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_Abstract—In this paper, we propose privacy-enhancing technolo-US). Whole genome sequencing is also offered through the
gies for medical tests and personalized medicine methodsicv same direct-to-consumer model (but at a higher price). This

utilize patients’ genomic data. First, we highlight the pential i ; i~ ;
privacy threats on genomic data and the challenges of prow low cost of DNA sequencing will break the physician/patient

privacy-preserving algorithms. Then, focusing specifisalon a connection, because_ private citizens (from a_nywhe_re in _the
typical disease-susceptibility test, we develop a new iecture World) can have their genome sequenced without involving
(between the patient and the medical unit) and propose peya their family doctor. This can open the door to all kinds of
preserving algorithms by utilizing homomorphic encryptioand ghuse, not yet fully understood.

Eroxy en<t:_rfyp(tj|o_n. ﬁs?_ummg the whole %enotme seqtl_Jentc[ngm;!ei As a result of the rapid evolution in genomic research,
y a certified institution, we propose to store patients’ genic . . : . .
data encrypted by their public keys at a Storage and Proaagsi SUbetam'aI progress Is ?XpeCte?' n terms of Improyed diag-
Unit (SPU). The proposed algorithm lets the SPU (or the meadic NOSis and better preventive medicine. However, the impact o
unit) process the encrypted genomic data for medical testgla privacy is unprecedented, because (i) genetic diseasebecan
personalized medicine methods while preserving the privaaf unveiled, (i) the propensity to develop specific diseasestf

patients’ genomic data. We extensively analyze the relasioip ; , :
between the storage cost (of the genomic data), the levelesfognic as Alzheimer's) can be revealed, (iii) a volunteer acceptin

privacy (of the patient), and the characteristics of the gamic data. de facto to have his genomic C,Ode made ,pUbI'C (@s 't,a”eadY
Furthermore, we implement and show via a complexity analysi happened) can leak substantial information about his ethni
the practicality of the proposed schemes. Finally, we ewdl heritage and genomic data of his relatives (possibly agains
the security of the proposed schemes and propose new rebeargheir will), and (iv) complex privacy issues can arise if DNA
directions on genomic privacy. analysis is used for criminal investigations and insurance
purposes. Such issues could lead to genetic discriminégign
ancestry discrimination or discrimination due to geograph
Privacy control can be defined as the ability of individualmapping of people). Even though the Genetic Information-Non
to determine when, how, and to what extent information abodiscrimination Act (GINA), which prohibits the use of geniam
themselves is revealed to others. In this way, the usagei-of pnformation in health insurance and employment, attempted
vate data will remain in context and it will be used exclubive solve some of these problems in the US, these types of laws
for the purpose the data owner has in mind. Privacy is usuadlye very difficult to enforce.
protected by both legal and technological means. By usiy@lle  An even more severe case, currently not widely considered,
actions, such as data protection directives and fair in&tion is where a malicious party initiates a cross-layer attack by
practices, privacy regulations can enforce privacy ptaiac utilizing privacy-sensitive information belonging to actim
on a large scale. Yet, this approach is mostly reactive, asrétrieved from different sources (e.g., genomic data, tlona
defines regulations after technologies are put in placevd@a online social network, etc.), thus creating the opporfufut a
this issue, Privacy-Enhancing Technologies (PETS) [1lef® large variety of fraudulent uses of such data. For example, a
be incorporated into the design of new systems in order $tated in the Personal Genome Project (PGP) consent form [5]
protect individuals’ data. PETs protect privacy by elinting a malicious party could make synthetic DNA of a victim
or obfuscating personal data, thereby preventing misuse aord plant it at a crime scene to falsely accuse him. In this
involuntary loss of data, without affecting the functioial hypothetical situation, the attacker can make his acausati
of the information system [4]. Their objective is to make istronger if he has the location patterns of the victim to be
difficult for a malicious entity to link information to spdii  blamed, and hence, knows that the victim was close to the
users. In order to obfuscate personal data, PETs often reljme scene at the time of the crime. Similarly, an attacker
on cryptographic primitives, such as anonymous authdidita can easily obtain information on close relatives of a target
and encryption. from online social network data, thus effectively increasihe
Genomics is becoming the next significant challenge f@otential access to target's genomic data if his relatizsA
privacy. The price of a complete genome profile has plummetkds been sequenced. In other words, even if the victim has
below $200 for genome-wide genotyping (i.e., the characterperfect privacy on his own genome, if the attacker has access
zation of about one million common genetic variants), whicto the DNA sequence of the relatives, he can obtain significan
is offered by a number of companies (located mostly in theformation about the victim's DNA sequence.

I. INTRODUCTION



Even though, at this stage, the field of genomics is generally Challenges of Genomic Privacy

free from serious attacks, it is likely that the above trseitl bviously. th tain obstacles f hievi ai
become more serious as the number of sequenced individualg) Viously, there are certain obstacles for achiéving oaryo

becomes larger. Such was the case of the Internet that \,Bg%genomic_ privacyaTh$si_ﬁre T?ﬁ“y due to (i()j t[}e b.f"‘l?ﬂce
initially run and used by well-intentioned researcherswHo etween privacy and reliability of the genomic data, (iig

ever, once it became more widely used, it became plaguedsﬁ cture of the human genome, and (iii) the evolution of the

uncountable attacks such as spyware, viruses, spam, gotrdhomic research. . , )
Denial-of-Service attacks, etc. Therefore, the need tqpada ~E TS generally protect users’ privacy by either breakire th

PETSs to personal genomic data will only grow with time, a1k between individuals' identities and the data they pev
they are key tools for preventing an adversary from linkingf:9-, rémoving user's identities from the published geieom
particular genomic data to a specific person or from inferrirfat@), or by decreasing the information provided (e.g., by

privacy-sensitive genomic data about a person. using. cryptoglraphic tools or obfuspation techniques).hBot
techniques might reduce the reliability and the accuracy of

It is obvious that users need to reveal personal and eutie genomic data. Thus, a major issue to be addressed when
privacy-sensitive information for genomic tests (e.gtepaity designing PETs is limiting private information leakage lehi
tests, disease-susceptibility tests, etc.). Nevertheteey want keeping an acceptable level of reliability and accuracyhef t
to control how this information is used by the service prev&l genomic data for the researchers and medical units.

(e.g., medical units such as healthcare centers or phauttace Moreover, developing PETs for genomic data has many
cal companies, depending on the type of the test) [6]. Ctgrenunique challenges, due to the architecture of the human
the companies and hospitals that perform DNA sequenciggnome. The human genome is encoded in double stranded
store the genomic data of their customers and patients. OfA molecules consisting of two complementary polymer
course, tight legislation regulates their activities, butis chains. Each chain consists of simple units called nudesti
extremely difficult for them to protect themselves agaimst t (A,C,G,T). The human genome consists of approximatelyethre
misdeeds of a hacker or a disgruntled employee. In a nasition letters. Existing privacy-preserving methods di scale
adversarial scenario, however, making use of this datane|u to these large genomic data sizes; hence current algorithens
legitimate professionals (e.g., physicians and pharrtgjcie  inadequate for privacy protection on the genomic level.
access the data in some way. Therefore, new architectudes anginally, the rapid evolution in the field of genomics prodsice
protocols are needed to store and process this privacytisensmany new discoveries every year, which cause significant
genomic data, while still enabling its utilization by thensee  changes in the known facts. For example, the sensitivity of
providers (e.g., medical units). certain genomic information will change over time; hencis it
crucial to develop dynamic algorithms that can smoothlypada

In this work, our goal is to protect the privacy of users ) . .
d P b y this rapid evolution.

genomic data while enabling medical units to access tH
genomic data in order to conduct medical tests or develop per
sonalized medicine methods. In a medical test, a medicécerB. Related Work
checks for different health risks (e.g., disease susdéib)

of a user by using specific parts of his genome. Similarl
to provide personalized medicine, a pharmaceutical comp
tests the compatibility of a user on a particular medicine,
a pharmacist checks the compatibility of a given medici
(e.g., over-the-counter drug) to a given user. In both stesa 6ivate clinical genomics.

in order to preserve his privacy, the user does not want R .
P b 4 dn [7], Troncoso-Pastoriza&t al. propose a protocol for
i

reveal his complete genome to the medical center or to th . : . .
P g ng searching, which is then improved by Blanton and

pharmaceutical company. Moreover, in some scenarios, i Siﬁasgari [8]. In this approach, one party with his own DNA

t
the pharmaceutical companies who do not want to reveal H . . L
genetic properties of their drugs. To achieve these goads, 2&:552: g;ﬁ;ﬁgz }:hiﬁitzxg'::tgclsl:éh?nihi%r;;eg)?i&geu\s,v&hz;r:]e
r re th nomi Processin L .
propose to store the genomic data &taage and Processing alg compute the similarity of DNA sequences, in [9], Hal.

