Distributed Sensor Data Models and Their Impact on Energy Consumption of Wireless Sensor Networks

THÈSE N° 5364 (2013)
PRÉSENTÉE LE 18 FÉVRIER 2013
À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE SYSTÈMES D'INFORMATION RÉPARTIS
PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Urs HUNKELER

acceptée sur proposition du jury:
Prof. M. Grossglauser, président du jury
Prof. K. Aberer, Dr P. Scotton, directeurs de thèse
Dr J. Beutel, rapporteur
Dr P. R. Chevillat, rapporteur
Prof. P. J. M. Havinga, rapporteur
I didn't know it was impossible when I did it.
— Source Unknown

To my family and my wife.
Acknowledgements

This thesis was made possible with the support of the IBM Research GmbH in Rüschlikon and I would like to express my thanks to IBM for investing in young researchers.

Prof. Dr. Karl Aberer, thank you for your inspiration and support. I appreciate that with all your commitments you always found the time to see me when I asked for a meeting.

Dr. Paolo Scotton, thank you for all the help and advice that you have given me. I particularly appreciate your management style and your fresh views on challenges.

I would like to express my special thanks to my thesis committee. You all inspired my work at different stages, and I am very glad that you all accepted to be in this committee. I appreciate that you read my work carefully and I thank you for the detailed and constructive comments.

Many people have helped and supported me at EPFL, and it would be difficult to mention you all. Dr. Catherine Dehollain, thank you for a great opportunity and an interesting research topic. Special thanks go to Chantal François and Isabelle Buzzi for their help with all the administrative details and to the IT support for the creative ideas on how to deal with unconventional problems.

The IBM Zurich Research Laboratory (ZRL) is a welcoming place for researchers and I made many friends. Therefore I have to ask you to forgive me for not mentioning everyone individually. I would like to thank the present and former ZRL employees who made IBM a fun place to work and who organized or participated in the many social events. In particular I would like to thank Dr. Hong Linh Truong, Beat Weiss, and Dr. Clemens Lombriser for all their help. I would also like to thank Tomas Tuma for his friendship and the memorable hikes.

Thank you, Dr. James Colli-Vignarelli and José Demétrio, for all your help and your patience when I was stressed.

Special Thanks go to Diego Wyler who made me aware of the communication systems section at EPFL. Because of Diego’s recommendation I decided to study communication systems at EPFL and the Institut Eurécom, and after all these years it is clear that it was exactly the right decision.

I am very grateful to my parents for their support and encouragement from an early age on. Thank you for kindling my curiosity already as a small child and for always giving me honest answers. Thank you for your patience. Thank you also to Charlotte and Roli for your support and understanding, and I wish you all the best for your studies.

Dr. Fereshteh Bagherimiayab-Hunkeler, you appeared as my angel when I needed you. Thank you so much for completing my life and for accepting me the way I am. I love you.

Thank you to all of you who have helped me during my thesis and who I could not mention.
Acknowledgements

individually.

*Lausanne, January 18, 2013*
Abstract

Electronic hardware continues to get "smarter" and smaller. One side-effect of this development is the miniaturization of sensors, and in particular the emergence of battery-operated, multi-hop wireless sensor networks (WSN). WSNs are already used in a wide variety of different applications, ranging from climate monitoring to process compliance enforcement.

Ideally, WSN hardware should be small, cheap, multi-functional, autonomous and low-power (thus battery-operated), and the network should be self-configurable. To satisfy the low-power requirement, nodes are typically able to communicate only over a short distance and rely on multi-hop for longer range communication.

Wireless sensor networks promise to monitor objects and areas at an unprecedented level of detail. Such observations result in large amounts of data that cannot be analyzed manually. Instead, algorithms are used to summarize the data into meaningful measures or to detect unexpected or critical situations.

The main challenge for WSNs today is the power consumption of the individual devices, and thus the lifetime of the overall network. Most energy is used for communication. As WSN nodes do not simply transmit raw sensor readings but have the capability to process data, it is natural to look into preprocessing the data already inside the network in order to reduce the amount of data that needs to be transmitted.

In this thesis we study the possibilities and effects of in-network data processing. Our approach differs from previous work in that we look at the system as a whole. We look at the processing algorithms that would be performed on the data anyway and try to use them to reduce the amount of data transmitted in the network. We study the effects of various data reduction approaches on the power consumption. Our observations and conclusions enable us to propose a framework to automatically generate and optimize code for running on distributed WSN hardware based on a description of the overall processing algorithms.

Our main findings are that (1) the energy-saving potential of algorithms need to be validated by taking into account the whole system – including the hardware layer, that (2) the most efficient data-reduction algorithms only process data produced by the sensor node on which the algorithm is running, and that (3) efficient in-network processing code can be generated only based on an overall description of the processing to be performed on data.

Our main contributions to the state-of-the-art are (1) a general-purpose framework for automatically generating sensor data processing code to run in a distributed fashion inside the WSN, including a data processing language and a meta-compiler, (2) an extension of the WSN hardware simulator Avrora that makes it truly multi-platform capable, and (3) a centrally
managed, low-power, multi-hop WSN system (IMPERIA), which is now used commercially. We start this thesis with a presentation of the related work and of the background information to understand the context of WSNs and model processing. We then present approaches for distributed model processing, we propose a framework to generate and optimize distributed model processing code, we present our implementation of the framework and in particular of the compiler, we present our measurement setup and our measurement results, and finally we present a commercial WSN system based on the concepts and expertise presented in this thesis.

Keywords: Wireless Sensor Network, energy efficiency, sensor data model, distributed processing, automatic generation of distributed code, TinyOS, IMPERIA
Zusammenfassung


WSN Geräte sollten idealerweise klein, kostengünstig, vielseitig einsetzbar, eigenständig und energiesparend (daher batteriebetrieben) sein, und das Netzwerk sollte sich selbständig konfigurieren. Um Energiesparsamkeit zu ermöglichen, können Knoten üblicherweise nur über kurze Distanzen direkt kommunizieren und verlassen sich auf Datenweiterleitung für längere Verbindungen.


In dieser Doktorarbeit untersuchen wir die Möglichkeiten und Wirkungen der Datenverarbeitung im Netzwerk. Unser Ansatz unterscheidet sich von früheren Arbeiten darin, dass wir das System als ganzes betrachten. Wir untersuchen die Datenverarbeitungsalgorithmen, welche so oder so auf die Daten angewendet würden, und versuchen, sie zum Reduzieren der zu übermittelnden Daten zu verwenden. Wir untersuchen die Wirkung verschiedener Datenreduzierungsansätze auf den Energieverbrauch. Unsere Beobachtungen und Schlussfolgerungen ermöglichen es uns, ein Rahmenverfahren vorzuschlagen, um Programmcode, basierend auf der Beschreibung des gesamten Datenverarbeitungsalgorithmus, für das Berechnen in einem verteilten WSN automatisch zu generieren und zu optimieren.

Unsere wichtigsten Erkenntnisse sind, dass (1) das Energiesparpotenzial eines Algorithmus unter Berücksichtigung des gesamten Systems bewertet werden muss – die Hardwareschicht inbegriffen, dass (2) die effizientesten Datenreduzierungsalgorithmen nur Daten vom Sensorknoten, auf dem die Berechnung läuft, verwenden, und dass (3) effiziente Datenverarbeitung
Abstract

im Netzwerk nur basierend auf der gesamten Beschreibung der Datenverarbeitung, welche auf die Daten angewendet werden soll, generiert werden kann.

Unsere wichtigsten Beiträge zum Stand der Technik sind (1) ein generisches Rahmenverfahren, um automatisch Code für die verteilte Verarbeitung von Sensordaten in einem WSN zu generieren, einbezüglich einer Datenverarbeitungssprache und einem Meta-Compiler, (2) eine Erweiterung des Simulators von WSN Geräten Avrora, welche es diesem Simulator zum ersten Mal wirklich ermöglicht, mehrere Plattformen zu unterstützen, und (3) ein zentral verwaltetes, energiesparendes, Daten weiterleitendes WSN Systems (IMPERIA), welches nun kommerziell verwendet wird.


Stichworte: Kabellose Sensornetzwerke, Energieeffizienz, Sensordatenmodell, verteilte Verarbeitung, automatisches Generieren von verteilten Programmen, TinyOS, IMPERIA
# Contents

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract (English/Deutsch)</td>
<td>vii</td>
</tr>
<tr>
<td>List of figures</td>
<td>xiii</td>
</tr>
<tr>
<td>List of tables</td>
<td>xv</td>
</tr>
</tbody>
</table>

## 1 Introduction

## 2 Related Work

### 2.1 Introduction

### 2.2 State of the Art

### 2.3 Wireless Networking Approaches

#### 2.3.1 WiFi

#### 2.3.2 Bluetooth

#### 2.3.3 Wireless Mesh Network

#### 2.3.4 Mobile Ad-hoc Networks

#### 2.3.5 Wireless Sensor Networks

### 2.4 Device Categories for WSNs

#### 2.4.1 Radio-frequency Identification

#### 2.4.2 Mote-class WSNs

#### 2.4.3 PDA-class WSNs

#### 2.4.4 Laptops

#### 2.4.5 Conclusion

### 2.5 Hardware Devices for Mote-class Sensor Networks

### 2.6 MAC Layer

### 2.7 Routing

### 2.8 Transport Layer / Middleware

#### 2.8.1 Publish/Subscribe

### 2.9 Aggregation / Compression

#### 2.9.1 Problems of Distributed Aggregation

#### 2.9.2 Common Aggregation Operators

### 2.10 Simulating Energy Consumption
## Contents

2.11 Conclusion .................................................. 27

3 Sensor Data Models ........................................... 29
   3.1 Introduction ............................................. 29
   3.2 Deterministic Models ................................... 32
   3.3 Linear Regression ....................................... 35
   3.4 Multivariate Gaussian Random Variables ................. 39
   3.5 Practical Model: Vibration Sensing ....................... 40
   3.6 Conclusion ............................................... 41

4 Framework ..................................................... 43
   4.1 Introduction ............................................. 43
   4.2 Framework for Distributed Sensor Data Models .......... 43
   4.3 Model Description Language ............................. 46
      4.3.1 Linear Regression ................................. 49
      4.3.2 Multivariate Gaussian Random Variables ........ 50
      4.3.3 Wind-flow Model .................................. 51
      4.3.4 Vibration Sensing ................................ 54
   4.4 Execution Environment .................................. 54
   4.5 Conclusion ............................................... 56

5 Compiler .......................................................... 59
   5.1 Introduction ............................................. 59
   5.2 Implementation of the Compiler ......................... 59
      5.2.1 Modular Compiler Design ......................... 60
      5.2.2 Parser / Lexer ..................................... 62
      5.2.3 Enhanced AST ..................................... 62
      5.2.4 Optimization Modules ............................. 63
      5.2.5 Cost Function ..................................... 67
      5.2.6 Code Generation ................................... 68
   5.3 Compiling the Models ................................... 68
      5.3.1 Linear Regression as Example with Details .... 68
      5.3.2 Multivariate Gaussian Random Variables ....... 71
      5.3.3 Wind-flow Model .................................. 71
      5.3.4 Vibration model ................................... 72
   5.4 Implementation of the Execution Environment ........... 75
   5.5 Conclusion ............................................... 76

6 Performance Evaluation ........................................ 77
   6.1 Introduction ............................................. 77
   6.2 Measurement Setup ..................................... 77
      6.2.1 Sending Data ...................................... 81
      6.2.2 Receiving Data ..................................... 84
## Contents

6.3 Network Topology Changes and Management Overhead .......................... 85
6.4 Energy Consumption for Data Processing ............................................. 87
6.5 Measurements Using Soundcards ....................................................... 88
6.6 Hardware Simulation .............................................................................. 89
6.7 Experimental Results ............................................................................ 92
6.8 Conclusion ............................................................................................... 94

7 Commercial Deployment .............................................................................. 97
7.1 Introduction ............................................................................................. 97
7.2 Sensor and Network Requirements ......................................................... 98
7.3 WSN Design Process ............................................................................... 99
7.4 Hardware Design .................................................................................... 101
7.5 Protocol Stack ......................................................................................... 102
7.6 Management Mode .................................................................................. 103
  7.6.1 Network Discovery ........................................................................... 104
  7.6.2 Link Probing ....................................................................................... 105
  7.6.3 Routing .............................................................................................. 105
  7.6.4 Scheduling ......................................................................................... 105
  7.6.5 Configuration ..................................................................................... 108
  7.6.6 Reusing Configurations .................................................................... 108
  7.6.7 Debugging .......................................................................................... 108
7.7 Regular Operation Mode .......................................................................... 109
  7.7.1 Reconfiguration .................................................................................. 110
  7.7.2 Exception Handling .......................................................................... 111
7.8 Reference Time ....................................................................................... 112
7.9 Conclusion ............................................................................................... 114

8 Conclusion .................................................................................................. 117

A Contributions to Publications ..................................................................... 119

Bibliography ................................................................................................... 133

Curriculum Vitae ............................................................................................. 135
List of Figures

1.1 Different elements of a wireless sensor node.  4
1.2 Typical setup of a WSN.  4

3.1 A typical WSN configuration with both a geographical and a corresponding hierarchical view.  39
3.2 Vibration Data Processing.  41

4.1 Different steps and elements of the sensor data model framework.  44

5.1 AST of the linear regression model.  60
5.2 Steps in the compilation process.  61
5.3 Vibration model data flow.  74

6.1 Active circuit for precise power measurements.  78
6.2 Setup for automatic power measurements.  79
6.3 Power consumption for sending a single message.  83
6.4 Topology of a WSN deployment in an industrial complex.  86
6.5 Power consumption of FFT.  88
6.6 Power consumption of data collection applications.  91
6.7 Comparison of the different models.  93
6.8 Evolution of prediction error over time using SensorScope data.  94
## List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Different classes of wireless networks.</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Commonly used sensor devices for mote-class WSNs</td>
<td>13</td>
</tr>
<tr>
<td>6.1</td>
<td>Duration of the different phases of a data transmission.</td>
<td>83</td>
</tr>
<tr>
<td>6.2</td>
<td>Power consumption comparison for different FFT implementations.</td>
<td>87</td>
</tr>
<tr>
<td>6.3</td>
<td>Power consumption data from simulation runs.</td>
<td>92</td>
</tr>
<tr>
<td>6.4</td>
<td>Detailed results of the model comparison.</td>
<td>93</td>
</tr>
</tbody>
</table>
1 Introduction

Electronic devices are an important part of modern life. We use computers, cell-phones, the Internet, and a variety of specialized devices, either personal gadgets or circuits integrated into our environment. Lights are automatically turned on when it gets too dark or when a moving person is detected, and the temperature in our homes is automatically regulated. The interactions between the real and the virtual worlds are currently still quite limited and usually restricted to a user's explicit actions. Most sensors are dedicated to a single purpose and are hardwired to the electronic device using the data with only a limited interaction with other sensors or devices.

The reason that sensors are often bound to a single device is the cost for the installation and the complexity of the configuration of data exchange. With new developments in sensor technology, such as micro-electro-mechanical systems (MEMS), and with advances in electronics and wireless data communication, general-purpose sensors are emerging. Some electronic devices, such as laptops and smart-phones, include a series of sensors that are being used for innovative new applications. For example, many laptops include an accelerometer whose original purpose is to put the hard-drive into a secure mode when the laptop is being dropped. This accelerometer is used by games that can be played by moving the laptop around, and the Quake-Catcher [26] project creates a network of sensors in laptops to detect earthquakes.

The availability of low-cost sensor and communication hardware makes new sensing approaches feasible. An area of interest, such as an industrial installation or a specific geographic zone, can be monitored at a much greater level of detail and at a lower cost than was previously possible. Battery-operated wireless sensing devices simplify the installation as no additional wiring is needed. A network of such sensing devices is called a wireless sensor network (WSN). There are three main application areas for WSNs: (1) home automation, (2) industrial monitoring, and (3) environmental monitoring.

**Home Automation:** In a modern home many things can be automated, for instance closing the blinds when there is too much sun light, controlling the room temperature, automatically turning the lights on, etc. Modular control systems for home automation are
commercially available and can be extended by adding additional sensors and actuators. Similarly, many burglar alarm systems can be extended by adding additional break-in sensors. To minimize installation costs, these sensors are typically battery operated and wireless. However, most actuators and the central control module are mains powered and thus do not need to implement a sophisticated power-management strategy for their radio interface. The challenges in home automation networks are quite different from the challenges in the other types of WSNs, and we will not study home automation networks further in this thesis.

