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Abstract—In this paper, we propose privacy-enhancing technolo-
gies for medical tests and personalized medicine methods, which
utilize patients’ genomic data. First, we highlight the potential
privacy threats on genomic data and the challenges of providing
privacy-preserving algorithms. Then, focusing specifically on a
typical disease-susceptibility test, we develop a new architecture
(between the patient and the medical unit) and propose privacy-
preserving algorithms by utilizing homomorphic encryption and
proxy encryption. Assuming the whole genome sequencing is done
by a certified institution, we propose to store patients’ genomic
data encrypted by their public keys at a Storage and Processing
Unit (SPU). The proposed algorithm lets the SPU (or the medical
unit) process the encrypted genomic data for medical tests and
personalized medicine methods while preserving the privacy of
patients’ genomic data. We extensively analyze the relationship
between the storage cost (of the genomic data), the level of genomic
privacy (of the patient), and the characteristics of the genomic data.
Furthermore, we implement and show via a complexity analysis
the practicality of the proposed schemes. Finally, we evaluate
the security of the proposed schemes and propose new research
directions on genomic privacy.

I. I NTRODUCTION

Privacy control can be defined as the ability of individuals
to determine when, how, and to what extent information about
themselves is revealed to others. In this way, the usage of pri-
vate data will remain in context and it will be used exclusively
for the purpose the data owner has in mind. Privacy is usually
protected by both legal and technological means. By using legal
actions, such as data protection directives and fair information
practices, privacy regulations can enforce privacy protection
on a large scale. Yet, this approach is mostly reactive, as it
defines regulations after technologies are put in place. To avoid
this issue, Privacy-Enhancing Technologies (PETs) [1]–[3] can
be incorporated into the design of new systems in order to
protect individuals’ data. PETs protect privacy by eliminating
or obfuscating personal data, thereby preventing misuse or
involuntary loss of data, without affecting the functionality
of the information system [4]. Their objective is to make it
difficult for a malicious entity to link information to specific
users. In order to obfuscate personal data, PETs often rely
on cryptographic primitives, such as anonymous authentication
and encryption.

Genomics is becoming the next significant challenge for
privacy. The price of a complete genome profile has plummeted
below $200 for genome-wide genotyping (i.e., the characteri-
zation of about one million common genetic variants), which
is offered by a number of companies (located mostly in the

US). Whole genome sequencing is also offered through the
same direct-to-consumer model (but at a higher price). This
low cost of DNA sequencing will break the physician/patient
connection, because private citizens (from anywhere in the
world) can have their genome sequenced without involving
their family doctor. This can open the door to all kinds of
abuse, not yet fully understood.

As a result of the rapid evolution in genomic research,
substantial progress is expected in terms of improved diag-
nosis and better preventive medicine. However, the impact on
privacy is unprecedented, because (i) genetic diseases canbe
unveiled, (ii) the propensity to develop specific diseases (such
as Alzheimer’s) can be revealed, (iii) a volunteer accepting
de facto to have his genomic code made public (as it already
happened) can leak substantial information about his ethnic
heritage and genomic data of his relatives (possibly against
their will), and (iv) complex privacy issues can arise if DNA
analysis is used for criminal investigations and insurance
purposes. Such issues could lead to genetic discrimination(e.g.,
ancestry discrimination or discrimination due to geographic
mapping of people). Even though the Genetic Information Non-
discrimination Act (GINA), which prohibits the use of genomic
information in health insurance and employment, attemptedto
solve some of these problems in the US, these types of laws
are very difficult to enforce.

An even more severe case, currently not widely considered,
is where a malicious party initiates a cross-layer attack by
utilizing privacy-sensitive information belonging to a victim
retrieved from different sources (e.g., genomic data, location,
online social network, etc.), thus creating the opportunity for a
large variety of fraudulent uses of such data. For example, as
stated in the Personal Genome Project (PGP) consent form [5],
a malicious party could make synthetic DNA of a victim
and plant it at a crime scene to falsely accuse him. In this
hypothetical situation, the attacker can make his accusation
stronger if he has the location patterns of the victim to be
blamed, and hence, knows that the victim was close to the
crime scene at the time of the crime. Similarly, an attacker
can easily obtain information on close relatives of a target
from online social network data, thus effectively increasing the
potential access to target’s genomic data if his relatives’DNA
has been sequenced. In other words, even if the victim has
perfect privacy on his own genome, if the attacker has access
to the DNA sequence of the relatives, he can obtain significant
information about the victim’s DNA sequence.



Even though, at this stage, the field of genomics is generally
free from serious attacks, it is likely that the above threats will
become more serious as the number of sequenced individuals
becomes larger. Such was the case of the Internet that was
initially run and used by well-intentioned researchers. How-
ever, once it became more widely used, it became plagued by
uncountable attacks such as spyware, viruses, spam, botnets,
Denial-of-Service attacks, etc. Therefore, the need to adapt
PETs to personal genomic data will only grow with time, as
they are key tools for preventing an adversary from linking
particular genomic data to a specific person or from inferring
privacy-sensitive genomic data about a person.

It is obvious that users need to reveal personal and even
privacy-sensitive information for genomic tests (e.g., paternity
tests, disease-susceptibility tests, etc.). Nevertheless, they want
to control how this information is used by the service providers
(e.g., medical units such as healthcare centers or pharmaceuti-
cal companies, depending on the type of the test) [6]. Currently,
the companies and hospitals that perform DNA sequencing
store the genomic data of their customers and patients. Of
course, tight legislation regulates their activities, butit is
extremely difficult for them to protect themselves against the
misdeeds of a hacker or a disgruntled employee. In a non-
adversarial scenario, however, making use of this data requires
legitimate professionals (e.g., physicians and pharmacists) to
access the data in some way. Therefore, new architectures and
protocols are needed to store and process this privacy-sensitive
genomic data, while still enabling its utilization by the service
providers (e.g., medical units).

In this work, our goal is to protect the privacy of users’
genomic data while enabling medical units to access the
genomic data in order to conduct medical tests or develop per-
sonalized medicine methods. In a medical test, a medical center
checks for different health risks (e.g., disease susceptibilities)
of a user by using specific parts of his genome. Similarly,
to provide personalized medicine, a pharmaceutical company
tests the compatibility of a user on a particular medicine, or
a pharmacist checks the compatibility of a given medicine
(e.g., over-the-counter drug) to a given user. In both scenarios,
in order to preserve his privacy, the user does not want to
reveal his complete genome to the medical center or to the
pharmaceutical company. Moreover, in some scenarios, it is
the pharmaceutical companies who do not want to reveal the
genetic properties of their drugs. To achieve these goals, we
propose to store the genomic data at aStorage and Processing
Unit (SPU) and conduct the computations on genomic data
utilizing homomorphic encryption and proxy encryption to
preserve the privacy of the genomic data.

The rest of the paper is organized as follows. In the rest of
this section, we discuss the challenges in genomic privacy and
summarize the related work on genomic privacy. In Section II,
we describe our proposed schemes for privacy-preserving med-
ical tests and personalized medicine. Furthermore, we analyze
the level of privacy provided by the proposed schemes for
different design and genomic criteria. Then, in Section III,
we discuss the implementation of the proposed schemes and
present their complexity and security evaluations. Finally, in
Section IV, we conclude the paper and discuss new research
directions on genomic privacy.

A. Challenges of Genomic Privacy

Obviously, there are certain obstacles for achieving our goals
on genomic privacy. These are mostly due to (i) the balance
between privacy and reliability of the genomic data, (ii) the
structure of the human genome, and (iii) the evolution of the
genomic research.

PETs generally protect users’ privacy by either breaking the
link between individuals’ identities and the data they provide
(e.g., removing user’s identities from the published genomic
data), or by decreasing the information provided (e.g., by
using cryptographic tools or obfuscation techniques). Both
techniques might reduce the reliability and the accuracy of
the genomic data. Thus, a major issue to be addressed when
designing PETs is limiting private information leakage while
keeping an acceptable level of reliability and accuracy of the
genomic data for the researchers and medical units.

Moreover, developing PETs for genomic data has many
unique challenges, due to the architecture of the human
genome. The human genome is encoded in double stranded
DNA molecules consisting of two complementary polymer
chains. Each chain consists of simple units called nucleotides
(A,C,G,T). The human genome consists of approximately three
billion letters. Existing privacy-preserving methods do not scale
to these large genomic data sizes; hence current algorithmsare
inadequate for privacy protection on the genomic level.

Finally, the rapid evolution in the field of genomics produces
many new discoveries every year, which cause significant
changes in the known facts. For example, the sensitivity of
certain genomic information will change over time; hence itis
crucial to develop dynamic algorithms that can smoothly adapt
to this rapid evolution.

B. Related Work

Due to the sensitivity of genomic data, research on the
privacy of genomic data has considerably accelerated over
the past few years. We can put the research on genomic
privacy in three main categories: (i) private string searching
and comparison, (ii) private release of aggregate data, and(iii)
private clinical genomics.