Unit (SPU) and conduct the computations on genomic d ; . X S
utilizing homomorphic encryption and proxy encryption tdf0POse techniques for privately computing the edit distan

preserve the privacy of the genomic data of two strings by using garbled circuits. In [10], Bruekets
' al. propose privacy-enhanced comparison of DNA profiles

The rest of the paper is organized as follows. In the rest fafr identity, paternity and ancestry tests using homomiarph
this section, we discuss the challenges in genomic privady aencryption. Similar to our work, in [11], Kantarciogkt al.
summarize the related work on genomic privacy. In Sectipn propose using homomorphic encryption to perform scientific
we describe our proposed schemes for privacy-preservitlg mavestigations on integrated genomic data. As opposedi] [1
ical tests and personalized medicine. Furthermore, weya@alwe focus on personal use of genomic data (e.g., in medical
the level of privacy provided by the proposed schemes ftests and personalized medicine methods). In one of thatrece
different design and genomic criteria. Then, in Section lllvorks [12], Baldi et al. make use of medical tools and
we discuss the implementation of the proposed schemes g@nigate string comparison for privacy-preserving patgrtests,
present their complexity and security evaluations. Finalh personalized medicine, and genetic compatibility teststelad
Section 1V, we conclude the paper and discuss new reseaofhutilizing public key encryption protocols, in [13], Caniet
directions on genomic privacy. al. propose securing the biomedical data using cryptographic

Due to the sensitivity of genomic data, research on the
rivacy of genomic data has considerably accelerated over
e past few years. We can put the research on genomic
r%rivacy in three main categories: (i) private string seargh
and comparison, (ii) private release of aggregate data(iand



hardware. Finally, in [14], Eppsteid al. propose a privacy- Il. PETS FORMEDICAL TESTS ANDPERSONALIZED
enhanced method for comparing two compressed DNA se- MEDICINE METHODS

quences by using Invertible Bloom Filter [15]. In this work, we study the privacy issues of medical tests

and personalized medicine methods. Most medical tests and

When releasing databases consisting of aggregate genopigsonalized medicine methods (that use genomic datay#vo
data (e.g., for research purposes), it is shown that knogrpatient and a medical unit. In general, the medical unhés t
privacy-preserving approaches (e.g., de-identificateme) in- family doctor, a physician, a pharmacist, a medical coyncil
effective on (un-encrypted) genomic data [16], [17]. Horeter or an online service. In this study, we consider a malicious
al. [18] prove that the presence of an individual in a cas@edical unit as the potential attacker. That is, a medicil un
group can be determined using aggregate allele frequencigf be a malicious institution trying to obtain private geno
and his DNA profile. In another recent study [19], Gitschighformation about a patient (for which it is not authorized)
shows that a combination of information, from genealogic@ven if the medical unit is non-malicious, it is extremely
registries and a haplotype analysis of the Y chromosorggficult for medical units to protect themselves against th
collected for the HapMap project, allows for the predict@in misdeeds of a hacker or a disgruntled employee, and hence,
the surnames of a number of individuals held in the HapMaRe attacker can also be considered as a hacker or a careless
database. Thus, releasing genomic data (even in aggreggifployee in the medical unit. Similarly, the genomic data is
form) is currently banned by many institutions due to thigho sensitive to be stored on users’ personal devices (yostl
privacy risk. In [20], Zhouet al. study the privacy risks of due to security, availability, and storage issues), hends i
releasing the aggregate genomic data. They propose a rigkky to leave the users’ genomic data in their own hands. In
scale system to classify aggregate data and a guide for HRlition, extreme precaution is needed between the patight
release of such data. Recently, using differential prive@s the medical unit due to the sensitivity of genomic data. Thus
proposed by Fienberg al. [21]; they aim to ensure that two we believe that a Storage and Processing Unit (SPU) should
aggregated databases, differing from each other by only df€ used to store and process the genomic data. We note that a
individual's data (e.g., DNA sequence), have indistinbatsle private company (e.g., cloud storage service), the goventm
statistical features. or a non-profit organization could play the role of the SPU.

We also assume that the SPU is an honest organization, but it

Recently, in [22], utilizing a public cloud, Cheet al. might be curious (e.g., existence of a curious party at tHe)SP
propose a secure and efficient algorithm to align short DN#ence genomic data should be stored at the SPU in encrypted
sequences to a reference (human) DNA sequence (i.e., rézieh (i.e., the SPU should not be able to access the content of
mapping). Finally, in [23], Wanget al. propose a privacy- patients’ genomic data). This general architecture istithted
protection framework for important classes of genomic conn Fig. 1.
putations (e.g., search for homologous genes), in which the
partition a genomic computation, distributing sensitiaadto

(\
the data provider and the public data to the data user. 4 {/2

) . . ) Curious Par ty
In this work, we focus on medical tests (e.g., disease- Wy @ st
susceptibility test) and personalized medicine methodssinyg .

=

users’ genomic data while protecting user's genomic pyivac %jE
NS

As a result of our extensive collaboration with genetigists
clinicians, and biologists, we conclude that DNA string eom
parison (in which the medical unit can only check if the pattie Patient
carries a specific combination of variants or not) is insigfit

in many medical tests (that use genomic data) and would S

not be enough to pave the way to personalized medicine. As ‘@

it will become clearer in the next sections, specific vagant =

must be considered individually for each genetic test. Thus Persondlized medicine  Disease susceptibility test  Compatibility check
as opposed to the above private string search and comparison @ pharmacists & medical cenfer © medical council
technigues, which focus on privately comparing the distanc \[/
between the genomic sequences, we use the individual t&rian <

of the users to conduct genetic disease susceptibilitys test =

and develop personalized medicine methods. We consider the Malicious 3% party

individual contribution of each variant to a particular efise,

for which a string comparison algorithm (such as Privafég. 1. General architecture between the patient, SPU, dnedical unit.
Set Intersection [24], [25]) would not work. Further, in our

proposed algorithms, we consider the statistical relatign For the simplicity of presentation, in the rest of this saafi
between the variants for the genomic privacy of the users. Wwe will focus on a particular medical test (hamely, compgitin
addition, we make use of a Storage and Processing Unit (SRjénetic disease susceptibility). We note that similar riégplnes
between the user (patient) and the medical unit to store tweuld apply for other medical tests and personalized medici
genomic data in encrypted form and make computations omiethods. In a typical disease-susceptibility test, a nadic
using homomorphic encryption and proxy encryption. center (MC) wants to check the susceptibility of a patient (P



to a particular diseas& (i.e., probability that the patient Pthe attacker to identify a person [30]. These situationddcou
will develop diseaseX). It is shown that a genetic diseaselead to genetic discrimination such as denying a personssac
susceptibility test can be realized by analyzing partic8lagle to health (or life) insurance or obstructing his employment
Nucleotide Polymorphisms (SNPs) of the patient via somopportunities. As we discussed before, in our setting, toth
operations, such as weighted averaging [26] or LikelihoddC and SPU pose a threat to the patient’s privacy. On one
Ratio (LR) test [27]. A SNP is a position in the genome holdingand, the MC can either be a malicious institution trying to
a nucleotide (A, T, C or G), which varies between individual®btain private information about the patient or it can bekiedc
For example, it is reported that there are three particildaeg by another malicious entity. On the other hand, the SPU is
bearing a total of ten particular SNPs necessary to analyzeansidered as an honest but curious entity. Thus, our gaal is
patient's susceptibility to Alzheimer’s disease [28]. B&NP build mechanisms in which the patient can preserve the gyiva
contributes to the susceptibility in a different amount ane of his genomic sequence (his real SNPs) while enabling the
contribution amount of each SNP is determined by previol4C to access his genomic data and conduct genetic tests.
studies on case and control groups (these studies are Ipedblis We assume that the whole genome sequencing is done by
in several papers). Furthermore, some of the SNPs cordribat Certified Institution (Cl) with the consent of the patient.
to the development of a disease, whereas some are protectitereover, the genomic data of the patient is encrypted by

In general, there are two alleles (nucleotides which resittee same CI (using the patient’s public key) and uploaded
at a SNP position) observed at a given SNP position: (i) The the SPU so that only the patient can decrypt the stored
major allele is the most frequently observed nucleotidel apotential or real) SNPs, and the SPU cannot access the SNPs
(i) the minor allele is the rare nucleotide. Everyone intser of the patient. We are aware that the number of discovered
one allele of every SNP location from each of his parents. #NPs increases with time. Thus, the patient's complete DNA
an individual receives the same allele from both parentss hesequence is also encrypted as a single vector file (via syritmet
said to have @&omozygous variant for that SNP location. If, encryption using the patient’s key) and stored at the SPuk th
however, he inherits a different allele from each parene(omvhen new SNPs are discovered, these can be included in the
minor and one major), he hasheterozygous variant. There pool of the previously stored SNPs of the patient. We also
are approximately 40 million approved SNPs in the humassume the SPU does not have access to the real identities of
population as of now (according to the NCBI dbSNP [29]) antthe patients and data is stored at the SPU by using pseudpnyms
each patient carries on average 4 million SNPs (e.g., va)iarthis way, the SPU cannot associate the conducted genomic
out of this 40 million. Moreover, this set of 4 million SNPs istests to the real identities of the patients. As an alteraathe
different for each patient. From now on, to avoid confusiomrivacy of the genomic data at the SPU can be further inctkase
for each patient, we refer to these 4 million variants asréaé  usingprivacy enhanced access control [31] or Oblivious RAM
S\Ps and the remaining non-variants (approved SNPs that (0-RAM) storage [32] techniques, in which the data access
not exist for the considered patient) as fhatential SNPs of  patterns are completely hidden from the server (SPU).
the patient; when we only say “SNPs”, we mean both the realDepending on the access rights of the MC, the SPU can
and potential SNPs. either (i) computePr(X ), the probability that the patient will

