification system needs two distinct inputs: the program and the specifications that the
program should meet. In practice, it is usually the case that both are combined in a
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single input, for example with specifications annotated directly in the source code of the
program.

The verification system should then output VALID if the program as defined in the
source code meets the formal specifications. It can optionally give a proof of the correct-
ness. If the program does not satisfy the specifications, then the verifier should output
INVALID and optionally give a concrete model (a counter-example). Since program ver-
ification is an undecidable problem, it is also possible that the system loops forever, or,
similarly, ends up with a timeout and is not able to answer the question.

We can represent programs as logical formulas, and use automatic theorem provers to
attempt to solve the formulas. Figure 2.2 shows this process. The input to the system is
still the program along with its specifications. In a first phase, the verification conditions
generator (VCG) generates formula whose validity implies that the program meets the
specifications. The generated formulas are called verification conditions (VC).

The second phase involves calling an external theorem prover to determine the validity
of the verification conditions, which permits to conclude the correctness of the program. If
a formula is not valid, this means that the program does not meet the given specifications.
There could be two reasons for that:

• The program contains a bug. This is the expected behaviour, the specifications
correctly capture what the program is supposed to do, and an error in the code
leads to a counter-example in the verification conditions.

• The specifications are not correct. In that case, the program might still be correct,
but since the specifications wrongly capture the intended behaviours of the program,
a counter-example is found.

2.3 Related Work

Many interactive systems that mix the concept of computable functions with logic reason-
ing have been developed, ACL2 [30, 29] being one of the historical leader. Such systems
have practical applications in industrial hardware and software verification [46]. ACL2
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is a system that is programmable in a first-order functional subset of Common Lisp [58].
Similarly to our system, it is possible to state theorems using functions returning boolean
values. The solving technology is fundamentally very different from ours. ACL2 is based
on heuristics with a rewriting system, while we rely on SMT solving technology. The
system requires manual assistance because it is usually required to break down a theorem
into many small lemmas that are individually proven. Other more recent systems for
functional programming include VeriFun [61] and AProVE [22]. Isabelle [51] and Coq [11]
are proof assistant systems that provide a programming language in higher order logic to
express theorem and help proving them. This logic is expressive enough to define some
computable functions in a similar way as it would be done in functional programming. It
is actually possible to automatically generate code for such systems [26].

A common trait to these systems is that the outcome is relatively difficult to predict.
These systems provide very expressive input languages that make it very hard to auto-
matically solved in general. Many of these systems are also very good at automating the
proof of some valid properties, mostly by a smart usage of induction, while our system
is complete for finding counter-examples. We think that our approach is more suited for
practical programmers, that may not be verification expert but that would be able to
make sense out of counter-example, in the form of inputs to the program, much more
easily than of a proof of correctness. Also, our system proved to be very capable at finding
counter-examples with minimal user guidance. Also, none of these systems are able to
reason about imperative code. They are built around a functional core, which naturally
mapped to the logic use for formal reasoning.

Our back-end solver can be seen as a form of SMT solver [8]. SMT solvers are complete
decision procedures for some class of formulas. Our solver behaves as a semi-decision
procedure for formulas containing recursive functions. In the absence of such functions,
it will be as complete as the underlying solver. It is an important distinction from other
SMT solvers that usually only consider uninterpreted functions or functions interpreted
by some fixed axioms of the theory, but never user-defined functions. It is possible to
introduce such definitions in an artificial way using universal quantifier. In particular, the
function:

f(x) = e

where e is an expression depending on x, can be defined in a formula as:

∀x.f(x) = e .

This can then be added as an additional clause for the formula to verify. However, the
introduction of universal quantifiers makes the underlying decision procedure incomplete
and gives unexpected results. Leon relies on the state-of-the-art solver Z3 [17]. Other
well-maintained solvers include CVC3 [10], MATHSAT [13], and YICES [19].

CBMC [15] uses Bounded Model Checking to prove some safety properties of low level
C programs. CBMC uses incremental loop unrolling which is in some sense the same
idea as our function unrolling method. From a user perspective, CBMC is almost totally
automated, while Leon requires the user to write down some specifications. On the other
hand, CBMC can only prove some safety properties such as the absence of null dereferences,
while Leon can be used for much more general correctness properties. Several tools exist
for the verification of contracts and invariants in imperative programs. One such tool
is Dafny [38]. Dafny supports an imperative language as well as many object-oriented
features. It is thus able to reason about class invariant and mutable fields, which Leon
does not support so far. Dafny translates its input program to an intermediate language,
Boogie [7], from which verifications conditions are then generated. The generation of
verification conditions is done via the standard weakest precondition semantics [18, 50].
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Our approach, on the other hand, translates the imperative code into functional code and
does not make use of predicate transformers.

Other tools for imperative and object oriented programming include the LOOP verifier
[60] and the KEY tool [1] that can verify Java programs annotated by the JML specification
language [37]. These tools are less automated than Leon because they rely on an interactive
theorem prover instead of an SMT solver as Leon does. The JML specification language
offers a rich way to annotate Java program, but it uses a distinct syntax from Java and
has not the advantage of being well integrated with the real compiler like Leon. Jahob [63]
is another system for Java that can verify full functional correctness for a class of linked
data structures. It provides a specification language that supports higher order logic in
order to precisely capture the exact behaviour that these data structures should meet.

Some programming languages are also designed with verification in mind. Such pro-
gramming languages usually have built-in features to express specifications that can be
verified automatically by the compiler itself. Such languages include Spec# [6], Gypsy [3]
and Euclid [35]. Additionally, Guardol [27] is a domain-specific language designed to build
safe and correct network guards. It also uses at its core a translation from imperative to
functional and rely on an independent implementation of the same method to solve the
resulting verification conditions. However, the language does not support loops and thus
do not deal with their translations. Finally, Eiffel [44] is a pioneer in introducing the con-
cept of design by contract, in the form of preconditions and postconditions of functions
as language annotations. Eiffel initially only provided, as part of the language, dynamic
support for verifying such contracts and in that sense is similar to the contract library for
Scala [53].





Chapter 3
Verification of Imperative Programs

In this chapter, we show how to encode an imperative program into verification conditions
that imply the correctness of the program, and then call an efficient solver to prove or
disprove the conditions. As discussed in the previous chapter, there exists a semi-decision
procedure that can solve any decidable theory extended with recursive functions. This
allows us to consider the function invocations as part of our logic. This means that we do
not abstract a function call by the contract of the function, and thus are very precise by
considering the exact definition of the function.

3.1 Design by Contract

Design by contract [45] is a formal approach to software engineering. It has its root in
formal verification and Hoare logic. The idea is that a software component should have a
very precise interface, expressed by its contract. Each contract can then be individually
tested or automatically verified. Even in the absence of formal verification, this is a good
practice that is likely to produce modular software.

A contract is made of three parts:

Precondition: what must be true when entering the component.

Invariant: what remains always true.

Postcondition: what is guarantee to be true when leaving the component.

In practice, a component can be as simple as a function that is annotated with a
contract. If the function is pure (it has no global side-effects), then there is no need for
invariant. The contract is then only made of two parts:

Precondition: a boolean expression of the function parameters.

Postcondition: a boolean expression of the function parameters and the returned value.

The goal of our verification phase is then to check the following two properties for each
function:

1. If the precondition holds, then the postcondition holds. This property alone is
sufficient to prove that the function is correctly implemented.

2. All the invocation of the functions must respect the precondition. If one such con-
dition is violated, then the blame is on the call site and not the function whose
precondition is not respected.

21
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program ::= definition*

definition ::= "def" id "(" idlist ")" "=" expr
definition ::= "abstract def" id "(" idlist ")"

expr ::= lit
expr ::= "if" "(" expr ")" expr "else" expr
expr ::= "val" id "=" expr "in" expr
expr ::= expr "(" exprlist ")"
expr ::= "(" exprlist ")

lit ::= INTLIT | BOOLLIT | TUPLELIT
exprlist ::= _ | (expr ",")* expr
idlist ::= _ | (id ",")* id

TUPLELIT ::= "(" ( _ | (lit ",")* lit ) ")"

Figure 3.1: Abstract syntax for the purely functional core.

expr ::= expr* expr
expr ::= "while" "(" expr ")" expr
expr ::= "var" id "=" expr "in" expr
expr ::= id "=" expr
expr ::= "def" id "(" idlist ")" "=" expr "in" expr
expr ::= "abstract def" id "(" idlist ")" "in" expr
expr ::= "epsilon" "(" id "=>" expr ")"
expr ::= "skip"

Figure 3.2: Abstract syntax for extensions.

3.2 The Input Language

Later, we will discuss a number of algorithms manipulating code. In order to keep the
presentation as simple as possible, we define an abstract syntax for a simple programming
language. The language is minimal, but still Turing-complete. Despite its minimality, it
still exhibits all of the important features that need special care in the various manipula-
tions. In our actual implementation we handle real Scala code, which is a bit richer than
our input language presented here. In particular, we also handle case classes and pattern
matching. Additionally we handle more data types including some data-structure. The
algorithms we present with this simplified language are straightforward to generalize.

3.2.1 Syntax

Figures 3.1 and 3.2 describe the complete abstract syntax. The * represents number of
repetition of the rule, while keywords are between "". A | marks a disjunction while _ is
used for matching the empty string. Finally, () are used to group related items. The rule
for id is not given but should be assumed to be a standard identifier. BOOLLIT is either
true or false while INTLIT is any integer number.

Figure 3.1 shows what we will consider as the core language. This core is side-effect
free and, since it supports recursive functions, Turing-complete. Figure 3.2 presents a
number of extensions to the core language, in particular it adds imperative features with
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assignments, loops, and blocks of expressions (also called sequencing operator). The se-
quencing operator is not properly an imperative feature, but it is of no use when there is
no expression with side effect. It also provides an epsilon construct that allow some form
of constraints programming. We also integrate tuples as part of the core language. They
will be needed to encode imperative features into functional code.

For the readability of our example code fragments, we will often use arithmetic on
numbers. Expression such as x + y are not formally part of our grammar, however we
will use them as some sort of syntactic sugar for +(x, y) which would behaves as a function
call of the function with id +. We will also assume that all of the standard arithmetic and
boolean operations are available. Tuple selectors are also usable, using the syntax ._N
with N > 0. They can be considered as a function with one argument for all of our code
manipulations.

Note that this grammar is actually ambiguous and we would need a special syntax to
mark the end of if, while, and definitions expressions. This might look redundant, but it
is actually necessary to unambiguously distinguish different expressions. Consider as an
example the following expression:

if(b)
x = x + 1

else
x = x - 1
y = y + 1

Obviously the layout suggest that y = y + 1 is only executed in the else branch, however
it could be also parsed as:

if(b)
x = x + 1

else
x = x - 1

y = y + 1

Here the y = y + 1 is executed each time at the exit of the if expression. Adding these
markers for the end of if and while expressions resolve the this ambiguous behaviour.
However this would make the syntax heavy to read so we will rely on the layout and the
context to make it clear what parsing is intended. Similar ambiguous parsing can occur
with the scope introduced by var, here again we will use indentation to make it clear
where the scope should end.

Finally, we represent the specifications as code annotations. Top level functions as
well as nested functions can be preceded by @prec expr and @post expr to specify their
contracts, and while can be preceded by @inv expr to specify a loop invariant. As a
simplification for the rest of this thesis, we will assume that if no pre/postconditions
or invariants are specified, then the default specification of true is assumed. Finally,
the language supports the notion of abstract functions. Those are functions without
implementation, usually annotated with at least a postcondition, and they are assumed
to terminate and meeting their contract. In some sense, this is a programming style that
is enabled by program synthesis [42, 24].

3.2.2 Semantics

The semantic of this language is as expected. Note that val, var and def introduce a new
scope with an identifier that is only visible in the expression after the in keyword, except
for the function introduced by the def construct that needs to be visible in its own body
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in order to make recursive calls. Additionally, nested functions cannot access mutable
variables that are in enclosing scope. This restriction simplifies the code transformations
presented in the next chapter.

The language is dynamically typed, and all expressions are integers. We use the
convention that false = 0 and any other value is true as is very common in programming
languages. For clarity of presentation, we will extensively use true and false in the rest
of this the thesis.

The evaluation order is strict and from left to right. As it is common, if expressions
only evaluate the branch that is taken by the execution. Since everything is an expression,
we will take the convention that assignments and loops returns the value of false. The
skip expression can be used as an empty statement, but is not really mandatory since
false can be used with a similar effect. Such expressions are useful when we want to use
if expressions without an else case. In fact, we will use the following:

if(b)
e

as a syntactic sugar for:

if(b)
e

else
skip

The epsilon expressions takes as input an anonymous function, also known as lambda
expression. This function should behave as a predicate. The semantic of epsilon is then
to return any value that would make the predicate true, if one such value exists. It will
be more thoroughly detailed in Section 4.1.