**Industrial Monitoring:** A modern factory or processing plant is highly automated. Supervising the correct operation and maintaining the machines is thus fundamental to the operation of industrial sites. WSNs promise to enhance the detail of the supervision of the installations at reduced cost. The additional information provided by the sensors can be used to detect failures early, and to optimize maintenance schedules.

The expertise, insight, and some tools developed for this thesis were used to implement a commercial prototype of an industrial monitoring application. In this context, several large oil processing plants need to be monitored for vibrations generated by the heavy machinery, since some of the plants are located near buildings or recently discovered archaeological sites. The petrol industry's safety is heavily regulated; installing a wired network is very expensive and time consuming as the installation needs to be approved by state agencies and the mounting of the sensors needs to be done by specialists with state-approved safety training. The expensive procedures of the safety regulations do not apply to battery-operated devices with very low-power radio emissions; WiFi networks and cellphones, however, are too powerful and thus are not permitted on site. A battery-powered multi-hop wireless sensor network is the best approach in this situation. A battery-powered device using radio communication can be attached to non-critical equipment or planted in the ground by any plant worker without the need of government approval. As the permitted transmission power is very low, direct links are not always possible across the whole area and a multi-hop network is needed. We provide more details in Chapter 7.

**Environmental Monitoring:** The classic WSN scenario is environmental monitoring, where wireless sensors are used to instrument the habitat of animals [112], observe the environment of plants [116], monitor seismic activity [122], detect fires [8], or collect data for research in hydrology [117]. The different phases of research with WSNs can be explained with a WSN deployment, partially based on a real case [10]. In this deployment, a mountain village experiences sporadic floods caused by a glacier. Climatologists are tasked to study the glacier and find a way to predict floods and alert the population. The scientists install a sensor network to monitor the micro-climate of the glacier by observing, e.g., the surface temperature of the ice, the duration and intensity of sunshine, the amount of precipitation, and other similar factors. The network operation can be divided into three stages (the three ‘E’s): (1) exploration, (2) exploitation and (3) exception. At first, the scientists do not know exactly how the glacier behaves. At
this stage, exploration, they use the data from the sensor network to find out how the different factors influence the state of the glacier. Once the scientists understand the behavior of the glacier, they can express their knowledge in a mathematical model. The model might describe how much the ice melts in a variety of weather conditions and how water accumulates beneath the glacier. It could further describe the conditions that lead to the ice barrier breaking and releasing the water. In the exploitation stage, this model of the glacier combined with the current data from the WSN is used to predict floods. If an unexpected event occurs, that is not properly represented in the model, the system might fail to properly predict the behavior of the glacier and an impending flood might go unnoticed. For instance, a dirt avalanche from the hills at the outset of the glacier could cause the ice to be covered with a small layer of dust. The dust could completely change the heat absorption rate of the glacier, and thus influence the amount of water melted on a sunny day. In the exception stage, this model rupture might be detected when the measured surface temperature of the glacier differs from the expected surface temperature given the amount of sunshine received by the glacier.

A typical sensor node, as depicted in Figure 1.1, consists of a set of sensors connected to a microcontroller (µC) which in turn is connected to a low-power radio module. Current devices are typically powered by batteries. In addition, many deployed sensor nodes try to harvest energy from the environment, e.g., with solar panels. Because the devices are designed for low power consumption, the radio module's communication range is limited. Maximum transmission ranges of 20 m indoors and 100 m outdoors are common. To monitor larger areas, sensor nodes form a network, like the one depicted in Figure 1.2, where nodes relay data from neighboring nodes and one or more node is directly connected to a gateway (GW) computer and relays the data through this computer to the back-end system for further processing.

WSNs allow to measure and automatically monitor physical properties over time with high spatial and temporal resolution. The flip-side is that large amounts of data are available and need to be processed. To deal with the large amount of data generated by a WSN, it is necessary to use data models to simplify the analysis of this data. A major difference to traditional sensing installations is that the sensor devices in a WSN have some processing capability, the µC in Figure 1.1, and hence data can already be processed, filtered, compressed, and aggregated on the way to its destination.

Currently, data models are processed on back-end systems. Many data models, especially if based on complex deterministic models, are computationally expensive and therefore cannot be processed efficiently on the low-power devices typically used for sensor networks. It is often possible to do a first part of the processing already within the WSN. In this way, only the data necessary for the model processing, rather than every single sensor reading, is transmitted. This helps to reduce the power consumption as well as to resolve bandwidth bottlenecks. In addition, some data models are able to exploit redundancy in sensor readings to make the data assimilation of a sensor network more robust to transmission errors [106].
Chapter 1. Introduction

Figure 1.1: Block diagram of the different elements of a wireless sensor node: Sensors, microcontroller ($\mu$C), radio (with antenna), and power source (battery).

Figure 1.2: A typical setup of a WSN: The sensor nodes are connected to the Internet or a back-end network through a sensor-node-PC pair acting as the gateway (GW).
A key concern with battery-powered WSNs is the lifetime of such devices, and by extension of the sensor network installation. Often, it is not economical to exchange batteries, and hence the batteries of the devices, and thus the devices themselves, should last for as long as possible. As an example, a TelosB sensor node with a standard pair of AA-sized batteries lasts approximately one week if no special power saving measures are implemented and the µC and radio module remain active the whole time. With proper power management, the same sensor node with the same type of batteries can last for more than a year while regularly transmitting sensor readings and relaying readings of other sensors.

Much of the current research on WSNs focuses on how to reduce the energy consumption of the devices. In most cases the biggest energy consumer is the radio module (see Chapter 6). To reduce the power consumption, the radio is turned off whenever it is not needed, and many protocols for WSNs are specifically designed to minimize radio usage. At a higher level, sensor data can be preprocessed, such that only essential information needs to be transmitted, thus reducing the amount of data that needs to be sent over the network.

Existing data acquisition systems for WSNs (e.g., [2, 59]) usually do very little preprocessing inside the wireless network. To build a special-purpose data acquisition system, one needs a broad set of knowledge and skills from the physical layer all the way up to the application. The systems in the literature that do in-network processing of sensor data models have been developed for this single task and they were manually optimized. As WSN hardware and software become more complex, it is more and more difficult to know and understand the issues and approaches on all the different protocol levels. Ideally, there should be a framework that allows specialists in different fields to contribute modules for their particular fields. The framework would select the most appropriate modules and optimize the interaction of the different components, such that the resulting application is optimized for network lifetime or robustness based on the exact application requirements. To the best of our knowledge, there are currently no approaches allowing to express separately a-priory knowledge of sensor data (e.g., in the form of sensor data models) to optimize automatically distributed in-network processing of the collected sensor data. Focusing on the needs of the end user of WSNs may well make them an acceptable tool for field researchers. We believe that by taking sensor data models into account when optimizing a general purpose sensor network for a particular application is an essential step to attract real interest from domain experts.

This thesis studies how domain experts can use WSNs to support their research without having to become experts in all the fields associated with WSNs. As mentioned above, domain experts are mostly interested in exploring different models of how the environment behaves, exploiting sensor data models to determine key values of the observed system, or using the WSN to detect exceptions to their models. It is thus essential that a domain expert has an intuitive way to express sensor data models that is similar to what is used in the expert’s field. Once the sensor data models to be used are specified, the rest should automatically be optimized.

This thesis studies, how sensor data models can be used to automatically process sensor data.
Chapter 1. Introduction

In particular, we focus on how this data processing can be distributed inside the WSN. The goals of the thesis are:

- Find and explain different types of sensor data models. The goal is not to give concrete models, but rather find domains where such models exist and are used.
- Define a means to express sensor data models in such a way that it is easy for domain experts to do this and such that a computer program can take advantage of the description to optimize the processing in a WSNs.
- Describe and implement a way to use sensor data models to process data already in the WSN.
- Analyze and measure how the distributed processing of sensor data models reduces the power consumption of the WSN.

Based on this problem statement, our aim is to automate the generation and optimization of distributed processing applications for WSNs. Our contributions to this end are:

- The definition of a language that allows to describe sensor data models and thus allows to express knowledge about a-priory sensor data information.
- The design of a framework allowing the generation of a distributed WSN application based on the specification of sensor data models.
- An implementation of the proposed design as a modular framework showing the principles of the individual steps for generating distributed applications. In addition, thanks to its modular design, our implementation can be used by other researchers as a basis to advance the approaches for generating distributed applications for WSNs.
- The analysis of different optimization approaches based on measurements on real hardware and on cycle-accurate hardware simulations.
- The validation of the concepts developed in this thesis by applying them to a commercial prototype.

This thesis is structured as follows: In Chapter 2 we present the related work and background information to understand the context of WSNs and model processing, in Chapter 3 we present approaches for distributed model processing, in Chapter 4 we propose a framework to generate and optimize distributed model processing code, in Chapter 5 we present our implementation of the framework, in Chapter 6 we present our measurement setup and our results, in Chapter 7 we present a commercial prototype based on the concepts and expertise presented in this thesis, and we end the thesis with our conclusions in Chapter 8.
2 Related Work

2.1 Introduction

Distributed processing was heralded as a key distinguishing feature of WSNs with respect to traditional sensor acquisition systems. In terms of energy consumption, processing data on a sensor node is cheaper than transmission of the data. In Section 2.2 we present the work that is closest to our approach.

Wireless sensor networking is a large field, encompassing the physical deployment of the hardware, the design of the application layer software, the optimized middleware and networking protocols down to the MAC layer, energy efficient hardware and even research and development of new radio technologies. In the rest of this chapter we clarify how WSNs relate to other wireless communication technologies and introduce the various sub-fields necessary to make a complete WSN application. This information is in particular necessary to understand the key elements to reduce energy consumption in WSNs and shows that really efficient solutions can hardly be implemented by a single specialist.

2.2 State of the Art

Guestrin et al. [46] have proposed a model based on linear regression that exploits spatio-temporal data correlation. Their approach uses this model in conjunction with Gaussian elimination to reduce the amount of data sent over the sensor network. Basically, they model the sensor data as a polynomial function of the sensor’s geographical position and the sampling time. They use a least mean squares (LMS) algorithm to find the coefficients for a best fit to the sensor data. Their implementation runs entirely within the WSN. An important contribution of their work is a distributed algorithm to calculate the solution to the LMS problem in a distributed fashion. The network transmits the model coefficients describing the observations in the network to the sink. An application on the sink can then approximate values of the observations anywhere within the network. Using this linear regression model enables a significant reduction of the amount of data being transmitted in the network. Although their
Chapter 2. Related Work

approach proves to be very effective, it is intrinsically tied to the specific linear regression model. Their work cannot easily be adapted to other data models. Our approach differs in that we do not want to limit ourselves to a single sensor data model, but rather we want to use existing models, such as the one proposed by Guestrin et al. Users of our system should not have to manually optimize a WSN application for their specific model.

Deshpande et al. [31] present a model based on time-varying multivariate Gaussian random variables. Their approach, dubbed BBQ, treats sensors as multivariate Gaussian random variables. If the statistics of the Gaussian random variables (mean and covariance matrix) are known, then knowing the outcome for some of the variables in a particular experiment also increases the knowledge about the likely outcome of the unobserved variables. BBQ estimates the statistics of the sensors and then uses them to derive the likely outcome of sensor readings without sampling the actual sensors. When the user queries a sensor with a given quality-of-information (QoI) requirement, BBQ determines a query plan for a set of sensors to be sampled, such that the desired information can be estimated with the required accuracy while minimizing the energy consumption for querying the sensors. All calculations are done on a gateway computer, and the sensors are queried using traditional WSN communication approaches such as TinyDB [76]. BBQ is not designed to be distributed among the nodes in a WSN or to use models other than the one based on multivariate Gaussian random variables. Again, our approach differs in that we want to give the user the choice of the model to be used. We also focus on model processing being done at least partially inside the WSN.

MauveDB [32] is an extension of Apache Derby, an open source relational database implemented in Java. MauveDB offers the user a novel kind of view that calculates its data based on a sensor data model. Currently, supported models are based on either linear regression or correlated Gaussian random variables. Model processing is done entirely on the back-end system. MauveDB is similar to our approach in that it allows processing to be based on a variety of data models. However, MauveDB runs exclusively on the back-end, while we focus on model processing inside the WSN.

TinyDB [76] is a framework based on TinyOS that lets users see the WSN as a database. Querying sensors results in data being acquired by the network. In some cases, queries using aggregation functions are calculated partially inside the network. TinyDB supports aggregation, energy-aware query constraints, and continuously running queries. TinyDB differs from our approach in that it was never aimed at model-processing. To take advantage of sensor data models a user would need to carefully craft the query to the network, necessitating a deep understanding of how TinyDB works and how the query would best be composed. The query language is based on SQL and might not be intuitive for users of WSNs without a computer-science background. TinyDB is no longer maintained.
2.3 Wireless Networking Approaches

There are many commonly known wireless networking approaches. As they often lead to confusion when talking about wireless sensor networks, the most common wireless networking techniques are briefly introduced and the main differences to WSNs are presented.

2.3.1 WiFi

WiFi, commonly known as wireless local area network (WLAN) or simply wireless network, is a wireless network based on the IEEE 802.11 standards and is the wireless extension of wired computer networks. Although not limited to this mode of operation, WiFi networks are mostly used in managed mode, meaning that there is one or several base stations providing access to a traditional wired network, and clients of the network establish a one-hop connection to a base station. WiFi networking hardware can be used for multi-hop mesh networks (see WMN and MANET) and even for some types of WSNs [71, 82].

2.3.2 Bluetooth

Bluetooth [109, 17] is a wireless communication technology for transmitting data over short distances. It was initially designed to replace serial data cables. Bluetooth communication is implemented as a master-slave protocol where a master device can communicate with up to 7 slave devices. Communication between two slave devices passes through the common master device. Multi-hop communication (so-called scatternets [11, 90]) can be achieved by a device being part of multiple piconets, either as a master in one network and a slave in another network, or as slave in multiple networks. Because Bluetooth was not really designed as a multi-hop networking architecture, it is not commonly used for WSNs, although at least one WSN hardware platform using Bluetooth exists [18, 15].

2.3.3 Wireless Mesh Network

A wireless mesh network (WMN) [49] typically consists of nodes using WiFi in ad-hoc mode to communicate with each other over multiple hops. WMNs are used to network computers in places where a wired network is not possible or too costly and where not every node can communicate with every other node or with a central base station. WMNs can be used, for instance, to provide Internet access to a whole town. Research in the area of WMNs focuses on optimal routing.

2.3.4 Mobile Ad-hoc Networks

Mobile ad-hoc networks (MANETs) [62, 92, 77, 22] are essentially WMNs where the nodes are mobile. The idea is to provide network access in areas with spotty network coverage, for
Chapter 2. Related Work

Table 2.1: Different classes of wireless networks.

<table>
<thead>
<tr>
<th></th>
<th>RFID</th>
<th>Mote-class</th>
<th>PDA-class</th>
<th>MANET</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM</td>
<td>-</td>
<td>~10 KB</td>
<td>~10 MB</td>
<td>~1 GB</td>
</tr>
<tr>
<td>Storage</td>
<td>~1 KB</td>
<td>~1 MB</td>
<td>~1 GB</td>
<td>~100 GB</td>
</tr>
<tr>
<td>Speed</td>
<td>~10 MHz</td>
<td>~500 MHz</td>
<td>~3 GHz</td>
<td></td>
</tr>
<tr>
<td>Lifetime</td>
<td>~1 year</td>
<td>~1 week</td>
<td>~5 h</td>
<td></td>
</tr>
<tr>
<td>Bandwidth</td>
<td>~100 bps</td>
<td>~100 Kbps</td>
<td>~10 Mbps</td>
<td>~50 Mbps</td>
</tr>
<tr>
<td>Range</td>
<td>~10 cm</td>
<td>~30 m</td>
<td>~100 m</td>
<td>~100 m</td>
</tr>
</tbody>
</table>

instance, to enhance the network access to mobile phone networks inside buildings. The more devices there are, the more robust the network should become. Since the devices are mobile, they are typically battery-powered. Research in the area of MANETs focuses on routing in an inherently mobile network, on battery-lifetime, and on how participants in the network can be properly compensated for providing service to other participants.