At this point, it can be argued that these 4 million realevelop the diseasé& by checking the patient’s encrypted
SNPs (nucleotides) could be easily stored on the patienS8IPs via homomorphic encryption techniques $34r (ii)
computer or mobile device, instead of the SPU. Howevarrovide the relevant SNPs to the MC (e.g., for complex disgas
we assert that this should be avoided due to the followinlgat cannot be interpreted using homomorphic operations).
issues. On one hand, the number of approved SNPs in hurTéese access rights are defined either jointly by the MC amd th
population continues to increase (even faster than the ®logpatient or by the medical authorities. Further, accesgsigan
Law) with new discoveries. Further, types of variations ibe enforced by using a secure attribute-based system as]in [3
human population are not limited to SNPs, and there are otiWe note that homomorphic encryption lets the SPU (or MC)
types of variations such as Copy-Number Variations (CNVs)pmputePr(X) using encrypted SNPs of the patient P. In other
rearrangements, or translocatibnsonsequently the requiredwords, the SPU (or MC) does not access P’s SNPs to compute
storage per patient is likely to be considerably more thdg orhis predicted disease susceptibility. We use a modification
4 million nucleotides. This higher storage cost might di#f the Paillier cryptosystem (described in Section 1I-A) tpgart
affordable to an average patient (via desktop computers the homomorphic operations at the SPU (or MC).
USB drives), however, genomic data of the patient should bewe propose three different techniques for the storage and
available any time (e.g., for emergencies), thus it showd brocess of the SNPs at the SPU and the preservation of the
stored at a reliable source such as the SPU. On the other hagadient’s privacy: (i) Method 1 in Section II-B, (i) Metho2l
as we discussed before, leaving the patient’s genomic datéri Section 1I-C, and (iii) Method 3 in Section II-D. We
his own hands and letting him store it on his computer @fescribe these proposed techniques in detail in the follow-
mobile device is risky, because his mobile device can bestoing subsections. We also discuss the computation of genetic
or his computer can be hacked. disease susceptibility by using homomorphic operations in

A potential attacker can learn about the susceptibilitfedb®
patient to privacy-sensitive diseases if he obtains soreeif{p  2Note that even the most efficient implementation of O-RAMuddtices
real SNPs of the patient. Moreover, the knowledge of 75 reagh storage overhead to the client (patient) [33], and ftomiuces20 ~

; iTh ; ; 25 times more overhead with respect to non-oblivious stordges once it
SNPs (out of apprOX|mater 4 million), if not fewer, will eple becomes more efficient, O-RAM storage could be considereal fature add-

on to the proposed privacy-preserving mechanisms.
1our proposed privacy-preserving mechanisms can be snyaadhlpted for 3In one of our proposed schemes (Method 3 in Section IHBY)X) is
these alternative variations. computed at the MC via homomorphic operations.



General Notations

SNPP Type of SNP:, SNP;, of the patient PSNPf) € {0, 1}, 0 representing a potential SNP (i.e., non-variant) for P, amdpresenting
‘ a real SNP (i.e., a variant) for P.

Sf,f Predicted susceptibility of the patient P to disease
Tp Set of real SNPs of the patient P (SNPs at which P has a vademind 4 million at each patient).
Qp Set of potential SNPs of the patient P (SNPs at which P doedan@ a variant: around 36 million at each patient).
Cryptographic Notations
n,g Public parameters of modified Paillier cryptosystem.
x Weak secret key of the patient P.
z(® ith share of the patient P’s secret key.
g* Public key of the patient P.

E(m, g*) | Encryption of message: with the patient P’s public key.

Susceptibility Test via Weighted Averaging

p;'.(X) Probability that P would develop diseadg given SNPI = j , Pr(X|SNPT = j).

cX Contribution of SNP; to the susceptibility to diseas¥.

Susceptibility Test via Likelihood Ratios

1% Initial risk of the patient P for diseas¥.
L% () Likelihood Ratio (LR) wherSNP; = j for diseaseX.

TABLE |
NOTATIONS AND DEFINITIONS.

_ (u—1) mod n?

Section II-E. In the rest of this work, for simplicity of thewhere A(u)
presentation, we do not consider the type of the variant atvebd n}.

real SNP location (i.e., whether the variation is homozygou ; P

hetgrozygous for that real SNP); we only conside.r whether tﬁzm;rrgotgﬁfgl&p?égpﬁgﬁg. t\'?v?)SL(jjrin]rirtevr\]I? Qﬁjg%gﬁlmﬁgfs
patient has a real SNP or not at a particular location. HOWeVSnd rs, under the same public keyn,g,h — g*), such
the proposed approaches and the analysis (in Section &) Chat E2(m1 r1.g%) = (T, T0) and E(my ,7:!;, o) :g(T’Q T2
easily be extended to cover the types of the variants. Invdede p oo\ e Ao that is g’ c?)nstant number. Then tﬁé éeiow-

facilitate future references, frequently used notatiarsliated ; : : e
in Table | for the different stages of the proposed Schemes_(r:r;sgttgosr;esctierr:]qmomorph|c properties are supported by Raillie

A. Paillier Cryptosystem e The product of two ciphertexts will decrypt to the sum of

. . . ) i .. their corresponding plaintexts.
In this section, we briefly review the modified Paillier

cryptosystem (described in detail in [34], [36]), which weeu ~ D(E(m1,71,9") - E(ma, r2,9%)) =

in this work_, and its homon"_norphic_ properties. D(TL -T2, 7} -T2 mod n?) =mi+my modn. (4)
The public key of the patient P is representedasy, h = i ) )

%), where the strong secret key is the factorizatiomof pg  ® An encrypted plamt(_ext raised to a constanill decrypt to

(p, q are safe primes), the weak secret keyrig [1,n2/2], the product of the plaintext and the constant.

andg of order(p —1)(¢ —1)/2. Such ag can be easily found D(E(m1,1,¢°)¢) = D((TY)°, (TY)¢  mod n?)

by selecting a random € Z*, and computingy = —a?".

n?2

yforallu € {u <n?|u=1

=cmy mod n. (5)
Encryption of a messageTo encrypt a message € Z,,, we . .

first select a random € [1,7/4] and generate the cip;hertextThese homqmorphlc operations are g:onducted at the SPU (or
pair (7, T3) as below: MC depending on which approach is used) to compute the

predicted susceptibility of the patient P to disedsgas will
Ty =g¢" mod n* and T, =h"(1+4mn) mod n®. (1) be discussed in Section II-E.

. Proxy encryption: The patient's weak secret key is ran-
Re-encryption of a messageAn encrypted messagd’, 75) ~ gomiy divided into two sharesz() and () (such that

can be re-encrypted under the same public key, using a new_~ ) + 2®). 2 is given to the SPU and:® is

random number, & [1,7/4] as below: given to the MC. Using the above Paillier cryptosystem, an
) encrypted messag€ly,T>) (under the patient’s public key)
can be partially decrypted by the SPU (usirly)) to generate

Decryption of a messageThe message: can be recovered the ciphertext pai(Ty,T5) as below:
as follows: Ty=T, and Tp= Tg/Tf(l) mod n?. (6)

Ty = ¢"Ty mod n? and Ty = h™ T, mod n?.

m = A(T/TY), ®3)



Now, (7%, T3) can be decrypted at the MC usin?) to recover 2 etercrs e o ncrrerion ™ ~
the original message:(? can be provided to the MC once .- _ 774/} v ))
the patient is registered to the medical center or through th 3) Encrypted variants 4 SE
patient’s digital ID card. Further details about the dinition f o Storace on—. CU,Y
of shares are out of the scope of this paper. We note THAL™ (""" Yy @ s
this approach is not proxy re-encryption; it is based onetecr %‘v; 1@
sharing. R 8§83 57

Overall, this modified Paillier cryptosystem is not key epti I ixd 58
mal, because the size of the MC's and SPU’s secret storages |2 gag 5%
do not remain constant. That is, both the MC and SPU need "8 o
to store a secret for every patient. However, this storagé co /., °
can be considered negligible when compared to the storage o S el v susceprviin ¥o sisegse X' & a
the genomic data. Further, the shares (e:f’, andz(?)) can & : =
be stored by the patient and sent to the MC and SPU only , -
when it is needed in order to resolve this storage issue at theurien ) pedegemer Maldous 7%

expense of extra communication overhead. Furthermore, the

above modified Paillier cryptosystem is not proxy invisjbleFig. 2. Privacy-preserving protocol for disease-susbéityi test using

because all participants of the systems (i.e., P, MC and SpY{lghcd 1 or Method 2.

should be aware of the existence of the proxy. We discuss the

security evaluation of this cryptosystem in Section IlI-B. e Step 3: The CI sends the encrypted SNPs of P to the SPU
(so that the SPU cannot access to P’'s SNPs).