Abstract functions are used as functions that meet certain contracts but with no im-
plementation provided. It is legal to call an abstract function and the semantics should
evaluate the call in a manner consistent with the contract of the abstract function. Also
note that we will additionally require that such functions behaves as mathematical, deter-
ministic functions. That is, for the same input values it will return the same output value.
This simplifies the mapping to the underlying logic, since in mathematics, all functions
are deterministic. Note that we do not explicitly synthesize an equivalent function, but
the verification procedure treats it as if it would have this semantics.

The tuple selector ._N selects the Nth element of the tuple. For example (5, 7)._2
would evaluate to 7.

3.3 Generation of Verification Conditions

An imperative programming paradigm usually requires to transform each statement into
a relation, in the form of a first order formula, between the program states [28, 18]. By
composing such relations for sequences of statements, we end up with a relation for the
whole program. This relation can then be used to relate preconditions and postconditions
and express the verification conditions.

In the case of functional programming paradigm, since no value changes it is not nec-
essary to represent the program as a relation. Indeed, one can usually use the program
expression directly as a term expressing the returned value in terms of the input parame-
ters. Recall that in functional programming, one defines a function simply as being equals
to a pure expression whose free variables correspond to the arguments.

Our language does support expressions with side-effects. However, instead of explicitly
replacing each expression by a relation between states, we adopt a different approach. Since
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Figure 3.3: Transformation from imperative to functional before running the verifier.

functions do not have global side-effects, we encode each expression with local side-effects
into an equivalent functional one. This way, we can then generate verification conditions
in a straightforward fashion. Figure 3.3 illustrates our approach. Our goal is to take as
input a program in the extended syntax and reduce it to an equivalent program in the
core syntax. In the rest of this thesis, we will mix program expressions and logic formulas.
As a convention, when we write the expression e we consider it as a program expression,
while when we write e we consider its equivalent translation in first order logic.

The transformations are based on single static assignment and recursive functions to
encode while loop. We detail the transformations in Chapter 4.

For the rest of the section, we assume that we applied our transformations to the input
program. The resulting program consists only of the core language. We now give the exact
construction of the verification conditions. Let us consider the following function:

@prec p
@post q
def f(x1, ..., xn) = e

where p, q and e are arbitrary expressions from the core language. The free variables of p
and e are among x1, ..., xn. The postcondition q contains the same free variables as
well as an additional #res variable which represent the returned value of f.

In the following we use the notation −→x to represent a vector of variables. We also use
p(−→x ) as the formula where the free variables x1, ..., xn are substituted by −→x and we
use q(−→x , r) in a similar fashion where #res is additionally substituted by r. Finally note
that we will also freely mix xn with xn depending on the context whether it is interpreted
as a program expression or as a logic expression.

The formula expressing the correctness of the postcondition is as follows:

∀−→x .(p(−→x ) =⇒ q(−→x , f(−→x ))) .

Dropping the universal quantifier and taking the negation, we get the formula F :

p(−→x ) ∧ ¬q(−→x , f(−→x )) .

We have that F is satisfiable if and only if the function is not correct. This means that
we can now ask an SMT solver for satisfiability of F , and if it returns that the formula
is unsatisfiable then it means that the function meets its contract. Note that abstract
functions do not need any treatment because they do not have an implementation.

A second set of verification conditions that we should verify for f is the one implying
that each invocation of f respects the precondition p. So for each function in the program:

@prec p2
@post q2
def f2(x1, ..., xn) = e2
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e1|c −→ s1 . . . en|c −→ sn g = f
g(e1, ..., en)|c −→ (

⋃
si) ∪ {c ∧ ¬p(e1, ..., en)}

e1|c −→ s1 . . . en|c −→ sn g 6= f
g(e1, ..., en)|c −→

⋃
si

b|c −→ sb t|c ∧ b −→ st e|c ∧ ¬b −→ se
if b then t else e|c −→ sb ∪ st ∪ se

b|c ∧ i = e −→ sb e|c −→ se
val i = e in b|c −→ sb ∪ se

lit|c −→ ∅

Figure 3.4: Rules to compute the verification conditions of f.

Where p2, q2, and e2 are defined respectively as p, q, and e.
Figure 3.4 shows the rules to compute the set of verification conditions for each expres-

sion. Applying these rules on each function f2 while looking for invocations of f will collect
all conditions on the preconditions p. More formally, we define the set S of verification
conditions for f2 by the following relation:

e2|p2 → S .

These rules describe how to collect the constraint on the argument of the function
invocations. It starts from the function top level with the precondition being the initial
constraint, then for each if expression, it visits both branches, each of them additionally
constrained with the condition taken. Similarly, a val expression is essentially a let-
binding and thus it constraints the identifier to be have the value of the right hand side.
When the descent encounters a function invocation, if the function invoked is f then we
add the current path constraint as one of the constraints on the arguments. Note that the
actual verification condition should be:

∀−→x .(c =⇒ p)

where c is the current path constraint. But we already applied the transformation so that
the verification condition can be sent to an SMT solver.

As a final note, the construction is exactly the same when f is abstract.

3.4 Solving the Verification Conditions

As seen in the previous section, we are left with a quantifier free term for which we need
to decide satisfiability. Most of the involved theories are well understood and we can rely
on the availability of efficient provers. The only difficulty is to solve expressions involving
function invocations. In fact, non recursive function invocations can be easily solved by
unfolding of the definition of the function. But recursive functions are more problematic, as
it would require unbounded unfolding. This is one of the main distinction of our approach
with respect to other techniques. Our verification conditions explicitly contain usage of
function invocations, while in other techniques, one usually abstracts away the function
invocations using their contracts.

We presented in Chapter 2 a technique that extends the reasoning capabilities of an
existing solver with recursive functions. One difference with this algorithm is that we



3.5. Properties of our Verification Procedure 27

need reasoning for abstract functions. Such functions need special care when unrolling
definitions in the procedure.

Unrolling of functions is done right after the main loop has tried both an over-
approximation and under-approximation of the formula without successfully concluding
anything. Adding clauses representing one unrolling of the function will refine the formula
for the next steps. This involves introducing fresh variable for the body of the function
as well as introducing a formula that makes the postcondition on the current parameters
of the function holds. Abstract functions are handled in a similar way, however we do not
add constraints for the body, since there is not any, but the postcondition is made to hold
with fresh variables as well.

3.5 Properties of our Verification Procedure

In order to state formally the properties of our procedure, we must first formulate a few
assumptions we made. We rely on the following three assumptions:

Termination. Each function defined in the program must terminate on all values that
satisfy its precondition. The usage of a non-terminating function such as:

@post #res == 1
def f(x) = f(x) + 1

would introduce, after an unrolling step, a clause such as:

f(x) = f(x) + 1

which would make the formula unsatisfiable and hence implies that the function is
correct, which cannot be the case since its postcondition is not valid.

Soundness of the underlying solver. The SMT solver used for deciding the over-approximated
and under-approximated formulas should be sound and complete for the fragment
we consider. Our method will only generate quantifier-free formulas in a theory that
is known to be decidable. Hence, we assume that the underlying solver will always
return a positive or negative answer for all queries, and that the answer it will return
is correct.

Satisfiability of the epsilon constraint. We detail this limitation in Section 4.1, but
essentially the predicate used as constraint for the epsilon construct should be satis-
fiable. If not, then the verifier will be able to prove validity of any property, similarly
to the case with non-terminating functions. This assumption applies equally to the
postconditions of abstract functions.

Under these assumptions, our procedure is complete for finding counter-examples. If
one counter-example exists, it will eventually be found by our procedure. The reason being
that the successive unrolling is done in a fair way, and that a counter-example must have
a finite execution trace, which would be eventually detected by the unrolling procedure
and the underlying solver would be able to satisfy it.

Our procedure is also sound, if it proves validity of the program, then it can be trusted.
Similarly, if it finds a counter-example, the counter-example is a true counter-example.
This last part can be actually dynamically tested by the solver, it can run the program with
the counter-example found and check that the postcondition is indeed violated. However,
such a test is not formally required.





Chapter 4
Program Transformations

Source-to-source transformations are semantic preserving mappings from the set of pro-
grams to itself. We make use of such mappings to eliminate some rich and complicated
features in order to keep the core language minimal and easy to handle in our back-end.
We first show how to represent epsilon primitives into abstract functions. We then dis-
cuss the encoding for imperative programs containing sequences of assignments and loops.
Finally we discuss how we lift local functions to the top level.

Note that the order in which these transformations are applied is important. The
order of presentation follows the actual order in which these passes are run. Each of these
transformations actually depends on some properties having been eliminated by a previous
pass or on a future pass eliminating a specific feature.

4.1 Non-Deterministic Choice Function

In this section we develop the meaning and utilization of epsilon. We first introduce
the epsilon calculus, from which the epsilon primitive is inspired. We then justify the
presence of epsilon in a programming language, including some use cases. Finally, we
present how this primitive is handled in our verifier and conclude with some special notes
on non-determinism.

4.1.1 Epsilon Calculus

David Hilbert has developed the epsilon calculus [47], which is syntactically similar to
first order logic, except that the existensial and universal quantifiers are replaced by the
epsilon operator, written ε. More precisely, if F is a formula and x a variable, then εx.F
is a term which is defined by the following axiom:

F (x) =⇒ F (εx.F ) .

In other words, εx.F return a value that can be assigned to x such that F becomes
true. This is a non-deterministic operator in the sense that it can return any value that
can make F true. If F is not realizable, then εx.F can return any value.

Both existential and universal quantifiers can be encoded using ε:

∃x.F (x) ≡ F (εx.F )

∀x.F (x) ≡ F (εx.(¬F ))

29
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4.1.2 Programming Primitive Based on Epsilon

This ε operator can be adapted to be part of a programming language and allow for
constraint programming. Previous works [32, 33] have already introduced the possibility
to use a choose function that have, basically, the same semantics as ε. Such a primitive
can provide the programmer with a lot more expressive power.

At the same time, it allows to express an undefined choice such as a random function
or input/output. For example, random can be defined as follows:

def random() = εx.>

In our language, we define an epsilon primitive that takes a lambda expression as an
argument. The lambda expression is to be interpreted as a predicate, and the epsilon
expression returns any value that makes the predicate true.

The previous random example is thus written as follows:

def random() = epsilon(x => true)

4.1.3 Reasoning with Epsilon

Existing theories do not support ε as a part of the logic. Thus, we need to encode ε into
some equivalent representation, before sending the formula to the solver. This is done via
a program transformation, that we describe here.

So, given an expression epsilon(x => e) in some context C : expr −→ expr with e
being an arbitrary expression from the core language. We translate this to the following
expression e2:

@post e
abstract def id() in id()

where id is a fresh identifier. We then plug e2 back in the context, obtaining the final
expression C(e2). We apply this transformation to every epsilon occurring in the program
source. Note that this becomes a nested function in the place of the previous expression.
Nested functions are not part of the core language, but in a later phase we will lift such
functions to the top level. This notion of context is needed since epsilon is a pure
expression that is found as a node in the abstract syntax tree of the language. As an
example, in the following expression:

val r = epsilon(x => true) in
r + 1

the expression epsilon(x => true) is in the following context:

val r = _ in
r + 1

where _ is used as a placeholder for the missing expression. Applying the transformation
would lead to:

@post true
abstract def e1() in e1()

and plugging the expression back in the context finally gives:

val r =
@post true
abstract def e1() in e1()

in r + 1

The transformation is valid since the semantics of the abstract function is chosen to
match the one expected by epsilon.
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Soundness with Satisfiable Predicate

Since the epsilon predicate is translated to a postcondition of an abstract function, the
handling of abstract functions in the back-end decision procedure needs some discussion.
As described in Chapter 3, an abstract function is replaced by a fresh variable that is
additionally constrained by the postcondition.

In particular, if the postcondition is invalid, this will makes the overall unrolling pro-
cedure returns unsatisfiability of the formula. This translates into any property being
concluded as valid. Let us consider an example:

@post false
def f() = epsilon(x => x != x)

Since the postcondition is false, the example should be invalid.
One unrolling leads to the following formula:

> ∧ vx ∧ vx¬vx

where vx is the fresh variable introduced for x. This formula is obviously unsatisfiable
because of the last clause. This means that no counter-example is found and that the
actual property is valid, which is not sound.