In [7], Troncoso-Pastorizaet al. propose a protocol for
string searching, which is then improved by Blanton and
Aliasgari [8]. In this approach, one party with his own DNA
snippet can verify the existence of a short template within his
snippet by using a Finite State Machine in an oblivious manner.
To compute the similarity of DNA sequences, in [9], Jhaet al.
propose techniques for privately computing the edit distance
of two strings by using garbled circuits. In [10], Bruekerset
al. propose privacy-enhanced comparison of DNA profiles
for identity, paternity and ancestry tests using homomorphic
encryption. Similar to our work, in [11], Kantarciogluet al.
propose using homomorphic encryption to perform scientific
investigations on integrated genomic data. As opposed to [11],
we focus on personal use of genomic data (e.g., in medical
tests and personalized medicine methods). In one of the recent
works [12], Baldi et al. make use of medical tools and
private string comparison for privacy-preserving paternity tests,
personalized medicine, and genetic compatibility tests. Instead
of utilizing public key encryption protocols, in [13], Canim et
al. propose securing the biomedical data using cryptographic



hardware. Finally, in [14], Eppsteinet al. propose a privacy-
enhanced method for comparing two compressed DNA se-
quences by using Invertible Bloom Filter [15].

When releasing databases consisting of aggregate genomic
data (e.g., for research purposes), it is shown that known
privacy-preserving approaches (e.g., de-identification)are in-
effective on (un-encrypted) genomic data [16], [17]. Homeret
al. [18] prove that the presence of an individual in a case
group can be determined using aggregate allele frequencies
and his DNA profile. In another recent study [19], Gitschier
shows that a combination of information, from genealogical
registries and a haplotype analysis of the Y chromosome
collected for the HapMap project, allows for the predictionof
the surnames of a number of individuals held in the HapMap
database. Thus, releasing genomic data (even in aggregate
form) is currently banned by many institutions due to this
privacy risk. In [20], Zhouet al. study the privacy risks of
releasing the aggregate genomic data. They propose a risk-
scale system to classify aggregate data and a guide for the
release of such data. Recently, using differential privacywas
proposed by Fienberget al. [21]; they aim to ensure that two
aggregated databases, differing from each other by only one
individual’s data (e.g., DNA sequence), have indistinguishable
statistical features.

Recently, in [22], utilizing a public cloud, Chenet al.
propose a secure and efficient algorithm to align short DNA
sequences to a reference (human) DNA sequence (i.e., read
mapping). Finally, in [23], Wanget al. propose a privacy-
protection framework for important classes of genomic com-
putations (e.g., search for homologous genes), in which they
partition a genomic computation, distributing sensitive data to
the data provider and the public data to the data user.

In this work, we focus on medical tests (e.g., disease-
susceptibility test) and personalized medicine methods byusing
users’ genomic data while protecting user’s genomic privacy.
As a result of our extensive collaboration with geneticists,
clinicians, and biologists, we conclude that DNA string com-
parison (in which the medical unit can only check if the patient
carries a specific combination of variants or not) is insufficient
in many medical tests (that use genomic data) and would
not be enough to pave the way to personalized medicine. As
it will become clearer in the next sections, specific variants
must be considered individually for each genetic test. Thus,
as opposed to the above private string search and comparison
techniques, which focus on privately comparing the distance
between the genomic sequences, we use the individual variants
of the users to conduct genetic disease susceptibility tests
and develop personalized medicine methods. We consider the
individual contribution of each variant to a particular disease,
for which a string comparison algorithm (such as Private
Set Intersection [24], [25]) would not work. Further, in our
proposed algorithms, we consider the statistical relationship
between the variants for the genomic privacy of the users. In
addition, we make use of a Storage and Processing Unit (SPU)
between the user (patient) and the medical unit to store the
genomic data in encrypted form and make computations on it
using homomorphic encryption and proxy encryption.

II. PETS FORMEDICAL TESTS ANDPERSONALIZED
MEDICINE METHODS

In this work, we study the privacy issues of medical tests
and personalized medicine methods. Most medical tests and
personalized medicine methods (that use genomic data) involve
a patient and a medical unit. In general, the medical unit is the
family doctor, a physician, a pharmacist, a medical council,
or an online service. In this study, we consider a malicious
medical unit as the potential attacker. That is, a medical unit
can be a malicious institution trying to obtain private genomic
information about a patient (for which it is not authorized).
Even if the medical unit is non-malicious, it is extremely
difficult for medical units to protect themselves against the
misdeeds of a hacker or a disgruntled employee, and hence,
the attacker can also be considered as a hacker or a careless
employee in the medical unit. Similarly, the genomic data is
too sensitive to be stored on users’ personal devices (mostly
due to security, availability, and storage issues), hence it is
risky to leave the users’ genomic data in their own hands. In
addition, extreme precaution is needed between the patientand
the medical unit due to the sensitivity of genomic data. Thus,
we believe that a Storage and Processing Unit (SPU) should
be used to store and process the genomic data. We note that a
private company (e.g., cloud storage service), the government,
or a non-profit organization could play the role of the SPU.
We also assume that the SPU is an honest organization, but it
might be curious (e.g., existence of a curious party at the SPU),
hence genomic data should be stored at the SPU in encrypted
form (i.e., the SPU should not be able to access the content of
patients’ genomic data). This general architecture is illustrated
in Fig. 1.

Curious Party
@ SPU

Medical Unit

Personalized medicine
@ pharmacists

Disease susceptibility test 
@ medical center

Compatibility check
@ medical council

Patient

Malicious 3rd party

Storage and Processing 
Unit (SPU)

C i P t

Fig. 1. General architecture between the patient, SPU, and the medical unit.

For the simplicity of presentation, in the rest of this section,
we will focus on a particular medical test (namely, computing
genetic disease susceptibility). We note that similar techniques
would apply for other medical tests and personalized medicine
methods. In a typical disease-susceptibility test, a medical
center (MC) wants to check the susceptibility of a patient (P)



to a particular diseaseX (i.e., probability that the patient P
will develop diseaseX). It is shown that a genetic disease-
susceptibility test can be realized by analyzing particular Single
Nucleotide Polymorphisms (SNPs) of the patient via some
operations, such as weighted averaging [26] or Likelihood
Ratio (LR) test [27]. A SNP is a position in the genome holding
a nucleotide (A, T, C or G), which varies between individuals.
For example, it is reported that there are three particular genes
bearing a total of ten particular SNPs necessary to analyze a
patient’s susceptibility to Alzheimer’s disease [28]. Each SNP
contributes to the susceptibility in a different amount andthe
contribution amount of each SNP is determined by previous
studies on case and control groups (these studies are published
in several papers). Furthermore, some of the SNPs contribute
to the development of a disease, whereas some are protective.

In general, there are two alleles (nucleotides which reside
at a SNP position) observed at a given SNP position: (i) The
major allele is the most frequently observed nucleotide, and
(ii) the minor allele is the rare nucleotide. Everyone inherits
one allele of every SNP location from each of his parents. If
an individual receives the same allele from both parents, heis
said to have ahomozygous variant for that SNP location. If,
however, he inherits a different allele from each parent (one
minor and one major), he has aheterozygous variant. There
are approximately 40 million approved SNPs in the human
population as of now (according to the NCBI dbSNP [29]) and
each patient carries on average 4 million SNPs (e.g., variants)
out of this 40 million. Moreover, this set of 4 million SNPs is
different for each patient. From now on, to avoid confusion,
for each patient, we refer to these 4 million variants as thereal
SNPs and the remaining non-variants (approved SNPs that do
not exist for the considered patient) as thepotential SNPs of
the patient; when we only say “SNPs”, we mean both the real
and potential SNPs.

At this point, it can be argued that these 4 million real
SNPs (nucleotides) could be easily stored on the patient’s
computer or mobile device, instead of the SPU. However,
we assert that this should be avoided due to the following
issues. On one hand, the number of approved SNPs in human
population continues to increase (even faster than the Moor’s
Law) with new discoveries. Further, types of variations in
human population are not limited to SNPs, and there are other
types of variations such as Copy-Number Variations (CNVs),
rearrangements, or translocations1, consequently the required
storage per patient is likely to be considerably more than only
4 million nucleotides. This higher storage cost might stillbe
affordable to an average patient (via desktop computers or
USB drives), however, genomic data of the patient should be
available any time (e.g., for emergencies), thus it should be
stored at a reliable source such as the SPU. On the other hand,
as we discussed before, leaving the patient’s genomic data in
his own hands and letting him store it on his computer or
mobile device is risky, because his mobile device can be stolen
or his computer can be hacked.