B. Method 1. Plaintext Locations at the SPU e Step 4: The patient provides a part of his secret key'{)
In this approach, even though the SNPs of the patient deethe SPU.

stored encrypted (via the patient's public key), the lamagiof 4 Step 5: The MC wants to conduct a susceptibility test on P

is because, when a particular SNP (or set of SNPs) are quetdgdet key £(2)) to the MC.

ggrfgiol\qﬁé tICI%)SPU should know which SNPs to process (grStep 6:The MC provides genetic variant markers, along with

We assume thaNP; at the patient P is represented a%nhew individual contributions (to the disease suscelityj to

SNP? and SNPY = 1, if P has a real SNP (i.e., variant) - SPU. _ o _

at this location, anG;NPf — 0, if P does not have a variant at® Step 7:If _the dlsease susceptibility can be |!1terpreted by
this location. We lefl p be the set of real SNPs of the patienbomomorp_hlc operations, the SPU computes P's total suscep-
P (at whichSNP? = 1). We also letQp represent the set tiPility to diseaseX from the individual effects of SNPs by

of potential SNPs (at whicSNPf — 0). As the locations of YSing the homomorphic properties of the Palillier cryptosys

the SNPs are stored in plaintext, if the SPU only stores tRg described in Section 1I-E. Otherwise, the SPU provides th
real SNPs inYp, a curious party at the SPU can learn afi€'evant SNPs to the MC based on MC's access rights.

real SNP locations of the patient, and hence, much about misStep 7: The SPU partially decrypts the end-result (or the
genomic sequenceTherefore, the SPU stores the contents @elevant SNPs) using a part of P’s secret key following a prox
both real and potential SNP locations (iff pUQp}) in order encryption protocol (Section II-A).

to preserve the privacy of the patient. Below, we summarigestep 8: The SPU sends the partially decrypted end-result (or
the proposed approach for the privacy protecting diseasge relevant SNPs) to the MC.

susceptibility test by using this particular storage teghe. e Step 9: The MC decrypts the message received from the

This approach is illustrated in Fig. 2. ; N
e Step 0: The Cryptographic keys (public and secret keys) cng: (;J rg:lljrlltg(gr]?hgt?glre:\?:r:t g‘;\IFF),SS) secret key and recovers the

each patient are generated and distributed to the patiaritseyd i ) ) )
the initialization period. Then, symmetric keys are essilld ~ The above technique provides the highest level of privacy
between the parties, using which the communication betwead practicality for the patient, because (i) from the viesinp

the parties is protected from an eavesdropper. We notetthat ®f & curious party at the SPU, inferring the locations of the
distribution, update and revocation of cryptographic kays Patient’s real SNPs with the stored information is equintle

handled by a trusted entity (similar to e-banking platforms 1o inferring them with no information about the patient, gid
the patient is not involved in the protocol after the seqiremnc

t.oStLeep C%e-rznlee g?ﬂgtri]:u(tiF:))np(rg\ll)ligf Qés sample (e.9., his salivgdy cent for the consent between the patient and the MC for a
quencing. particular test). However, this level of privacy and preality

e Step 2: The Cl sequences P, and encrypts the contents @fmes at the cost of extra storage overhead at the SPU (due

his real and potential SNP locations §ff » US2p}) by using to the storage of both real and potential SNPs as discussed in

P’s public key. Section llI-A).

“The nucleotides corresponding to variants at particulaations of the C. Method 2: Redundant Storage at the SPU

DNA sequence are public knowledge. Thus, even though théewt: of P L .
patient's real SNPs are encrypted, a curious party at the &RUinfer the Due to the significant storage overhead (which is projected

nucleotides corresponding to these SNPs from their piineeations. to increase with new discoveries in the field of genomics)



mentioned in Section 1I-B, here we propose another teclniqu We let Q% and Q% denote the set of P’s potential SNPs
that reduces the storage overhead at the SPU at the expengbaifare stored (for redundancy) and not stored at the SPU,
decrease in privacy. In a nutshell, we leave everythingdnees respectively 03 U Q% = Qp). Further,K; is the set of SNPs
as in Section 1I-B, but, instead of storing the contents of alith which a particular SNR has LD, and K| = k (for each
potential and real SNP locations, we store the real SNPseof tBNP, thesé& SNPs are chosen among approximately 40 million
patient along with a certain level of redundancy (i.e., eotd SNPs). We assume that> 0 and it is a truncated Gaussian
of some potential SNP locations). In other words, to misleadndom variable with only discrete values and obtained from
a curious party at the SPU, among the 40 million discovereddistribution with mean:(k) and standard deviation(k).
SNPs, we store the approximately 4 million real SNPs (for Initially, we computePr(SNPY) for all (real and potential)
which SNPf = 1,1 € Tp) along with some redundant contenSNPs in{Yp U Q%} by using the LD relationships between
from Qp (with SNPf = 0), for each patient. these SNPs and those §f;. As all SNPs in{Tp U Q3 } are
Again, we assume that the location of the encrypted (regifcrypted and stored at the SPU, only the LD relationships
or potential) SNPs are stored in plaintext at the SPU ahétween these SNPs and the un-stored SNP<€2}n are
there exists a potential curious party at the SPU trying teelpful for the curious party. Therefore, for each real SNP
infer the real SNPs of the patient (iip). An important issue ¢ € Tp, we observePr(SNPf = 1|SNP5L = 0) for all
to consider in this approach is thankage Disequilibrium m € {K;NQ}%}, get the average of these values, and compute
(LD) between SNPs [37]. LD occurs when SNPs at the twlr(SNPY = 1). Similarly, for each potential SNP € Q3,, we
loci (SNP positions) are not independent of each other. F@lbservePr(SNPf = 0|SNPZ = 0) for all m € {K; N Q%},
simplicity, we represent the LD relationship between twdPSN zyerage these values, and comthéSNPf =0). We let!

i and j as Pr(SNP;|SNP;), where SNP; (or SNP;) takes pe the indicator of the LD strength betwéen two SNPs. Thus,
values from the sef0, 1}.> We note that LD relationships areye representPr(SNPY = 1|SNPY = 0) = 1 (i € Yp,

defined among all 40 million discovered SNPs, regardless of {K; N Q%}) and Pr(SNPP _ 0|SNPP =0) =1
T 7 m

. . . . f P
their type (i.e., real or potential) at a particular patient j € Q5,m e {K; nQ%}) as truncated Gaussian random

_As in Section II-B, the SPU provides the end-result of gariaples with rangé0.5, 1], obtained from a distribution with
disease-susceptibility test or the relevant SNPs to the Mfneany(1) and standard deviation(l). Finally, if |K;| = k = 0
However, in this case, if a particular potential SNP (re¢eees o |i; N Q%] = 0 for a SNPi in {Yp UQ3%}, we update
by the MC or needed in the susceptibility test) is not Storqdr(SNPf = 1) considering the fact that the expected value of

at the SPU (i.e.SNP; = 0), one of the following two 4 stored SNPs is known by the curious party as below:
scenarios occurs: (i) If the SPU provides the relevant SNPs

to the MC, MC infers the missing potential SNPs from the 1 P py_ TPl
reference genome (since it is known that the missing patenti |Yp U Q5| TX:Q (SNPj ) PY(SNPJ' )= Tp U]
SNPs are not a variant for P), or (ii) if the SPU provides the JEL PRy @)

end-result of the susceptibility test, the SPU uses thetf@tt |, yhe following, we illustrate our numerical results that

P . . .
SNP;" = 0 for each missing potential SNP represent the relationship between storage, inferencespow
As expected, the amount of storage redundancy (due to e curious party at the SPU, and LD values. We assume
storage of the content froflp), along with the LD between #TP| = 4 million and|Y» U Qp| = 40 million. We define the
the SNPs and their characteristics, determine the level o s