Our procedure then has the stated soundness and completeness only when epsilon is
used with satisfiable predicates. One solution would be to introduce existential quantifier
and solve a general condition that state the existence of a solution to the predicate. How-
ever, the drawback to this solution is that we will lose all some other properties since the
formula would no longer be quantifier-free and the underlying solver will not be complete
anymore.

4.1.4 Non-Determinism

Functions from the input language are eventually translated into mathematical functions in
a logical theory. Mathematical functions are formal and precise objects, and in particular
they are deterministic, that is, given the same input, they will return the same output.

Currently our transformation directly maps epsilon to a corresponding fresh deter-
ministic function. In that sense, our transformation enables constraint programming,
where one only specify the result and not how to compute it, but it does not provide
direct non-determinism.

To see the problem let us consider the following program:

def rand() = epsilon(x => true)

@post true
def wrong() = rand() == rand()

Since rand is supposed to be non-deterministic, we would expect that the postcondition
of wrong is invalid. However, with the current construction we defined, this program is
actually valid. To understand this result, we should examine the encoding that is finally
send to a prover. Three functions are defined: rand, e1 and wrong, each one taking no
argument.

Then the following formula represent the unrolling of the functions:

rand() = e2() ∧ (wrong() ⇐⇒ rand() == rand()) ∧ true

Where the final true is the constraint on the value of e2() and can be safely ignored,
which means e2() can take any value. However, as all functions in math are deterministic,
this results in e2(), as well as rand(), always taking the same value.



32 Chapter 4. Program Transformations

One way around the problem, is to explicitly add additional parameters to the func-
tions. Let us consider this modified version of the previous program.

def rand(a) = epsilon(x => true)

@post true
def wrong() = rand(0) == rand(1)

The generated functions are still the same, but rand and e1 will this time take one argu-
ment:

rand(a) = e2(a) ∧ (wrong() ⇐⇒ rand(0) == rand(1)) ∧ true

Since we still have no constraint on the value taken by e2(a), the solver can choose any
value, in particular it can choose a different value for each a. Thus, in that example, it
will be able to find a model that contradicts the postcondition of wrong, for example by
assigning e2(0) = 0 and e2(1) = 1.

Note that, even though it looks like you need to use statically known constants in order
to generate non deterministism, this can be made to work in more complicated situation,
like unbounded recursion:

def rand(a) = epsilon(x => true)
def rec(i, a) = if(i == 0) 0 else rand(a) + rec(i-1, a+1)

The trick is simply to build an implicit sequence of different values for the argument to
the function we wish to make non-deterministic. It is up to the programmer to encode the
correct behaviour that he wishes to have.

Alternative Semantics

One might wonder why we chose this deterministic semantics instead of automatically
encoding the non-determinism. For one, nothing is taken from the user, he can still
encode non-determinism if that is what he truly wishes. In fact, our approach actually
allows the programmer to have access to a deterministic function if he wishes so. In some
situation this could actually be what he wants.

We considered two ways to try to automate the encoding of epsilon in a non-
deterministic equivalent:

Specific handling of epsilon in the decision procedure. This technique involves au-
tomatically generate fresh variables to replace epsilon expressions while introducing
new unrolling of recursive functions. There is also a need to track which epsilon
has been replaced by which variable in order to build a model at the end. It is
particularly cumbersome to do so when epsilon appears in a recursive function and
at each level corresponds a different choice of value. It would seems that we need to
record some sort of stack trace along with the program point of the epsilon being
instantiate.

This would also be dangerous to keep epsilon as a non-deterministic expression
that far into the system. For example let expansion are very dangerous because we
would need to somehow record that expanded epsilons expressions were the same
expression statically and need to return the same value. This is different from all
the other features of the core language, that are purely functional and hence can be
manipulated more freely.
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Adding the extra variables during a transformation pass. In this case, we add an-
other source-to-source transformation that would automatically do the manual en-
coding we presented above. This has the advantage of being a very modular ap-
proach, one could enable or disable the pass as needed. It is also entirely orthogonal
to the rest of the system. We do not see any immediate drawback to this approach,
but we did not have enough time to implement it. It is definitely worth exploring in
the future.

4.2 Imperative to Functional

We handle local variables, assignments, loops, and sequencing by transforming them to
equivalent functional code. By local variables, we mean using standard mutable variables
only in bodies of functions. The functions can be written with an imperative style, but
with no global side effect. Thus, all functions are pure, and there must be an equivalent
purely functional definition of the function.

Recall that variables declarations, assignments, loops, and sequencing are extensions
to our core language. Our aim is then to map any program using these extensions into a
program that makes use of the functional core only.

4.2.1 Imperative Code as Transformations of States

It is well known that any imperative program can be simulated by explicitly carrying a
program state and returning the new state along with every statements. This is a very
general approach, but it does not always generate intuitive code and it is not the most
efficient one. Another work has already shown how to write deductive rules to do such
transformations and mechanically proving their correctness [48]. The work done here has
a similar flavor but has been done independently and focuses on practicality rather than
formalism.

In our language, the state of the program is simply an assignment of program variables
to values, and one way to update this state information is to introduce new names as let
bindings each time a variable is updated and to keep a mapping from program variables
to their current names. This is essentially transforming the program into an SSA form. It
has already been established that SSA form is equivalent to functional programming [5].

We present a recursive procedure to map imperative statements to a series of definitions
(val and def) that form a new scope introducing fresh names for the program variables,
and keeping a mapping from program variables to their current name inside the scope.
The procedure is inspired from the generation of verification conditions from a program
[18, 23, 49]. However such methods suffer from an exponential growth in the size of the
program fragment. In some sense, our transformation to functional programs, followed by
a later generation of verification conditions avoid the exponential growth similarly to the
work of Flanagan et al. [21].

Intuitively, we can represent any imperative snippet as a series of definitions followed
by a group of parallel assignments. These assignments will rename the program variables
to their new name, that is, the right hand side will be the new identifiers of the program
variable (that have been introduced by the definitions) and the left hand side will be the
program variables themselves. These parallel assignments are an explicit representation
of the mapping from program variables to their fresh names. As an example, consider the
following imperative program:

x = 2
y = 3
x = y + 1
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It can be equivalently written as follows:

val x1 = 2 in
val y1 = 3 in

val x2 = y1 + 1 in
x = x2
y = y1

This is the intuition behind this mapping from program variables to its fresh represen-
tations. The advantage is that we can build a recursive procedure and easily combine the
results when we have sequences of statements.

4.2.2 Examples

To give the reader some intuition on how such transformation could work, we give some
simple examples. Let us consider the following program:

def foo(x) =
var y = 3 in

var z = x in
if(y < z)

y = y + 1
else

z = z + 1
y + z

The function foo is pure but its implementation is using imperative features. However it
can equivalently be rewritten as follows:

def foo(x) =
val y1 = 3 in

val z1 = x in
val t1 =

if(y1 < z1)
val y2 = y1 + 1 in (y2, z1)

else
val z2 = z1 + 1 in (y1, z2)

in t1._1 + t1._2

We can see that the if construct is automatically transformed to its functional version
returning the tuples of modified variables.

As another example, containing loops, let us consider the following program:

def foo(x) =
var y = 0 in

var i = 1 in
var n = 100 in

while(i <= n)
y = y + x
i = i + 1

y

Again we have the following equivalent definition of the function:
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x = e−→val x’ = e in _ |{x→x′}

b−→sb|mb m={x→x′}
var x = e in b−→(val x’ = e in _ )◦m(sb)|m∪mb

e1−→s1|m1 e2−→s2|m2

e1 e2−→s1◦m1(s2)|m1∪m2

t−→s1|m1 e−→s2|m2 dom(m1∪m2)={−→x } t’=s1(m1(
−→x )) e’=s2(m2(

−→x ))
if(c) t else e−→val −→x2=if(c) t’ else e’ in _ |{−→x→−→x2}

e−→s|m1 m1={−→x→−→x1} m2={−→x→−→x2} s’=m2(s)
while(c) e−→def w(−→x2)= if(m2(c)) s′(w(−→xx)) else −→x2 in val −→x3=w(−→x ) in _ |{−→x→−→x3}

Figure 4.1: Transformation rules for imperative programs.

def foo(x) =
val y1 = 0 in

val i1 = 1 in
val n1 = 100 in

def w1(y2, i2) =
if(i2 <= n1)

val y3 = y2 + x in
val i3 = i2 + 1 in w1(y3, i3)

else
(y2, i2)

in val t1 = w1(y1, i1) in t1._1

In that case, we have eliminated the while loop by mapping it to a recursive function. The
loop body consists of a check for whether the loop condition is met, and, if so, we compute
the new value and recursively call the function. Whenever the conditions becomes false,
then we return from the function with the current computed values.

4.2.3 Formal Transformations Rules

Figure 4.1 shows the formal rules to rewrite imperative code into equivalent functional
code. The rules define a relation e −→ s|m between an expression e, a function from
expressions to expressions s (a scope), and a substitution map m for variable names. We
give a rule for each different imperative construct. This is a mathematical formalization of
the intuition of the previous sections, we defined a scope of definitions as well as maintained
a mapping from program variables to fresh names. Note that each time we introduce
some primed or subscribed version of the variable, we are implicitly adding a newly fresh
variable.

If e is an expression, s a scope and m a substitution map, we will write s(e) the
resulting expression after introducing e into the scope s (this can be thought as a function
application). We will denote m(s) the scope s′ where, for all variable x such that x→ x′ ∈
m then x is replaced by x′ in s′. Similarly, we use the notation m(e) for the expression
with the substitution applied to the expression e. If m′ denotes another substitution map,
then we denotes the update of m by m′ with m ∪m′. That is, in case the same variable
is mapped in both m and m′, the mapping of m′ will override the one of m. We will
represent the scopes using an expression in the formal syntax of the language and with
an _ in place of the missing expression. We use the ◦ operator to compose two functions
as in the usual mathematical way.



36 Chapter 4. Program Transformations

For ease of presentation, we will assume that blocks of statements are terminated with
a pure expression r from the core language, which is the returned value. So, given the
initial body of the block b and the following relation:

b −→ s|m

we can define the function expression equivalent to b; r by:

s(m(r)) .

This simplification allows us to ignore the fact that each of those expression with side effect
actually returns a value, and could be the last one of a function. This is particularly true for
the if expression which can return an expression additionally to its effects. The rules can
be generalized to handle such situation by using a fourth element in the relation denoting
the actual returned value if the expression was returned from a function or assigned to
some variable. Note that in our system we have implemented this more general behaviour.
We have also assumed that expression such as right hand side of assignment and test
conditions are pure expression that do not need to be transformed. However, it is also
possible to generalize the rules to handle such expressions when they are not pure, but
the presentation would become very hard to follow so we will not consider it. Again, in
our implementation we support this more general transformations.

The inductive property we need to reason about these rules are as follows. We maintain
the property that the scope introduces a series of fresh variables names that defined the
new value of the variables in terms of the original variables. The mapping is used to
carry the information of which fresh variable contains the current value of which original
variable. This should explain how the scopes from subexpressions must be applied to each
other when combining expressions. Let us examine these rules in detail.

The first two rules on variable declaration and assignment are both similar and rela-
tively straightforward. The new scope consists of a new let-binding with a fresh name.
This fresh variable is also used as the mapping.

The sequencing operator e1 e2 is already more interesting. Note that we only consider
a bock of 2 expressions, but a block of n expressions can always be encoded into sub-blocks
of 2 expressions. In particular, it will help to illustrate how we can combine scopes from
subexpressions. Consider the following example:

x = 3;
x = x + 1

And the following subderivations:

x = 3 −→ val x1 = 3 in _|{x→ x1}

x = x + 1 −→ val x2 = x + 1 in _|{x→ x2}

First we can compute m1(s1) = val x2 = x1 + 1 and m1 ∪m2 = {x → x2}. Thus we
obtain the following relation:

x = 3; x = x + 1 −→ val x1 = 3 in val x2 = x1 + 1 in _|{x→ x2}

which is as expected. It introduces two intermediate let-bindings in order to compute the
new value of x at the end, which is represented by x2 as the mapping indicates.

Now let us look at the two most interesting rules, the ones for if and while. Let us
consider the following example:
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if(x < 0)
x = x + 1

else
y = y + 1

We derive the relation for both cases:

x = x + 1 −→ val x1 = x + 1 in _|{x→ x1}

y = y + 1 −→ val y1 = y + 1 in _|{y → y1}

Now the expression dom(m1 ∪m2) denotes the domain of the union of both substitution
map. This corresponds to the set of original program variable that are assigned a new
value in either of the two branches. In our example, this would be computed as follows
dom({x→ x1} ∪ {y → y1}) = {x, y}.