2.3.5 Wireless Sensor Networks

Wireless sensor networks (WSNs) [3] are made up of sensors equipped with a low-power radio transmitter to communicate their readings. Because of the low-power radio, communication is mostly from the sensors to a data collection point (sink). As most WSNs run on batteries or other low-power energy sources, research on WSNs is mainly concerned about reducing the energy consumption. One of the biggest energy consumers in a sensor node is the radio module (see Chapter 6), and hence, research tries to optimize communication, including transmitting only relevant information by preprocessing data already in the network.

2.4 Device Categories for WSNs

Depending on the application, there are many different device configurations that can be used for a WSN. Some installations have access to external power sources and thus can use high-power radio modules, other installations will only be used for a few days and thus saving energy is not important as long as the data is transmitted as fast as possible. Some installations will have to run for years and only transmit a few bytes every day. The hardware capabilities of WSNs can be broadly classified into four categories: radio-frequency identification, mote-class, PDA-class, and laptop. The categories are summarized in Table 2.1.
2.4. Device Categories for WSNs

2.4.1 Radio-frequency Identification

Radio-frequency identification (RFID) systems consist of RFID tags and RFID readers. An RFID reader beams energy to the tags it wants to read. In the original form, a tag becomes only active when it receives this external energy. It then waits for the reader to transmit a request. If the request matches the tag's ID, it answers the request. RFID was designed to replace bar codes. The advantage of RFID over bar codes is that the tags, replacing bar code stickers, can be read without a line of sight. In a manufacturing environment, the contents of a box containing different items can be scanned in a single pass without needing to open the box. RFIDs are probably best known for their uses as wireless or touchless ski passes, or as access cards to secure buildings. Most modern cars use RFID to identify ignition keys as an additional anti-theft system. There are active RFID tags, which use a battery to boost the transmission range and might do some processing and sensing even when not being read. RFID systems are not typically used for WSNs, but they are sometimes mentioned in this context. They are the WSN devices with the fewest resources and capabilities. RFID does not support multi-hop communication.

2.4.2 Mote-class WSNs

The term mote was coined in the SmartDust project [96] as an allusion to dust motes. The goal of the project was to create a sensor network consisting of devices smaller than a cubic-millimeter (and thus being considered dust). The term is an allusion to dust motes and designates small sensor nodes. The typical mote is much larger than a cubic-millimeter, and usually about the size of a pair of AA batteries.

2.4.3 PDA-class WSNs

Some people argue that it takes a while for research to bear fruit, that in this time technology will progress, and that by the time sensor networks will become a commercial success, the small sensor devices will have capabilities similar to today’s personal digital assistants (PDAs) or smart phones. In order to experiment with networks with such capabilities, PDAs are used.

2.4.4 Laptops

The other extreme class of sensor network devices is laptops with built-in WiFi networking cards. WSNs based on laptops are typically only used as proof-of-concepts, and their networking approaches are usually based on WMNs or MANETs. Laptops and embedded systems might be used in other WSN installations as gateways, potentially connecting remote locations via satellite or cell phone links.
Chapter 2. Related Work

2.4.5 Conclusion

Most literature about WSNs concerns mote-class or PDA-class networks. Compared with mote-class networks, the devices in PDA-class networks have much more memory and higher processing power. While indeed microprocessors have become much more powerful in the past, the progress in battery capacity or in radio range of wireless transmitter is much slower. The battery is typically the dominating factor for the size of sensor devices. While progress in the miniaturization of all components of a sensor node can indeed lead to more powerful networks, for some applications it is also interesting to just have smaller devices with the same capabilities. Mote-class networks have to deal with much bigger restrictions, and approaches developed for these limited devices can help to improve algorithms for more capable networks. While the results of this thesis are not specific to any particular class of devices, the work presented here has been done with battery-operated multi-hop mote-class sensor network in mind.

2.5 Hardware Devices for Mote-class Sensor Networks

While power consumption depends to a large part on the radio module, we have shown in [21] that proper handling of microcontroller sleep modes can have a significant impact on overall power consumption, especially for very low-power applications. We show in Chapter 6 that hardware choices have a significant impact on power consumption. To minimize power consumption, adapting a program based on the characteristics of the hardware is necessary. We present here the most common hardware platforms for generic WSN research. Other platforms in use typically have very similar characteristics, as they, e.g., use the same microcontroller or the same radio interface.

Virtually all current WSN hardware platforms are inspired by the original Mica [52] platform. There are a number of direct descendants of the original Mica mote (in chronological order): Mica2 / Mica2Dot, MicaZA, and Iris. These platforms, which are compatible with respect to the hardware interfaces (e.g., for connecting external sensor boards), form the Mica-family of motes. A list with the main characteristics of the devices we studied in this thesis is shown in Table 2.2.

The Mica2 platform [12] is the successor of the original Mica platform developed at the University of California, Berkeley, which essentially defined the concept of a sensor node. The Mica2 platform is probably the oldest platform that was commercially available and has been used extensively in universities worldwide. The Mica2 platform uses the Atmel ATmega128L microcontroller, which is well-known amongst hobbyists. In addition, it uses the Texas Instruments (TI) Chipcon CC1000 radio, which is a low-power byte radio, thus sending and receiving individual bytes at a time. This gives the platform a unique control over low-level protocols, such as the media access control (MAC) protocol. The Mica2 platform also introduced an interface configuration for sensor boards that is compatible amongst a number of different sensor node types (Mica2 [12], MicaZ [14], Iris [60]) and adapters [97] exist.
### Table 2.2: Commonly used sensor devices for mote-class WSNs

<table>
<thead>
<tr>
<th>Device</th>
<th>Microcontroller</th>
<th>Radio</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mica2</td>
<td>Atmel Atmega128L 8 MHz</td>
<td>TI Chipcon CC1000 868 MHz 76.8 Kbps 10 dBm (10 mW)</td>
<td>Connector for external sensorboards</td>
</tr>
<tr>
<td>MicaDot</td>
<td>4 KB RAM 128 KB Flash 4 KB EEPROM</td>
<td>Connector for external sensorboards</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Microcontroller</th>
<th>Radio</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTnode rev. 3</td>
<td>Atmel Atmega128L 7.3 MHz</td>
<td>TI Chipcon CC1000 868 MHz 76.8 Kbps 10 dBm (10 mW)</td>
<td>100 KB external RAM Connector for external sensorboards</td>
</tr>
<tr>
<td></td>
<td>64 KB RAM 128 KB Flash 4 KB EEPROM</td>
<td>Zeevo ZV4002 (Bluetooth) 2.4 GHz 1 Mbps 4 dBm (2 mW, class 2)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Microcontroller</th>
<th>Radio</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicaZ</td>
<td>Atmel Atmega128L 8 MHz</td>
<td>TI Chipcon CC2420 [113] 2.4 GHz 250 Kbps 0 dBm (1 mW)</td>
<td>Connector for external sensorboards 512 KB external Flash</td>
</tr>
<tr>
<td></td>
<td>4 KB RAM 128 KB Flash 4 KB EEPROM</td>
<td>Connector for external sensorboards 512 KB external Flash</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Microcontroller</th>
<th>Radio</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris</td>
<td>Atmel Atmega128L 8 MHz</td>
<td>Atmel AT86RF230 2.4 GHz 250 Kbps 3 dBm (2 mW)</td>
<td>Connector for external sensorboards 512 KB external Flash</td>
</tr>
<tr>
<td></td>
<td>4 KB RAM 128 KB Flash 4 KB EEPROM</td>
<td>Connector for external sensorboards 512 KB external Flash</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Microcontroller</th>
<th>Radio</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>TelosB (Tmote Sky [87]) TelosB (Tmote Invent)</td>
<td>TI MSP430F1611 8 MHz (4.15 MHz for TelosB) 10 KB RAM 48 KB Flash 256 bytes EEPROM</td>
<td>TI Chipcon CC2420 [113] 2.4 GHz 250 Kbps 0 dBm (1 mW)</td>
<td>Optional Sensors (TelosB/Tmote Sky):</td>
</tr>
<tr>
<td></td>
<td>Xemics XE1205 868 MHz 152.3 Kbps 12 dBm (16 mW)</td>
<td>Connector for external sensorboards 512 KB external Flash</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Microcontroller</th>
<th>Radio</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>TinyNode 564 [35]</td>
<td>TI MSP430F1611 8 MHz</td>
<td>Xemics XE1205 868 MHz 152.3 Kbps 12 dBm (16 mW)</td>
<td>Connector for external sensorboards 512 KB external Flash</td>
</tr>
</tbody>
</table>
for other platforms (TelosB [58], MicaDot [13]).

The *MicaDot* platform [13] is essentially a Mica2 platform in a different form factor. It is substantially smaller than the Mica2 and runs on a coin cell battery. The MicaDot cannot use the same hardware interface configuration for sensor boards as the Mica2 platform, and thus has its own interface design. Adapters exist to connect sensor boards for the Mica2 platform to the MicaDot platform, although not every functionality can be replicated.

The power consumption of the Mica2 platform has been studied extensively and numerous simulators exist to determine the power consumption of a particular protocol running on this platform (e.g., [4]). However, one should be careful to not simply reuse these results for newer platforms, as different hardware choices, especially with respect to the radio module in use, can significantly alter the power-consumption behavior of a platform. As there are so many publications based on the Mica2 platform, the platform remains relevant in research for comparisons with previous work.

The *BTnode* platform [18, 15] was developed independently and approximately at the same time as the Mica platform at the Swiss Federal Institute of Technology in Zurich (Eidgenössische Hochschule Zürich, ETH-Z). The hardware design of this platform is publicly available. The design of the BTnode centers around the use of Bluetooth as a commercially established communications standard. Bluetooth is not designed for multi-hop communication. Devices are grouped in piconets with a master and up to seven slaves. Mesh networking is only possible if the devices support scatternets [11, 90], where a device is a slave in multiple networks and optionally a master in one network. The communication approach in Bluetooth is substantially different from the approach of a byte radio. Bluetooth uses frequency-hopping (it constantly changes the frequency in a well-defined pattern) and all the essential lower-layer link-level protocols are implemented in the radio module. The current revision of the BTnode uses the TI Chipcon CC1000 as a secondary radio, and thus is able to communicate with the Mica2 and similar motes.

The *MicaZ* platform [14] is the successor of the Mica2 platform. It uses the then new TI Chipcon CC2420 radio [113], which implements the IEEE 802.15.4 physical layer [57], and thus can use the ZigBee [130, 9] radio stack. It also means that the MicaZ platform can communicate with the TelosB and Iris platforms. The CC2420 is a packet radio, meaning that it sends and receives multiple bytes as a packet. The MicaZ includes an additional Flash memory to store sensor readings. It uses the same hardware interface configuration as the Mica2 and thus can use the same sensor boards.

The *Iris* platform [60] is the successor of the MicaZ platform. It uses the Atmel ATmega1281 microcontroller, which has more RAM and Flash, and the Atmel RF230 radio module. The RF230 is also a packet radio implementing the IEEE 802.15.4 physical layer, and the Iris platform thus can communicate with the MicaZ and the TelosB platforms. The RF230 has a slightly higher transmission power than the CC2420 (3 dBm vs. 0 dBm). The Iris platform uses the same hardware interface configuration as the Mica2 and thus can use the same sensor boards.
boards.

The *TelosB* platform [58] is the successor of the earlier Telos platform. The hardware design of this platform is publicly available. The TelosB uses the TI MSP430 microcontroller. In contrast to the Atmel ATmega series of microcontrollers used in many other platforms, this is a 16-bit microcontroller, it uses less power when active, and it has shorter wake-up times from low-power modes. As we concluded in [21], a microcontroller has to periodically wake up, and thus the power consumption when active is important even if the microcontroller has an otherwise low duty-cycle. The TelosB platform uses the TI Chipcon CC2420 radio module and is therefore compatible with the IEEE 802.15.4 physical layer. The TelosB platform has an integrated USB interface and does not need additional programming or communication hardware to connect to a desktop computer. The TelosB optionally comes with a set of on-board sensors for visible and infrared light, humidity, and temperature. Because of its open design, the TelosB platform has been adopted by different manufacturers. A commonly found variant is the Tmote Sky, which is the TelosB platform manufactured by the former Moteiv company. Moteiv also produced a nicely packaged version called Tmote Invent, which came in a futuristic-looking plastic casing (similar to a USB memory module), used a rechargeable battery (recharged by plugging the device into a USB port) and included a number of different sensors, such as an accelerometer, a microphone and a light sensor.

The *TinyNode* [35] from Shockfish SA, a spin-off from the Swiss Federal Institute of Technology in Lausanne (école polytechnique fédérale de Lausanne, EPFL), uses the TI MSP430 microcontroller and the Xemics XE1205 radio module. The TinyNode platform has one of the highest transmission powers amongst the embedded sensor networking platforms and, depending on the environment, boasts a transmission range of more than 1 km. The TinyNode platform is oriented towards environmental monitoring in isolated areas, and interface boards are available that allow the platform to communicate with a home network over GPRS.

### 2.6 MAC Layer

The *media access control* (MAC) layer manages access to the medium (the “air waves”). When two or more senders transmit simultaneously, their transmissions interfere with each other and receivers often cannot decode any of the transmissions. This situation is called a *collision*. The MAC layer is responsible for minimizing the risk of collisions. For WSNs, the MAC layer also plays an important role in managing the power consumption of the radio. Low-power radios, like the ones often used in WSNs, consume a significant amount of energy not only when transmitting data, but also when receiving data, or simply when listening on the channel for new transmissions. An ideal data transmission with minimal energy consumption would be the transmitter and receiver turning on at the same time, the data being transmitted without error, and then the two radio interfaces turning off again. In reality, this ideal is never fully achieved as sensor nodes need to synchronize, and it is usually not known in advance when new data is ready.
Chapter 2. Related Work

If we define *wasted energy* as energy consumed by the radio interface for purposes other than transmitting the actual data, then there are four main causes for wasting energy [125]: (1) collisions - two devices transmitting at the same time and interfering which each other’s transmission, (2) overhearing - a device receives data that is not addressed to that device, (3) control packets - data transmissions that do not carry application data but are rather used for network management (and might not be needed with a different protocol), and (4) idle listening - having the receiver activated and waiting for incoming packets when there are no transmissions ongoing.

Because of the impact the MAC layer has on power consumption, research has focused on MAC layer protocols, and this resulted in a large number of such protocols. The two main categories of MAC layer protocols are synchronous and asynchronous protocols. In the following, a small selection of the most important MAC layer protocols is presented.

One of the first MAC layer protocols for WSNs is the Sensor-MAC (S-MAC) [125]. The S-MAC regularly puts the radio interface in a sleep mode and loosely synchronizes wake-up times between neighboring nodes. In addition, it uses a ready-to-send/clear-to-send (RTS/CTS) message exchange to minimize the risk of collisions. A node that is too far away from the sender to overhear the transmissions but is close enough to interfere with them is called a *hidden terminal*. The problem of the hidden terminal can be overcome with the RTS/CTS exchange, where the sender first signals its readiness with an RTS frame, and the receiver then signals in return its readiness with a CTS frame. Other nodes in the vicinity of either the sender or the receiver (including a potential hidden terminal) will be aware of the subsequent transmission when they overhear either an RTS or a CTS frame. In addition, when a node receives an RTS or CTS frame and is not involved in the subsequent transmission, it can turn off its radio for the duration of the transmission.

The Berkeley MAC (B-MAC) [98] protocol is fully asynchronous and was for a long time the standard MAC layer protocol for TinyOS. Nodes sleep and wake up periodically to sample the channel and check for ongoing transmissions. If the channel is idle, the nodes go back to sleep. To ensure that the destination node will wake up and receive a message, a transmitting node has to send a preamble that is longer than the sleep period of the destination node. Any node overhearing the preamble will stay awake until it receives the actual data transmission. This mechanism is called low-power listening (LPL). When a node wants to send data, it first waits for a random period (to statistically minimize the risk of collisions) and then samples the radio channel. If the channel is idle, it starts the transmission, otherwise it waits for another random back-off period.