A potential attacker can learn about the susceptibilities of the
patient to privacy-sensitive diseases if he obtains some specific
real SNPs of the patient. Moreover, the knowledge of 75 real
SNPs (out of approximately 4 million), if not fewer, will enable

1Our proposed privacy-preserving mechanisms can be smoothly adapted for
these alternative variations.

the attacker to identify a person [30]. These situations could
lead to genetic discrimination such as denying a person’s access
to health (or life) insurance or obstructing his employment
opportunities. As we discussed before, in our setting, boththe
MC and SPU pose a threat to the patient’s privacy. On one
hand, the MC can either be a malicious institution trying to
obtain private information about the patient or it can be hacked
by another malicious entity. On the other hand, the SPU is
considered as an honest but curious entity. Thus, our goal isto
build mechanisms in which the patient can preserve the privacy
of his genomic sequence (his real SNPs) while enabling the
MC to access his genomic data and conduct genetic tests.

We assume that the whole genome sequencing is done by
a Certified Institution (CI) with the consent of the patient.
Moreover, the genomic data of the patient is encrypted by
the same CI (using the patient’s public key) and uploaded
to the SPU so that only the patient can decrypt the stored
(potential or real) SNPs, and the SPU cannot access the SNPs
of the patient. We are aware that the number of discovered
SNPs increases with time. Thus, the patient’s complete DNA
sequence is also encrypted as a single vector file (via symmetric
encryption using the patient’s key) and stored at the SPU, thus
when new SNPs are discovered, these can be included in the
pool of the previously stored SNPs of the patient. We also
assume the SPU does not have access to the real identities of
the patients and data is stored at the SPU by using pseudonyms;
this way, the SPU cannot associate the conducted genomic
tests to the real identities of the patients. As an alternative, the
privacy of the genomic data at the SPU can be further increased
usingprivacy enhanced access control [31] or Oblivious RAM
(O-RAM) storage [32] techniques, in which the data access
patterns are completely hidden from the server (SPU).2

Depending on the access rights of the MC, the SPU can
either (i) computePr(X), the probability that the patient will
develop the diseaseX by checking the patient’s encrypted
SNPs via homomorphic encryption techniques [34]3, or (ii)
provide the relevant SNPs to the MC (e.g., for complex diseases
that cannot be interpreted using homomorphic operations).
These access rights are defined either jointly by the MC and the
patient or by the medical authorities. Further, access rights can
be enforced by using a secure attribute-based system as in [35].
We note that homomorphic encryption lets the SPU (or MC)
computePr(X) using encrypted SNPs of the patient P. In other
words, the SPU (or MC) does not access P’s SNPs to compute
his predicted disease susceptibility. We use a modificationof
the Paillier cryptosystem (described in Section II-A) to support
the homomorphic operations at the SPU (or MC).

We propose three different techniques for the storage and
process of the SNPs at the SPU and the preservation of the
patient’s privacy: (i) Method 1 in Section II-B, (ii) Method2
in Section II-C, and (iii) Method 3 in Section II-D. We
describe these proposed techniques in detail in the follow-
ing subsections. We also discuss the computation of genetic
disease susceptibility by using homomorphic operations in

2Note that even the most efficient implementation of O-RAM introduces
high storage overhead to the client (patient) [33], and it introduces20 ∼
25 times more overhead with respect to non-oblivious storage.Thus once it
becomes more efficient, O-RAM storage could be considered asa future add-
on to the proposed privacy-preserving mechanisms.

3In one of our proposed schemes (Method 3 in Section II-D),Pr(X) is
computed at the MC via homomorphic operations.



General Notations

SNPP
i

Type of SNPi, SNPi, of the patient P.SNPP
i ∈ {0, 1}, 0 representing a potential SNP (i.e., non-variant) for P, and1 representing

a real SNP (i.e., a variant) for P.

SX
P

Predicted susceptibility of the patient P to diseaseX.

ΥP Set of real SNPs of the patient P (SNPs at which P has a variant:around 4 million at each patient).

ΩP Set of potential SNPs of the patient P (SNPs at which P does nothave a variant: around 36 million at each patient).

Cryptographic Notations

n, g Public parameters of modified Paillier cryptosystem.

x Weak secret key of the patient P.

x(i) ith share of the patient P’s secret key.

gx Public key of the patient P.

E(m, gx) Encryption of messagem with the patient P’s public key.

Susceptibility Test via Weighted Averaging

pij(X) Probability that P would develop diseaseX, givenSNPP
i = j , Pr(X|SNPP

i = j).

CX
i Contribution ofSNPi to the susceptibility to diseaseX.

Susceptibility Test via Likelihood Ratios

IP
X

Initial risk of the patient P for diseaseX.

Li
X
(j) Likelihood Ratio (LR) whenSNPi = j for diseaseX.

TABLE I
NOTATIONS AND DEFINITIONS.

Section II-E. In the rest of this work, for simplicity of the
presentation, we do not consider the type of the variant at a
real SNP location (i.e., whether the variation is homozygous or
heterozygous for that real SNP); we only consider whether the
patient has a real SNP or not at a particular location. However,
the proposed approaches and the analysis (in Section II-C) can
easily be extended to cover the types of the variants. In order to
facilitate future references, frequently used notations are listed
in Table I for the different stages of the proposed schemes.

A. Paillier Cryptosystem

In this section, we briefly review the modified Paillier
cryptosystem (described in detail in [34], [36]), which we use
in this work, and its homomorphic properties.

The public key of the patient P is represented as(n, g, h =
gx), where the strong secret key is the factorization ofn = pq
(p, q are safe primes), the weak secret key isx ∈ [1, n2/2],
andg of order(p− 1)(q− 1)/2. Such ag can be easily found
by selecting a randoma ∈ Z

∗
n2 and computingg = −a2n.

Encryption of a message:To encrypt a messagem ∈ Zn, we
first select a randomr ∈ [1, n/4] and generate the ciphertext
pair (T1, T2) as below:

T1 = gr mod n2 and T2 = hr(1 +mn) mod n2. (1)

Re-encryption of a message:An encrypted message(T1, T2)
can be re-encrypted under the same public key, using a new
random numberr1 ∈ [1, n/4] as below:

T̂1 = gr1T1 mod n2 and T̂2 = hr1T2 mod n2. (2)

Decryption of a message:The messagem can be recovered
as follows:

m = Λ(T2/T
x
1 ), (3)

whereΛ(u) = (u−1) mod n2

n
, for all u ∈ {u < n2 | u = 1

mod n}.

Homomorphic properties: Assume two messagesm1 and
m2 are encrypted using two different random numbersr1
and r2, under the same public key,(n, g, h = gx), such
thatE(m1, r1, g

x) = (T 1
1 , T

1
2 ) andE(m2, r2, g

x) = (T 2
1 , T

2
2 ).

Assume also thatc is a constant number. Then the below-
mentioned homomorphic properties are supported by Paillier
cryptosystem:

• The product of two ciphertexts will decrypt to the sum of
their corresponding plaintexts.

D(E(m1, r1, g
x) · E(m2, r2, g

x)) =

D(T 1
1 · T 2

1 , T
1
2 · T 2

2 mod n2) = m1 +m2 mod n. (4)

• An encrypted plaintext raised to a constantc will decrypt to
the product of the plaintext and the constant.

D(E(m1, r1, g
x)c) = D((T 1

1 )
c, (T 1

2 )
c mod n2)

= cm1 mod n. (5)

These homomorphic operations are conducted at the SPU (or
MC depending on which approach is used) to compute the
predicted susceptibility of the patient P to diseaseX , as will
be discussed in Section II-E.

Proxy encryption: The patient’s weak secret keyx is ran-
domly divided into two shares:x(1) and x(2) (such that
x = x(1) + x(2)). x(1) is given to the SPU andx(2) is
given to the MC. Using the above Paillier cryptosystem, an
encrypted message(T1, T2) (under the patient’s public key)
can be partially decrypted by the SPU (usingx(1)) to generate
the ciphertext pair(T̃1, T̃2) as below:

T̃1 = T1 and T̃2 = T2/T
x(1)

1 mod n2. (6)



Now, (T̃1, T̃2) can be decrypted at the MC usingx(2) to recover
the original message.x(2) can be provided to the MC once
the patient is registered to the medical center or through the
patient’s digital ID card. Further details about the distribution
of shares are out of the scope of this paper. We note that
this approach is not proxy re-encryption; it is based on secret-
sharing.

Overall, this modified Paillier cryptosystem is not key opti-
mal, because the size of the MC’s and SPU’s secret storages
do not remain constant. That is, both the MC and SPU need
to store a secret for every patient. However, this storage cost
can be considered negligible when compared to the storage of
the genomic data. Further, the shares (e.g.,x(1) andx(2)) can
be stored by the patient and sent to the MC and SPU only
when it is needed in order to resolve this storage issue at the
expense of extra communication overhead. Furthermore, the
above modified Paillier cryptosystem is not proxy invisible,
because all participants of the systems (i.e., P, MC and SPU)
should be aware of the existence of the proxy. We discuss the
security evaluation of this cryptosystem in Section III-B.

B. Method 1: Plaintext Locations at the SPU

In this approach, even though the SNPs of the patient are
stored encrypted (via the patient’s public key), the locations of
the corresponding SNPs are stored in plaintext at the SPU. This
is because, when a particular SNP (or set of SNPs) are queried
by the MC, the SPU should know which SNPs to process (or
send to the MC).