In the rules we use −→x in a very flexible way, in particular in the domain expression
above it is used to captured all variables that are modified. It is then use as a tuple
expression in s1(m1(

−→x )). So in our example we can compute both t’ and e’, using
−→x = (x, y), m1((x, y)) = (x1, y), and m2((x, y)) = (x, y1), as follows:

t’ = s1(m1(
−→x )) = val x1 = x + 1 in (x1, y)

e’ = s2(m2(
−→x )) = val y1 = y + 1 in (x, y1)

As we can see, both t’ and e’ are now pure expressions and can be use as then and
else branches of the functional if. Combining these derivations, we get the final scope:

val (x2, y2) = (
if(c)

val x1 = x + 1 in (x1, y)
else in _ }

val y1 = y + 1 in (x, y1)
) in _

which introduces fresh variables for the program variables. The final substitution maps
the program variables to these fresh variables.

Finally the rule for while introduces a recursive function to replace the loop. The
transformation is relatively intuitive but care must be taken with the various substitutions
to apply them correctly. One recursive call to the function emulates one iteration of the
loop. Once again an example will better describe the rule:

while(x < n)
s = s + x
x = x + 1

Once again we can derive the relation for the two assignments:

s = s + x −→ val s1 = s + x in _|{x→ x1}

x = x + 1 −→ val x1 = x + 1 in _|{x→ x1}

And combine them:

val s1 = s + x in val x1 = x + 1 in _|{x→ x1, s→ s1}

Which gives us the value for s and m. Now we can compute s′:

val s1 = s2 + x2 in val x1 = x2 + 1 in _

Finally we define the recursive function as:
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def w(x2, s2) =
if(x2 < n)

val s1 = s2 + x2 in val x1 = x2 + 1 in w(x1, s1)
else

(x2, s2)

And the rest of the body consists of the initial function call to w with the original variables
and assigning the result to some additional fresh variables.

4.3 Lifting of Nested Functions

The transformation for while loops from the previous section introduced some nested
definitions of functions. The possibility to define functions in any local scope is a very
powerful and useful feature of functional programming. However, the core language only
supports top-level definitions of functions, thus the need to lift all such functions.

Techniques from compilers constructions to solve this problem are well known [4].
These techniques have to deal with the difficult problem of accessing local mutable vari-
ables after having extracted the function from its initial scope. On the other hand, since
our previous transformation has eliminated all imperative constructs, we are left with pure
functions that only accessed immutable variables from the local scope.

The process can be make clearer if we further separate it into two distinct phases. In
the first one, each function is closed with the relevant variables in scope. Then, in the
second phase, we can hoist each function to the top level.

4.3.1 Function Closure

Nested functions can read variables that are defined in an enclosing scope, for example the
formal parameters of its hosting function or a let-binding in an enclosing function. The
function closure step consists in augmenting the signature of functions with all variables
that are used by the function but not defined in its formal parameters or body. It also
consists in updating all corresponding function invocations accordingly.

Since we do not handle global variables, all top level functions only access variables
that are defined locally, either in its formal parameters or in some let-bindings in its own
body, so this step only applies to nested functions.

We need to consider three different expressions that can access variables in the current
scope for each function:

• The precondition

• The body

• The postcondition

The precondition needs some special care. In particular, any precondition of enclosing
functions should still holds in the nested function.

First we must be able to compute all free variables accessed by an expression. Fig-
ure 4.2 shows how to compute the set of free variables in an expression. The rules are not
very complicated and should be easy to understand. Given an expression e, if e −→ V
holds, then V is the set of free variables in e. The rules do not mention how to handle
pre/postconditions of nested functions definitions. Their extensions simply requires the
same recursive application to the contract, while removing the formal parameters and, in
the case of the postcondition, the result variable.

As mentioned above, the precondition of the function needs special care. Indeed, the
function being defined locally and making use of some formal parameters of enclosing



4.3. Lifting of Nested Functions 39

e −→ se b −→ sb
val x = e in b −→ se ∪ (sb\{x})

e1 −→ s1 e2 −→ s2
def f(x1, ..., xn) = e1 in e2 −→ (s1\{−→x }) ∪ s2

e1 −→ s1 . . . en −→ sn
f(e1, ..., en) −→

⋃
si

t −→ st e −→ se
if(c) t else e −→ st ∪ se

x −→ {x}

Figure 4.2: Rules to compute the set of free variables.

e|c −→ me b|c ∧ x = e −→ mb

val x = e in b|c −→ me ∪mb

e1|c ∧ p −→ m1 e2|c −→ m2

@pre p def f(x1, ..., xn) = e1 in e2|c −→ {f → c ∧ p} ∪m1 ∪m2

e1|c −→ m1 . . . en|c −→ mn

f(e1, ..., en)|c −→
⋃
mi

t|b ∧ c −→ mt e|¬b ∧ c −→ me

if(b) t else e|c −→ mt ∪me

x|c −→ {}

Figure 4.3: Rules to collect path constraints.

functions, the precondition from such enclosing functions on the formal parameters are
implicitly true in the nested function. After the closing phase, we introduce new variables
to replace the ones coming from an enclosing scope, which, as a results, loses all connections
to the original variables and their constraints.

We give rules to associate each nested function with its extended precondition in Fig-
ure 4.3. Each constraint is constructed from the enclosing functions and the conditions
taken along the computation path.

So let us consider the following nested function expression:

@pre p
@post q
def f(x1, ..., xn) = b in e

Using rules from Figure 4.3, we can derive the precise precondition p’ that applies to
f. Now, using the rules from Figure 4.2, we can compute V = V1 ∪ V2 ∪ V3 such that
p’ −→ V1, q −→ V2 and that b −→ V3. Note that we need to compute the free variables
of p’ and not simply p.

Finally we introduce fresh variables for each variable in V and build the map m =
{v → v′|v ∈ V ∧ v′ is fresh}. We can now build the final nested functions:

@pre m(p’)
@post m(q)
def f(x1, ..., xn, v1’, ..., vm’) = m(b) in e

where v1’, ..., vm’ are the newly introduced fresh variables.
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This function f has a new signature. This means that all invocations of this function
are now wrong. There are two places where invocations of f can occur: inside the new
body of f or inside the expression e. The function invocations inside the body need
to be extended with the variable v1’, ..., vm’, while the function invocations inside
the expression e needs to be extended by the original versions of these same variables:
v1, ..., vm.

4.3.2 Function Hoisting

Once the formal parameters of the function have been augmented with some fresh identifier
for each variable in scope, the function can be moved to the top level without modifying
the meaning of the program. Indeed, as long as the function remains visible in the scope
where it is used, its definition is now complete and no longer requires access to some
external variables.

Since moving the function to the top level will only increase visibility of the function,
the only risk would be that this function is now used by part of the code that should
previously not be able to access it. This does not happen since we use unique identifiers
for every single definition, thus preventing any form of overloading of existing functions,
and none of our transformation will introduce code that would call this function from an
illegal place.

Losing Call Sites Information

A subtle loss of precision happens when we hoist functions that were previously only
defined locally. When a function is defined locally in a scope, it is available for a finite
number of program point. On the other hand, when a function is defined at the top level,
it is implicitly assumed that it will be available for the whole program, and could even be
used by an external component. This also translates in a different way of reasoning about
these two classes of functions. When a function is defined locally, we can collect all of its
call sites, because there are a finite number of them and there will not be any new ones.
We say that the scope in which the function is defined is closed, by opposition to the open
nature of the top level. In essence, we would be able to assume that the parameters of
the functions can only take values consistent with all the call site. For example, in the
following:

def f(x) =
@post #res == 3
def g(y) = y in
g(3)

the local function g is only called once with the value 3 and hence it is possible to conclude
that it will always return the value 3, hence proving the postcondition.

Of course, when we hoist such function at the top level, the information is lost. Even
when the complete program is given, and all the call sites are known, it is not natural to
constraint the parameters of all functions in a consistent manner with its call sites. This
is definitely not the intended behaviour. In fact, we often define top level functions that
are never called just to express some general properties.

Knowing all of the static call sites is not sufficient, some of these could be recursive calls
to the local function. Hence we would have to solve a fix-point to find the correct precon-
dition on the parameters. This loss of precision happens mostly with the transformation
of loops:

def f(x) =
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var i = 0 in
while(i < 10)

i = i + 1
i

such program is translated to:

def f(x) =
val i = 0 in
def w(i1) = if(i1 < 10) w(i1+1) else i1 in
w(i)

where there are two different call sites of the w function. It is easy to see that w is always
called by an integer ≥ 0, but automatically detecting this fact would require computing a
fix-point. However, from the original loop, this is clearly a valid invariant, and it is lost
when hoisting w at the top level.





Chapter 5
Test Cases Generation

As a complementary method to automatically proving properties, we propose a technique
to generate test cases to give some good evidence of correctness. Manual testing can be
very tedious and cannot exercise all possible program executions. This is a fundamental
limitation of program testing: there is, in general, an infinite number of different execu-
tions. When one wishes to prove correctness of a program, one must ensure that this
infinity of executions traces does not contradict the specifications, which is of course not
doable by enumeration. However we can relax this requirement and only target a coverage
of statements, which are known statically and are of a finite number.

The general methodology is as follows:

1. Write the program with its specifications.

2. Try to apply the verification algorithm. If the program is not correct, then the
procedure, being complete for counter-examples, returns a faulty input.

3. If the program is correct, then either the verification procedure will be able to prove
so and return that the program is correct, or it will loop forever.

4. In case it loops for some time, then timeout the procedure and apply the test cases
generation algorithm.

5. This provides a collection of test cases that can be executed and checked against the
specifications, if none of them exhibits a faulty behaviour, then it provides strong
evidence for the correctness of the program.

We apply the test cases generation phase after having mapped programs into their
functional representations. That means we can assume a simple language for the genera-
tion of test cases while still being able to use it on complex imperative programs.

5.1 Graph Representation of Functional Programs

We want to capture the inter-procedural behaviour of the program. For this, we generate
a graph representation of programs that is very close to a control flow graph. In particular,
we do not abstract away the functions. Instead, we have a global graph in which each
function is completely inlined.

We are interested in representing the control flow across the program. If this control
flow is well defined and understood in the case of imperative programming, it is much less
obvious in the case of functional programming. This comes mostly from the fact that, in
functional programming, there is no notion of sequence of operations, and the computation
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is defined by the evaluation of a single, composite, expression. Basically, there is no such
thing as a statement in functional programming, while a usual imperative program consists
in a sequence of statements, where the flow of execution goes from statement to statement.

We quickly discuss the evaluation order of our core language. The semantics is call-by-
value and arguments to function invocations are evaluated from left to right. Conditional
expressions only evaluate the branch that is taken. This is arguably the most natural
evaluation strategy and is definitely the most standard one. It also matches the one of
Scala.

In terms of control flow, except in the case of if expressions, when an expressions
is evaluated automatically all of its subexpressions are evaluated. Aiming at a complete
statement coverage translates to find several input values so that all of the expressions are
evaluated at least once. As a minimal example, if we have the expression:

if(x < 0) -x else x

then there are four expressions total: if(x < 0) -x else x, x < 0, -x, and x. On input
x = -1, three of these expressions are evaluated, missing the else branch x. Complete
coverage can be obtained using a second input of x = 1.

We build a directed graph G = (V,E), with E ⊆ V × V , from a program P written
in the core language. The set of nodes V will correspond to program points, while the set
of edges E will represent possible transition from a program point to another one. The
program P is simplified by expanding all let-bindings. For each function defined in P , we
add a node in V representing the entry point to the function, labeled with its signature.
Then we decompose the expression that defined the function into its subexpressions and
add one node for each subexpression, as well as one node for the complete expression. We
introduce a directed edge from the parent to each its subexpressions. Each node is labeled
with the expression it represents. Note that contrary to control flow graphs for imperative
programs, edges do not need any label such as assignment because the entire computation
is contained in the expression. We can think of such a graph as a tree representation of the
program using algebraic data types. It should be noted that this graph contains enough
information to evaluate the program, such that we can ignore the original source code.

One possible interpretation of the graph V is that, starting from an entry point, the
execution of the program goes through each node that are reachable following the edges.
This is true as long as the edge does not correspond to a branch of an if expression. To
make this more explicit, we will label each edge with the conditions that need to be true in
order to be able to evaluate the expression at the other end of the edge. These conditions
are simply the conditions of the if expressions and their negations. All of the other edges
can be labeled with true since they will always be taken.