The B-MAC works well on bit-radios, such as the TI Chipcon CC1000 used, e.g., on the Mica2 platform. However, packetized radios, radios that implement some MAC layer functionality and transmit whole packets rather than a stream of bits, typically cannot send a continuous long preamble. The X-MAC [19] protocol is specifically designed for packetized radios, such as the TI Chipcon CC2420 or the Atmel RF230. Instead of a single long preamble, it sends a
2.6. MAC Layer

A strobed preamble, which is a short preamble packet retransmitted as fast as possible for the duration of the preamble period. The preamble packet contains the address of the destination node. Nodes overhearing a strobed preamble not destined for them can thus go back to sleep. The destination node can send an acknowledgement (ACK) packet after receiving a preamble packet, thus shortening the preamble time. After the transmitting node sends its first message, if it has additional messages, it will use the normal random-back-off-approach to send additional messages. Additional senders overhearing a strobed preamble for their destination node can wait until the end of the preamble, and then transmit their own message using the random-back-off approach. If the receiving node does not receive any new transmissions for a period greater than the maximum back-off period, it can go back to sleep.

There are two BoX-MAC [86] protocols improving on the B-MAC and the X-MAC. Both protocols add cross-layer (physical and link layer) support. With the first BoX-MAC protocol, whose operation is mostly based on B-MAC, a sending node transmits continuously small packets with the destination address. This protocol uses the clear-channel assessment (CCA) from the physical layer to sense whether a transmission is on-going. The use of the CCA enables very short wake-up times when there are no transmissions. If a transmission is detected, the node will stay awake to receive the preamble packet (link layer). If the node is the destination of the data transmission, it will stay awake until it received the actual data packet. To enable the short wake-up times, the sending node cannot wait for potential ACK packets, and thus the preamble cannot be aborted.

The second BoX-MAC protocol is based on X-MAC, but sends the whole data packets instead of short preamble packets. When a node receives the data packet, it can immediately abort the retransmissions by sending an ACK. This reduces the control overhead: instead of receiving a preamble packet, sending an ACK, and then receiving the data packet, the destination node receives the data packet immediately. As opposed to the first protocol, with the second BoX-MAC protocol a node wanting to transmit needs to observe the channel for a longer time, as there are gaps between retransmissions to enable the destination node to acknowledge the reception of the packet. Only if the channel remains inactive for a period longer than the pause between two transmissions, the node can go back to sleep. This second BoX-MAC protocol is currently the default MAC protocol for low-power operation in TinyOS.

A different approach is taken by the WiseMAC [37] protocol. The authors assume an infrastructure-based network, where the sensor nodes directly communicate with one of multiple access points (AP). The APs are much more powerful and not energy constrained. A possible scenario is home automation where there is a basic infrastructure provided by AP wired to a central network, and low-power sensors and actuators (e.g., light switches) need to be connected to this back-end. The authors further propose to use different MAC layer protocols based on the direction of the communication (up-link to the AP or down-link to the sensor or actuator). WiseMAC is a down-link protocol where the low-power devices use their own sleep schedules, and the APs learn the schedules of the low-power devices to reduce unnecessary transmissions.
2.7 Routing

The routing requirements in a WSN differ significantly from other types of networks. By their very nature, pure WSNs send most of the data from the individual sensors to a data collection point, usually called sink. Little data is sent back to the nodes, e.g., configuration data and end-to-end acknowledgments. Normally, there is no data exchange between arbitrary nodes of the network. Optionally, data might be processed and modified on its way to the sink.

In wireless networks, one wishes to minimize transmissions to save bandwidth and energy. Often, routing paths are chosen, such that the total number of transmissions for a single message is minimized. Many routing protocols use a measure called expected transmission count (ETX, see for example [95]) that indicates how many times a packet needs to be transmitted on average until it is correctly received by the receiver. If $p_s$ is the probability that a transmission is successful, then the expected number of transmissions (ETX) is expressed as the sum of all possible transmission numbers (until success) times the probability that the transmission is successful. If we assume that a message can be retransmitted an infinite number of times until it succeeds, ETX can be calculated as:

$$ETX = \sum_{i=1}^{\infty} i(1 - p_s)^{(i-1)} p_s = \frac{1}{p_s}.$$

(2.1)

Optimal routing protocols using ETX might choose routes with a higher hop-count if the individual links are of good quality. Suppose that two nodes $n_1$ and $n_2$ want to exchange messages. They can directly communicate, but they only have a success rate of 0.25%, meaning that on average a message needs to be transmitted four times to be correctly received by the other node ($ETX_{n_1,n_2} = 4$). There might be an intermediate node $n_3$ which has better link qualities to the two nodes, for example $ETX_{n_1,n_3} = 1.2$ and $ETX_{n_3,n_2} = 1.3$. Even though the path $n_1 \to n_3 \to n_2$ involves one more hop than the path $n_1 \to n_2$, on average a message is only transmitted 2.5 times, and thus this longer path would be preferred. The collection tree protocol (CTP) [43] in TinyOS is a protocol that establishes routing paths with minimal ETX from any node to a sink node.

2.8 Transport Layer / Middleware

A lot has been written about middleware for WSNs. An overview of middleware issues can be found in [126, 124, 47, 102, 84].

To facilitate the interaction with WSNs, an interesting approach is to see the WSN as a database [16]. Sensor readings are queried as if they were stored on a fixed medium. Instead of reading the data from a hard drive, the actual sensor nodes are queried. Two such device databases based on SQL are the tiny aggregation service (TAG) [75] and TinyDB [76].

A slightly different approach is demonstrated with Asene [131], an implementation of an active
database inside a WSN. It uses publish/subscribe (see Section 2.8.1) to communicate among nodes. The basic principle of Asene is to wait for events, then evaluate a condition and, if the condition is true, execute a given action.

The shared memory paradigm, in particular in the form of tuple spaces, is another form of middleware that has been tried for WSNs [29, 33]. A more complex approach to middleware is mobile agents [65, 89, 66]. The idea here is that instead of sending a query to the network, a small piece of code is sent, which gets then executed on the nodes, queries the the desired sensors, preprocesses the obtained data and then sends it back to the sink. Most implementations we found in the literature are based on Java and run on PDA-class networks. For mobile agents to properly work on mote-class networks, the sensor nodes must either support partial code updates, e.g., as provided by TinyCubus [80, 81], or must implement some sort of interpreter or virtual machine that can execute code on the fly, such as [41, 69, 21].

Titan [74], the tiny task network, assigns processing tasks to individual nodes such that the data traveling from the source sensor nodes to the sink is being processed step by step. The distinguishing feature of titan is the ability to distribute computing-intensive tasks among several nodes that otherwise could not be executed on a single node as it would not have the necessary resources.

### 2.8.1 Publish/Subscribe

Wireless sensor networks are dynamic by nature. New sensors will get added and existing sensors might fail or run out of battery. As such, communication within a sensor network needs to cope with changes. A solution to deal with the complexity of such changes is data-centric communication approach [38], in which information is delivered to the consumers not based on their network addresses, but rather as a function of their contents and interests. Publish/Subscribe messaging systems [40] are well-known examples of data-centric communication and are widely used in enterprise networks, mainly because of their scalability and support of a dynamic application topology. These features are achieved by decoupling the various communicating components from each other, such that it is easy to add new data sources/consumers or to replace existing modules [91].

MQTT-S [56] is an extension of the open publish/subscribe protocol *message queuing telemetry transport* (MQTT) [88]. It is designed for operation on low-cost and low-power sensor devices and running over bandwidth constrained WSNs. MQTT-S provides a simple but scalable communication means for interacting with a large number of sensor devices and enables a seamless integration of the WSNs into traditional networks.

TinySIP [68] is an extension of the well-known session initiator protocol (SIP) for WSNs. TinySIP supports session semantics, publish/subscribe, and instant messaging. TinySIP offers support for multiple gateways. Most communication is done by addressing individual devices. As device addresses are related to the gateway being used, changing the gateway on the fly is...
Chapter 2. Related Work

difficult.

Mires [110] is a publish/subscribe architecture for WSNs. Basically, sensors only publish readings if the user has subscribed to the specific sensor reading. Messages can be aggregated in cluster heads. Subscriptions are issued from the sink node (typically directly connected to a PC), which then receives all publications.

DV/DRP [48] is another publish/subscribe architecture for WSNs. DV/DRP stands for distance vector / dynamic receiver partitioning. Subscriptions are made based on the content of the desired messages. Subscriptions are flooded in the network. Intermediate nodes aggregate subscriptions. They forward publications only if there is an interest for this publication. Because of the complexity of matching subscriptions to arbitrary data packets, it would be difficult to implement this protocol on the devices targeted in this thesis.

Messo and Preso [103] are two complementary publish/subscribe protocols for WSNs. Messo allows data to be collected from sensors in a WSN, whereas Preso allows data to be sent to actuators in the WSN. Messo and Preso rely on an external broker. Messo and Preso differ from MQTT-S in that they do not establish individual connections between the devices and the broker. Their implementation takes advantage of the possibility of processing data inside the WSN. Each node decides locally whether to forward a message. If data is collected with Messo, nodes that relay messages can also combine multiple messages. Currently, Messo and Preso rely on predefined topics. They cannot dynamically add new topics. They also require a single gateway.

2.9 Aggregation / Compression

A sensor network can provide a large number of individual sensor readings. Often, it is not interesting to see every single reading, but rather one would like to have a summary of the information. Aggregation [1, Section 2.2.3] is often used to calculate such summaries. For a simple network monitoring the temperature in a building, one might want to see the minimum, maximum and average temperatures. Minimum, maximum and average are examples of aggregation operators that take a list of values as input and produce a single result. A simple approach to obtain the desired values from the building monitoring network would be to collect all the readings in a central computer (the back-end), and then apply the aggregation operator to the list of sensor readings. A more efficient approach to, e.g., determine the minimum temperature would be to have each node only forward the smallest temperature value it encountered. For many aggregation operators it is possible to find an efficient distributed implementation.

Distributed aggregation as described by Madden et al. [75] works as follows. Each node participating in the computation holds a partial state record, which it initializes with its own sensor readings using an initializer function $i$. A node will receive the partial state records from its children and merge them with its own partial state record using a merging function.
2.9. Aggregation / Compression

$\textit{f}$. On the back-end, the actual result of the aggregation operator is obtained by applying the evaluator $e$ to the final partial state record. While this concept of aggregation is very generic, the partial state record is typically a set of $n$ real numbers ($\mathbb{R}^n$), while the set of numbers (e.g., sensor readings in a WSN) and the final value of the aggregation operator normally are real numbers ($\mathbb{R}$). Thus, since $i$ is used to initialize the partial state record, $i : \mathbb{R} \rightarrow \mathbb{R}^n$. The merging function $m$ merges multiple partial state records, $m : (\mathbb{R}^n, \mathbb{R}^n) \rightarrow \mathbb{R}^n$. Finally, the evaluator $e$ calculates the final value of the aggregation from the partial state record representing the merged data from the whole set and produces a single value, $e : \mathbb{R}^n \rightarrow \mathbb{R}$.

2.9.1 Problems of Distributed Aggregation

Distributed aggregation works well in principle. In real implementations, problems occur due to packet loss, due to packet retransmission and hence packet duplications, and due to the size of partial state records becoming too large. Not every aggregation operator is affected by the same types of problems, and not every type of problem is equally important for the different operators.

For many aggregation operators, the loss of a single sensor reading does not affect the result much, the operator will still give a good approximation of the desired value. Some aggregations are more sensible to the loss of sensor readings than others, and in a wireless sensor network (WSN) the loss of a packet close to the sink usually means the loss of the data of a whole subtree. To avoid this problem a simple solution is to implement retransmissions. WSNs differ from traditional networks in that their links can change over time due to changes in the radio environment (e.g., changing weather conditions or moving obstacles, such as persons and cars) or due to node failures. To increase the reliability of the network, data is often transmitted over multiple paths, which then might lead to receiving the same information multiple times.

Some aggregation operators, like $\textit{min}$ and $\textit{max}$, are naturally insensitive to data duplications, while most standard implementations of other aggregation operators are affected by it. It is possible to transform some of the standard implementations to duplicate-insensitive implementations, usually by transforming them to a probabilistic approach at the cost of accuracy. Considine et al. [27] showed, based on earlier work on estimating unique entries in a database done by Flajolet et al. [42], the basic idea for probabilistic implementations. They also show how to extend their approach to probabilistic counting and summing, which can be used as basic operators for many other aggregation operators, like $\textit{average}$ or $\textit{histogram}$.

Manihj et al. [78] describe an interesting approach where a duplicate-sensitive, exact implementation of some aggregation operators is used at the periphery of the WSN. Towards the sink, the expected impact of data loss increases as the loss of a single packet would mean the loss of the data from a whole subtree. Once the expected loss based on the transmission error rate and the amount of data in a packet passes a threshold, the aggregation implementation is switched to a duplicate-insensitive, probabilistic implementation.
Some aggregation operators do not have a partial aggregate of a fixed size. The \textit{count unique} operator, for instance, requires one to keep a list of unique elements to avoid counting an element twice, and hence the size of its partial aggregate is dependent on the number of unique elements. The \textit{median} operator requires an ordered list of all elements to pick the element in the middle of the list, and thus the size of its partial state record is proportional to the number of contributing elements (i.e., sensors). For some operators, there exist implementations with a fixed-size partial state record, usually with a loss in precision (e.g., implemented as a probabilistic approximation). For instance, the probabilistic approximation of the \textit{count unique} operator presented by Considine et al. [27] (mentioned above) has a fixed-size partial state record, while for the \textit{median} operator no implementation with a fixed-size partial state record is currently known.

2.9.2 Common Aggregation Operators

We briefly present the most common aggregation operators here. The aggregation operators typically operate on a set of real numbers \(X\) and produce a single real value as result:
\[
\text{agg} : \{\mathbb{R}, \ldots, \mathbb{R}\} \rightarrow \mathbb{R}.
\]

**Average:** The \textit{average} (or shortly \textit{avg}) operator calculates the arithmetic mean of a set of values. The \textit{avg} operator is \textbf{duplicate-sensitive}. The partial state record is of \textbf{fixed size} and consists of two numbers. The required size to represent the full range of possible values for these two numbers depends on the number of elements (\textit{count}) and the values of the elements (\textit{sum}). There exists a duplicate-insensitive form of this operator.

\[
\text{avg}(X) = \frac{\sum_{x_i \in X} x_i}{|X|}
\]  

(2.2)

**Partial state record:** \{sum, count\}

**Initializer:** \(i(\text{value}) = \{\text{value}, 1\}\)

**Merger:** \(m(a, b) = \{a.\text{sum} + b.\text{sum}, a.\text{count} + b.\text{count}\}\)

**Evaluator:** \(e(a) = \frac{a.\text{sum}}{a.\text{count}}\)

**Count:** The \textit{count} operator counts the number of elements in a set of values. The actual values have no influence on the outcome. The \textit{count} operator is \textbf{duplicate-sensitive}. The partial state record is of \textbf{fixed size} and consists of a single number. The required size to represent the full range of possible values for this number depends on the (maximum possible) number of elements. There exists a duplicate-insensitive form of this operator.

\[
\text{count}() = |X|
\]  

(2.3)
Partial state record: {count}
Initializer: \( i(value) = \{1\} \)
Merger: \( m(a, b) = \{a.count + b.count\} \)
Evaluator: \( e(a) = a.count \)

**Min:** The \( \text{min} \) operator determines the smallest value in a set of values. The \( \text{min} \) operator is **duplicate-insensitive**. The partial state record is of **fixed size** and consists of a single number. The required size to represent the full range of possible values for this number depends on the full range of permissible values of the elements.

\[
\text{min}() = x_i \in X \text{ s.t. } \#(x_j \in X, x_j < x_i)
\]  

Partial state record: {min}
Initializer: \( i(value) = \{value\} \)
Merger: \( m(a, b) = \{(a.min \leq b.min) ? a.min : b.min\} \)
Evaluator: \( e(a) = a.min \)

**Max:** The \( \text{max} \) operator determines the largest value in a set of values. The \( \text{max} \) operator is **duplicate-insensitive**. The partial state record is of **fixed size** and consists of a single number. The required size to represent the full range of possible values for this number depends on the full range of permissible values of the elements.

\[
\text{max}() = x_i \in X \text{ s.t. } \#(x_j \in X, x_j > x_i)
\]  

Partial state record: {max}
Initializer: \( i(value) = \{value\} \)
Merger: \( m(a, b) = \{(a.max \geq b.max) ? a.max : b.max\} \)
Evaluator: \( e(a) = a.max \)

**Sum:** The \( \text{sum} \) operator determines the sum of all values in a set of values. The \( \text{sum} \) operator is **duplicate-sensitive**. The partial state record is of **fixed size** and consists of a single number. The required size to represent the full range of possible values for this number depends on the full range of permissible values of the elements multiplied by the maximum number of elements. There exists a duplicate-insensitive form of this operator.

\[
\text{sum}() = \sum_{x_i \in X} x_i
\]
Chapter 2. Related Work

**Partial state record:** \{sum\}

**Initializer:** 
\[ i(\text{value}) = \{\text{value}\} \]

**Merger:** 
\[ m(a, b) = (a.\text{sum} + b.\text{sum}) \]

**Evaluator:** 
\[ e(a) = a.\text{sum} \]

**Median:** The median operator determines the value in the middle of an ordered set of values. If the set contains an even number of values, the median operator determines the arithmetic average of the two values in the middle of the set. For some applications, median can be used instead of avg, especially if the set of values contains extremely large or small numbers. The partial state record is **duplicate-sensitive**, has a **variable size**, and consists of all the elements so far encountered. There is no known duplicate-insensitive form or implementation with a fixed-size partial state record of this operator.