We assume thatSNPi at the patient P is represented as
SNPP

i and SNPP
i = 1, if P has a real SNP (i.e., variant)

at this location, andSNPP
i = 0, if P does not have a variant at

this location. We letΥP be the set of real SNPs of the patient
P (at whichSNPP

i = 1). We also letΩP represent the set
of potential SNPs (at whichSNPP

i = 0). As the locations of
the SNPs are stored in plaintext, if the SPU only stores the
real SNPs inΥP , a curious party at the SPU can learn all
real SNP locations of the patient, and hence, much about his
genomic sequence.4 Therefore, the SPU stores the contents of
both real and potential SNP locations (in{ΥP ∪ΩP }) in order
to preserve the privacy of the patient. Below, we summarize
the proposed approach for the privacy protecting disease-
susceptibility test by using this particular storage technique.
This approach is illustrated in Fig. 2.
• Step 0: The Cryptographic keys (public and secret keys) of
each patient are generated and distributed to the patients during
the initialization period. Then, symmetric keys are established
between the parties, using which the communication between
the parties is protected from an eavesdropper. We note that the
distribution, update and revocation of cryptographic keysare
handled by a trusted entity (similar to e-banking platforms).

• Step 1:The patient (P) provides his sample (e.g., his saliva)
to the Certified Institution (CI) for sequencing.

• Step 2: The CI sequences P, and encrypts the contents of
his real and potential SNP locations (in{ΥP ∪ΩP }) by using
P’s public key.

4The nucleotides corresponding to variants at particular locations of the
DNA sequence are public knowledge. Thus, even though the contents of
patient’s real SNPs are encrypted, a curious party at the SPUcan infer the
nucleotides corresponding to these SNPs from their plaintext locations.
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Fig. 2. Privacy-preserving protocol for disease-susceptibility test using
Method 1 or Method 2.

• Step 3: The CI sends the encrypted SNPs of P to the SPU
(so that the SPU cannot access to P’s SNPs).

• Step 4: The patient provides a part of his secret key (x(1))
to the SPU.

• Step 5: The MC wants to conduct a susceptibility test on P
to a particular diseaseX , and P provides the other part of his
secret key (x(2)) to the MC.

• Step 6:The MC provides genetic variant markers, along with
their individual contributions (to the disease susceptibility), to
the SPU.

• Step 7: If the disease susceptibility can be interpreted by
homomorphic operations, the SPU computes P’s total suscep-
tibility to diseaseX from the individual effects of SNPs by
using the homomorphic properties of the Paillier cryptosystem
as described in Section II-E. Otherwise, the SPU provides the
relevant SNPs to the MC based on MC’s access rights.

• Step 7: The SPU partially decrypts the end-result (or the
relevant SNPs) using a part of P’s secret key following a proxy
encryption protocol (Section II-A).

• Step 8:The SPU sends the partially decrypted end-result (or
the relevant SNPs) to the MC.

• Step 9: The MC decrypts the message received from the
SPU using the other part of P’s secret key and recovers the
end-result (or the relevant SNPs).

The above technique provides the highest level of privacy
and practicality for the patient, because (i) from the view point
of a curious party at the SPU, inferring the locations of the
patient’s real SNPs with the stored information is equivalent
to inferring them with no information about the patient, and(ii)
the patient is not involved in the protocol after the sequencing
(except for the consent between the patient and the MC for a
particular test). However, this level of privacy and practicality
comes at the cost of extra storage overhead at the SPU (due
to the storage of both real and potential SNPs as discussed in
Section III-A).

C. Method 2: Redundant Storage at the SPU

Due to the significant storage overhead (which is projected
to increase with new discoveries in the field of genomics)



mentioned in Section II-B, here we propose another technique
that reduces the storage overhead at the SPU at the expense of
decrease in privacy. In a nutshell, we leave everything the same
as in Section II-B, but, instead of storing the contents of all
potential and real SNP locations, we store the real SNPs of the
patient along with a certain level of redundancy (i.e., contents
of some potential SNP locations). In other words, to mislead
a curious party at the SPU, among the 40 million discovered
SNPs, we store the approximately 4 million real SNPs (for
whichSNPP

i = 1, i ∈ ΥP ) along with some redundant content
from ΩP (with SNPP

j = 0), for each patient.
Again, we assume that the location of the encrypted (real

or potential) SNPs are stored in plaintext at the SPU and
there exists a potential curious party at the SPU trying to
infer the real SNPs of the patient (inΥP ). An important issue
to consider in this approach is theLinkage Disequilibrium
(LD) between SNPs [37]. LD occurs when SNPs at the two
loci (SNP positions) are not independent of each other. For
simplicity, we represent the LD relationship between two SNPs
i and j as Pr(SNPi|SNPj), where SNPi (or SNPj) takes
values from the set{0, 1}.5 We note that LD relationships are
defined among all 40 million discovered SNPs, regardless of
their type (i.e., real or potential) at a particular patient.

As in Section II-B, the SPU provides the end-result of a
disease-susceptibility test or the relevant SNPs to the MC.
However, in this case, if a particular potential SNP (requested
by the MC or needed in the susceptibility test) is not stored
at the SPU (i.e.,SNPP

j = 0), one of the following two
scenarios occurs: (i) If the SPU provides the relevant SNPs
to the MC, MC infers the missing potential SNPs from the
reference genome (since it is known that the missing potential
SNPs are not a variant for P), or (ii) if the SPU provides the
end-result of the susceptibility test, the SPU uses the factthat
SNPP

j = 0 for each missing potential SNPj.
As expected, the amount of storage redundancy (due to the

storage of the content fromΩP ), along with the LD between
the SNPs and their characteristics, determine the level of a
patient’s genomic privacy. Therefore, in the rest of this section,
we analyze the relationship between the amount of redundancy,
LD values, characteristics of the SNPs, and the level of privacy.
To do so, first, we observe the average probability of correctly
inferring the locations of P’s real SNPs (inΥP ) considering
varying amounts of redundancy and the LD values between
the SNPs. That is, how much information from a patient’s un-
stored potential SNPs is revealed to the curious party at the
SPU about the locations of his real SNPs? This problem can
also be formulated similarly if the goal of the attacker is to
determine the type of the variant at a real SNP location (e.g.,
homozygous or heterozygous).6 It is worth noting that for this
study, we create realistic models for the LD values and the
characteristics of the SNPs. Further, for the created models,
we try a wide range of parameters and observe a wide range
of results to address most potential scenarios. However, asthe
field of genomics becomes more mature, our models can be
replaced by the values obtained from the medical research.

5In compliance with genetic observations, we assume that theLD between
two SNPs are not symmetric, i.e.,Pr(SNPi|SNPj) 6= Pr(SNPj |SNPi).

6In this case,SNPP
i can take three different values from the set{0, 1, 2},

0 representing a potential SNP (i.e., non-variant),1 representing a real
homozygous SNP, and 2 representing a real heterozygous SNP for P.

We let Ωs
P and Ωu

P denote the set of P’s potential SNPs
that are stored (for redundancy) and not stored at the SPU,
respectively (Ωs

P ∪Ωu
P = ΩP ). Further,Ki is the set of SNPs

with which a particular SNPi has LD, and|Ki| = k (for each
SNP, thesek SNPs are chosen among approximately 40 million
SNPs). We assume thatk ≥ 0 and it is a truncated Gaussian
random variable with only discrete values and obtained from
a distribution with meanµ(k) and standard deviationσ(k).

Initially, we computePr(SNPP
i ) for all (real and potential)

SNPs in{ΥP ∪ Ωs
P } by using the LD relationships between

these SNPs and those inΩu
P . As all SNPs in{ΥP ∪ Ωs

P } are
encrypted and stored at the SPU, only the LD relationships
between these SNPs and the un-stored SNPs inΩu

P are
helpful for the curious party. Therefore, for each real SNP
i ∈ ΥP , we observePr(SNPP

i = 1|SNPP
m = 0) for all

m ∈ {Ki∩Ωu
P }, get the average of these values, and compute

Pr(SNPP
i = 1). Similarly, for each potential SNPj ∈ Ωs

P , we
observePr(SNPP

j = 0|SNPP
m = 0) for all m ∈ {Kj ∩ Ωu

P },
average these values, and computePr(SNPP

j = 0). We let l
be the indicator of the LD strength between two SNPs. Thus,
we representPr(SNPP

i = 1|SNPP
m = 0) = l (i ∈ ΥP ,

m ∈ {Ki ∩ Ωu
P }) and Pr(SNPP

j = 0|SNPP
m = 0) = l

(j ∈ Ωs
P , m ∈ {Kj ∩ Ωu

P }) as truncated Gaussian random
variables with range[0.5, 1], obtained from a distribution with
meanµ(l) and standard deviationσ(l). Finally, if |Ki| = k = 0
or |Ki ∩ Ωu

P | = 0 for a SNP i in {ΥP ∪ Ωs
P }, we update

Pr(SNPP
i = 1) considering the fact that the expected value of

all stored SNPs is known by the curious party as below:

1

|ΥP ∪ Ωs
P |

∑

j∈ΥP∪Ωs

P

(SNPP
j )× Pr(SNPP

j ) =
|ΥP |

|ΥP ∪ Ωs
P |

.