\
patient’s genomic privacy. Therefore, in the rest of thisties, pgrcentage of storage redundancy at thPe SPlf%g%s x 100
we analyze the relationship between the amount of reduydarfld compute the average valuelf(SNP;” = 1) for a SNP
LD values, characteristics of the SNPs, and the level ofggiv in Y p for varying values ofu(k), o(k), (1), ando(l).” We
To do so, first, we observe the average probability of coiyectepeat each simulation 100 times to obtain an average. Note
inferring the locations of P’s real SNPs (Ifip) considering that Method 1 (in Section II-B) is a special case of Method 2
varying amounts of redundancy and the LD values betwe@ihen the storage redundancy at the SPW(8%), hence
the SNPs. That is, how much information from a patient's ufts privacy is the same a00% redundancy in the following
stored potential SNPs is revealed to the curious party at #@sults. ) ) )
SPU about the locations of his real SNPs? This problem cann Fig. 3, we illustrate the variance in the average value of
also be formulated similarly if the goal of the attacker is t&r(SNP; = 1) for different values ofu(k), whenp(l) = 0.8,
determine the type of the variant at a real SNP location (e.g(!) = 0.15, and o(k) = 0.75. We note that “no LD”
homozygous or heterozygou)t is worth noting that for this curve in the figure represents the case in which the LD
study, we create realistic models for the LD values and tialues between the SNPs are ignored. We observe that as the
characteristics of the SNPs. Further, for the created nspdéivailable side information (i.e., number of un-stored pos
we try a wide range of parameters and observe a wide rargfdPs in€2p having LD with the stored ones) increases, the
of results to address most potential scenarios. Howeveheas inference power of the curious party increases, espedatly
field of genomics becomes more mature, our models can lpw values of storage redundancy. For example, to have the
replaced by the values obtained from the medical researchsame inference power for the curious par2p0% storage
redundancy is required whem(k) = 0, whereas it is7T00%

5In compliance with genetic observations, we assume thak fhéetween when u(k) = 4. Furthermore, e"e.” at the m{:mmum (I'.e’

two SNPs are not symmetric, i.€@r(SNP;|SNP;) # Pr(SNP;|SNP;). 900%) storage redundancy, the curious party still has a slight

8In this case SNPT can take three different values from the $6t 1, 2},
0 representing a potential SNP (i.e., non-variant),representing a real  ’Higher values ofPr(SNPf = 1) indicate a higher inference power for
homozygous SNP, and 2 representing a real heterozygous GNP f the curious party at the SPU.



H()=08, 0()=015, and o(=0.75 depending om(k) (1(1)), and, as expected, all curves converge

e to a single value for higher values ofk) (o(1)).
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Fig. 5. Average probability to correctly infer the locationf patient’s real
- . ) . ) SNPs (for the curious party at the SPU) with varying standsedation and
probability of inferring the variants of the patient, besau mean values of the number of LD pairs per SNP (iegk) and u(k)) and

it knows that 4 out of 40 million of the stored content arét°rage redundancy.
variants. Next, in Fig. 4, we illustrate the variance in the
same probability, this time for different values pfl), when 500% redundancy, p(k)=2, and o(K)=0.75

— — _ 8
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Fig. 4. Average probability to correctly infer the locatoonf patient's real i ; indivi it
SNPs (for the curious party at the SPUY with varying meanemiaf the LD Next, considering the individual characteristics of thalre

strength between two SNPs (i.(l)) and storage redundancy. SNPS (e, their_severity _Ievels), we study the level ofagait
privacy of a patient against a curious party at the SPU. The
the inference power of the curious party increases when teverity of a SNP: can be defined as the privacy-sensitivity
strength of LD between the SNPs increases (i.e., whgh ©f the SNP whenSNP; = 1 (i.e., when it exists as a
increases). We observe that the strength of LD, howevdgriant at the patient P). For example, a real SNP revealing
does not affect the inference power as strongca3hen, in the predisposition of a patient for Alzheimer’s disease ban
Figs. 5 and 6, we show thAverage{Pr(SNP” = 1)} for considered more severe than another real SNP revealing his
varying standard deviations éfand!, and with500% storage Predisposition to a more benign disease. Severity valuéseof
redundancy as follows: (i) in Fig. 5, we vaey(k) and p(k), SNPs are determined as a result of medical studies (dependin
when (1) = 0.8 and o (1) = 0.15, and (ii) in Fig. 6, we vary ©0n their contributions to various diseases) and tablessefedie
o(1) and (1), when (k) = 2 ando (k) = 0.75. We observe Severities provided by insurance companies (e.g., peageruf
that the inference power of the curious party varies (eithévalidity). We denote the severity of a real SNRsV;, and

increases or decreases) with an increasing valug/of (#(1)) 0 < Vi <1 (1 denotes the highest severity). Thus, we define
the genomic privacy of the patient P as below:
8For higher values of(l), the gap between the differeni(l) curves
becomes negligible, because the distribution becomessalomform, rather Sp = — Z log, (Pr(SNPf-D = 1)) X V. (8
than truncated Gaussian. i€Tp
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We do not use the traditional entropy metric [38], [39] to ‘ ‘ ‘ ‘ ‘
quantify privacy, as only one state tSINPf poses privacy DAl
risks (i.e.,SNP,f’ = 1), as discussed before. || = Patient B w/ higher severity real SNPs

First, we study the relationship between the storage re-
dundancy and the severity of the real SNPs by focusing on
three types of patients: (i) patient A, carrying mostly low
severity real SNPs (ifi(' 4), (i) patient B, carrying mostly
high severity real SNPs (iffg), and (iii) patient C, car-
rying mixed severity real SNPs (iff ¢). For each patient,
the highest level of privacy is achieved when the storage
redundancy is maximum (as in Method 1 in Section II-B).
Thus, we recognize this level a$0% genomic privacy for
the patient. For the evaluation, we take the highest privacy
level of patient C as the base and normalize everything with 02100 100-5200 200-5300 300->400 400->500 500-5600 600->700 700->800 B00->900
respect to this value. We use the following parameters fer th 7 change in storage redundancy
simulation. The severities of patient As and patient B'alre
SNPs are represented as truncated Gaussian random varidlige?. Increase in genomic privacy of different types ofigrats with 100%
With (j1a,04) = (0.25,0.15) and (up, o) = (0.75,0.15), yeaineand ot 50 0 500% would increace the privady of Pationt A
respectively. Furthermore, the severity of patient C'd 88PS  (who carries mostly low severity real SNPs) B, whereas the same scenario
are represented as a uniform distribution betw@emd1. We increases the privacy of Patient B (who carries mostly higresty SNPs) by
also setu(l) = 0.8, o(1) = 0.25, u(k) = 2, ando (k) = 0.75. 3%

In Fig. 7, we illustrate the increase in privacy with incrertse

in the storage redundancy for these three types of patieStsction Ill-A). This result also supports our belief to amize
(A, B, and C). We observe that by increasing the storagiee storage redundancy for each patient.

redundancy, a patient with high severity real SNPs gainemor

privacy than a patient with lower severity real SNPs, hence

the storage redundancy can be customized for each patient 0
differently based on the types of his real SNPs. It can beeatgu
that the amount of storage redundancy for a patient can leak
information (to the curious party the SPU) about the seesrit

of his real SNPs. However, the severity of the SNPs is not the
only criteria to determine the storage redundancy for areési
level of genomic privacy as we discuss next.

Finally, we study the relationship between the severity of
the real SNPs, the number of LD pairs per SNP (number
of SNPs with which a particular SNP has LD, i.¢), and
the storage redundancy. We assign ihevalues of the real
SNPs (inY p) following a uniform distribution betweef and
1. We set the LD parameters agl) = 0.8, o(l) = 0.25, 0 ‘ ‘ ‘ ‘
u(k) =2, ando(k) = 1.5. Then, we observe and compare the 300 M0 storage redundancy st e SPU 0 800
following potential scenarios in different types of pat&n(i)

The real low severity SNPs O_f the patient (i.e., his re_al SNFT):% 8. Level of genomic privacy, as defined by (8), for differ types of
with low Vi values) have a hlgher number of LD pairs (I.e.patients with varying storage redundancy.

higher k values) with respect to his high severity real SNPs . . L
(i) % values are assigned randomly to the SNPs; and (i) We obtained similar patterns for further variations of the

the real high severity SNPs of the patient (i.e., his real §Np_sar.|ab_les but we do not presen; these results due to the space
with high V; values) have a higher number of LD pairs (i.eimitation. In summary, depending on the actydk), o(k),
higher k values) with respect to his low severity real SNPg:(!), o(l), and V; values (which will be determined as a
Again, we set a patient's genomic privacy 160% when the result of the medical resear(_:h), the storage re_dundancy can
storage redundancy is maximum at the SPU (as in Method’¢ determined (and customized for each patient based on
in Section 1I-B). We illustrate our results in Fig. 8, and who the types of his variations) for this approach to keep the
different storage redundancy requirements for differgpes of 9ENoOMIC privacy of the patient at a_deswed level. Note that
patients (to provide the same level of privacy). For examiple the.curlous party at th_e SPU cannot |nf'er the real SNPs of the
achieve10% genomic privacy, the SPU requird80% storage patient (or the severities of the patient’'s real SNPs) from t
redundancy for a patient whose less severe real SNPs hapPunt of customized storage redundancy, because thgstora
more LD pairs, whereas it requiré80% storage redundancy 'édundancy (for a desired level of genomic privacy) depends
for another patient whose more severe real SNPs have more @/ various factors. For example, a patient with low storage

pairs (which means more storage per patient, as discussed&fundancy (for a desired level of genomic privacy) coulame
that (i) he carries mostly low severity real SNP (as in Fig. 7)