We will assume that one function is marked as the main function. The node corre-
sponding to this function will then be considered as the starting node in the graph. Now,
our goal is to find input values to this main function so that every single nodes in the
graph is visited. The difficulty lies in how to handle joint paths. It is not sufficient to
consider each function independently, since it could be the case that one path in the callee
is infeasible because of a condition taken in the caller. For example, let us consider this
program:

def f(x) = if(x < 0) g(-x) else g(x)
def g(y) = if(y < 0) -y else y

where f is the main function. Figure 5.1 shows the graph for this program. Here, there are
two paths through f, each of them will then be joint at the entry point of g. The conditions
along these paths will force the argument of g to be greater than 0, which in turns will
force to take the else in g and makes the path through the then branch infeasible. If we
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def f(x)
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Figure 5.1: Complete control flow graph of a functional program.

would have considered g on its own, then we could have found two possible inputs (for
example, y = -1 and y = 1) that could cover both branches.

We are interested precisely in constructing all possible paths starting from a specified
entry point. This is a realistic settings as programs usually always start from a single
entry point. This is actually an important restriction, because some errors that could be
obtained using inputs to some internal functions might actually not be reachable when
starting from the entry point.

We would like to be able to regard a path in this graph as exactly an execution
trace. This is unfortunately not true in the current graph, because many nodes could have
multiple subexpressions, all of them being automatically evaluated. So, if we look at one
particular path, we will visit only a certain number of nodes and ignore some other nodes
that would actually be visited if the execution would have taken this graph.

A final refinement to the graph representation will allow us to compress it and prune
many sections of the program that are automatically covered. An expression such as:

f(a + b, c - d, e)

contains many subexpressions, but all of them are automatically evaluated each time
because they are not under a branch of an if expression. These nodes and edges are easy
to spot: an edge that is labeled with true is an edge that is always taken and when two
nodes are connected with such an edge we can simply merge them together. We can see
in Figure 5.2 how the previous example is simplified.

At that point, the graph is fairly simple, an edge will either be labeled by a condition
and would correspond to an if expression, or it will be an edge connecting a function call to
the corresponding entry point. However, we still do not have a one-to-one correspondence
between paths in the graph and execution traces. For example, an expression such as:

f(g(x,y), z)

has no condition and thus would be compressed to a single node with two outgoing edges,
one towards f and one towards g. When taking a path in this graph, we have a choice
among the two edges, however, in term of real execution, both are automatically taken.

5.2 Enumerating all Paths

As discussed in the previous section, this graph representation does not quite provide us
with a good enough abstraction to view graph paths as execution paths. But, despite
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Figure 5.2: Simplified control flow graph of a functional program.

f(e1, ..., if(b) t else e, ..., en) −→

if(b) f(e1, ..., t, ..., en) else f(e1, ..., e, ..., en)

Figure 5.3: Rule to hoist if expressions.

not being a perfect correspondence, if we are able to follow one path in the graph and
satisfy the constraints along the path, we have really covered all nodes out of this path.
In fact, we can then start the visit again from the start with the values that satisfy the
constraints, and mark all possible nodes that are reachable given these values. Applying
such idea successively to many paths should give us a complete coverage of all node in
the graph, and hence a complete coverage of all statements/expressions in the original
program.

There are two different features of the graph that we need to consider. When a node
has an edge labeled with a condition, we need to record it and try to visit both eventually.
When we encounter a function invocation node, we will need to follow the edge to the
entry point of the callee and record the new value of the formal parameters. However, we
must be careful at that point as the arguments to the function call can still be complex
expressions and may actually contain other function invocations or even if expressions
that would require more work. We cannot simply continue the search in the new function
and forget about the rest of the computation in the current function.

To handle this problem at the graph level seems overly complicated, it would require
keeping track of many branching choices made while backtracking at the function invoca-
tions. Rather, we prefer to pre-process the program in order to make the resulting graph
much easier to reason about. The rewriting rules we apply to the program is shown in
Figure 5.3. Its role is to find if expressions that are subexpressions of some other ex-
pressions and to move them at a higher level. Applying these rules until convergence will
guarantee that the final program will have all its conditional expressions at the top level,
and only function invocations or other variables or literals as leafs.

Given this simplified graph, the problem of statements coverage can be reduce to a
search in a graph. One node roughly corresponds to one expression in the original program.
All the nodes that have been removed from the graph are automatically visited given that
some particular node in the compressed graph is visited. Since at the end we aim to visit
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all of these nodes, the removed nodes are no longer relevant. Even if we were not able to
visit all the nodes, a node that has been removed had only one entry point, and that entry
point will still be present. So, if it is not reachable, then the node that has been removed
was also not reachable. We do not lose any precision by simplifying the graph.

Since we want to cover all program statements starting from a main function, in the
graph we will want to visit all nodes starting from an initial node, the node corresponding
to the entry point of the main function. Of course, it might not be possible to visit all
paths in one path. And in fact, since we are not interested in visiting more than once the
same node, we will only try to build simple paths. Simple paths are paths without cycle,
in term of execution that means no recursion. Assuming at least one if expression, we
will need to find several paths in order to cover all of the nodes.

A path is a sequence of nodes and edges, each edge being labeled by a condition
formula. Note also that some edges will introduce a mapping from variable to some new
values (the arguments to a function invocation). When we have a complete path, we want
to build a formula out of all the conditions and then ask our decision procedure for a
solution. If a solution is found, the path is feasible and we obtain input values to the main
function that will force the execution along this path. In fact, it will even visit more than
just these nodes, but at the very least we will have coverage of this path.

Now the last point that needs discussion is the enumeration of these paths. We apply
a depth first search, stopping the search when either we reach a dead-end or we visit a
node that was previously visited by the current path. It is not correct to stop as soon
as we visit a node that was already marked by another path. Each time we terminate a
search, we record the path, backtrack and continue the search along a different direction.
There is always a final number of simple path in a finite graph, hence this enumeration
eventually terminates.

Each path can then be combined in a formula and we can ask for satisfiability. Note
that we still need reasoning about recursive functions in the back-end solver. This is
because condition are often expressed in term of function defined in the program. If the
formula is satisfiable, then we found an input that will visit exactly this path and we can
mark all nodes as visited. On the other hand, if the formula is unsatisfiable, then we will
have to find another path in order to visit these nodes.

Our enumeration lists all simple paths that terminate at a leaf or that loop. However,
there are many more simple paths. In particular, all initial segments of the simple paths
we just listed are other possible candidates to an execution trace. It is safe to ignore those,
this follows because if such an initial segment is satisfiable, it must be the case that there
exists one extension to this path that is also feasible. It comes from the fact that whenever
an edge is labeled with a condition, there is a second edge labeled with its negation and
hence at least one of those can be taken. This is by construction of the program, because
if expressions introduce disjoint conditions that form a partition.

Now, our enumeration ignores cycles, so we need to make sure it will not miss some
nodes that could only be reached by first cycling in the graph. The key observation here
is that cycling in the graph means recursive function call, and, assuming termination, it
must be the case that the sequence of function calls is monotonously decreasing. Basically,
it must be the case that given any value we chose, the terminal branch is eventually taken.
It is possible to construct such examples:

def f(x) = if(x <= 0) g(-x + 1) else g(x)
def g(x) = if(x <= 0) 1 else g(x - 1)

Here we consider f as the main function and we can see that any path we try to take
through f and through the terminal branch of g is infeasible. However, any value of x we
chose will force us through the recursive branch of g and eventually will visit the terminal
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branch of g. Hence even when some nodes are only reachable using cycles, considering the
simple paths is sufficient to find a value that will visit these nodes.

5.3 Program Execution Waypoints

In this section, we address a more general problem than the static statements coverage.
Since the presence of a recursive function generally means the existence of an infinite
number of execution paths through the graph, the static statements coverage we presented
above cannot test all of these paths. In fact, any path that goes more than one time
through the same expression will not be explicitly considered by our procedure, even
though it might still end up being visited thanks to a fortuitous choice of inputs.

We introduce a special waypoint expression that can be used to specify waypoints
across the program to dictate the path of execution. The waypoint expression has the
semantics of an identity function, it is basically ignored in term of execution. It is tagged
with an integer that indicates an ordering over all the waypoints in the program. For
example:

waypoint#1(f(waypoint#2(x)))

would be a path starting from the expression f(x) and going through the subexpressions
x. On the other hand, the following expression:

waypoint#2(f(waypoint#1(x)))

expresses a path starting from the expression x and ending at f(x), which is actually
infeasible in our graph representation, unless there is recursive call.

Using such notation, we can actually constraint a path to go a precise number of
times in the recursive branch of a function. Consider the following program with some
waypoints:

def sum(i) =
if(i <= 0)

waypoint#3(0)
else

waypoint#2(waypoint#1(sum(i - 1) + i))

The first waypoint is required to go through the recursive call, as well as the second
waypoint. Finally the third waypoint is in the base case. The collected conditions from
such a path form the following formula:

i > 0 ∧ i− 1 > 0 ∧ i− 2 ≤ 0

which implies i = 2 which is the unique solution to satisfy this formula and thus calling sum
with the value 2 will exactly visit the specified path. Note that the order of the waypoints
in the recursive call is very important, switching both expressions we would actually have a
trivial simple path in the graph from the first waypoint to the second waypoint resulting in
a different formula that would constraint only one recursive call hence will give a solution
of i = 1.

With waypoints, we no longer try to cover all of the expressions starting from a main
function. We simply try to find one feasible path that goes exactly through all of these
waypoints in the correct order. Finding one such path can seem to be of limited use.
But, we could first run a preprocessing step that automatically annotate the program
with waypoints, or even an enumeration technique that generate many arrangements of
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def find(s, t, currentPath)
forall path p from s to t

if(isFeasible(currentPath, p))
val found = find(t, nextWaypoint(t), augmentPath(currentPath, p))
if(found)

return found
return false

Figure 5.4: Backtracking algorithm to find a path across multiple waypoints.

waypoints. Such techniques would be able to find a smart coverage of many execution
trace and their development are somewhat orthogonal to the work done in this section.

Now, let us discuss how to find such a path. The graph has still a similar structure
to the previous sections, but this time we have a list of nodes we need to visit in order.
These nodes are simply the nodes corresponding to the expressions inside the waypoints.
We need keep such nodes during the simplification of the graph.

We cannot independently decompose the search in finding paths from starting point
to ending point for each group of two consecutive waypoints. If we do so, we might find
one path from A to B and another path from B to C, both individually realizable but
not realizable when merged together. We need to first search a feasible path for the first
two waypoints, and then search a path compatible with the first one for the next two
waypoints. If such a path does not exist, we will then need to backtrack and find another
path for the previous two waypoints. Finding a path between two nodes in a graph can be
done running a depth first search with the starting node as the initial node and searching
for the ending node. These paths should be fairly enumerated. One possible approach is to
slowly increment the maximal length of the path. The question of an efficient enumeration
remains open.

Figure 5.4 shows an algorithm to do this backtracking. We enumerate all paths from
a waypoint (s) to the following waypoint (t). For each such path we check whether the
path is feasible, and, if so, we attempt to recursively find the path for the next pair of
waypoints. At that point, either the recursive call will have successfully built a path all
the way to the last waypoint and we can return it, or it will have failed and we will need
to continue the loop with the next path. As a final note, this procedure does not work
when two waypoints are in two parallel paths that are both executed. One should make
sure that the waypoints are all along a same path of execution.





Chapter 6
The Leon Verification System

The algorithms described in this work have been implemented into the Leon verification
system [59]. In this chapter, we present the integrations of these new capabilities into the
existing system. Leon is written is the Scala programming language [54] and works as
plug-in for the Scala compiler.

6.1 Front-End

The original Leon verification system supported a functional subset of Scala. The main
supported expressions are listed below:

• Integers and Boolean literals

• Arithmetic operations over integers

• Comparisons operators over integers

• Equality between any values

• Boolean expressions

• Case classes used to encode algebraic data types with support for pattern matching

• Set and Map with basic operations

Accepted programs consist of an object with a collection of definitions, each of them
being either a case class definition or a function definition. Note that this subset of Scala
is still Turing-complete and can be used to write many interesting programs. Contracts of
functions can be specified using the Scala dynamic contracts notation [53]: a require call
at the beginning of the function indicates a precondition and an ensuring on the result
of the function indicates a postcondition. An interesting property of this front-end is that
any program analyzed by Leon is also a valid Scala program and can be compiled by the
Scala compiler.

However, there is no possibility to write imperative programs: no global variable, no
var construct nor while loop. Although it is possible to encode any kind of computations
using the original input language, some solutions are more naturally expressed using an
imperative style. The main focus of this work was to extend Leon with a verification
procedure for imperative programs, however we also tried to make Leon more flexible by
supporting a larger subset of Scala.