(7)
In the following, we illustrate our numerical results that

represent the relationship between storage, inference power
of the curious party at the SPU, and LD values. We assume
|ΥP | = 4 million and |ΥP ∪ΩP | = 40 million. We define the
percentage of storage redundancy at the SPU as|Ωs

P
|

|ΥP | × 100

and compute the average value ofPr(SNPP
i = 1) for a SNP

in ΥP for varying values ofµ(k), σ(k), µ(l), andσ(l).7 We
repeat each simulation 100 times to obtain an average. Note
that Method 1 (in Section II-B) is a special case of Method 2
(when the storage redundancy at the SPU is900%), hence
its privacy is the same as900% redundancy in the following
results.

In Fig. 3, we illustrate the variance in the average value of
Pr(SNPP

i = 1) for different values ofµ(k), whenµ(l) = 0.8,
σ(l) = 0.15, and σ(k) = 0.75. We note that “no LD”
curve in the figure represents the case in which the LD
values between the SNPs are ignored. We observe that as the
available side information (i.e., number of un-stored potential
SNPs inΩu

P having LD with the stored ones) increases, the
inference power of the curious party increases, especiallyfor
low values of storage redundancy. For example, to have the
same inference power for the curious party,200% storage
redundancy is required whenµ(k) = 0, whereas it is700%
when µ(k) = 4. Furthermore, even at the maximum (i.e,
900%) storage redundancy, the curious party still has a slight

7Higher values ofPr(SNPP
i = 1) indicate a higher inference power for

the curious party at the SPU.
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Fig. 3. Average probability to correctly infer the locations of patient’s real
SNPs (for the curious party at the SPU) with varying mean values of the
number of LD pairs per SNP (i.e.,µ(k)) and storage redundancy.

probability of inferring the variants of the patient, because
it knows that 4 out of 40 million of the stored content are
variants. Next, in Fig. 4, we illustrate the variance in the
same probability, this time for different values ofµ(l), when
µ(k) = 2, σ(k) = 0.75, and σ(l) = 0.25.8 As expected,
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Fig. 4. Average probability to correctly infer the locations of patient’s real
SNPs (for the curious party at the SPU) with varying mean values of the LD
strength between two SNPs (i.e.,µ(l)) and storage redundancy.

the inference power of the curious party increases when the
strength of LD between the SNPs increases (i.e., whenµ(l)
increases). We observe that the strength of LD, however,
does not affect the inference power as strong ask. Then, in
Figs. 5 and 6, we show theAverage{Pr(SNPP

i = 1)} for
varying standard deviations ofk andl, and with500% storage
redundancy as follows: (i) in Fig. 5, we varyσ(k) andµ(k),
whenµ(l) = 0.8 andσ(l) = 0.15, and (ii) in Fig. 6, we vary
σ(l) andµ(l), whenµ(k) = 2 andσ(k) = 0.75. We observe
that the inference power of the curious party varies (either
increases or decreases) with an increasing value ofσ(k) (σ(l))

8For higher values ofσ(l), the gap between the differentµ(l) curves
becomes negligible, because the distribution becomes almost uniform, rather
than truncated Gaussian.

depending onµ(k) (µ(l)), and, as expected, all curves converge
to a single value for higher values ofσ(k) (σ(l)).
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Fig. 5. Average probability to correctly infer the locations of patient’s real
SNPs (for the curious party at the SPU) with varying standarddeviation and
mean values of the number of LD pairs per SNP (i.e.,σ(k) andµ(k)) and
storage redundancy.
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Fig. 6. Average probability to correctly infer the locations of patient’s real
SNPs (for the curious party at the SPU) with varying standarddeviation and
mean values of the LD strength between two SNPs (i.e.,σ(l) andµ(l)) and
storage redundancy.

Next, considering the individual characteristics of the real
SNPs (i.e., their severity levels), we study the level of genomic
privacy of a patient against a curious party at the SPU. The
severity of a SNPi can be defined as the privacy-sensitivity
of the SNP whenSNPP

i = 1 (i.e., when it exists as a
variant at the patient P). For example, a real SNP revealing
the predisposition of a patient for Alzheimer’s disease canbe
considered more severe than another real SNP revealing his
predisposition to a more benign disease. Severity values ofthe
SNPs are determined as a result of medical studies (depending
on their contributions to various diseases) and tables of disease
severities provided by insurance companies (e.g., percentage of
invalidity). We denote the severity of a real SNPi asVi, and
0 ≤ Vi ≤ 1 (1 denotes the highest severity). Thus, we define
the genomic privacy of the patient P as below:

ΦP = −
∑

i∈ΥP

log2
(

Pr(SNPP
i = 1)

)

× Vi. (8)



We do not use the traditional entropy metric [38], [39] to
quantify privacy, as only one state ofSNPP

i poses privacy
risks (i.e.,SNPP

i = 1), as discussed before.
First, we study the relationship between the storage re-

dundancy and the severity of the real SNPs by focusing on
three types of patients: (i) patient A, carrying mostly low
severity real SNPs (inΥA), (ii) patient B, carrying mostly
high severity real SNPs (inΥB), and (iii) patient C, car-
rying mixed severity real SNPs (inΥC). For each patient,
the highest level of privacy is achieved when the storage
redundancy is maximum (as in Method 1 in Section II-B).
Thus, we recognize this level as100% genomic privacy for
the patient. For the evaluation, we take the highest privacy
level of patient C as the base and normalize everything with
respect to this value. We use the following parameters for the
simulation. The severities of patient A’s and patient B’s real
SNPs are represented as truncated Gaussian random variables
with (µA, σA) = (0.25, 0.15) and (µB , σB) = (0.75, 0.15),
respectively. Furthermore, the severity of patient C’s real SNPs
are represented as a uniform distribution between0 and1. We
also setµ(l) = 0.8, σ(l) = 0.25, µ(k) = 2, andσ(k) = 0.75.
In Fig. 7, we illustrate the increase in privacy with increments
in the storage redundancy for these three types of patients
(A, B, and C). We observe that by increasing the storage
redundancy, a patient with high severity real SNPs gains more
privacy than a patient with lower severity real SNPs, hence
the storage redundancy can be customized for each patient
differently based on the types of his real SNPs. It can be argued
that the amount of storage redundancy for a patient can leak
information (to the curious party the SPU) about the severities
of his real SNPs. However, the severity of the SNPs is not the
only criteria to determine the storage redundancy for a desired
level of genomic privacy as we discuss next.

Finally, we study the relationship between the severity of
the real SNPs, the number of LD pairs per SNP (number
of SNPs with which a particular SNP has LD, i.e.,k), and
the storage redundancy. We assign theVi values of the real
SNPs (inΥP ) following a uniform distribution between0 and
1. We set the LD parameters asµ(l) = 0.8, σ(l) = 0.25,
µ(k) = 2, andσ(k) = 1.5. Then, we observe and compare the
following potential scenarios in different types of patients: (i)
The real low severity SNPs of the patient (i.e., his real SNPs
with low Vi values) have a higher number of LD pairs (i.e.,
higherk values) with respect to his high severity real SNPs9;
(ii) k values are assigned randomly to the SNPs; and (iii)
the real high severity SNPs of the patient (i.e., his real SNPs
with high Vi values) have a higher number of LD pairs (i.e.,
higher k values) with respect to his low severity real SNPs.
Again, we set a patient’s genomic privacy to100% when the
storage redundancy is maximum at the SPU (as in Method 1
in Section II-B). We illustrate our results in Fig. 8, and show
different storage redundancy requirements for different types of
patients (to provide the same level of privacy). For example, to
achieve40% genomic privacy, the SPU requires400% storage
redundancy for a patient whose less severe real SNPs have
more LD pairs, whereas it requires600% storage redundancy
for another patient whose more severe real SNPs have more LD
pairs (which means more storage per patient, as discussed in

9We note that, in all cases,k values are obtained from the same truncated
Gaussian distribution withµ(k) = 2, andσ(k) = 1.5.
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Fig. 7. Increase in genomic privacy of different types of patients with100%
increments in the storage redundancy. For example, increasing the storage
redundancy from400% to 500% would increase the privacy of Patient A
(who carries mostly low severity real SNPs) by5%, whereas the same scenario
increases the privacy of Patient B (who carries mostly high severity SNPs) by
13%.

Section III-A). This result also supports our belief to customize
the storage redundancy for each patient.
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Fig. 8. Level of genomic privacy, as defined by (8), for different types of
patients with varying storage redundancy.