9We note that, in all case; values are obtained from the same truncate&ii) he carries mixed severity reaI.SNI.Ds, but h|3 IQSS senestk
Gaussian distribution withu(k) = 2, ando (k) = 1.5. SNPs have more LD pairs (as in Fig. 8), (iii) his real SNPs
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2) Sequencing 9) Re-encryption or partially

and encryption decryption of the requested SNPs /C\ A Bloom filter is a simple space-efficient randomized data
. =

- ) Enerypted SNPs and positons 4 3//@ SR structure for representin_g a set in order to support m_erhtpars
Rz =¥  queries [40]. A Bloom filter for representing a def’ is de-
Certified Institution Starage and Processing niv curious Party — sCribed by an array of bits, initially all set to0. It employsy

@ sPU

independent hash functiofis,, . . ., H, with range{1,...,x}.
For every element; € L”, the bitsH;(L;),...,H,(L;) in
the array are set tb. A location can be set tb multiple times,
but only the first change has an effect.

After constructing the Bloom filter, the CI encrypts each

element inL* by using a symmetric key shared between the

& Cl and P (established during Step 0 as in Section 1I-B) and
- generated.t, = {E(L;) : i € Tp}. The Cl also encrypts a “0”

cl \wos T
SdNS pa+dAuoug (01
1|nsaJ-pua
pa4dAudap Ajjprng (€1

5) “Check my susceptibility to disease X"

and part of P's secret key, x®

= ..\
[

\ )
4|nsau-pua patdAuou3 (21 <

&

6) Positions of the requested SNPs value (representing the potential SNPs(ip) along with the
patint (¢) Hedes™ weles real SNPs of the patient (using P's public key). Furthermore
7) Encryption of the 11) Homomrphic operations or the Cl associates an arbitrary locatidg for this “0” value

requested positions recovery of relevant SNPs

and encryptd.y using the symmetric key between the Cl and
Fig. 9.  Privacy-preserving protocol for disease-susbéityi test using P to obtainE(Ly).
Method 3. e Step 3:The ClI sends the constructed Bloom filter &xd.o)

to the patient, and encrypted SNPs and locations to the SPU.
(regardless of their severities) have low number of LD p@ss o Step 6: The MC tells the patient the locations of the SNPs
in Fig. 3), or (iv) his real SNPs (regardless of their se¥es)t that are required for the susceptibility test or requesteetty

have low LD strengths (as in Fig. 4). as the relevant SNPs.
) e Step 7: The patient inputs each requested location to
D. Method 3: Encrypted Locations at the SPU the Bloom filter to determine if the corresponding locatisn i

LetL? = {L; : i € Tp} represent the set of locations (Or§tored at his Bloom filter (i.e., to determine if he has a real

the DNA sequence) of the patient P’s real SNPsYin). As SNP at the corresponding location).

opposed to the previous two approaches, here, we propose tdo check if L; belongs tol.”, the patient checks whether

encrypt the locations of the SNPs along with their conten@ll H1(L,), ..., H,(L;) are set tal. If not, L, definitely does

By doing so, we save storage costs by storing only the reuit belong tolL”. Otherwise, the patient assumes € L7,

SNPs inTp at the SPU (around 4 million) while providingalthough this may be wrong with some probability. That is,

the highest level of privacy (as in Section II-B). These bigse a Bloom filter could yield &false positive, where it suggests

however, come with a cost in the practicality of the algarith thatZ; is in L¥ even though it is not. This probability can be

introducing extra steps for the patient (P) during the proko decreased at the expense of increasing Bloom filter length (i

Although we can assume that these extra steps can easilyxpeFurther, the false positive probability can be signifityan

handled via the patient's smart card or mobile device, thisduced by using some proposed techniques such as [41], [42]

approach still requires more message exchanges (as will A=a result of this process

described next) between the parties, compared to the pi®vio (q) If the location is in his Bloom filter (i.e., if he has a real

two approaches. SNP at the corresponding location), P encrypts the location
In some environments, randomly splitting the weak secr@ith the symmetric key between the Cl and P.

of the patient, and distributing two shares of the weak secre s ¢ the |ocation is not in his Bloom filter (i.e., if he does

key to the SPU and MC might not be acceptable (e.g., WhaRi have a real SNP at the corresponding location), P uses

it is likely that the SPU and MC will collaborate to retrleveE(L ) as the encrypted location

patient's weak secret). Therefore, for the sake of compéss, 0 L , )

in the following, we present Method 3 with and without proxy, & note that the above operations can be easily done via

encryption (i.e., without distributing the patient's seiio other "€ patient's smart card (e.g., by scanning the card at the MC
parties)L© as a consent to the test) or mobile device (e.g., by congentin

1) With Proxy Encryption: The initial steps of the protocol via a smart phone application) by using the stored Bloonrfilte

are the same as in Section II-B, except for Steps 2 and 3thPUt’E(L0>' and. symmetric key between the Cl and P. _
which the locations of the SNPs are encrypted and a BloothmStep 8: The patient sends the SPU the encrypted locations
filter [40] is generated. Below, we summarize the differéaps ©Of the SNPs which will be provided to the MC.

of this approach (the unchanged steps are not repeatedje TheStep 9: The encrypted SNPs are sent to the MC in the same
steps are illustrated in Fig. 9. order as they are requested in Step 6.

e Step 2: The Certified Institution (CI) first determines the (a) If only the end-result is requested, the corresponding
locations of P’s real SNPs (iff ) and constructd.”. Then, SNPs are re-encrypted at the SPU under the patient’s public
the CI constructs a Bloom filter using the elementdLéf as key (re-encryption under the same public key is discusses in
inputs. Section 1I-A). As there is only one value stored at the SPU
representing the contents of the potential SNPs at which P

10Method 1 and Method 2 can also be modified similarly to avoiokpr does not have a Variant (at locati®i{Lo)), this Vall_Je is re-
encryption. encrypted for each different request of a non-variant, s th



the MC cannot infer the locations of the non-variants of the&dvantage of this approach (i.e., Method 3 in general) it tha
patient. individual contributions of the genetic variant markermegn

(b) If relevant SNPs are requested, the SPU partially desryﬁecret at the MC, because the homomorphic operations are

the relevant SNPs by using a part of P's secret key followirfgghducted at the MC. This advantage might become more sig-
a proxy encryption protocol (Section I1-A). nificant when this approach is used for personalized meglicin

) . ethods in which the pharmaceutical company (embodied in
t.oStLeep I\}I(()Z F;e—?r?crggtgd (or partially decrypted) SNPs are Serlﬂis case as the medical unit) does not want to reveal theiigene
y the ' properties of its drugs. Thus, if introducing the describgtta

e Step 11:One of the following two scenarios occur at thesteps for the patient and few additional message exchanges
MC: between the parties are tolerated, this approach operéites w

(a) If only the end-result is requested, the MC computes Prelatively modest storage and yet provides very good pyivac
total susceptibility to diseas& by using the homomorphic
properties of the Paillier cryptosystem (similar to thecdssion E. Computing Disease Susceptibility via Homomorphic Oper-
in Section II-E}* under the patient’s public key. ations

(b) If relevant SNPs are requested, the MC decrypts thewe now present the disease-susceptibility test via homemor
message received from the SPU by using the other partgiic operations at the SPU for Method 1 (Section II-B) and
P's secret key and recovers the relevant SNPs. Method 2 (Section 1I-C). Similar techniques can be used for
e Step 12:The MC sends the encrypted end-result to the SPWlethod 3 at the MC, as discussed in Section II-D.

e Step 13: The SPU partially decrypts the end-result using a The SPU uses a proper function to compute P's predicted
part of P’s secret key by following a proxy encryption pratbc disease susceptibility via homomorphic encryption. Thene