As the sensor readings in \( X \) might arrive in any order, we first need to make an ordered set \( Y = \{x_1, \ldots, x_n\} \) where \( n = |X| \), \( \forall y_i \in Y \rightarrow y_i \in X \) and \( y_i \leq y_{i+1} \forall i = 1, \ldots, n - 1 \).

\[
\text{median}() = \frac{y_{\lfloor \frac{n}{2} \rfloor} + y_{\lceil \frac{n}{2} \rceil}}{2} \tag{2.7}
\]

**Mode:** The mode operator determines the most frequent element in a set. There might be multiple elements with equal occurrences, so the mode operator might not find a single value. The partial state record is **duplicate-sensitive**, has a **variable size**, and consists of a list of all unique values encountered, and for each value a count indicating how often this value was encountered. There is no known duplicate-insensitive form or implementation with a fixed-size partial state record of this operator.

First we must introduce a function that counts the number of occurrences of a given element \( a \):

\[
\text{count}(a) = \sum_{x_i \in X} \delta_{a,x_i} \tag{2.8}
\]

Then we can say that the mode of a set \( X \) is:

\[
\text{mode}() = x_i \in X \text{ s.t. } \exists !(x_j \in X, \text{count}(x_j) > \text{count}(x_i)) \tag{2.9}
\]

**Count Unique:** The count unique operator counts how many unique values are in a set of values. The partial state record is **duplicate-sensitive**, has a **variable size**, and consists of a list of all unique values encountered. There exists a duplicate-insensitive form of this operator.

We first need to define a function to determine whether an element is the first occurrence in the set:

\[
\text{first}(i) = \begin{cases} 
1 & \text{if } \exists !(x_j = x_i, j < i), \\
0 & \text{otherwise}
\end{cases} \tag{2.10}
\]
2.10. Simulating Energy Consumption

We then count an element only if it is the first occurrence \((n = |X|)\):

\[
\text{count}_\text{unique}() = \sum_{i=1}^{n} \text{first}(i)
\] (2.11)

**Histogram:** The histogram operator splits the range of permissible values into a number of buckets. It then sorts the elements of a given set of values into the buckets and counts how many elements are in each bucket. The partial state record is **duplicate-sensitive** and has a **fixed size**. The size of the partial state record depends on the number of buckets. There exists a duplicate-insensitive form of this operator.

**Min-\(k\):** The min-\(k\) operator determines the smallest \(k\) values in a set of values. The min-\(k\) operator is **duplicate-insensitive**. The partial state record is of **fixed size** and consists of \(k\) numbers. The required size to represent the full range of possible values for these numbers depends on the full range of permissible values of the elements.

**Max-\(k\):** The max-\(k\) operator determines the largest \(k\) values in a set of values. The max-\(k\) operator is **duplicate-insensitive**. The partial state record is of **fixed size** and consists of \(k\) numbers. The required size to represent the full range of possible values for these numbers depends on the full range of permissible values of the elements.

2.10 Simulating Energy Consumption

An important part of developing a program for a distributed wireless sensor network is testing the program. Testing on a real and distributed network is often difficult and time-consuming. As an alternative, one can run the program in a simulator. Different simulators focus on different aspects of the program execution: simulating the radio environment, simulating the execution of the program, and simulating the exact behavior of the hardware when executing the program.

Simulators for analyzing the behavior of a protocol in realistic conditions are NS2 [63] and OmNet++ [119]. These simulators use complex radio propagation models, including path loss, noise, interference, and fading. They are optimized to study the behavior and performance of wireless protocols in different environments. The simulated radio devices do not need to be stationary, the simulator can move them around in a programmable pattern. The protocol under study must be implemented in a special language supported by the simulators. Most such simulators (including NS2 and OmNet++) are designed to simulate WiFi radios and do not support the specialized low-power radios used by most WSN platforms.

TinyOS [51], a commonly used operating system for mote-class WSNs, provides its own simulation environment called TOSSIM [70]. A program written for TinyOS can be compiled to run as a simulation. The program will then be compiled to run on the computer platform rather than a specific WSN device platform. TOSSIM provides a means to run multiple instances of the program and simulates the radio environment. Programs can display debugging messages.
Chapter 2. Related Work

As the simulation has to abstract some hardware features such as the radio module, the current version of TinyOS only supports simulating MicaZ devices.

PowerTOSSIM [107] is an extension of TOSSIM to estimate the power consumption of a program. It works by logging every event that has an impact on power state changes, such as turning on and off the radio and changing the power mode of the microcontroller. PowerTOSSIM modifies the code of the simulated program, such that it generates events at the beginning and end of blocks of code. The execution time of these code blocks on the actual microcontroller is calculated by finding the corresponding code in the binary for the target platform and then adding up the known execution times of the individual instructions. The final energy consumption is calculated by multiplying the power draw of the hardware in a given state by the time the hardware is in this state, as determined from the logging of the events. PowerTOSSIM is currently not available for TinyOS 2.x.

The most precise power consumption estimates can be obtained with a cycle-accurate simulation of the hardware. In a cycle-accurate simulation, the microcontroller’s behavior is simulated for every cycle that it executes. These simulators thus run the actual binary code compiled for the targeted platform. The first such hardware simulator for wireless sensor networks was ATEMU [99]. ATEMU emulates the hardware of a Mica2 node and simulates the radio environment. While ATEMU is capable of simulating whole networks with multiple nodes, it does not scale well for networks larger than approximately 100 nodes. Avrora [115] also simulates WSN networks at the hardware level. Avrora is implemented in Java and currently supports the Mica2 and the MicaZ hardware platforms. It takes advantage of the fact that most WSN applications spend a significant part of the time in sleep-mode. Instead of emulating every single clock tick to determine the next wake-up time, Avrora maintains an event queue and can skip over inactive periods. This makes Avrora approximately 30 times faster than ATEMU. Avrora has been shown to simulate networks of up to 25 nodes in real time and was able to simulate networks of 10000 nodes. In Section 6.6 we describe how we extended Avrora to also support the TelosB platform.

The decision for which simulator for WSNs to use depends largely on the goals of the simulation. For protocol evaluation, clearly one of the network simulators is most appropriate. If one wants to debug the behavior of a program, a simulator on code execution is better suited and might provide additional debugging options. In order to get a good estimated of the power consumption of a program, a simulator operating at the lowest level possible and really simulating the hardware characteristics is most appropriate. In spite of good simulations, it is advisable to monitor the power consumption of the actual hardware [123], as there is always a risk of hardware modifications or other unexpected details not being considered by the simulation.
2.11 Conclusion

Although the processing capabilities of sensor nodes is considered a key distinguishing feature of WSNs, to the best of our knowledge nobody has so far proposed a system that would allow to separately define a-priory knowledge to then optimize in-network processing. In Section 2.2 we have presented projects that seem to share our ambitions.

WSN research is a very broad field with multiple subfields. In addition, there are various other fields of research that are closely related to WSNs. To create power-efficient WSN applications, one has to be an expert on different topics, such as MAC layer protocols, routing algorithms, and distributed processing. In this chapter, we presented a selection of topics related to WSNs, and in particular related to power consumption and distributed processing. The related work presented here is essential for anyone wanting to study or implement energy-efficient distributed processing for wireless sensor networks.
3 Sensor Data Models

3.1 Introduction

There are three main reasons why one would want to install a WSN:

1. To understand how the observed physical parameters behave,
2. to get feedback about the current status of the observed object, and
3. to detect when one's assumption about the behavior of the parameters does not hold anymore.

These three reasons correspond to the three ‘E’s from Chapter 1 on page 2: understanding a physical system is exploration, continuously observing a system is exploitation, and detecting anomalies is exception.

Sensor readings are normally not completely random, but correlated in time and space. Two temperature sensors in the same room might have different readings, e.g., because they are mounted at different heights off the ground. Readings from the same sensor will not jump randomly over the entire temperature range but usually be close to the previous readings. Similarly, the two sensors in the room will normally indicate temperatures that differ by no more than a few degrees. If the temperature in the room is changed, the change will likely affect the readings of both sensors. Thus, sensor readings are correlated in time and space. The exact nature of the correlation depends on many factors, and WSNs can help to quantify and potentially identify the nature of the correlation.

If one knows how the observed parameters behave, one might simply want to monitor the parameters in order to adjust one's actions based on the current situation. For instance, the temperature measures in a room can be used to control the heating or cooling of that room. Sometimes, the parameter one wants to monitor cannot directly be observed, but it can be estimated based on the observation of other parameters. For instance, the evaporation rate of
Chapter 3. Sensor Data Models

a lake or glacier might not be measurable directly, but it can be calculated based on observed humidity and solar radiation.

The behavior of a system might change over time. For instance, one could estimate the temperature in a room based on the amount of sunshine that gets in through the window. But one’s model of the room temperature might not hold anymore if the environment changes in an unpredicted way, such as leaving the door or window open. Measuring multiple parameters and verifying that the correlation between them holds over time can help to detect limitations in one’s assumptions.

The principal role of a sensor network is to monitor the states of an underlying physical system. Each individual sensor measures the magnitude of a physical characteristic of the system at the point where it has been placed. Sensors are built such that their values are primarily influenced by the physical parameter that they observe. The readings are also influenced by other physical parameters as the characteristics of the sensor might change, e.g., with changes in the ambient temperature. Brownian movements and thermal noise will introduce errors. When transforming a sensor reading into a digital value, a quantization error is introduced. Finally, a sensor is designed for a given value range. If the value of the physical parameter under observation falls outside the range of the sensor, the sensor will report false readings.

Techniques to detect and handle anomalies in sensor readings exist, see for instance [128, 127]. In this thesis we assume that the measurement errors of sensors is small and negligible in the context of our work. The sensor readings can thus be assumed to represent the actual values of the physical parameter that the sensor monitors. To take the correlation of different sensor readings into account, the behavior of the sensors or the physical system being monitored is modeled.

A mathematical model aims at describing a system and its behavior by expressing the relationship of key elements within the system as a mathematical relationship. The same system can have multiple models that describe different aspects. Additionally, there might be multiple models describing the same aspects of a system, but with different methods. The description of the system given by a model will in most cases not be absolutely accurate. Therefore, a model describing a system is characterized by its complexity and its accuracy. If a system needs to be modeled for a particular purpose, the set of acceptable models typically is the subset of all models for that system where each model is accurate “enough” according to a given criterion. Typically, the model chosen will be the model amongst all known models that are accurate “enough” and which is the least complex.

Based on this definition we see that a model is based on a number of elements of interest within a system. The model consists of a number of mathematical relationships between these elements of interest. In addition, when choosing a model, we need an evaluation function that measures the quality (or applicability) of the model to our problem set.
The elements described by the model are represented as variables. There are six major types of variables commonly used in models: input variables that are directly associated with a physical property in the system, variables representing a state of the system or the model, parameters that configure a generic model for a particular system, random variables, independent variables and output variables.

The aim of a sensor data model is to represent the sensor readings of a sensor network. As such, the input variables are directly given by the sensors, where the values are the actual sensor readings. The output variables are typically, but not necessarily, also related to the sensors and represent predictions by the model. The state variables are model parameters that are learned from the sensor readings. There might be configuration parameters set by the user when setting up the model. The independent variables are used to query the model. The random variables could be used instead of another variable whose value is not known. The model would then be evaluated for different random values for this variable, and the outcome could be averaged or analyzed for a specific value distribution.

In this document we assume that a sensor data model describes a physical system. The input variables are the sensors placed at specific locations inside the system measuring a specific physical property. Sensor values have a given range and resolution. It is often assumed that the sensor readings are real values. Output variables can represent the model's prediction for a given sensor value, or they can be the sensor readings for a virtual sensor arbitrarily placed within the system.

The mathematical relationships in a sensor data model are basically two types of functions: learning functions and prediction functions. The learning functions describe how to determine the state variables for a given set of input values or sensor readings. The prediction function takes a set of query parameters (independent variables) as input and then calculates (predicts) the value of an output variable based on the query parameters and the state of the model expressed in the model parameters. To compare different models supposedly describing the same behavior, an evaluation function is needed that describes the accuracy or error of a model.

One obvious method of classification relates directly to the data source of the model. The model can express the data over time of a single sensor, the relationship between different sensors at a given instance in time, or a combination of data from different sensors and different instances in time. In addition, the sensors involved can all be of the same type, or they could measure completely different characteristics of the system.

The other obvious method of classification relates directly to the output of the model. In [16] the authors identify three different types of query for sensor data: long-term queries for historical analysis, querying a specific information and getting alerts on the occurrence of specific conditions. Long-term queries are for instance used if it is not yet clear what exactly is expected of the data, and it should be analyzed with different methods at a later time. Certain laws also require the storage of data to later prove that a given situation did not occur. Querying
a particular information can occur, for instance, if this particular information could clarify a
more generic situation potentially observed by other means, or if an alert was triggered.

There are three main benefits of processing parts of sensor data models within the sensor
network: selection of the interesting data and discarding the rest, in case of loss of data make
the system degrade the results gracefully, and compressing the data.

Modeling the sensor data can be done at two different levels. If it is possible to describe the
underlying physical system by a set of equations establishing a relation between geographical
coordinates and magnitudes of physical characteristics at these coordinates, then it is possible
to apply this deterministic model directly to the sensor data. If the description of the physical
system is too complex or unknown, then one may use well-known probabilistic models, such as
linear regression [46] described in Section 3.3 or Gaussian models [31] described in Section 3.4.

The aim of the work presented in this thesis is to take existing models and provide a framework
that allows to use such models for WSNs. As such, the models presented in this chapter are not
original work in the context of this thesis, and references are provided. We ignore the merits of
the individual models and focus on discussing how different categories of models can be used
to process sensor data in a distributed fashion inside a WSN.

3.2 Deterministic Models

Environmental scientists use modeling extensively. Deterministic models describe the state
of objects in a system (e.g., their temperatures). To predict the development of the system,
the state of the system is used to calculate the rate of energy (radiation) and mass (transport)
exchange. The exchange rate depends on the state of the system, e.g., there is more water
flowing out of a lake if the water level in the lake is high. Therefore, the state and the rate of
exchange form an ordinary or partial differential equation system.

The exact solutions even of simple models are often not known. Typical models are a complex
combination of different physical processes. For instance, the models used for weather
forecasts take into account solar radiation, wind, clouds, evaporation, and snow on the
ground. As solutions to such complex equation systems, if they exist, would themselves be
even more complex, the evolution of the system is calculated in small steps with numerical
approximations.

To predict the evolution of a physical system, the system's parameters are modeled on an
equidistant grid. Sensor data from, e.g., a WSN is used to determine the initial values of the
system at the grid points. This initialization phase is called parametrization. The sensors are
typically not located on the exact grid coordinates, as e.g., geographic characteristics (mount-
tains, rivers, cities) make it often impossible or at least difficult to place sensors there. Instead,
the values at the grid coordinates are typically interpolated from the available sensors. The
state of the system is then advanced by determining the exchange rate of radiation and mass
3.2. Deterministic Models

based on the current state, and then modifying the state based on this exchange rate over a relatively short period of time, during which the exchange rate is assumed to be constant.

Research on deterministic models is ongoing (e.g., [7]), as progress in computer hardware makes it possible to run simulations with more details and additional parameters. Some models, e.g., the Navier-Stokes equation for fluid dynamics, are considered to be exact, but they cannot be computed in a reasonable time for most of the interesting problems. Research thus tries to find acceptable approximations that are faster to solve. Thus, even though one would think that there is only one way in which physical systems interact, and that this interaction is described by well-known physical equations, this deterministic interaction is too complex to reasonably be computed. Current deterministic models are a simplification of the physical reality, often using approximations instead of the full mathematical relationships, and ignoring a part of the parameters of the system.