We obtained similar patterns for further variations of the
variables but we do not present these results due to the space
limitation. In summary, depending on the actualµ(k), σ(k),
µ(l), σ(l), and Vi values (which will be determined as a
result of the medical research), the storage redundancy can
be determined (and customized for each patient based on
the types of his variations) for this approach to keep the
genomic privacy of the patient at a desired level. Note that
the curious party at the SPU cannot infer the real SNPs of the
patient (or the severities of the patient’s real SNPs) from the
amount of customized storage redundancy, because the storage
redundancy (for a desired level of genomic privacy) depends
on various factors. For example, a patient with low storage
redundancy (for a desired level of genomic privacy) could mean
that (i) he carries mostly low severity real SNP (as in Fig. 7),
(ii) he carries mixed severity real SNPs, but his less severereal
SNPs have more LD pairs (as in Fig. 8), (iii) his real SNPs
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Fig. 9. Privacy-preserving protocol for disease-susceptibility test using
Method 3.

(regardless of their severities) have low number of LD pairs(as
in Fig. 3), or (iv) his real SNPs (regardless of their severities)
have low LD strengths (as in Fig. 4).

D. Method 3: Encrypted Locations at the SPU

Let LP = {Li : i ∈ ΥP } represent the set of locations (on
the DNA sequence) of the patient P’s real SNPs (inΥP ). As
opposed to the previous two approaches, here, we propose to
encrypt the locations of the SNPs along with their contents.
By doing so, we save storage costs by storing only the real
SNPs inΥP at the SPU (around 4 million) while providing
the highest level of privacy (as in Section II-B). These benefits,
however, come with a cost in the practicality of the algorithm,
introducing extra steps for the patient (P) during the protocol.
Although we can assume that these extra steps can easily be
handled via the patient’s smart card or mobile device, this
approach still requires more message exchanges (as will be
described next) between the parties, compared to the previous
two approaches.

In some environments, randomly splitting the weak secret
of the patient, and distributing two shares of the weak secret
key to the SPU and MC might not be acceptable (e.g., when
it is likely that the SPU and MC will collaborate to retrieve
patient’s weak secret). Therefore, for the sake of completeness,
in the following, we present Method 3 with and without proxy
encryption (i.e., without distributing the patient’s secret to other
parties).10

1) With Proxy Encryption: The initial steps of the protocol
are the same as in Section II-B, except for Steps 2 and 3 in
which the locations of the SNPs are encrypted and a Bloom
filter [40] is generated. Below, we summarize the different steps
of this approach (the unchanged steps are not repeated). These
steps are illustrated in Fig. 9.

• Step 2: The Certified Institution (CI) first determines the
locations of P’s real SNPs (inΥP ) and constructsLP . Then,
the CI constructs a Bloom filter using the elements ofL

P as
inputs.

10Method 1 and Method 2 can also be modified similarly to avoid proxy
encryption.

A Bloom filter is a simple space-efficient randomized data
structure for representing a set in order to support membership
queries [40]. A Bloom filter for representing a setL

P is de-
scribed by an array ofκ bits, initially all set to0. It employsγ
independent hash functionsH1, . . . ,Hγ with range{1, . . . , κ}.
For every elementLi ∈ L

P , the bitsH1(Li), . . . ,Hγ(Li) in
the array are set to1. A location can be set to1 multiple times,
but only the first change has an effect.

After constructing the Bloom filter, the CI encrypts each
element inLP by using a symmetric key shared between the
CI and P (established during Step 0 as in Section II-B) and
generatesLP

E = {E(Li) : i ∈ ΥP }. The CI also encrypts a “0”
value (representing the potential SNPs inΩP ) along with the
real SNPs of the patient (using P’s public key). Furthermore,
the CI associates an arbitrary locationL0 for this “0” value
and encryptsL0 using the symmetric key between the CI and
P to obtainE(L0).
• Step 3:The CI sends the constructed Bloom filter andE(L0)
to the patient, and encrypted SNPs and locations to the SPU.
• Step 6: The MC tells the patient the locations of the SNPs
that are required for the susceptibility test or requested directly
as the relevant SNPs.
• Step 7: The patient inputs each requested locationLj to
the Bloom filter to determine if the corresponding location is
stored at his Bloom filter (i.e., to determine if he has a real
SNP at the corresponding location).

To check ifLj belongs toLP , the patient checks whether
all H1(Lj), . . . ,Hγ(Lj) are set to1. If not, Lj definitely does
not belong toLP . Otherwise, the patient assumesLj ∈ L

P ,
although this may be wrong with some probability. That is,
a Bloom filter could yield afalse positive, where it suggests
thatLj is in L

P even though it is not. This probability can be
decreased at the expense of increasing Bloom filter length (i.e.,
κ). Further, the false positive probability can be significantly
reduced by using some proposed techniques such as [41], [42].
As a result of this process

(a) If the location is in his Bloom filter (i.e., if he has a real
SNP at the corresponding location), P encrypts the location
with the symmetric key between the CI and P.

(b) If the location is not in his Bloom filter (i.e., if he does
not have a real SNP at the corresponding location), P uses
E(L0) as the encrypted location.

We note that the above operations can be easily done via
the patient’s smart card (e.g., by scanning the card at the MC
as a consent to the test) or mobile device (e.g., by consenting
via a smart phone application) by using the stored Bloom filter
output,E(L0), and symmetric key between the CI and P.
• Step 8: The patient sends the SPU the encrypted locations
of the SNPs which will be provided to the MC.
• Step 9:The encrypted SNPs are sent to the MC in the same
order as they are requested in Step 6.

(a) If only the end-result is requested, the corresponding
SNPs are re-encrypted at the SPU under the patient’s public
key (re-encryption under the same public key is discusses in
Section II-A). As there is only one value stored at the SPU
representing the contents of the potential SNPs at which P
does not have a variant (at locationE(L0)), this value is re-
encrypted for each different request of a non-variant, so that



the MC cannot infer the locations of the non-variants of the
patient.

(b) If relevant SNPs are requested, the SPU partially decrypts
the relevant SNPs by using a part of P’s secret key following
a proxy encryption protocol (Section II-A).

• Step 10:Re-encrypted (or partially decrypted) SNPs are sent
to the MC by the SPU.

• Step 11: One of the following two scenarios occur at the
MC:

(a) If only the end-result is requested, the MC computes P’s
total susceptibility to diseaseX by using the homomorphic
properties of the Paillier cryptosystem (similar to the discussion
in Section II-E)11 under the patient’s public key.

(b) If relevant SNPs are requested, the MC decrypts the
message received from the SPU by using the other part of
P’s secret key and recovers the relevant SNPs.

• Step 12:The MC sends the encrypted end-result to the SPU.

• Step 13:The SPU partially decrypts the end-result using a
part of P’s secret key by following a proxy encryption protocol
(Section II-A) and sends it back to the MC.

• Step 14: The MC decrypts the message received from the
SPU by using the other part of P’s secret key and recovers the
end-result.

2) Without Proxy Encryption: In this approach, the SPU
stores only the encrypted SNPs and encrypted locations. Ge-
nomic data encrypted by P’s public key is only decrypted at
P, and the weak secret of P remains only at P (i.e., shares
of the weak secret are not distributed to the SPU or MC).
Most of this approach is the same as Method 3 with proxy
encryption. Indeed, the first 8 steps of the algorithm are the
same, except for the distribution of parts of P’s secret key.The
only difference is the transfer of the end-result or the relevant
SNPs to the MC as follows:

• If the relevant SNPs are requested by the MC, the SPU sends
the encrypted SNPs (by P’s public key) to P. P decrypts these
SNPs (using his weak secret key) and sends them to the MC.

• If the end-result of the susceptibility test is requested bythe
MC, the disease-susceptibility test is done (via homomorphic
operations) at the MC and the encrypted end-result is sent toP.
Then, P decrypts the end-result and sends it back to the MC.

We note that the security of the communication between
P and the MC is provided by symmetric keys as discussed
before. The above operations put some more burdens on the
patient during the protocol. However, we emphasize that these
operations can be smoothly done on the patient’s mobile device
or smart card without requiring a substantial effort from the
patient himself.

In summary, as the locations of the real SNPs are encrypted,
a curious party at the SPU cannot infer the contents of the SNPs
from their locations (as in Section II-B), hence it is enough
to store only the real SNPs inΥP . Furthermore, the privacy
provided by this approach (with or without proxy encryption)
is the same as900% redundancy in Method 2 (i.e., similar
to Method 1), hence we do not discuss it again. Another

11Although the discussion in Section II-E is held consideringMethod 1 (or
Method 2), a similar technique is used for this approach at the MC, hence we
do not discuss it again.

advantage of this approach (i.e., Method 3 in general) is that
individual contributions of the genetic variant markers remain
secret at the MC, because the homomorphic operations are
conducted at the MC. This advantage might become more sig-
nificant when this approach is used for personalized medicine
methods in which the pharmaceutical company (embodied in
this case as the medical unit) does not want to reveal the genetic
properties of its drugs. Thus, if introducing the describedextra
steps for the patient and few additional message exchanges
between the parties are tolerated, this approach operates with
relatively modest storage and yet provides very good privacy.