(Section 1I-A) and sends it back to the MC. different functions for computing the predicted susceifitjb
In [26], focusing on one example of many diseases that requir

o Step 14:_The MC decrypts the message received from the usceptibility test involving multiple SNPs, Kathiresral
Sr?;rte)gulftsmg the other part of P's secret key and recovers%}%pose to count the number of unfavorable alleles carried
' _ ) by the patient for each SNP related to a particular disease.
2) Without Proxy Encryption: In this approach, the SPU Similarly, in [27], Ashley et al. propose to multiply the
stores only the encrypted SNPs and encrypted locations. Ggelihood Ratios (LRs) of the most important SNPs for a
nomic data encrypted by P’s public key is only decrypted ghrticular disease in order to compute a patient’s predicte
P, and the weak secret of P remains only at P (i.e., shaiggceptibility:?> Furthermore, aweighted averaging function
of the weak secret are not distributed to the SPU or MQdan also be used, which computes the predicted susceptibili
Most of this approach is the same as Method 3 with prody weighting the contributions of SNPs by their contribago
encryption. Indeed, the first 8 steps of the algorithm are e g., LR values of the SNPs). Note that our proposed privacy
same, except for the distribution of parts of P's secret kK& preserving mechanisms are not limited by the types of the
only difference is the transfer of the end-result or thevate functions (used to test the disease susceptibility). Ikfeeted
SNPs to the MC as follows: that these functions will evolve over time; hence the prepos
o If the relevant SNPs are requested by the MC, the SPU seadgorithms can be developed to keep up with this evolution.
the encrypted SNPs (by P’s public key) to P. P decrypts thesdn the following, we discuss how to compute the predicted
SNPs (using his weak secret key) and sends them to the Miisease susceptibility at the SPU by using a toy example to

o If the end-result of the susceptibility test is requestedtey Show how the homomorphic encryption is used at the SPU.
MC, the disease-susceptibility test is done (via homomierpHnitially, we assume that the function at the SPU is weighted
operations) at the MC and the encrypted end-result is seit t&veraging (which is an advanced version of the function

Then, P decrypts the end-result and sends it back to the M@fOP0sed in [26]) and show how the predicted susceptibility
is computed using encrypted SNPs. Then, we show how the

We note that the security of the communication betwe : : ; T
P and the MC is provided by symmetric keys as discussqé] ncttl)znuglrigggsaetdﬂ:r; [SZFZL_(I'G" multiplication of LR valsje

before. The above operations put some more burdens on
patient during the protocol. However, we emphasize thatethe
operations can be smoothly done on the patient’s mobile:deviizu
or smart card without requiring a substantial effort frone th
patient himself.

In summary, as the locations of the real SNPs are encrypt
a curious party at the SPU cannot infer the contents of thesS

?L) Weighted Averaging: Assume that (for simplicity) the
sceptibility to diseas& is determined by the set of SNPs
= {SNP,,,SNP, }, which occur at particular locations of
the DNA sequencé& The contributions of different states
SNPf-’ for i € {m,n} to the susceptibility to disease
'are computed via previous studies (on case and control
from their locations (as in Section 11-B), hence it is enougH?pUIatA'onS) and th?py are alreacjy knoAvvn by the ME' That is,
to store only the real SNPs iif ». Furthermore, the privacy p.O(X) = Pr(X[SNP;” = 0) andpj (X) = Pr(X|SNP;" =1)
provided by this approach (with or without proxy encrypfiont: € {m,n}) are determined and known by the MC. Further,
is the same a®00% redundancy in Method 2 (i.e., similarthe contribution (e.g., LR va}l(ue) @NP; to the susceplibility
to Method 1), hence we do not discuss it again. Anothlg diseaseX is denoted byC;™. Note that these contributions

LAlthough the discussion in Section II-E is held considerMgthod 1 (or 2R values are determined as a result of medical studies.
Method 2), a similar technique is used for this approach etMIC, hence we BBSNPP andSNPE are not necessarily among the real SNPs of the patient
do not discuss it again. P (i.e., P does not need to have a variant at those locations).



are also computed by previous studies on case and contrdin some genetic tests, the types of the real SNPs (e.g.,
groups and they are known by the MC. homozygous or heterozygous) become also important. In this
As we have discussed before, the SPU stores the set of SRse, SNP! can take three different values from the set
of the patient P, encrypted by P’s public key, g, h = ¢*).1* {0,1,2} to represent a potential SNP (i.e., non-variant), a real
Thus, the SPU useE(SNPf;,g“‘) and E(SNPf,g”) for the homozygous SNP, and a real heterozygous SNP, respectively.

computation of predicted susceptibility of P to diseaseFrom In such a scenario, to conduct the disease-susceptibdgy t

now on, we drop the values in the above encrypted messagasa homomorphic operations, the SPU should store the sdquare

for the clarity of the presentation ¢alues are chosen randomlyalues of the SNPs. That is, for ea&NPf of the patient P, the
from the sef1,n/4] for every encrypted message as discuss&PU should stor&((SNPF)2, g*). Depending on the types of

in Section 1I-A). Similarly, the MC provides the followinggt genomic tests that would be supported by the SPU (and the

the SPU in plaintext: (i) the markers for diseasegSNP,,, and functions required for these tests), the format of storafje o

SNP,), (i) corresponding probabilities( (X), i € {m,n} and patient's SNPs can be determined beforehand, and SNPs can

j € {0,1}), and (iii) the contributions of each SNE{). be stored accordingly just after the sequencing process.

Next, the SPU encryptg (j € {0,1}) using P’s public  2) Likelihood Ratio Test: We now assume that the predicted
key to obtainE(0,¢”) and E(1,¢%) for the homomorphic disease susceptibility is computed from the multiplicatif
computations® Alternatively, we might assume that SNPs ot.ikelihood Ratios (LRs) of the corresponding SNPs as in [27]
a patient are stored at the SPU in pairs {@(|]SNP. — and show how such a computation would be handled at the
0l,9%),E(|SNP}" — 1|, ¢%)} for eachSNP/, instead of the SPU by using homomorphic operations.
actual values of the SNPs. In this case, the above encryptionn this approach, the predicted disease susceptibility is
at the SPU would not be required. computed by multiplying the initial risk of the patient (e.g

The SPU computes the predicted susceptibility of the patidar diseaseX) by the LR value of each SNP related to that
P to diseaseX by using weighted averaging. This can belisease (LR value of a SNRiepends on the value 8NP/ at
computed in plaintext as below: the patient P). The initial risk of the patient P for the ds®a

1 X is represented agf. We note that/¥ is determined by

< = X considering several factors (other than patient’s genafata)

Cim + O3 such as patient's age, gender, height, weight, and envieahm
Thus, this initial risk can be computed directly by the MC. We
also note that if the LR value corresponding to a particuliPS

Z cX { [SNP/ — 0] } . is less than one, the risk for the disease decreases. Otigerwi
icm,n if the LR value is greater than one, the risk increases for the
(9)  corresponding disease.

The computation in (9) can be realized using the encryptedSim"ar to before, we assume that the susceptibility to

SNPs of the patient (and utilizing the homomorphic progertidisease X is determined by the set of SNPs i1 =
of the Paillier cryptosystem) to compute the encryptedatise {SNPm,SNP,}. We denote the LR values due $NP; = 0

Sy =

P, [y 1) + B2

susceptibility, E(S¥, g%) as below: ?ndISNPf = 1 for diseaseX as L% (0) and L’ (1), respec-
ively.
" . o171l The SPU stores the SNPs of the patient P, encrypted by P’s
E(SE.g ){ I1 { [E(SNP], g")E(1,¢%) "] public key. The MC sends the following to the SPU: i) (5)
i€{m,n} values { € {m,n} andj € {0,1}) in plaintext, and (ii) the

markers for diseas& . The MC also encrypts the log of initial
ox)© risk value,In(1£), by P’s public key and sends(In(1%), %)
P z z\—1 A7 i to the SF)U16
x [E(SNP;, g*)E(0,9) ] } } » (10) The Paillier cryptosystem does not support multiplicatice
momorphism in ciphertext (it only supports the multiplioat

where of a ciphertext with a constant as discussed in Section II-A)
Thus, instead of multiplying the LR values, we propose using
Al — ph(X) AZ pi(X) o 1 addition in log-domain at the SPU. Thus, the SPU computes
i 01 i 10 CX X’ the predicted susceptibility of P to disea¥eas below:
(11a) (Ollb) (110
We note that the end-result in (10) is encrypted by P's publicE(In(S%), 9") = E(n(I%),¢%) x ] { {E(SNPfDa g°)
key. i€em,n

Then, the SPU partially decrypts the end-redif§, g*)

using its share (")) of P’s secret key #) as discussed in =1 .