Today’s hardware for sensor nodes does not have the capacity to calculate the evolution of deterministic models. A single node does not have enough memory to store the representation of a whole system. Nodes could interact to cooperatively calculate the evolution of the system, but this would involve heavy data exchange, which is too expensive in terms of latency and energy consumption. For these reasons, the prediction of the evolution of physical systems is done on the back-end system. However, part of the calculation for the parametrization of the model can be done inside the WSN. This is often done with the help of probabilistic models described in the next section.

We will model the wind flow over a mountain ridge as an example of a deterministic model\(^1\). We simplify the model as much as possible and concentrate on the key aspects of modeling. Wind flowing over a mountain ridge, without changes in the flow rate or direction, would normally form a steady-state system with little interest for modeling. The initial state of such a system would also be difficult to determine. We therefore start without mountain (or with a mountain with a height of 0 m), and the initial condition is easily known: the wind speed is uniform in the whole system. Over time we let the mountain grow to a given height and model how the wind changes and how turbulences are introduced. Further simplifications include the simulation of only two dimensions (\(x\) and \(z\)), ignoring earth’s rotation, ignoring thermal energy transfer (adiabatic flow), and letting the wind speed over the lower boundary be constant (isentropic surface).

For an isentropic model the vertical coordinate is best expressed as the potential temperature \(\Theta\), as this will greatly simplify many equations. The potential temperature in our case is given by:

\[
\Theta = T \left( \frac{P_{ref}}{p} \right)^{R/c_p},
\]

\(^1\)The material presented here is based on the course “Numerical Modeling of Weather and Climate” by Prof. Christoph Schär and Prof. Ulrike Lohman, which the author followed in 2008 at ETH Zurich as part of the thesis course work. We have personally performed the calculations and modeling of this example in the course project.
where $p_{\text{ref}}$ is the reference pressure, $R$ the gas constant for dry air, $c_p$ the specific heat of dry air at constant pressure, $T$ is the temperature, and $p$ is the pressure.

We thus get the horizontal momentum equation in the x-direction as:

$$\frac{Du}{Dt} = - \left( \frac{\delta M}{\delta x} \right)_{\Theta}$$

(3.2)

where $u$ is the horizontal velocity, $t$ is the time, $x$ is the horizontal x-coordinate, $\Theta$ is the vertical coordinate expressed as potential temperature, $\frac{Du}{Dt} = \frac{\delta v}{\delta t} + u \left( \frac{\delta v}{\delta x} \right)_{\Theta}$ is the simplified advection operator, and $M = \phi + c_p T$ is the Montgomery potential with $\phi$ being the Geopotential, $c_p$ the specific heat of dry air at constant pressure, and $T$ the temperature.

The two-dimensional equation of continuity is given as:

$$\frac{\delta \sigma}{\delta t} + \left( \frac{\delta \sigma u}{\delta x} \right)_{\Theta} = 0$$

(3.3)

where $\sigma = -\frac{1}{g} \frac{\delta p}{\delta \Theta}$ is the isentropic density with $g$ being Earth’s gravity, $p$ the pressure, and $\Theta$ the vertical coordinate expressed as potential temperature. $t$ is the time, $u$ is the horizontal velocity, and $x$ is the horizontal x-coordinate.

The hydrostatic relation is given by:

$$\pi = \frac{\delta M}{\delta \Theta}$$

(3.4)

where $\pi = c_p \left( \frac{p}{p_{\text{ref}}} \right)^{\frac{R}{c_p}}$ is the Exner function with $c_p$ being the specific heat of dry air at constant pressure, $p$ the air pressure, $p_{\text{ref}}$ the reference pressure, and $R$ the gas constant of dry air. $M$ is the Montgomery potential, and $\Theta$ is the vertical coordinate expressed as potential temperature.

It is difficult to find a symbolic solution to the equation system above. Instead, we simulate this system by progressively advancing the time in small steps $\Delta t$ and calculate the next horizontal velocity $u_{t+\Delta t}(x, \Theta)$ and isentropic density $\sigma_{t+\Delta t}(x, \Theta)$ for each point in a grid based on the current and previous values of the horizontal velocity and the isentropic density ($u_t(x, \Theta), \sigma_t(x, \Theta), u_{t-\Delta t}(x, \Theta)$, and $\sigma_{t-\Delta t}(x, \Theta)$ respectively). To facilitate the calculations, we also calculate for each grid point the Montgomery potential $M(x, \Theta)$, the pressure $p(x, \Theta)$, the Exner function $\pi(x, \Theta)$, and the geometric height $z(x, \Theta)$. The topographic height (i.e., the height of the mountain) is given by $z_{\text{topo}}(x, t) = ae^{x_i/b^2}$, where $x$ is the horizontal x-coordinate, $t$ is the time, $a$ is the maximum height of the mountain, $b$ is the full width of the mountain at half-maximum, and $x_i = i - n_x/2 + 1$ with $n_x$ being the number of grid-points in
3.3 Linear Regression

the simulation and \( i \) being an independent variable.

\[
\sigma_{t+\Delta t}(x, \Theta) = \sigma_{t-\Delta t}(x, \Theta) - \Delta t \left( \frac{1}{2} \left( u_t(x + \frac{1}{2} \Delta x, \Theta) + u_t(x + \frac{3}{2} \Delta x, \Theta) \right) \sigma_t(x + \Delta x, \Theta) \right.
\]
\[
- \frac{1}{2} (u_t(x - \frac{3}{2} \Delta x, \Theta) + u_t(x - \frac{1}{2} \Delta x, \Theta)) \sigma_t(x - \Delta x, \Theta)) \right)
\]

(3.5)

\[
u_{t+\Delta t}(x + \frac{1}{2} \Delta x, \Theta) = \nu_{t-\Delta t}(x + \frac{1}{2} \Delta x, \Theta) - \Delta t \left( \frac{1}{2} \nu_t(x + \frac{1}{2} \Delta x, \Theta) \right) \left( \nu_t(x + \frac{3}{2} \Delta x, \Theta) - \nu_t(x - \frac{1}{2} \Delta x, \Theta) \right)
\]
\[
- \frac{\Delta t}{\Delta x} (M(x + \Delta x, \Theta) - M(x - \Delta x, \Theta))
\]

(3.6)

3.3 Linear Regression

Linear regression\(^2\) is a method for finding a set of dependent variables such that the given regression function best fits the data. As an example, let us assume that the temperature in a WSN can be expressed as a simple function of the coordinates of the sensors and the time of the readings. Our prediction function thus could be:

\[
f(x, y, t) = a_1 + a_2 x + a_3 y + a_4 t + a_5 t^2,
\]

(3.7)

where

- \( f(x, y, t) \in \mathbb{R} \) is the prediction function,
- \((x, y) \in \mathbb{R}^2\) are the coordinates representing the sensor position in a plane,
- \( t \in \mathbb{N} \) is the discretized time, and
- \( a_1 \ldots a_5 \in \mathbb{R} \) are the model parameters.

Linear regression is a method to find the values of \( a_1 \ldots a_5 \) such that the overall error is minimized. This is a very simple example, and much more complex functions can be used.

To formally define linear regression, let \( f() \) be the regression function, \( x_1, \ldots, x_p \) the function arguments, \( a_1 \ldots a_c \) the dependent variables, and \( g_1() \ldots g_c() \) a set of functions that combine the arguments of the outer function. The linear regression function then has the basic form:

\[
f(x_1, \ldots, x_p) = a_1 g_1(x_1, \ldots, x_n) + \cdots + a_c g_c(x_1, \ldots, x_n).
\]

\(^2\) Linear regression is a standard mathematical tool and can be found in many mathematical text books. Linear regression in the context of this thesis is motivated by and based on work done by Guestrin et al. [46]
Chapter 3. Sensor Data Models

Let a data set $D$ be composed of tuples, and let a tuple $d_i \in D$ be composed of the actual value $v_i$ and a set of meta-data $x_{i,1},...,x_{i,p}$:

$$d_i = \{v_i, x_{i,1},...x_{i,p}\}.$$ (3.9)

Linear regression finds the dependent variables $a_1...a_c$ such that the sum of the squared difference between the values in $v_i$ and the corresponding values from the regression function $f(x_{i,1},...,x_{i,p})$ is minimized. If $D$ consist of $k$ tuples $d_1...d_k$, linear regression finds

$$\text{argmin}_{a_1,...,a_c} \sum_{i=1}^{k} (v_i - f(x_{i,1},...,x_{i,p}))^2.$$ (3.10)

We call the linear regression function model function, as we use it to model the sensor data. Similarly, we call the dependent parameters $a_1...a_c$ linear coefficients or model parameters. The model function and the model parameters together fully define the model for a particular set of data. In our model in Equation 3.7, the functions $g_1(),...,g_5()$ are

$$g_1(x,y,t) = 1 \quad (3.11a)$$
$$g_2(x,y,t) = x \quad (3.11b)$$
$$g_3(x,y,t) = y \quad (3.11c)$$
$$g_4(x,y,t) = t \quad (3.11d)$$
$$g_5(x,y,t) = t^2.$$ (3.11e)

We define a query on the model to be equivalent to the evaluation of a model function with a set of arguments, and the set of arguments used in the query is called query arguments. In our example, the query arguments are $x$, $y$, and $t$. In most cases the model will not be perfect and will produce results that differ from the measured values. This modeling error is a measure of the ability of the model function to represent the data accurately.

Before a linear regression model can be used to answer queries, its parameters $a_1...a_c$ need to be determined. We call functions that determine the values of model parameters learning functions. To determine $a_1...a_5$ in our example, let $S$ be a set of $n$ sensors, and for each sensor $s_i \in S$ let us consider a set of measurement values at times $t_1...t_r$ noted \{v_{i,1}...v_{i,r}\}. In addition, for each sensor $s_i \in S$, let $x_i$ and $y_i$ be its Cartesian coordinates. The model function
and the measurements form the following equation system:

\[ \begin{align*}
    v_{1,1} & = u_1 + u_2 x_1 + u_3 y_1 + u_4 t_1 + u_5 t_1^2 \\
    v_{1,2} & = u_1 + u_2 x_1 + u_3 y_1 + u_4 t_2 + u_5 t_2^2 \\
    & \vdots \\
    v_{2,1} & = u_1 + u_2 x_2 + u_3 y_2 + u_4 t_1 + u_5 t_1^2 \\
    & \vdots \\
    v_{n,r} & = u_1 + u_2 x_n + u_3 y_n + u_4 t_r + u_5 t_r^2.
\end{align*} \]  

(3.12)

This linear equation system can be written in matrix form:

\[
\begin{pmatrix}
1 & x_1 & y_1 & t_1 & t_1^2 \\
1 & x_1 & y_2 & t_2 & t_2^2 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_2 & y_2 & t_1 & t_1^2 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_n & y_n & t_r & t_r^2
\end{pmatrix}
\begin{pmatrix}
u_1 \\
\vdots \\
u_c
\end{pmatrix}
= 
\begin{pmatrix}
v_{1,1} \\
v_{1,2} \\
\vdots \\
v_{2,1} \\
\vdots \\
v_{n,r}
\end{pmatrix}.
\]  

(3.13)

The factors of the linear equation system can be represented as a matrix \( H \). The coefficients we would like to determine form the vector \( u \). The sensor readings are grouped into vector \( v \). The linear coefficients should be determined such as to minimize the overall error as expressed in Equation 3.10. We can do this with the following equation:

\[
(H^T H) \hat{u} = H^T v,
\]  

(3.14)

where \( \hat{u} \) represents the estimate of the linear coefficients minimizing the error. The matrix \( \hat{H} = H^T H \) has the dimensions \( c \times c \), where \( c \) is the number of unknowns in the equation system. This equation can easily be solved using Gaussian elimination.

The matrix \( \hat{H} = H^T H \) and the vector \( \hat{v} = H^T v \) have interesting properties that enable a distributed determination of their values. To simplify notations, let \( \hat{g}_k(i,j) = g_k(x_i,y_i,t_j) \). Then the elements of \( \hat{H} \) and \( \hat{v} \) are calculated with the following formulas:

\[
\hat{H}_{l,m} = \sum_{i=1}^{n} \sum_{j=1}^{r} \hat{g}_l(i,j) \hat{g}_m(i,j) \quad \forall l,m \in \{1,\ldots,c\}^2
\]  

(3.15)

\[
\hat{v}_l = \sum_{i=1}^{n} \sum_{j=1}^{r} \hat{g}_l(i,j) v_{i,j} \quad \forall l \in \{1,\ldots,c\}.
\]  

(3.16)
From Equation 3.15 it is clear that \( \hat{H} \) is symmetric and thus only has \( \sum_{i=1}^{c} i = \frac{c(c+1)}{2} \) unique elements. Consequently, the total number of unique elements from both \( \hat{H} \) and \( \hat{v} \) that need to be known to solve the linear equation systems is

\[
N_{tx} = \frac{c(c+1)}{2} + \frac{c(c+3)}{2}.
\]

Both \( \hat{H} \) and \( \hat{v} \) are sums of elements only depending on information provided by a single sensor node. Sums are easy to aggregate, and breaking linear regression down in the way shown here is the key to distributing the calculation of linear regression across nodes in the WSN.

Often, an aggregate value over a set of sensor readings is desired, such as average, minimum and maximum values, and standard deviation. Madden et al. [75] describe aggregation in three steps: determining a partial state record for individual sensor readings by applying an initializer \( i \), then combining these partial state records using a merging function \( f \), and finally calculating the value of the aggregation using an evaluator \( e \). Aggregations, in which the size of the partial state record is significantly smaller than the original data set, potentially enable a reduction of the amount of data to be transmitted in the network. Instead of transmitting and relaying every sensor reading in the network, nodes only transmit partial state records based on the data from their own sensor readings and the partial state records of their children. This is particularly interesting for aggregations in which the size of the partial state record is constant, such as minimum and maximum values, averages, and sums.

The exact energy savings possible by using aggregation strongly depend on the implementation details. In TinyOS, the energy consumption for message transmissions depends mainly on the number of messages sent rather than on the payload length of the messages. This is due to the default radio stack implementation, which senses the channel while waiting for a random back-off time prior to sending a message. As basis for comparing energy consumption, we consider a very simple application that transmits a node’s sensor readings using CTP [43]. CTP uses intermediate nodes to relay messages and does not alter these messages.

As an example, let us consider the network shown in Figure 3.1. Figure 3.1a shows the actual geographical distribution of the nodes. The lines between the nodes indicate that the connected nodes can communicate with each other. The thick lines show the routes chosen by CTP. In Figure 3.1b the hierarchy of the network is visualized. The readings from sensor node \( s_7 \) would be relayed by the nodes \( s_1, s_{10}, \) and \( s_4 \) before they reach the sink \( s_0 \). Sending a message with readings from node \( s_7 \) results in a total of four message transmissions. Thus, if all nodes transmit their sensor readings, 28 messages are sent in the network.

With aggregation, each node only sends a single message that combines its readings with the readings of its child nodes. Therefore, each node waits for the partial state records of all its child nodes, combines the data, and then transmits a new combined partial state record to its parent. Sensor node \( s_{11} \), for instance, sends a single message to its parent node \( s_4 \).
3.4 Multivariate Gaussian Random Variables

Figure 3.1: A sample WSN configuration showing (a) the geographical distribution of motes and their connections, and (b) a hierarchical view of the routing tree. In (a), thick lines indicate routes to the sink.

instead of relaying the individual messages from nodes $s_9$, $s_5$, $s_6$, and $s_2$. Aggregating all the data within the network rather than transmitting every sensor reading results in only 11 message transmissions in our network. Aggregation thus can enable significant energy savings, especially in larger networks.

The practical example shown in Equation 3.7 determines a simplistic relationship between the location of a sensor reading and its value. A more powerful approach to interpolate sensor data over a geographical field is based on a set of methods called kriging [72, Section 9.7] (originally based on the work of D. Krige [67]). These methods need to know the number of original data points. As our work is currently based on dynamic networks without a-priory knowledge of the network configuration, we have not further explored how kriging could be implemented in the context of our framework.