E. Computing Disease Susceptibility via Homomorphic Oper-
ations

We now present the disease-susceptibility test via homomor-
phic operations at the SPU for Method 1 (Section II-B) and
Method 2 (Section II-C). Similar techniques can be used for
Method 3 at the MC, as discussed in Section II-D.

The SPU uses a proper function to compute P’s predicted
disease susceptibility via homomorphic encryption. Thereare
different functions for computing the predicted susceptibility.
In [26], focusing on one example of many diseases that require
a susceptibility test involving multiple SNPs, Kathiresanet al.
propose to count the number of unfavorable alleles carried
by the patient for each SNP related to a particular disease.
Similarly, in [27], Ashley et al. propose to multiply the
Likelihood Ratios (LRs) of the most important SNPs for a
particular disease in order to compute a patient’s predicted
susceptibility.12 Furthermore, aweighted averaging function
can also be used, which computes the predicted susceptibility
by weighting the contributions of SNPs by their contributions
(e.g., LR values of the SNPs). Note that our proposed privacy-
preserving mechanisms are not limited by the types of the
functions (used to test the disease susceptibility). It is expected
that these functions will evolve over time; hence the proposed
algorithms can be developed to keep up with this evolution.

In the following, we discuss how to compute the predicted
disease susceptibility at the SPU by using a toy example to
show how the homomorphic encryption is used at the SPU.
Initially, we assume that the function at the SPU is weighted
averaging (which is an advanced version of the function
proposed in [26]) and show how the predicted susceptibility
is computed using encrypted SNPs. Then, we show how the
function proposed in [27] (i.e., multiplication of LR values)
can be utilized at the SPU.

1) Weighted Averaging: Assume that (for simplicity) the
susceptibility to diseaseX is determined by the set of SNPs
Ω = {SNPm,SNPn}, which occur at particular locations of
the DNA sequence.13 The contributions of different states
of SNPP

i for i ∈ {m,n} to the susceptibility to disease
X are computed via previous studies (on case and control
populations) and they are already known by the MC. That is,
pi0(X) , Pr(X |SNPP

i = 0) andpi1(X) , Pr(X |SNPP
i = 1)

(i ∈ {m,n}) are determined and known by the MC. Further,
the contribution (e.g., LR value) ofSNPi to the susceptibility
to diseaseX is denoted byCX

i . Note that these contributions

12LR values are determined as a result of medical studies.
13SNPP

m andSNPP
n are not necessarily among the real SNPs of the patient

P (i.e., P does not need to have a variant at those locations).



are also computed by previous studies on case and control
groups and they are known by the MC.

As we have discussed before, the SPU stores the set of SNPs
of the patient P, encrypted by P’s public key(n, g, h = gx).14

Thus, the SPU usesE(SNPP
m, gx) andE(SNPP

n , g
x) for the

computation of predicted susceptibility of P to diseaseX . From
now on, we drop ther values in the above encrypted messages
for the clarity of the presentation (r values are chosen randomly
from the set[1, n/4] for every encrypted message as discussed
in Section II-A). Similarly, the MC provides the following to
the SPU in plaintext: (i) the markers for diseaseX (SNPm and
SNPn), (ii) corresponding probabilities (pij(X), i ∈ {m,n} and
j ∈ {0, 1}), and (iii) the contributions of each SNP (CX

i ).
Next, the SPU encryptsj (j ∈ {0, 1}) using P’s public

key to obtainE(0, gx) and E(1, gx) for the homomorphic
computations.15 Alternatively, we might assume that SNPs of
a patient are stored at the SPU in pairs of{E(|SNPP

i −
0|, gx),E(|SNPP

i − 1|, gx)} for eachSNPP
i , instead of the

actual values of the SNPs. In this case, the above encryption
at the SPU would not be required.

The SPU computes the predicted susceptibility of the patient
P to diseaseX by using weighted averaging. This can be
computed in plaintext as below:

S
X
P =

1

CX
m + CX

n

×

∑

i∈m,n

CX
i

{

pi0(X)

(0− 1)

[

SNPP
i − 1

]

+
pi1(X)

(1− 0)

[

SNPP
i − 0

]

}

.

(9)

The computation in (9) can be realized using the encrypted
SNPs of the patient (and utilizing the homomorphic properties
of the Paillier cryptosystem) to compute the encrypted disease
susceptibility,E(SXP , gx) as below:

E(SXP , gx) =

{

∏

i∈{m,n}

{

[

E(SNPP
i , g

x)E(1, gx)−1
]∆1

i

×
[

E(SNPP
i , g

x)E(0, gx)−1
]∆2

i

}CX

i

}Θ

, (10)

where

∆1
i =

pi0(X)

0− 1
,

(11a)

∆2
i =

pi1(X)

1− 0
,

(11b)

Θ =
1

CX
m + CX

n

.

(11c)

We note that the end-result in (10) is encrypted by P’s public
key.

Then, the SPU partially decrypts the end-resultE(SXP , gx)
using its share (x(1)) of P’s secret key (x) as discussed in
Section II-A to obtainE(SXP , gx

(2)

) and sends it to the MC.
Finally, the MC decryptsE(SXP , gx

(2)

) using its share (x(2)) of
P’s secret key to recover the end-resultS

X
P .

14Encryption is done using the modified Paillier cryptosystemas discussed
in Section II-A.

15This encryption can also be done at the MC and sent to the SPU.

In some genetic tests, the types of the real SNPs (e.g.,
homozygous or heterozygous) become also important. In this
case, SNPP

i can take three different values from the set
{0, 1, 2} to represent a potential SNP (i.e., non-variant), a real
homozygous SNP, and a real heterozygous SNP, respectively.
In such a scenario, to conduct the disease-susceptibility test
via homomorphic operations, the SPU should store the squared
values of the SNPs. That is, for eachSNPP

i of the patient P, the
SPU should storeE((SNPP

i )
2, gx). Depending on the types of

genomic tests that would be supported by the SPU (and the
functions required for these tests), the format of storage of
patient’s SNPs can be determined beforehand, and SNPs can
be stored accordingly just after the sequencing process.

2) Likelihood Ratio Test: We now assume that the predicted
disease susceptibility is computed from the multiplication of
Likelihood Ratios (LRs) of the corresponding SNPs as in [27]
and show how such a computation would be handled at the
SPU by using homomorphic operations.

In this approach, the predicted disease susceptibility is
computed by multiplying the initial risk of the patient (e.g.,
for diseaseX) by the LR value of each SNP related to that
disease (LR value of a SNPi depends on the value ofSNPP

i at
the patient P). The initial risk of the patient P for the disease
X is represented asIPX . We note thatIPX is determined by
considering several factors (other than patient’s genomicdata)
such as patient’s age, gender, height, weight, and environment.
Thus, this initial risk can be computed directly by the MC. We
also note that if the LR value corresponding to a particular SNP
is less than one, the risk for the disease decreases. Otherwise,
if the LR value is greater than one, the risk increases for the
corresponding disease.

Similar to before, we assume that the susceptibility to
diseaseX is determined by the set of SNPs inΩ =
{SNPm,SNPn}. We denote the LR values due toSNPP

i = 0
andSNPP

i = 1 for diseaseX asLi
X(0) andLi

X(1), respec-
tively.

The SPU stores the SNPs of the patient P, encrypted by P’s
public key. The MC sends the following to the SPU: (i)Li

X(j)
values (i ∈ {m,n} and j ∈ {0, 1}) in plaintext, and (ii) the
markers for diseaseX . The MC also encrypts the log of initial
risk value,ln(IPX), by P’s public key and sendsE(ln(IPX), gx)
to the SPU.16

The Paillier cryptosystem does not support multiplicativeho-
momorphism in ciphertext (it only supports the multiplication
of a ciphertext with a constant as discussed in Section II-A).
Thus, instead of multiplying the LR values, we propose using
addition in log-domain at the SPU. Thus, the SPU computes
the predicted susceptibility of P to diseaseX as below:

E(ln(SXP ), gx) = E(ln(IPX), gx)×
∏

i∈m,n

{

[

E(SNPP
i , g

x)·

E(1, gx)−1
]Ξ1

i

×
[

E(SNPP
i , g

x) · E(0, gx)−1
]Ξ2

i

}

, (12)

where

16Alternatively, the contribution of the initial risk to the disease susceptibility
can be included to the end-result at the end, at the MC.



Ξ1
i =

ln(Li
X(0))

(0− 1)
, (13a) Ξ2

i =
ln(Li

X(1))

(1− 0)
. (13b)

We note that (12) corresponds to the below computation in
plaintext:

ln(SXP ) = ln(IPX) +
∑

i∈m,n

{

[

SNPP
i − 1

]

×
ln(Li

X(0))

(0− 1)

+
[

SNPP
i − 0

]

×
ln(Li

X(1))

(1− 0)

}

. (14)

As before, the SPU partially decryptsE(ln(SXP ), gx) using
x(1) (its share of P’s secret key) to obtainE(ln(SXP ), gx

(2)

) and
sends it to the MC. Finally, the MC decryptsE(ln(SXP ), gx

(2)

)
using x(2) (its share of P’s secret key) to recoverln(SXP ),
and computese(ln(S

X

P
)) to obtain S

X
P . Similar to weighted

averaging, if the types of the real SNPs are used for the test (in
which there are three possible states forSNPP

i ), squared values
of the SNPs should be stored at the SPU for each patient.