Here is a quick overview of the new supported features:
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abstract class L i s t
case class Cons ( head : I n t , t a i l : L i s t ) extends L i s t
case class Ni l ( ) extends L i s t

def s i z e ( l s t : L i s t ) : Int = t a i l S i z e ( l s t , 0)

def t a i l S i z e ( l s t : L i s t , acc : Int ) : Int = l s t match {
case Ni l ( ) => acc
case Cons (_, t a i l ) => t a i l S i z e ( t a i l , acc+1)

}

Figure 6.1: Size function in original leon syntax.

def s i z e ( l s t : L i s t [ Int ] ) : Int = {
def r e c ( l s t : L i s t [ Int ] , acc : Int ) : Int = l s t match {

case Ni l => acc
case _ : : t a i l => r e c ( t a i l , acc+1)

}
rec ( l s t , 0)

}

Figure 6.2: Size function in extended Leon syntax.

• Tuples with selectors and pattern matching

• List with basic operations and pattern matching

• Local variables declaration, assignments, blocks and while loops

• Unit type and literal

• Various additional operations: modulo, instanceOf operator

• Functional and imperative Arrays, without aliasing

• Nested functions definitions

Following the consistent syntax of Scala, almost everything is an expression, including
while loops and assignments (they are expressions that return a value of type Unit). This
means that an expression such as:

var i = 0
{ i = i + 1 ; i } + { i = i + 1 ; i }

is valid and should return 3.
To illustrate the advantages brought by the new extended syntax we can consider a

simple example. Figure 6.1 shows how we would write a function that computes the size of
a list in the original syntax. We are required to define the List type using case classes and
we need to specialize it to the Int type. We also need to define a top level tail recursive
function to efficiently compute the size. On the other hand, Figure 6.2, which uses the
extended syntax, shows an equivalent but much more natural Scala program. We believe
that this new front-end can make Leon much more user friendly.

We defined two extensions to the Scala language in order to write loop invariants and
the epsilon function. We declared the additional functions in a library so that the Scala
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def ep s i l o n [A] ( p : (A) => Boolean ) : A

Figure 6.3: Definition of epsilon.

def p o s i t i v e I n t ( ) : Int = ep s i l o n ( ( i : Int ) => i > 0)

Figure 6.4: Utilization of epsilon.

parser can still be used to parse the input. The definition of epsilon is shown in Figure 6.3.
We do not need to provide any concrete implementation because our plug-in will extract
this specific function and treat it particularly. In this declaration, we use Scala generics
types, with the syntax [A]. This means the function can be used with an input of any type.
An example of the use of epsilon in a concrete program is presented in Figure 6.4. The
function positiveInt is defined using an epsilon expression and will return an integer
> 0.

The utilization of a loop invariant is shown in Figure 6.5. Its declaration as a library
takes advantage of some of the advanced characteristics of Scala, in particular we make
use of an implicit conversion from Unit to an object that contains an invariant method.
The exact declarations can be found in Figure 6.6.

6.2 Internal Representation

In Section 6.1 we describe the Scala syntax that can be used to write input programs for
Leon. Now we explain the internal representation used in Leon.

The most essential part of the program that requires a discussion is the representation
of the expressions. We use Scala case classes concept, which are an encoding of algebraic
data types using object oriented features, to represent trees of expressions.

As a first representation after the parsing phase, we mostly mirror the Scala syntax,
having one case class corresponding to each different expression parsed. It should be noted
that this is very different from the internal representation in the Scala compiler. There,
they decided to have a minimal number of classes to represent expressions, mainly Apply
and Select. The former applies a function/method to a list of arguments while the latter
selects an element from an object. This representation is made possible by the minimal
and consistent syntax of Scala. This is relevant, since we need to interface Leon with the
Scala compiler.

Later in the process, we use a subset of the same data structure to represent the
expression during the generation and analysis of the verification conditions. This subset
has not very much changed compared to the original Leon system. Here is a list of some
new expressions that needed to be added:

var i = 0
var s = 0
(while ( i < 10) {

i = i + 1
s = s + i

}) invariant ( i <= s )

Figure 6.5: Utilization of a loop invariant.
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object Invar iantFunct ion {
def invariant ( inv : Boolean ) : Unit = ( )

}
implicit def whi l e2 inv (u : Unit ) : Inva r i an t = Invar iantFunct ion

Figure 6.6: Declaration of loop invariant notation.

abstract class Pass {
def apply ( program : Program ) : Program

}

Figure 6.7: Interface for a Pass.

• Functional arrays, with store and select operations

• Tuples literals and selectors

• Unit literal

6.3 Multi-Pass Architecture

We adopted an architecture based on a series of passes. This provides great modularity
and ensures better quality of the source code.

We identified a core part of the language, which corresponds roughly to the original
supported sub-language. One difference is the addition of tuples that we need to support
natively in our analyzer. One advantage of this pass architecture is that we were able to
rely on the solid analyzer that was already used by Leon. By making only minor updates
to this analyzer, we ensure that this part of the system is working safely.

Figure 6.7 shows a part of the code for the abstract Pass class. The Program type is
the class representing a program in Leon. The application of passes is plugged in after
the parser and before the analyzer. The passes apply successive program transformations,
rewriting the full featured program into a smaller, purely functional core. We believe that
this architecture makes it also easier to extend Leon with new Scala syntax, since adding
something new would only require to parse it and then transform it during a new separate
pass. This also makes each feature truly orthogonal to implement.

We give a list of the passes implemented in Leon so far:

• Transformation and specialization of lists to case classes.

• Transformation of imperative arrays to functional arrays using assignments.

• Transformation of epsilons to abstract functions.

• Elimination of expression with side-effect.

• Lifting of nested functions.

• Various simplification of the program.
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6.4 Support for Arrays

As described previously, Leon can handle Scala arrays. Arrays are one of the fundamental
data structures when one wishes to write imperative programs. However, since arrays
causes several complications, we only allow a limited usage of them.

In particular, arrays being a mutable structure, they can lead to aliasing. So far, none
of the features we supported could lead to an aliasing problem. This is such because
we were only considering immutable structures. Since we are not able to reason about
aliasing, we simply forbid any assignment of arrays that would lead to an aliasing.

An array can also be mutated while passing as an argument to a function. This
is not desirable since we assume no side-effects at the level of the functions. We also
reject programs containing such usage of arrays. The integration of mutable arrays into a
functional program has a finer treatment in another work [52], where, for example, effect
analysis with abstract interpretation is used to determined whether a destructive update
is invisible. In our case, we have a much coarser analysis, and we will not accept many
programs that would be perfectly safe.

For a technical reason during the transformation of mutable arrays to functional arrays,
we require that any store on the array is performed on an array expression that has the
form of an identifier. This is consistent with the rest of the constraints on arrays, even
though one could imagine some more complicated array updates in standard Scala code.

Now we detail how exactly we detect invalid usage of arrays. Each array expression
is associated with a notion of an owner. Each assignment of an array expression to an
array variable will register an additional owner for the array variable. If a returned array
expression was owned by the current function, it will lose that owner. It also is additionaly
owned by an external function. An array parameter in a function is owned by another
external function. If at any point, an array expression has more than one owner, then we
reject the program.

6.5 Back-End Solver

We rely on the SMT solver Z3 [17]. Z3 is a very efficient solver that supports most
theories of interest in programming languages. In particular, the following theories are
implemented in Z3:

• Integer Linear Arithmetic

• Boolean Algebra

• Array with Extensionality

• Algebraic Data Types

• Uninterpreted Functions

Z3 has the advantage to be one of the most efficient SMT solver. This is very important
since complex programs can lead to numerous verification conditions to be solved.

We can also take advantage of Z3 support for incremental reasoning. Indeed the core
unrolling algorithm, as described in Section 2, incrementally adds additional constraints
(and sometimes removes them).

Finally, note that we use a Scala library to interface natively with Z3 [34] and obtain
access to its full power.





Chapter 7
Experiments

We are able to prove some surprisingly complex and expressive properties of both func-
tional and imperative programs. In particular, thanks to the inductive nature of algebraic
data types, we can validate many properties on such kind of programs. Most of the time,
Leon is able to conclude with blazing speed. This is especially the case with counter-
examples, but most of the valid properties are also proven within seconds. We have a few
cases of valid properties where Leon is extremely slow, they are however part of a specific
pattern and we believe there is no fundamental limitation in Leon for them, it is more of
an engineering issue. We will discuss these later in this chapter.

Leon was already able to successfully verify a good number of examples. However these
examples exhibits only the purely functional reasoning capabilities of Leon and could not
be reused to test the new system. So we built a collection of new realistic programs,
making as much use as possible of the new features, while still relying on the already
existing functional core. In this chapter, we present, with a good level of detail, some of
these programs and report the results of running Leon on them.

7.1 Overview

We have evaluated many properties, spanning several functions, for a total of more than
500 lines of code. Since the properties and algorithms are written in Scala, they are
naturally very compact and expressive. The benchmarks were run on a computer equipped
with two Intel Core i5-2500s running at 2.7 GHz and with 4.0 GB of RAM. We used Z3
version 3.2.

Tables 7.1, 7.2, 7.3 and 7.4 sum up our evaluation. The abbreviation LOC stands for
lines of code. Each table corresponds to a different familiy of functions. Each line lists a
generated verification condition. The first column gives the name of the function to which
the verification conditions is related. The second column indicates the type of verification
condition. Here is a list with a short description of each kind of verification condition:

post: the postcondition of the function. It usually corresponds to a property that verifies
the correct implementation of the function.

pre: a condition that ensures that an invocation of the function meets the precondition.

array check: a check that an array access is within valid bounds.

match check: a check for the completeness of the pattern matching. It generates verifi-
cation condition for statically incomplete pattern matching and can prove that the
pattern matching still covers all possible cases.
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Function VC Kind Result Time
add post Valid 0.07
add loop inv Valid 0.04
add loop inv Valid 0.03
addBuggy post Valid 0.01
addBuggy loop inv Invalid 0.05
addBuggy loop inv Valid 0.03
mult post Valid 0.01
mult loop inv Valid 0.03
mult loop inv Valid 0.03
sum post Valid < 0.01
sum loop inv Valid 0.03

Table 7.1: Verification conditions for benchmark Arithmetic (73 LOC).

loop inv: a loop invariant. The verification condition verifies that the invariant is valid
initially, remains valid after each iteration and is valid at the exit of the loop.

The third column describes the result of the solver. It can be either Valid, Invalid or
Unknown. Unknown means that the condition was too difficult to prove and the solvers
would likely loop forever. Finally, the last column indicates the time needed (in seconds)
to solve the formula. We use the notation < 0.01 to indicate that the time was very close
to 0. Some lines are repeated multiple times, this is intended and corresponds to different
verification conditions in the same function of the same kind. It can happens when, for
example, there is more than one access to an array.

Overall, a good number of properties are proven valid. In particular, all match ex-
pressions and array accesses can be successfully verified. The more difficult properties to
prove are the ones on arrays (see Table 7.2), but these are relatively difficult properties to
prove as for example we try to prove that a sort routine indeed put the array in correct
order. Also, most of the conditions are verified in less than a second, however we can see a
few case where the verification is slow. We remark that the postcondition of some buggy
functions is still valid, but some loop invariant inside the functions are not. The reason is
that each verification condition is handled separately, and the postcondition of a function
depends on the invariant inside the function. Validity can only be concluded if all of the
verification conditions are actually valid.

7.2 Discussions

We now discussed the special characteristics of the examples used to collect the results
reported in the previous section. Most of them revolve around an iterative algorithm
written with while loops. First, we test some simple arithmetic computations. They are
mostly toy examples, but they illustrate the use of loops while not mixing in any other
programming features.