3.4 Multivariate Gaussian Random Variables

In the Gaussian model approach, each sensor is seen as a Gaussian random variable entirely defined by its mean and variance. Multiple sensors can be modeled as multivariate Gaussian random variables with known correlations between the sensors. Knowing the value of a number of sensors will then allow the estimate of the remaining sensors to be refined. The parameters of the system are the mean and the variance of the readings of each sensor and the covariance between the readings of different sensors, expressed in a mean vector $\mu$ and a covariance matrix $\Sigma$. If these parameters are known, then learning about some sensor readings will also increase the knowledge about the likely outcome of the other sensor readings. This approach is used in [31] to answer a query for sensor readings by sampling a set of sensors that will minimize the energy consumption used to perform the query while providing a sufficiently
As explained in [31], if we know $\mu$ and $\Sigma$, but we are only interested in a subset $Y$ of the attributes, we can simply drop the non-interesting entries to obtain a lower dimensional mean vector $\mu_Y$ and covariance matrix $\Sigma_{YY}$. If we observe values $o$ for attributes $\Theta$, then we can refine our knowledge of the remaining variables with the equations:

$$
\mu_{Y|o} = \mu_Y + \Sigma_{Y\Theta} \Sigma^{-1}_{\Theta\Theta} (o - \mu_{\Theta}),
\Sigma_{Y|o} = \Sigma_{YY} - \Sigma_{Y\Theta} \Sigma^{-1}_{\Theta\Theta} \Sigma_{\Theta Y},
$$

(3.18)

where $\Sigma_{Y\Theta}$ is a matrix formed by the rows $Y$ and the columns $\Theta$ from the original matrix $\Sigma$.

Besides optimizing the query plan on the back-end system, the overall energy consumption of the network can be reduced by calculating the model parameters locally on the nodes and only updating the model (mean and variance values of the sensors and the cross-correlation between the sensors) if the model has significantly changed since the last update.

### 3.5 Practical Model: Vibration Sensing

A practical model that can be used in conjunction with WSNs is vibration sensing. The vibrations caused by heavy machinery or by small explosions (mining, tunnel construction, demolition, etc.) can be harmful for nearby buildings. The DIN 4150 part 3 norm [34] specifies how to determine whether vibrations are dangerous for buildings. We have evaluated how the measurement processes described in this norm can be incorporated into a WSN. Model processing has been incorporated and tested in a real WSN deployment as part of a commercial project described in Chapter 7. This section has been written after the commercial project.

To determine whether there could be detrimental effects of vibrations, the power of the vibration is analyzed and compared to threshold based on specific frequency bands. Different thresholds exist for different types of buildings. Vibrations in the lower frequencies ($\sim 10$ Hz) are the most dangerous ones, but the norm defines power limits for frequencies up to 100 Hz.

Typically, vibrations are measured with seismographs that measure the instantaneous velocity of the ground during the vibrations. This is done by having a coil fixed to the ground around a free-swinging mass. The movements of the ground (and hence the coil) around the free-swinging mass (which is magnetic and, due to inertia, moves only very little) induce a current in the coil. The current relates to the speed of the free swinging mass with respect to the coil.

Compared to the typical sensors used in modern WSNs, the traditional approach for seismographs requires relatively heavy and big sensors due to the need of a free swinging mass with high inertia. Advances in technology provide us with a new kind of sensors based on microelectromechanical systems (MEMS). One particular kind of MEMS is an accelerometer,
which is now found in virtually any electronic gadget, such as cell phones, PDAs, tablets, laptops, etc. To use accelerometers to assess the danger of vibrations according to the rules in DIN 4150, the accelerometer data has to be integrated to obtain velocity values.

The model processing for vibration sensing is shown in Figure 3.2. To process the vibration model in DIN 4150-3 the acceleration data is constantly monitored. For each consecutive 1 s window of data, the acceleration values are integrated to obtain velocity values. Then, the highest absolute velocity value $|v_{i,\text{max}}|$ and the corresponding time-stamp $t_i$ are determined. The dominating frequency $f_i$ of the vibration is then determined by performing a Fourier transform on the velocity data centered around $t_i$. If $|v_{i,\text{max}}| \geq v_{\text{th}}(f_i)$, where $v_{\text{th}}(f)$ is the frequency-dependent threshold given in DIN 4150-3, then the measured vibrations are considered harmful, an alarm can be triggered and, for instance, the machinery can automatically be stopped.

### 3.6 Conclusion

In any application beyond the simplest room-temperature-control systems, the sensor data will be used in a mathematical model. Physical models are too complex to reasonably be computed inside a WSN, but even for physical models some initial calculations can be done in the sensor network. Statistical models can easily be used for simpler applications. We presented a simple deterministic model of the wind flow over a mountain ridge and two common stochastic models, linear regression and Gaussian multivariate random variables. We further showed a practical model used to detect harmful vibrations that could damage buildings. The two stochastic models are very common and will be used in Chapter 4 to show different aspects of generating distributed processing code.

As shown in this chapter, models are clearly used when working with sensor data. Most current applications, in particular in the context of weather prediction and climate modeling, collect all sensor data before performing the data processing on a dedicated computer. Some efforts are under way to analyze how sensor data could already be processed for specific data models inside the collecting sensor network, e.g., as shown by Guestrin et al. [46] and Deshpande et al. [31]. Others, e.g., Deshpande et al. [32], process more generic sensor models on the
back-end. Our goal is to design a generic approach to process sensor data models inside the WSN.
4 Framework

4.1 Introduction

In order to study the processing of data within the WSN we propose a framework [55] that controls all aspects of generating distributed processing code. The framework allows others to contribute their particular expertise and compare their results more easily. In this chapter we present the different parts of this framework and how the parts work together. In Chapter 5 we present our implementation of the framework.

4.2 Framework for Distributed Sensor Data Models

In a typical surveying application for WSNs, the “user” of a sensor network is an expert in a given scientific field and is knowledgeable of the laws governing the physical system to be surveyed. A sensor-data-modeling framework has to provide to this expert a convenient environment to describe and implement models for analyzing sensor data. The purpose of the distributed sensor data model (DSDM) framework described here is to take the description from a domain expert and transform it into a WSN setup that takes advantage of the data model. The framework also takes into account various constraints specific to WSNs, e.g., optimized routing, distributed processing, and minimized energy consumption.

Figure 4.1 shows the architecture and the different elements of the framework. The input to the framework is a set of data models to be evaluated. The model descriptions can then be compiled into a model-processing program. The framework can operate in two different modes: off-line and on-line. The off-line mode is primarily used for testing and evaluating the proper model processing. For the off-line mode the compiler of the DSDM framework generates a standalone model processor and processes the model data in a single thread on a computer. The model processor uses either real-time data provided by the WSN, e.g., from our own installation [56], or it reads data from different sensor data file formats, such as netCDF [114] (used by the Argo project [6]), the file format from the SensorScope project [10], or the file format used by the Intel Research Berkeley Lab data [61]. In the on-line mode, the
compiler generates a model processor which is split into two components. A first component
runs on the gateway, that is, the point where data from the WSN is collected. The second
component is actually built with code that can be run directly on the sensors and is distributed
inside the WSN. The on-line approach allows a user to take full advantage of the DSDM
framework, as the data model knowledge inside the WSN can be used to minimize energy
consumption and reduce the number of packets to be transmitted. The separation of functions
between the gateway component and the WSN is necessary, as the devices forming the WSN
might not have the necessary capabilities to process the complete data model. The output of
the system is forwarded to the Global Sensor Network (GSN) [2] middleware for distribution
to any interested consumers of the augmented sensor data.

A sensor data model essentially consists of three parts: a prediction function, model parame-
ters, and learning functions for the model parameters. Based on the current knowledge of the
system, the prediction function describes the likely future development of the sensor readings
or the likely current values of sensors whose readings are not available. This can be used to
substitute lost sensor readings without having to retransmit the data in the network. If the
quality of the predictions is acceptably good, some sensors could be turned off to reduce the

---

Figure 4.1: Diagram showing the different steps and elements of the sensor data model
framework.
power consumption and thus minimize the cost of data acquisition. The prediction functions are the core of a sensor data model.

The model parameters describe the accumulated knowledge about the system. Parameters can be average values of sensor readings over a certain period of time, or correlation values between sensor readings. The model parameters are the essential information required by the prediction function to know the state of the system.

The nature of the learning function varies with the model. While given types of parameters, such as the average of sensor readings, are frequently used by sensor data models, other types of parameters might be specific to a given model. The framework provides library modules for common learning functions, but also allows one to describe and compile more complex functions, such as, for instance, the ones used for a Kalman filter. The learning functions usually are much simpler than the prediction functions and often can easily be processed within the WSN. Let us consider the Gaussian model presented in Section 3.4. This model uses the average and covariance of sensor readings across various sensor nodes as the model parameters. On the one hand, the average can simply be computed by a sensor node storing and averaging the last \( n \) readings. The covariance matrix, limited to immediate neighbors, can be computed if a given node exchanges readings with its neighbors and uses the last \( n \) exchanged readings to compute the elements of the matrix. On the other hand, the prediction function involves the inversion of the covariance matrix, and this computation is prohibitive for a mote-class sensor node. Computing the model parameter values within the WSN results in an important compression opportunity, because only the model parameters need to be transmitted – upon a significant variation – instead of the periodic sensor readings.

As already stated, not all model-processing computations might be doable inside the WSN, or it might not be economical – in terms of power consumption and latency – to do so. Therefore, there is an inherent trade-off between what should be done within the WSN and on the gateway. This trade-off comes down to considerations on accuracy, cost of transmission, and cost of computation on a sensor node. If most of the model processing is distributed inside the WSN, the computation cost within a node will increase, while the communication cost will decrease, provided the model is accurate. However, if the model is not accurate (or not known, i.e., several models are run in parallel to select the best one), the communication cost might increase significantly because of frequent parameter updates. In this case, it is preferable to run a large part of the model(s) on the gateway. Nevertheless, it is also important to evaluate communication and transmission costs. Even if a given model is accurate, computation costs in a node might be higher than transmission costs, and this leads to a bad compromise. It is important to consider all these factors in a given application and a set of models.

As communication in a WSN is done over radio links, individual messages might be lost. For battery-operated sensor nodes, any transmission is costly and therefore data should be transmitted only if really necessary. One aspect to consider here is how the model is affected by missing data. If the missing data can be interpolated with sufficiently good results, then a
retransmission of corrupted packets might not be necessary.

4.3 Model Description Language

The design of the language is based on the needs of the users. The end users of sensor networks do not necessarily know about the networking aspects, nor should they need to. Hence, instead of specifying how data should be transmitted, the language describes how data from different sensors interacts and combines to give the desired result. This seems to be best done with a functional language. To make it intuitive to be used by people with little programming experience, the language is similar to other mathematical programming languages used, for instance, in Matlab, SciLab or Octave, while also being simple to analyze by the compiler. A formal definition of the syntax of the language is given in Listing 4.1.

A sensor data model describes the correlation of sensor data. As such, a language describing sensor data models has to focus on expressing mathematical relationships between sensor readings from the same or different sensors. A sensor data model should be independent of the actual setup of the network and should rather describe the relationship between any sensors. As such, the model description language has to be able to express properties of any sensor or set of sensors. For this reason, the sensor data model description language used by the DSDM framework is centered around the concept of sets of sensors. Traditionally, with WSNs a programmer has to specify how an individual sensor node should behave (e.g., read the sensor and then transmit the value to a neighbor), while domain experts should be able to just express what to do with the data independent of network design (e.g., determine the average, minimum and maximum of all temperature readings). The language is designed to ignore as much of the network issues as possible and to let the users express the sensor data models as if the data was available on the local system. Thus, instead of enumerating individual sensors, the model description language allows to define data processing for a given group of sensors. The sensor nodes are seen as members of different sets of sensors. Currently implemented is the set of all sensors in a network as well as the set of sensors that have a direct (one hop) radio-link with a given sensor. The latter set is called the neighbors of a given node. It is foreseen that extensions of the language will allow different sensor node sets, such as the set of nodes with a given hardware configuration, or the set of nodes forming a cluster. Such sets could be dynamically generated using role distribution [36, 101, 44, 80, 81].

Our sensor data model language is designed such that it can represent any mathematical closed-form expression. As the compiler needs to be able to determine the cost of calculating a sub-expression on a sensor node, the language is designed to be deterministic and does not support jumps and non-deterministic loops. More complex functionality can be achieved, if needed, by including additional elementary functions. These additional functions should be implemented such that the cost of computing them, or at least an upper bound for the cost, is known. In some cases, very expensive functions (in terms of required computing power) can be implemented as tabulated functions looking up an approximate result in a pre-computed...
4.3. Model Description Language

```
program ::= {full_statement} ";" [(program)]
full_statement ::= [[spec] ":"] [statement]
statement ::= ( {var} [[parlist]] "=" {complexFunction} ) |
             ("parameter" {parList})
complexFunction ::= {expr} | ( [[spec]] "{" {statementList} "}" )
statementList ::= (statement) ";" [[statementList]]
parlist ::= (" [ [varType] [var] ["," [ [varType] [var]]* ] |
varType ::= "integer" | "float" | "node"
spec ::= "forall" [specList] [whereClause]
specList ::= [specElement] ["," specList]
specElement ::= [varList] ("in" [var]) | ("=" {range})
range ::= (expr) "." (expr)
whereClause ::= "where" [whereList]
whereList ::= [whereElement] ["," [whereList]]
whereElement ::= (expr) ("=" | "!=" | "isneighbor") [expr]
varList ::= [var] ["," [varList]]
var ::= [varName] ["," [var]]
varName ::= ["a"="z","A"="Z"] ["a"="z","A"="Z","0"="9"]* ["" [exprList] "]
exprList ::= [""," [expr]]
expr ::= (exprSecondary) "+" | "=" (expr) |
      ("sum" | "avg" | "LMS" | "min" | "max" | (" [spec] ":" [expr] ))
exprSecondary ::= (exprPrimary) ("*" | "/" [expr])?
exprPrimary ::= (exprTerm) ("*" [exprPrimary]) |
               ("-" [exprPrimary]) |
exprTerm ::= [var] ["0"="9"]+ "." ["0"="9"]* | "." ["0"="9"]* |
```

Listing 4.1: Formal language definition
A model description essentially consists of variable assignments or functions, which are like variables but have values that depend on parameters. The core model definition is typically composed of variable definitions, while the query interface is based on functions. The variables define the state of the model and we call them thus *model parameters*. The values of the model parameters are determined at run-time with *learning functions*. We call the functions to query the model *prediction functions* as they often attempt to predict either the current state or a future state of the system.

The parameter-learning functions are the core of a model description, and they determine the state of the model based on the actual sensor readings. Every sensor is associated with a sensor node and shares some information with other sensors on the same node, such as its physical location. In order to determine the sensors to access, sensor nodes are organized in collections. The most basic collection is the collection containing all sensor nodes and is denoted by $S$. In addition, each sensor object also has a *neighbors* set. For a given sensor $s_i$ from the set of all sensors $S$, the neighbors are defined as $s_i.neighbors$.

Variables are either local to a given sensor node or globally shared and accessible by all sensor nodes. Variables either have a single value (simple variables) or they have multiple values in the form of vector or matrix (array) data. In the case of vectors (1-dimensional array) and matrices (2-dimensional array) the compiler needs to be able to determine the dimensions at compile-time. Complex objects can exist but are not user-definable. An example is a variable representing a sensor node, which defines named values for the different sensors and even a set of sensors comprising its neighbors.

Sensor readings can be accessed through the sensor object associated with a given node. For instance, if a sensor node has a temperature sensor, the current temperature value can be read with an expression like $s_n.temp$. It is possible to access the $n$-th value in the past with the syntax $s_n.temp[n]$. The value $n$ states how old the reading is in epochs. An index of 0 is equivalent to reading the current value. If values of two different sensor nodes are accessed, then an appropriate synchronization mechanism is used (see Section 4.4).

Model parameters and model functions are declared with an assignment using the equals sign (=). They can be global (the same value is shared in the entire network) or local (the value is only valid for a particular sensor node). In addition, a model parameter can be defined for a pair of sensors, for instance, to express the covariance of their readings. Model functions, in contrast, have a list of function arguments. The arguments qualify what exactly should be modeled, e.g., which sensor value should be modeled. As querying the model involves evaluating a model function, we call the function arguments *query parameters*. The model function definition on the right-hand side of the assignment involves a computation based on the model parameters. Defining parameters and functions in this way helps the compiler to allocate memory in the right places and prepare the necessary communication channels to exchange the data.
Mathematical operations clearly are an essential part of any model description, and the classical operators are supported: addition (+), subtraction (-), multiplication (*), division (/), and exponentiation (^).