III. E VALUATION AND IMPLEMENTATION OF THE
PROPOSEDMETHODS

In Fig. 10, based on the discussion in the previous sections,
we graphically compare the proposed methods considering the
level of privacy they provide, their practicality (for the patient),
and their storage requirements (at the SPU). In this section, we
report our findings about the complexity and security of the
proposed methods.
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Fig. 10. Privacy, practicality, and storage overhead comparison of the
proposed methods.

A. Implementation and Complexity Evaluation

To evaluate the practicality of the proposed privacy-
preserving algorithms, we implemented them, and assessed
their storage requirements and computational complexities on
Intel Core i7-2620M CPU with 2.70 GHz processor under
Windows 7 Enterprise 64-bit Operating System. We set the
size of the security parameter (n in Paillier cryptosystem in
Section II-A) to 1024 bits. We computed the disease sus-
ceptibility using weighted averaging (at the SPU or MC, see

Section II-E1)17 and real SNP profiles from [43]. Our imple-
mentation relies on a MySQL 5.5 database managed by the
open source tool MySQL Workbench. To provide a platform-
independent implementation, we used the Java programming
language along with the open-source Integrated Development
Environment, NetBeans IDE 7.1.1., for the implementation of
the Java code.18 In Fig. 11, we illustrate three screen shots
from our implementation of Method 1 in which we illustrate the
operations conducted at the Patient (P), Storage and Processing
Unit (SPU), and Medical Center (MC), respectively.19

In Table II, we summarize the computational and storage
complexities of the proposed methods at (i) Certified Institution
(CI), (ii) SPU, (iii) MC, and (iv) P. We evaluate the proposed
methods considering the following costs: (i) encryption of
patient’s variants, (ii) disease-susceptibility test at the SPU via
homomorphic operations (using ten variants), (iii) decryption
of the end-result (or relevant SNPs), (iv) proxy encryption,
and (v) storage costs, in whichϑ represent the percentage
of storage redundancy at the SPU. We did not explicitly
implement the Bloom filter (for Method 3) and symmetric
enryption/decryption between the parties for the securityof
the communication. However, the computational costs due to
these operations are negligible compared to Paillier encryp-
tion/decryption and homomorphic operations.

We emphasize that the encryption of the variants at the
CI is a one-time operation and is significantly faster than
the sequencing and analysis of the sequence (which takes
days). Further, this encryption can be conducted much more
efficiently by computing some parameters, such as(gr, hr)
pairs, offline for variousr values, for each patient. Indeed, by
computing(gr, hr) pairs offline, we observe that the encryption
takes only 0.017 ms per variant at the CI.

It is also possible to conduct private statistical tests (bya
medical researcher) on the data stored at the SPU in order to
get statistics about the variants of multiple patients. Conducting
such a statistical test for a variant (about its type) on 100K
patients takes around 55 minutes at the SPU and scales linearly
with the number of patients. Note that such a statistical test is
only possible with Method 1 or Method 2; using Method 3 and
querying the encrypted locations of SNPs from 100K patients
is not practical for this application.

In summary, all these numbers show the practicality of our
privacy-preserving algorithms.

B. Security Evaluation

The proposed schemes preserve the privacy of patients’
genomic data relying on the security strength of modified
Paillier cryptosystem (in Section II-A). The extensive security
evaluation of the modified Paillier cryptosystem can be found
in [34]. Below we summarize two important security features
of this cryptosystem.

• One-wayness: This property means that no efficient adversary
has any significant chance of finding a pre-image to the
ciphertext when he sees only the ciphertext and the public
key of the patient. It is shown in [34] that the one-wayness

17LR test in Section II-E2 also has similar complexity.
18We note that our code for the implementation is not optimized, and better

results can be expected with an optimized implementation.
19We skip the illustration of the intermediate steps (discussed in Sec-

tion II-B), and only present the key steps of the algorithm.



(a) (b) (c)

Fig. 11. Implementation of Method 1 at P, the SPU, and MC. In Fig. 11(a), P selects the type of susceptibility test and the MC, which will conduct the test.
Next, in Fig. 11(b), the SPU conducts the disease-susceptibility test using the encrypted SNPs of P and the markers it received from the MC, and sends the
encrypted end-result to the MC. Finally, in Fig. 11(c), the MC receives the encrypted end-result from the SPU, decrypts it using its share of P’s secret key,
and obtains the plaintext end-result of the test. That is, the MC recovers the probability that P will develop “prostate cancer” in the future based on his genetic
variations.

Method 1 and Method 2

@CI @SPU @MC

Paillier Encryption Homomorphic Operations Proxy Encryption Storage Paillier Decryption

30 ms./variant 1 sec. (10 variants) 2 ms. 500 ×
(

1 + ϑ
100

)

MB/patient 26 ms.

Method 3 with proxy encryption

@CI @SPU @MC

Paillier Encryption Proxy Encryption Storage Homomorphic Operations Paillier Decryption

30 ms./variant 2 ms. 500 MB/patient 1 sec. (10 variants) 26 ms.
Method 3 without proxy encryption

@CI @SPU @MC @P

Paillier Encryption Storage Homomorphic Operations Paillier Decryption

30 ms./variant 500 MB/patient 1 sec. (10 variants) 26 ms.

TABLE II
COMPUTATIONAL AND STORAGE COMPLEXITIES OF THEPROPOSEDMETHODS

of the modified Paillier cryptosystem can be related to the Lift
Diffie-Hellman problem which is shown to be as hard as the
partial Discrete Logarithm problem.

• Semantic security: This property ensures that an adversary
will be unable to distinguish pairs of ciphertexts based on the
message they encrypt. It is shown in [34] that if Decisional
Diffie-Hellman Assumption (a computational hardness assump-
tion about a certain problem involving discrete logarithms
in cyclic groups) inZ

∗
n2 holds, then the modified Paillier

cryptosystem is semantically secure.

Finally, if the weak secret of the patient,x, is randomly
divided and distributed to the Storage and Processing Unit
(SPU) and Medical Center (MC) as in Method 1, this weak
secret could be revealed if the MC colludes with the SPU,
but the factorsn, p, andq remain secret. We note that such a
collusion is not considered in this study. However, for the sake
of completeness, in Section II-D2, we present an alternative
approach (Method 3 without proxy encryption) that avoids
distributing the patient’s weak secret to other parties, hence
is robust against such a collusion.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have introduced privacy-preserving
schemes for the utilization of genomic data in medical tests
and personalized medicine methods. We have proposed new
models based on the existence of a Storage and Processing
Unit (SPU) between the patient and the medical unit (e.g.,
healthcare center or pharmaceutical company). We have shown
that encrypted genomic data of the patients can be stored at
the SPU and processed (for medical tests and personalized
medicine methods) using homomorphic encryption and proxy
encryption. For this purpose, we utilize a variation of the
Paillier cryptosystem to encrypt and process the genomic data.
We have proposed different techniques for the storage and
process of the SNPs at the SPU while preserving the patient’s
privacy. Moreover, we analyzed the relationship between the
storage cost, privacy of the patient, strength of relationship
between the genetic markers, and the characteristics of the
markers. This analysis could play a key role for customizing
the storage redundancy of the genomic data for each patient,
while keeping the privacy of the patient at a desired level.
We also implemented the proposed schemes and showed their



efficiency and practicality through a complexity evaluation. We
are confident that our proposed privacy-preserving schemes
will encourage the use of genomic data, by the individual and
by the medical unit, and accelerate the move of genomics into
clinical practice.

The extension of this work opens the doors to various
exciting research opportunities that we briefly discuss in the
following. One of the genomic privacy risks is that several
SNPs reveal more than one disease. Even if the SPU reveals
only the end-results, the SNPs used to test a benign disease
might overlap with the SNPs used to test a serious disease.
Thus, a medical center could obtain information about the
susceptibility of a patient to a serious disease by checkinghis
susceptibility to a benign disease. Therefore, this issue should
also be considered along with the Linkage Disequilibrium (LD)
between the SNPs before using them in medical tests.

Furthermore, as the number of SNPs used increases, the
accuracy of the medical test also increases –up to a point–
and the error in accuracy begins to increase when excessive
numbers of SNPs (irrelevant information) are used. Whereas,
releasing too many SNPs is a risk for a person’s genomic
privacy. Consequently, there is a tradeoff between (i) the
accuracy of the medical test, (ii) the number of SNPs used,
and (iii) privacy. Eventually, it will be important to determine
the optimal number of SNPs and the types of SNPs to be used
for various medical tests in order to (i) maximize accuracy,
(ii) maximize privacy (minimize data leak), (iii) minimize
complexity, and (iv) find an optimal point between these three
factors.
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