We then consider a number of examples on arrays. The Array is a typical data structure
used with imperative programming and loops. We added support for arrays in Leon for
this reason. Next, We consider the use of loops with recursive data types. Here, usually,
it is more natural to use recursion, in particular with lists and trees, but some algorithms
can also naturally be translated from a recursive version into an iterative version. Finally,
we look at some examples that makes use of a constraint programming style with the
epsilon primitive.
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Function VC Kind Result Time
abs post Valid 0.10
abs array check Valid < 0.01
abs array check Valid < 0.01
abs array check Valid < 0.01
abs array check Valid < 0.01
abs array check Valid < 0.01
abs loop inv Unknown
binarySearch post Unknown
binarySearch array check Valid 0.02
binarySearch loop inv Unknown
bubleSort post Unknown
bubleSort array check Valid 0.03
bubleSort array check Valid < 0.01
bubleSort array check Valid < 0.01
bubleSort array check Valid < 0.01
bubleSort array check Valid < 0.01
bubleSort array check Valid < 0.01
bubleSort loop inv Unknown
bubleSort loop inv Unknown
contains prec Valid 0.03
content array check Valid < 0.01
content loop inv Valid 0.01
isPositive prec Valid < 0.01
linearSearch post Valid 0.06
linearSearch array check Valid < 0.01
linearSearch loop inv Unknown
maxSum post Valid 0.03
maxSum array check Valid < 0.01
maxSum array check Valid < 0.01
maxSum array check Valid < 0.01
maxSum loop inv Valid 1.79
occurs prec Valid < 0.01
partitioned array check Valid < 0.01
partitioned array check Valid < 0.01
partitioned loop inv Valid 0.02
partitioned loop inv Valid 0.01
rec1 array check Valid < 0.01
rec1 prec Valid < 0.01
rec2 array check Valid < 0.01
rec2 prec Valid < 0.01
sorted array check Valid < 0.01
sorted array check Valid < 0.01
sorted loop inv Valid 0.02

Table 7.2: Verification conditions for benchmark ArrayOperations (207 LOC).
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Function VC Kind Result Time
append post Valid 0.10
append match check Valid < 0.01
append loop inv Valid 0.13
appendBuggy match check Valid < 0.01
appendEqAppendBuggy post Invalid 3.16
iplReverse post Valid 0.03
iplReverse match check Valid < 0.01
iplReverse loop inv Valid 0.17
iplSize post Valid < 0.01
iplSize match check Valid < 0.01
iplSize loop inv Valid 0.01
listEqReverse post Invalid 0.42
reverse post Valid 0.02
reverse match check Valid < 0.01
reverse loop inv Valid 0.02
size post Valid < 0.01
size match check Valid < 0.01
size loop inv Valid 0.01
sizeBuggy post Invalid < 0.01
sizeBuggy match check Valid < 0.01
sizeBuggy loop inv Invalid 0.01
sizeImpEqFun post Unknown
zip post Valid 0.08
zip match check Valid < 0.01
zip match check Valid < 0.01
zip loop inv Valid 0.07

Table 7.3: Verification conditions for benchmark ListOperations (146 LOC).

Function VC Kind Result Time
linearEquation post Valid 0.05
negativeNum post Valid < 0.01
nonDeterministicExecution post Invalid 0.13
positiveNum post Valid < 0.01
setSize pre Valid < 0.01
setSize post Valid 0.01
sizeToListEq post Invalid 1.12
sizeToListLessEq post Unknown
toList pre Valid < 0.01
toListEq pre Invalid 1.06

Table 7.4: Verification conditions for benchmark Constraints (76 LOC).
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def add (x : I n t , y : Int ) : Int = {
var r = x
i f ( y < 0) {
var n = y
(while (n != 0) {

r = r − 1
n = n + 1

}) invariant ( r == x + y − n && 0 <= −n)
} else {

var n = y
(while (n != 0) {

r = r + 1
n = n − 1

}) invariant ( r == x + y − n && 0 <= n)
}
r

} ensuring (_ == x+y)

Figure 7.1: Code for iterative addition.

7.2.1 Basic Loops with Arithmetic

In this first benchmark, our aim is to experiment with loops and a minimal number of
features. We thus look at some arithmetic operations that can be expressed with iterative
algorithms. Note that both the addition and multiplication algorithm are from a suite of
benchmark presented at VSTTE 2008 [62] and solved by Dafny [40]. Let us look at one
of these functions in Figure 7.1.

The function computes the addition of its two arguments by iteratively adding 1. The
algorithm is relatively straightforward. The initial if distinguishes the cases where the
second parameter is positive or negative, and then the loop will iterate over this parameter
accordingly. The postcondition requires that this function indeed computes the addition
of its arguments. In that case, it is easy to write the postcondition because the addition
is an operation that is part of the input language, but in general this might not be the
case and the postcondition could be calling some other functions.

In order for the proof to complete, we are required to give inductive invariant to the
loops so that the verifier can conclude the postcondition. The invariants simply relates the
current value of the returned value with the current iteration. At the end, assuming the
negation of the loop condition, we can conclude the property. All the properties of this
benchmark were fully verified or disproved using a counter-example. The performance is
very good since all of the properties were decided in less than a second.

7.2.2 Algorithms on Arrays

In the next benchmark, we focus on verification of properties involving the array data
structure. The algorithms of this section are from various sources, including the VSTTE
2010 competition, the VSTTE 2008 challenge [62] and the Calculus of Computation text-
book [14].

As a fairly complicated example, let us consider the Scala program in Figure 7.2. The
program implements a binary search in the input array. It returns the index of the element
if found or −1 else. The algorithm makes use of a loop instead of the alternative recursive
definition. The implementation is fairly standard: pick the middle element, compare it
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def binarySearch ( a : Array [ Int ] , key : Int ) : Int = {
require ( a . l ength > 0 && sor t ed ( a , 0 , a . l ength − 1) )
var low = 0
var high = a . l ength − 1
var r e s = −1

(while ( low <= high && re s == −1) {
val i = ( high + low ) / 2
val v = a ( i )

i f ( v == key )
r e s = i

i f ( v > key )
high = i − 1

else i f ( v < key )
low = i + 1

}) invariant (
r e s >= −1 && re s < a . l ength && 0 <= low &&
low <= high + 1 && high >= −1 && high < a . l ength &&
( i f ( r e s >= >0) a ( r e s ) == key
else ( ! occurs ( a , 0 , l ow, key ) &&

! occurs ( a , high + 1 , a . l e n g t h , key ) ) ) )
r e s

} ensuring ( r e s =>
r e s >= −1 && re s < a . l ength &&
( i f ( r e s >= 0) a ( r e s ) == key
else ! occurs ( a , 0 , a . l e n g t h , key ) ) )

Figure 7.2: Code for binary search.
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def s i z e ( l : L i s t ) : Int = {
var r = 0
var l 2 = l
(while ( ! l 2 . i s I n s t anc eO f [ Ni l ] ) {
val Cons (_, t a i l ) = l 2
l 2 = t a i l
r = r+1

}) invariant ( r >= 0)
r

} ensuring ( r e s => r e s >= 0)

Figure 7.3: Code for size function on List.

to the searched element, and then continue the search in the relevant sub-array. As a
precondition, we require the array to be already sorted. The sorted predicate is simply
a function defined in Scala. This predicate verifies that the array is correctly sorted. The
postcondition states that the result must be either −1 or a valid index, and if it is not −1
then it must be true that the value at this index equals the searched element. It also states
that if −1 is returned then the element must not occurs in the array, using the occurs
function also defined in this benchmark.

Finally we need to give an invariant strong enough to conclude the postcondition. We
also use occurs to express the invariant, restricting its use to a sub-array that growth with
the number of iterations. The invariant is inductive, each iteration should maintain it and
at the exit of the loop it is possible to conclude that the complete array is covered by the
property in the invariant. Unfortunately, as the results show, Leon is not able to conclude
the validity of the invariant. It is still able to verify the array accesses. It turns out that
most properties on array that require such strong invariants are too difficult to handle
for Leon. It should still be noted that these are not trivial algorithms, in particular we
attempted to prove the correctness of a bubble sort implementation and a linear search as
well. One of the main difficulty seems to be the functions used as properties that implicitly
require a universal quantifier.

7.2.3 List Operations

We revisit some List operations already presented in the original paper on Leon [59]. Since
these examples were designed for the purely functional core of Leon, we rewrite those in
an imperative style. We believe that properties on recursive data structures such as List
are more easily provable by Leon.

Figure 7.3 shows how to write a size function over List using an imperative style. The
loop test if the list variable is not the empty list, and then it use a special syntax of
Scala to extract the tail from the list. Note that the Scala compiler actually translates
val Cons(_, tail) = l2 into an explicit pattern matching with only one branch (Cons,
in that case). This is why some pattern matching verification conditions are generated
(and are successively proven).

As the results in Table 7.3 show, most of the properties can be efficiently proven.
We implemented a number of standard list operations in an imperative style, including
reverse, append and zip. Reverse is especially useful because most of these list operations
will build the resulting list in the reverse order, which a final call to reverse will put in the
right order.
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def nonDetermin i s t i cExecut ion ( ) : Int = {
var i = 0
var b = ep s i l o n ( ( x : Boolean ) => i == i )
while (b) {

i = i + 1
b = ep s i l o n ( ( x : Boolean ) => i == i )

}
i

} ensuring (_ <= 10)

Figure 7.4: Loop that can be executed any number of times.

def t oL i s t ( s e t : Set [ Int ] ) : L i s t =
i f ( s e t == Set . empty [ Int ] ) Ni l ( ) else {
val elem = ep s i l o n ( ( x : Int ) => s e t conta in s x )
Cons ( e l em, t oL i s t ( s e t −− Set [ Int ] ( elem ) ) )

}
def s i zeToListEq ( l s t : L i s t ) : Boolean =

( s i z e ( t oL i s t ( toSet ( l s t ) ) ) == s i z e ( l s t ) ) holds

Figure 7.5: Accessing elements in a set with epsilon.

7.2.4 Constraint Programming

Here we show some possible utilizations of the epsilon primitive. Table 7.4 lists our
results.

Figure 7.4 shows an interesting application of epsilon to allow a non-deterministic
execution of a while loop. The test condition is the result of an epsilon expression
whose predicate is always true. Thus the epsilon expression takes the value of true or
false and the loop can stop at any iteration. We try to assert that the value of i at the
exit of the loop is ≤ 10, which is very likely but not always true. Leon is able to find a
counter-example by giving us a sequence of values that can be taken by epsilon to makes
this postcondition false. Note that epsilon behaves as a non-deterministic expression
here because of the variable i in scope that keeps changing its value. We described such
constructions in Section 4.1.4.

Another nice use of epsilon can be found in Figure 7.5. Note that we used holds
as a syntactic sugar for a postcondition that expresses the fact that the function returns
true. Here we use epsilon as a way to select an element in a set. Leon does support sets,
but none of the operations on sets can actually extract a value. Sets were mostly used in
the original Leon as a way to write specifications (such as a content function for lists or
trees). The property sizeToListEq tries to claim that taking the size of a list should be
the same as taking the size after having transformed the list in a set and then the resulting
set in a list again. This is not true because if the original list contained duplicates, those
duplicates would be lost during the transformation to a set. Leon successfully finds such
a counter-example.

As a last example, we can use epsilon as a way to solve constraints on arithmetic
expressions. Figure 7.6 illustrates this ability. Here the predicate gives the following
constraints:

2x+ 3y == 10 ∧ x ≥ 0 ∧ y ≥ 0

where x and y are encoded using a tuple of integers since we only support single arguments
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def l i n ea rEquat i on ( ) : ( I n t , Int ) = {
val s o l = ep s i l o n ( ( t : ( I n t , Int ) ) =>

2∗ t ._1 + 3∗ t ._2 == 10 &&
t ._1 >= 0 &&
t ._2 >= 0)

s o l
} ensuring ( r e s => r e s == (2 , 2) | | r e s == (5 , 0 ) )

Figure 7.6: Solving linear arithmetic constraints.

in epsilon predicates. Such constraints on integers have only two solutions: (x = 5∧ y =
0) ∨ (x = 2 ∧ y = 2). This is what we assert in the postcondition, and Leon is able to
prove the validity of this function.

As we have seen, the epsilon construct is a very versatile tool, and being able to
reason with it is important.

7.3 Extended Case Study

In this section, we present one possible application of the Leon system to program de-
velopment. Most static analysis tools try to focus on proving properties about programs,
however, Leon is complete for finding counter-examples, and, in our experience, is very
fast at doing so. It seems one can assume the property is valid if a counter-example is not
found in the first few seconds.

So, even though this method provides absolutely no correctness guarantee, it is possible
to use it efficiently to develop some non trivial algorithms. The method consists in first
writing the algorithm as you would do in a normal development process, then writing
a function that can express some valid properties of the algorithm. There is no need
for any extra annotation, simply expressing a relation that should be true assuming the
correctness of the implementation. The absence of additional postconditions and invariants
will probably prevent Leon from being able to prove the property, however it will be able to
discover counter-examples very quickly. The programmer can then examine the counter-
examples, which would be input values on which the property fails, and address the error.

If Leon seems to be looping, then it is best to assume the property is valid. At that
point, it is possible to take advantage of the built-in tests generator in Leon, to obtain
many input values that can be evaluated and checked for correctness.

7.3.1 Implementation of a Basic SAT Solver

In this section, we detail the thought process on using Leon as a helping tool for developers
during the implementation of a small SAT solver. We then try to prove some properties
of this program and are able to detect errors in the code. Once Leon no longer finds
any counter-example to our properties, but is still not able to conclude their validity, we
automatically generate test cases and check that they do not fail the properties.