Section II-A to obtainE(S¥, g*“) and sends it to the MC. E(l,g”)_l} " x [E(SNPY, ¢%) - E(0,¢%) 1] }, (12)
Finally, the MC decrypt&(S¥, g*) using its sharea((®) of

P’s secret key to recover the end—reﬁﬁ where

14Encryption is done using the modified Paillier cryptosysisndiscussed

in Section II-A. 16Alternatively, the contribution of the initial risk to théstase susceptibility
15This encryption can also be done at the MC and sent to the SPU.  can be included to the end-result at the end, at the MC.



i Section 1I-E1}” and real SNP profiles from [43]. Our imple-
= _ In(L%(1)) . f
E; 0—1 == T1o0) (13b) mentation relies on a MySQL 5.5 database managed by the
open source tool MySQL Workbench. To provide a platform-

We note that (12) corresponds to the below computation ffdependent implementation, we used the Java programming

—

plaintext: language along with the open-source Integrated Developmen
Environment, NetBeans IDE 7.1.1., for the implementatibn o
In(Li, (0)) the Java cod& In Fig. 11, we illustrate three screen shots
In(S¥) = In(1%) + Z [SNP} — 1] x ——X—= from our implementation of Method 1 in which we illustrateth
icm,n 0-1) operations conducted at the Patient (P), Storage and Ringes

Unit (SPU), and Medical Center (MC), respectivély.
; In Table Il, we summarize the computational and storage
+ [SNPP —0] x M}

(14) complexities of the proposed methods at (i) Certified lngth
(1-0)

(CD), (i) SPU, (iii) MC, and (iv) P. We evaluate the proposed
methods considering the following costs: (i) encryption of
As before, the SPU partially decrypB(In(S3 ), ¢g%) using patient’s variants, (ii) disease-susceptibility testre SPU via

=) (its share of P's secret key) to Obtaﬂ@n(gg),gggm) and h?rtr;]omorghlc Oﬁ)teratlonls (UST%It\leg variants), (iii) demypz_
sends it to the MC. Finally, the MC decrymi{ln(Sf.?),gz(2>) of the end-result (or relevan s). (Iv) proxy encryption

. @) (i ' x and (v) storage costs, in which represent t_he percentage
using 2! (its share of P's secret key) t0 recover(Sy), ot storage redundancy at the SPU. We did not explicitly

and computes:"¢#)) to obtain S¥. Similar to weighted jmplement the Bloom filter (for Method 3) and symmetric
averaging, if the types of the real SNPs a;)e used forthe'tESténryption/decryption between the parties for the secusity
which there are three possible states3diP’; ), squared values the’communication. However, the computational costs due to
Of the SNPs Should be StOI’ed at the SPU fOI‘ eaCh patlent. these Operations are neg||g|b|e Compared to Pai"ier chry
tion/decryption and homomaorphic operations.
I1l. EVALUATION AND IMPLEMENTATION OF THE We emphasize that the encryption of the variants at the
PROPOSEDMETHODS Cl is a one-time operation and is significantly faster than

In Fig. 10, based on the discussion in the previous sectio’é}’aja sequencing and analysis of the sequence (which takes

we graphically compare the proposed methods considerang
level of privacy they provide, their practicality (for thafent),
and their storage requirements (at the SPU). In this seatien
report our findings about the complexity and security of t
proposed methods.

ys). Further, this encryption can be conducted much more
efficiently by computing some parameters, such(gs h")
pairs, offline for various: values, for each patient. Indeed, by
h%omputing(g’“, k") pairs offline, we observe that the encryption
takes only 0.017 ms per variant at the CI.

It is also possible to conduct private statistical tests &by
medical researcher) on the data stored at the SPU in order to
get statistics about the variants of multiple patients. dLating
such a statistical test for a variant (about its type) on 100K
patients takes around 55 minutes at the SPU and scaledyinear
with the number of patients. Note that such a statisticdlites
only possible with Method 1 or Method 2; using Method 3 and
querying the encrypted locations of SNPs from 100K patients
is not practical for this application.

In summary, all these numbers show the practicality of our
privacy-preserving algorithms.

STORAGE OVERHEAD AT SPU 3 B. Security Evaluation

The proposed schemes preserve the privacy of patients’
genomic data relying on the security strength of modified
Fig. 10.  Privacy, practicality, and storage overhead coinpa of the Paillier cryptosystem (in Section II-A). The extensive wety
proposed methods. evaluation of the modified Paillier cryptosystem can be tbun
in [34]. Below we summarize two important security features
of this cryptosystem.

A. Implementation and Complexity Evaluation e One-wayness: This property means that no efficient adyersar

To evaluate the practicality of the proposed privacy?as any significant chance of finding a pre-image to the
preserving algorithms, we implemented them, and asses§#thertext when he sees only the ciphertext and the public
their storage requirements and computational complexire key of the patient. It is shown in [34] that the one-wayness
Intel Core i7-2620M CPU with 2.70 GHz processor under ' ' o _

Windows 7 Enterprise 64-bit Operating System. We set thei;\';\'/? test '”hSeCt'O“ ”ciEZf a'sr? has Is'm"ar complexity. —_
size of the security parameten {n Paillier cryptosystem in .o 0 c's.decid with an optimized mplementation.
SeCt.'O_n. ”'A)_ to 1Q24 bits. We pomputed the disease SUS-1oyye skip the illustration of the intermediate steps (disedsin Sec-
ceptibility using weighted averaging (at the SPU or MC, sain 11-B), and only present the key steps of the algorithm.

HIGH LOW
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Type I Diabetes 12184380 0.038 DONE!

Type II Diabetes Mellitus | |rso9ses4s 0.062
154752571 0.005 — ik "

g 153857481 0.032 | Send to Medical Center | E( )> yption >

1513281615 0.033
1513387042 0.005 &

((SendRequest 152912774 0.058 e -
SR 152961575 0057 e |
1535012336 0.028

rei121Q647 o nosn e

€) (b) (@

Susceptibility = 87.2 %

Fig. 11. Implementation of Method 1 at P, the SPU, and MC.  Eil(a), P selects the type of susceptibility test and the WiGch will conduct the test.
Next, in Fig. 11(b), the SPU conducts the disease-susdéptitest using the encrypted SNPs of P and the markers gived from the MC, and sends the
encrypted end-result to the MC. Finally, in Fig. 11(c), th€ Meceives the encrypted end-result from the SPU, decryptsing its share of P’'s secret key,
and obtains the plaintext end-result of the test. That s,MC recovers the probability that P will develop “prostasmeer” in the future based on his genetic
variations.

| Method 1 and Method 2

@cCI @SPU @MC
Paillier Encryption | Homomorphic Operationg Proxy Encryption Storage Paillier Decryption

30 ms./variant 1 sec. (10 variants) 2 ms. 500 x (1 + %0) MB/patient 26 ms.

Method 3 with proxy encryption
@cCI @SPU @MC

Paillier Encryption Proxy Encryption Storage Homomorphic Operations | Paillier Decryption

30 ms./variant 2 ms. 500 MB/patient 1 sec. (10 variants) 26 ms.

Method 3 without proxy encryption
@Cl @SPU @MC @P

Paillier Encryption Storage Homomorphic Operations | Paillier Decryption

30 ms./variant 500 MB/patient 1 sec. (10 variants) 26 ms.

TABLE I

COMPUTATIONAL AND STORAGE COMPLEXITIES OF THEPROPOSEDMETHODS

of the modified Paillier cryptosystem can be related to tHe Li IV. CONCLUSION AND FUTURE WORK
Diffie-Hellman problem which is shown to be as hard as the

; b h In this paper, we have introduced privacy-preservin
partial Discrete Logarithm problem. bap b y°p g

schemes for the utilization of genomic data in medical tests

e Semantic security: This property ensures that an advers@Rfl personalized medicine methods. We have proposed new
will be unable to distinguish pairs of ciphertexts based tun t M0dels based on the existence of a Storage and Processing
message they encrypt. It is shown in [34] that if Decisionfnit (SPU) between the patient and the medical unit (e.g.,
Diffie-Hellman Assumption (a computational hardness agsur'€@lthcare center or pharmaceutical company). We havershow
tion about a certain problem involving discrete logarithm$1at eéncrypted genomic data of the patients can be stored at
in cyclic groups) inZ*, holds, then the modified Paillier e SPU and processed (for medical tests and personalized
cryptosystem is semantically secure. medlcm_e methods)_ using homomorphl_c encryption and proxy
encryption. For this purpose, we utilize a variation of the
Finally, if the weak secret of the patient, is randomly Paillier cryptosystem to encrypt and process the genonta da
divided and distributed to the Storage and Processing Ukie have proposed different techniques for the storage and
(SPU) and Medical Center (MC) as in Method 1, this weagrocess of the SNPs at the SPU while preserving the patient’s
secret could be revealed if the MC colludes with the SPlgrivacy. Moreover, we analyzed the relationship between th
but the factors:, p, andq remain secret. We note that such &torage cost, privacy of the patient, strength of relatigns
collusion is not considered in this study. However, for thkes between the genetic markers, and the characteristics of the
of completeness, in Section II-D2, we present an alteraatiinarkers. This analysis could play a key role for customizing
approach (Method 3 without proxy encryption) that avoidde storage redundancy of the genomic data for each patient,
distributing the patient's weak secret to other parties)cee while keeping the privacy of the patient at a desired level.
is robust against such a collusion. We also implemented the proposed schemes and showed their



efficiency and practicality through a complexity evaluatigVe [14] D. Eppstein, M. T. Goodrich, and P. Baldi, “Privacy-amced methods
are confident that our propOSed prlvacy_preserV|ng schemes for comparing compressed DNA sequencé&xjRR, vol. abs/1107.3593,
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numbers of SNPs (irrelevant information) are used. Whereas Research in Computer Security, pp. 607-627, 2011.
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