Figure 7.7 shows the definitions for the data structure used in the implementation.
The type Formula is used as the high level representation of formulas, with the usual logic
connectives. It is intended to be used as the interface with the user, for example as the
resulting tree after a parsing phase. The ClauseList and VarList are used to represent
Disjunctive Normal Form (DNF) of the formulas. They are more specialized, internal data
structures for the SAT solver.

We first need to be able to evaluate both representations of our formulas. Using
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sealed abstract class Formula
case class And( f1 : Formula, f 2 : Formula ) extends Formula
case class Or( f1 : Formula, f 2 : Formula ) extends Formula
case class Not ( f : Formula ) extends Formula
case class Var ( i : Int ) extends Formula

sealed abstract class VarList
case class VarCons ( head : I n t , t a i l : VarList ) extends VarList
case class VarNil ( ) extends VarList
case class VarLit ( va lue : Boolean ) extends VarList

sealed abstract class ClauseL i s t
case class ClauseCons ( head : VarL i s t , t a i l : C lauseL i s t )

extends ClauseL i s t
case class ClauseNi l ( ) extends ClauseL i s t
case class ClauseLi t ( va lue : Boolean ) extends ClauseL i s t

Figure 7.7: Definitions of data structure for the SAT solver.

def eva l ( formula : Formula, trueVars : Set [ Int ] ) : Boolean
def evalDnf ( c l a u s e s : C l au s eL i s t , trueVars : Set [ Int ] ) : Boolean

Figure 7.8: Signature of evaluation functions.

these evaluation functions, we will then be able to write expressions that state that both
representations are equivalent. Figure 7.8 shows the signature of these functions.

As a next step in the implementation, we wish to be able to transform a Formula into
its DNF. We can see the signature of the function in Figure 7.9.

At that point, we have sufficient material to start writing some properties that need
to be true if our implementation is correct. In particular, for all formulas f and for all
assignments m of free variables in the formula, the evaluation of f with m should equal
the evaluation of the DNF of f with m. This property is formalized in Figure 7.10.

While running Leon on this property, we actually were able to detect 3 different errors
that prevented the property from being valid. Each time, Leon gave a counter-example
that was used to guide the debugging. Then, Leon started to loop, so we assumed that
the implementation was correct (or at least that there were no obvious bug) and could
move on to the next part.

Now we can implement the isSat function in Figure 7.11. Given that the input formula
is in DNF, we simply have to find one clause that is non-contradictory.

Now that the main SAT solving algorithm is implemented, we will write another prop-
erty that should be true. Figure 7.12 shows one such property. It states that for all
formulas f and assignments m, if f is not satisfiable then the evaluation of f at m must
be false. Again, running Leon on this property should be able to find any formula and as-
signment that does not respect this property. Of course, finding no such counter-example
is not a guarantee that the SAT algorithm is correct, but this is an acceptable starting

def dnf ( formula : Formula ) : C lauseL i s t

Figure 7.9: Signature of DNF function.
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def dn f I sCor r e c t ( formula : Formula, trueVars : Set [ Int ] ) : Boolean =
{

val dnfFormula = dnf ( formula )
eva l ( f o rmula , trueVars ) == evalDnf ( dnfFormula, trueVars )

} holds

Figure 7.10: Property asserting that dnf is correctly implemented.

def i s S a t ( c l a u s e s : C lauseL i s t ) : Boolean

Figure 7.11: Signature of isSat function.

point.
If we want a stronger correctness property, we can additionally implement a naive SAT

solver that works directly on the tree data structure of the Formula type. This algorithm
should be simple enough to be trusted and we can write a property that assert that both
SAT algorithms give the same result on the same input.

As we can see, writing these specifications is relatively easy and allows us to spot
most bugs. Unfortunately, Leon does not prove that these properties hold. From a user
perspective, all he can observe is that Leon loops forever, trying to find a proof of validity
or a counter-example but failing to do so. The reason Leon cannot prove such property
is because there are many intermediate functions that are used without any specification.
Given strong enough contract on each of these small utility functions, maybe Leon would
be able to prove the validity of the properties. However, annotating the programs to such
a degree of precision is very time consuming. This is when our automatic generation of
test cases come in handy. The few specifications we have written are enough to generate
a collection of input Formulas that will span a very important number of program state-
ments. The presence of specification even mean that no manual intervention is required,
because each of the input value can be automatically evaluated and the result can be au-
tomatically checked against the written specifications. Using the tests generation of Leon
on our SAT solver confirms that our implementation seems correct.

def s a t I sCo r r e c t ( formula : Formula, trueVars : Set [ Int ] ) : Boolean =
{

val dnfFormula = dnf ( formula )
i f ( ! i s S a t ( dnfFormula ) ) ! eva l ( f o rmula , trueVars ) else true

} holds

Figure 7.12: Property asserting that dnf is correctly implemented.





Chapter 8
Conclusion

We conclude with a discussion of some of the current limitations of Leon and how it could
be improved. We draw some lessons from the development of this verification procedure
for imperative programming.

8.1 Limitations

As we have seen, the system supports only a subset of Scala, which means that it is not
applicable to an existing software, unless a daunting rewrite is done. This, however, has
the advantage to identify a well defined sub-language of Scala that can be fully and soundly
analyzed. In this thesis, we try to improved on that point, allowing a much bigger subset
of Scala to be used as the input language compared to before, but there are still some
desirable features that are missing.

Maybe the biggest limitation in the current language is not being able to define class
or structure with mutable fields. Such data structures are at the core of many non-trivial
programs. One fundamental complication that comes with mutable data structures is
aliasing. Aliasing occurs when two different variables point to the same structure. Changes
made to the structure by accessing one of the variable will also have effects on the other
one. Unfortunately, it is very difficult to track such aliasing precisely [56, 57]. Arrays are
a good illustration of this limitation, although we do support some form of arrays in the
input language, we prevent any assignment that would give the same array two distinct
names.

Our system does not support functions as a first class citizens. In particular, this
means that we cannot reason about higher order functions. Such functions are extensively
used in functional programming.

Figure 8.1 shows a typical example that leads to infinite looping by Leon. The
isPositive function is a typical example of some property we want to be able to state
about arrays. It takes a size argument that indicates until which index (not included)
the elements are positive. In particular, it is very useful when we want to have inductive
invariant. We can assume as a precondition that the array is positive up to the value i,
and if we are able to prove that is is positive at i after the execution of some program
(usually, to body of a loop), then we can conclude that is is positive up to i + 1. Thus
we have just complete an inductive step and if we combine it with the base case we can
prove some very useful loop invariant. However, the propertyInduct is unfortunately not
proven by Leon. The limitation seems to come from not having a bound on the evaluation
of isPositive that is used as a property. Indeed, even a much more trivial property such
as propertyTrivial is not proven by Leon. Note that this is a limitation of the core
algorithm of Leon and not introduced by any of the transformations we presented.

69
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def i s P o s i t i v e ( a : Array [ Int ] , s i z e : Int ) : Boolean = {
require ( a . l ength >= 0 && s i z e <= a . l ength )
def r e c ( i : Int ) : Boolean = {

require ( i >= 0)
i f ( i >= s i z e )
true

else {
i f ( a ( i ) < 0)

fa l se
else

r e c ( i +1)
}

}
rec (0 )

}

def proprer ty Induct ( a : Array [ Int ] , i : Int ) : Boolean = {
require ( i s P o s i t i v e ( a , i ) && a . l ength > 0 &&

i >= 0 && i < a . l ength )
val na =

i f ( a ( i ) < 0) a . updated ( i , −a ( i ) ) else a . updated ( i , a ( i ) )
val ni = i + 1
i s P o s i t i v e ( na , n i )

} holds

def p r op r e r t yTr i v i a l ( a : Array [ Int ] ) : Boolean = {
require ( i s P o s i t i v e ( a , a . l ength ) && a . l ength > 0)
i s P o s i t i v e ( a , a . l ength − 1)

} holds

Figure 8.1: Property on arrays that Leon is unable to prove.
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8.2 Future Work

As a future work, we are very interested in some extensions of the input language. We
would like to be able to make use of global variables as well as some form of classes
with mutable fields. Global variables can be integrated to the language and then mapped
into the imperative extension by making each function explicitly receiving and returning
the global state. Let us assume the global variables are g1, g2, . . . , gn. We redefine each
functions in the program to take an additional n-tuple argument S representing the value
of each global variable. Furthermore, we replace each use of gi by a tuple selector S[i]
and each store gi = e by an assignment to the local representation of the state S = S[e/i]
where the element i is replaced by the new expression e. We also change the returned
expression of each function to return the new global state as well. We adapt all call sites
accordingly.

Modeling classes with fields is more difficult. One approach, which is the classical
approach, is to use functional maps to represent them. Each field of a class becomes a
map and field reads become map accesses while field writes become map updates. The
receiving object being used here as the key to the map. Of course, aliasing would become an
issue, so some similar restrictions to the ones used with arrays are needed. An alternative
approach to the aliasing problem would be to combine with other existing tools that can
provide precise pointer analysis [20, 31].

The unrolling procedure is not always powerful enough to prove all properties of inter-
est. Leon supports some limited form of induction, and, in the future, we wish to extend
the inductive reasoning capabilities of Leon in order to be able to prove stronger proper-
ties. As another proof tactic, we want to add some generalization mechanisms that would
be able to replace complex expressions that are not relevant to the proof by some fresh
variables. Similar techniques are used in system such as ACL2 [30].

A program can only be conclusively declared correct if one proves that it terminates in
addition to meeting its contract. Our current tool is not able to ensure termination, and,
in fact, assumes the program is actually terminating. The unrolling procedure at the core
of our algorithm is actually only sound if the program terminates. To obtain a complete
system, we plan to build on some existing techniques [43, 22, 2].

We will look into the potential integration of some limited form of higher order func-
tions as part of our language. We hope that in some situations, higher order functions can
be mapped into an uninterpreted function at the SMT level.

Proving correctness of programs still require intermediate annotations in the form of
loop invariants. Our system is able to find counter-example with minimal hints, except
for the actual postcondition that we wish to verify. However, in order to actually prove
correctness, it will need hints in the form of inductive invariants. Some of these invariants
are very difficult to find and most likely will require user intervention. However, some
of these invariants are rather boring and could be automatically discovered. We plan on
introducing some loop invariant generation techniques based on abstract interpretation
[16, 39]. Some other simpler techniques for deriving arithmetic relations on loop iteration
variables could also be used [12].

We would like to support multiple input formats. One possible approach would be to
consider Scala as the intermediate language and have a preprocessor that translates any
desired input formats into Scala first and then apply the Leon tool on it. Thus we would use
Scala in a similar fashion as Boogie [7]. Alternatively, we could integrate support as a front-
end to Leon (in the form of several parsers). We have already attempted to parse SMT-
LIB2 [9] benchmarks where we represent function definitions with universal quantifiers on
the parameters. Our parser supports the SMT-LIB v2 syntax, and is based on the open
source tool Princess [55]. The Low Level Virtual Machine (LLVM) [36] language is an
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intermediate language used in compilation. It has a well formalized semantics [64] and
could be suited to be translated into our internal representation, thus enabling verification
of any programming language for which an LLVM front-end exists.

8.3 Conclusion

Limiting the input language to a subset of a real programming language is a matter of
trade-offs. You lose expressive power but usually such power comes with complex features
that will make the analysis phase to less precise. It could be possible to make a tool
such as Leon accepts the complete syntax of Scala, however, in that case, features such as
aliasing will complicate the analysis and we will end up losing in precision and potentially
losing the soundness properties. Identifying a precisely defined sub-language can allow
the system to guarantee some soundness and completeness properties. It could be worth
educating the developers to limit himself to the sub-language, at the end the language
is still Turing-complete and it has been shown that some non trivial programs could be
written in it. Designing a programming language with verification in mind can lead to the
suppression of some dangerous features that are difficult to reason about.

Formally proving properties of any decently complex software reveals to be very diffi-
cult. For one, writing the correct specifications is not easy, and is close to unmanageable
when inductive invariants are needed in all loops and auxiliary functions. Our tool proved
to be efficient at finding counter-examples when given a single postcondition, and our test
cases generation algorithm can also provide reasonable evidences that the program verifies
the contract. This approach seems much more feasible for writing complex software, and
we encourage an active use of similar tool while developing a program to quickly spot
errors.

In this thesis, we presented an approach to verification of imperative programs in
Scala. We implemented and integrated the algorithms into the Leon verification system.
Our new architecture allowed Leon to support a much richer input language as well as a
completely new programming paradigm. Overall, Leon promises to be a very suitable tool
to assist programmers in their tasks, given that the programmers accept to work in some
sub-language of Scala. Thanks to its well defined input language, Leon is able to offer
strong guarantees on its analysis, and is thus very predictable.
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