In addition to the basic mathematical operators, the model description language supports a number of special operators often used in model descriptions. This set of operators can be expanded in the future as need arises. Currently we have predefined the aggregation operators min, max, sum, avg and LMS, which are used to determine the minimum, maximum, sum and average over a set of values, and the best fit of a function to a set of data, respectively. Aggregation operators are discussed in Section 2.9.

The LMS aggregation operator is a bit special and we present it here in more details. It calculates the linear regression (see Section 3.3) for a set of values to a given function. The use of the LMS operator is more complex as it is not enough to simply specify the values, one has also to specify the function. Thus, the LMS operator expects as the first parameter the measured value that should be approximated by the linear regression, and as the remaining parameters the different values that should be multiplied with the coefficients. The measured values correspond to the elements of the vector v in Equation 3.13, while the different values correspond to the elements in the rows of the matrix H in Equation 3.13.

The language uses the forall qualifier to apply a given expression to all elements in a given set or to define a set of values over which a given aggregation operator should be applied. The forall qualifier allows additional constraints with an optional where clause to be specified.

Simple aggregation operators, such as average, take as argument a set of values, which can be derived from other sets. To calculate for instance the average temperature, one can use the following statement: avg(forall si in S: si.temp). Similarly, one can calculate the average of the numbers between 1 and 10 (inclusive) with avg(forall t = 1 .. 10: t).

A more complex example is to calculate the coefficients that minimize the error of the Equation 3.7. This can be expressed as follows:

LMS(forall si in S, t = 1 .. 5: si.temp[t], 1, si.x, si.y, t, t^2).

Thus, for all sensor nodes si from the set S of all sensor nodes in the network, and for all time values t between 1 and 5 (inclusive), calculate the linear regression coefficients that minimize the the function si.temp[t] = u1 + u2 * si.x + u3 * si.y + u4 * t + u5 * t^2, where si.temp[t] is the measured temperature t epochs in the past, and si.x and si.y are node-specific configuration parameters (see Section 4.4) describing the location of the sensor.

4.3.1 Linear Regression

In our sensor data model language, the linear regression model from Section 3.3, as expressed in Equation 3.7, can be written in our language as shown in Listing 4.2. The learning function for the model parameters (based on Equation 3.10) is shown on Lines 4–5, and the prediction
Chapter 4. Framework

```
// Linear Regression Model for Distributed Sensors

// *** Learning Functions ***
a = LMS(forall si in S, t = 1 .. 5:
    si.temp[t], 1, si.x, si.y, t, t^2);

// *** Prediction Functions ***
b(float x, float y, int t) =
```

Listing 4.2: Linear Regression Model

function on Lines 8–10.

The computation of the model function is obvious, but the learning function does not appear in an explicit form. LMS stands for least mean squares. This operator calculates the coefficients for a linear regression function over a data set. LMS operates on the sensed values and the factors of the regression coefficients. The LMS operator takes as arguments vectors whose elements correspond to individual sensor readings. The first element in the vector is the actual value to be approximated by the linear regression. In the linear-regression example, the value of the first element in the vector, \( s_i \text{.temp}[t] \), corresponds to \( s(x, y, t) \). The remaining elements are the factors with which the coefficients are to be multiplied. In the example, the first factor is the numerical constant 1, which means that the coefficient \( a_0 \) is a constant. The second and the third factor, \( s_i \text{x} \) and \( s_i \text{y} \), are the \( x \) and \( y \) coordinates of sensor \( s_i \). The fourth factor is simply the time \( t \), and the fifth factor is the squared time \( t^2 \). In our example, each vector contains six elements, or five factors, which means that the linear regression function has five coefficients. Thus, the LMS operator will return a five-element vector.

A data set given as argument to the LMS operator usually consists of more than one vector. In the example above, the data set contains a vector for every sensor \( s_i \in S \) and for every time \( t \in \{1, 2, 3, 4, 5\} \). The actual temperature readings and the \( x \) and \( y \) coordinates are associated with \( s_i \).

4.3.2 Multivariate Gaussian Random Variables

In the Gaussian approach described in Section 3.4, each sensor is seen as a Gaussian random variable entirely defined by its mean and variance. The parameters of the system are the mean and the variance of the readings of each sensor and the covariance between the readings of different sensors. If these parameters are known, then learning about some sensor readings will also increase the knowledge about the likely outcome of the other sensor readings. The model implementation is shown in Listing 4.3. The mean (Lines 4–5) is defined per sensor, whereas the covariance matrix is defined for each pair of sensors (Lines 6–8). To reduce the memory requirements and limit the distance of communication in a later in-line mode
4.3. Model Description Language

```plaintext
// Gaussian Model for Distributed Sensors

// *** Learning Functions ***
forall si in S: si.m =
    avg(forall t = 1 .. 10: si.temp[t]);
forall si in S, sj in si.neighbors:
    C[si, sj] = avg(forall t = 1 .. 10:
                    (si.temp[t] - si.m) * (sj.temp[t] - sj.m));

// *** Prediction Functions ***
forall s in S:
    f(node si) =
        X1[1, sj] = C[si, sj],
        X2[sj, sk] = C[sj, sk],
        X3[sj, 1] = sk.sensor - sk.m,
        X4[sk, 1] = C[sk, si],
        f(sj) = si.m + (X1 * inv(X2) * X3)[1, 1],
        f.err(sj) =
            C[si, sj] - (X1 * inv(X2) * X4)[1, 1];;
```

Listing 4.3: Multivariate Gaussian Random Variables Model

implementation, the covariance matrix only contains values for neighboring sensors. Lines 11–19 define the prediction function, which combines the model parameters with the known sensor readings to predict the missing sensor readings. The particularity of this prediction function is that it defines an error estimate for each prediction (Line 19).

### 4.3.3 Wind-flow Model

The model of the wind flow over a mountain ridge, which we introduced in Section 3.2, can be expressed in our sensor data model language. The model represents the real situation with measurements on grid points. After determining the initial condition at the grid points, the model determines the likely future development by calculating new values at the grid point for small time increments.

For this type of model, data from a wireless sensor network can be used to determine the initial condition of the system. The sensor nodes might not always be located at the exact locations of the grid points as these locations might be difficult to access. Thus, e.g., a statistical model might be used to determine the initial condition from the actual sensor readings. In our simplified wind model, the initial condition is given by a set of functions describing uniform wind flow.

The wind flow model is quite complex compared to the probabilistic models presented in this thesis, and the exact formulation of the individual equations provide no additional information relevant for this discussion. For this reason, only the most relevant portions of the model, as expressed in our sensor data model language, are shown in Listing 4.4. In particular, we concentrate on the prognostic functions that compute the new values for the next time step,
and we leave out many of the diagnostic functions that, e.g., smooth the calculated values and ensure realistic values at the boundaries of the simulation.

The model in Listing 4.4 starts in Lines 5–7 by defining some constants used later in the model. The wind flow is initially assumed to be uniform across the width of the simulation. In the Lines 13–15 we thus first calculate the air density and the wind velocity profile for different altitudes. We then initialize in Lines 18–20 the grid points with the corresponding values from the air density and wind velocity values previously calculated. If a WSN was used for this model, this initialization step would depend on the sensor values measured in the network.

In Lines 24–38 we calculate the evolution of the system. In Line 24, the amount of time for which the system is to be evolved is given as the number of time steps \( n_{\text{ts}} \) for a given constant time interval (the constant \( \Delta t \) defined in Line 7). For each time step (Line 25) we calculate the current time (Line 26), and then iterate over all grid points (Line 28) and calculate the new values of the air density (Lines 29–33) and horizontal wind speed (Lines 34–38) based on the previous values.

Not shown in this listing are the diagnostic equations to calculate the Montgomery potential \( m_{\text{tg}}[x, k] \), the functions to smooth the newly calculated grid point values, and the functions to determine realistic values at the boundary of the simulation.

In this model we use a constant time step, which makes the model calculations deterministic such that, for instance, the number of iterations is known in advance. The compiler can thus calculate the complexity of processing the model in advance without knowing the actual sensor readings or the intermediate results of the simulation. According to the CourantFriedrichsLewy [28] (CFL) condition, the time step has to be smaller than the signal propagation delay between grid points for any signal relevant for the simulation. In our case, this means that the time step has to be smaller than the time it takes for an air molecule to be blown by the fastest wind from one grid point to a neighboring one. Thus, the time step for this kind of model is often calculated dynamically and various during the simulation. Our language cannot, by design, express models with varying time steps, as this would make it impossible for the compiler to determine in advance the cost for the model processing.

For such complex models, the computation of the evolution of the system is expected to be performed on the back-end as current wireless sensor nodes do not have the necessary capacity, in terms of memory and computing power, and the expected communication overhead between the nodes would be prohibitive for a distributed calculation. However, it is expected that the initial condition can be at least partially computed already inside the WSN. Thus, the DSDM framework can be used to determine the initial condition, and the more complex computation steps of a model based on a partial differential equation system and using a dynamic time step can then be performed by a dedicated program on the back-end system.
4.3. Model Description Language

Listing 4.4: Modeling wind flow over a mountain ridge

```plaintext
// Wind-flow Model over a Mountain Ridge

// *** Initialization (normally based on sensor data) ***
// some constants
nx = 100;  // horizontal resolution
nz = 60;  // vertical resolution
dt = 4;    // time resolution
// ... more constants

// ... leaving out some initializations

// density (sigma) and velocity profile
forall k = 1 .. nz:
    s0[k] = (-1 / g) * prs0[k + 1] - prs0[k] / dth,
    u0[k] = u00;

// initialize grid
forall x = 1 .. nx, k = 1 .. nz:
    s[i, k] = s0[k],
    u[i, k] = u0[k];

// *** Prediction Functions ***
// nts = number of time steps
f(integer nts) =
    forall its = 1 .. nts:
        time = its * dt,
        // not showing all calculations
forall i = 1 .. nx, k = 1 .. nz:
    snew[i, k] = sold[i, k] - dtdx *
        (0.5 * (u[i + 2, k] + u[i + 1, k])
        * s[i + 1, k] -
        0.5 * (u[i, k] + u[i - 1, k])
        * s[i - 1, k]),
    unew[i, k] = uold[i, k]
        - dtdx * u[i, k] *
        (u[i + 1, k] - u[i - 1, k])
        - 2 * dtdx *
        (mtg[i, k] - mtg[i - 1, k]) ; ; ;
```

53
4.3.4 Vibration Sensing

The vibration model used in DIN 4150-3 [34] and described in Section 3.5 can be expressed in our sensor data model language. In Listing 4.5 the model is implemented such that the vibration characteristics $f.vimax$ ($|v|_{max}$), $f.ti$ ($t_i$) and $f.fi$ ($f_i$) are calculated for a specific sensor node $s_i$ and for a specific time window starting at time $t$. Note that in the code shown here the values are only calculated for acceleration data for a single dimension. In our real implementation we calculated these values for all three dimensions.

The code in Listing 4.5 assumes that the acceleration sensor is sampled at 256 S/s. Line 5 determines a constant offset of the acceleration values (e.g., earth's gravity). This offset is then removed in Line 8 to only retain changes in acceleration and thus avoid an overrun during the integration. Lines 7–9 integrate the acceleration values to obtain velocity values. This integration is done over a slightly larger time window such that we can later center a new 1 s time window around the time when the maximum velocity was measured. Line 10 determines this time of maximum velocity $f.ti$, and Line 11 shows the actual maximum velocity. In Lines 12–13 a Hanning window is applied to a 1 s window centered around the time of maximum velocity. In Line 14 the Fourier transform of the velocity data is determined, which finally allows in Line 15 to determine the dominant frequency $f.fi$.

4.4 Execution Environment

Distributed model processing needs basic support services. Every sensor network needs to transmit data to a sink. If the network performs aggregation, then nodes need to know their parents, and potentially also their children, in the routing tree. For many applications, the physical position of each node needs to be known. Services common to many distributed model processing applications, such as a configuration mechanism, a tree routing algorithm...
for distributed aggregation, and a simple time synchronization method, are provided in the DSDM execution environment.

The configuration service enables the setting of parameters for a particular node. With this service it is, for instance, possible to manually configure the x and y coordinates of the physical location of a node prior to starting the model processing. The physical location can also be determined during run-time using a position estimation algorithm such as [104]. Even if an algorithm is implemented to automatically determine the location of nodes, most of these algorithms need some anchor nodes with known positions, which could be configured using this service.

Implementations of the framework will assume that any parameter, for which there is no explicit means to determine its value, is a configuration parameter. The implementation will generate a configuration message format with fields for all parameters and include the necessary communication mechanism into the program. An application can set a configuration parameter for a particular node through the framework by specifying the configuration parameter name and the corresponding value. The framework checks the parameter name against the list of known configuration parameters. If the parameter name specified is found, the framework will generate a configuration message for the parameter and send the message to the targeted node through the network.

Data collected in a sensor network normally needs to be routed to a sink. To do this, WSNs form a collection tree. When processing a model instead of simply collecting raw data, the data is often aggregated within the network. The routing structure for a network that aggregates the data is essentially the same as for a WSN collecting raw data, as the data still needs to reach the sink. The difference is that every node, instead of relaying the data of its children as-is, aggregates its own data with that from its children in a partial state record before sending this partial state record to its parent (see Section 2.9). This means that for one data-collection epoch each node sends exactly one message to its parent. We call this setup an aggregation tree.

An implementation might use the collection tree protocol (CTP) [43] in TinyOS to establish the routing tree. Instead of letting the collection tree forward messages automatically, messages are intercepted and locally processed. The information in the message is aggregated with the node's own information and the information received from the other children. This aggregated information is, in turn, sent to the node's parent.

Before sending data to the parent, a node has to receive data from all its children. To do this, a node could keep track of its children and which ones already sent data in the current epoch. Once all children have sent their data, the node sends its data to its parent. The version of CTP provided in TinyOS does not maintain a list of a node's children. Also, with this method it would be difficult for a node to predict when a child node is ready to send data, which makes it difficult for nodes to turn their radios off to save energy. As an alternative, time synchronization can be used to define time slots, when nodes can send data, and thus the
radio duty cycle can be managed precisely.

With time synchronization, the common view of the time allows all nodes to start the epoch at the same point in time. The nodes furthest down in the tree start by sending their data to their parents. After a fixed time interval, the nodes in the next higher level in the routing tree assume that all their children have sent their data, and send their aggregated data to their parent, until the data finally reaches the sink. This approach is simpler than explicitly waiting for data from all children, as nodes do not need to maintain a list of children. As the time period, in which a node can expect transmissions from its children, is well defined, nodes can turn off their radio when they do not expect transmissions, and thus achieve significant energy savings.

The basic services presented here are sufficient to implement the distributed linear regression model with the help of our framework. Other models might require additional services. A service can have multiple implementations, for instance, to optimize for speed, latency, reliability, or energy savings. The framework and our implementation facilitate uniting contributions from experts in different fields.

4.5 Conclusion

We presented a framework for generating code that processes sensor data models in a distributed WSN. The framework consists of a language to describe sensor data models, a compiler and an execution environment. The framework is designed to facilitate contributing new modules from a specific field.

A language to describe sensor data models is essential. The language we propose is designed to be close to how domain experts, such as climate researchers, already describe their models. The language is further designed to facilitate compilation by a program. The language aims to be flexible and applicable for most sensor data models. It is designed to represent any model for which there exists a mathematical closed-form expression. The language is not Turing complete, as this would introduce the halting problem [30]. By design, the processing time of models described in our language can be upper-bounded, which allows to calculate an upper-bound to the energy consumed for any processing done on the sensor nodes. Our language is not a mandatory element of the framework, other languages capable of expression sensor data models could be used. With the modular implementation presented in Chapter 5 it would be sufficient to replace the lexer/parser module with one for a different language, and if this module produces a compatible abstract syntax tree (AST), the other language could be used without modifying the rest of the framework implementation.

When implementing model processing inside a WSN, different services need to be implemented. Generic services include time synchronization, communication methods, configuration of sensor nodes, etc. We call the set of such services the execution environment. Each service can have multiple implementations, and the challenge is to select the optimal
implementation for a particular application.
5 Compiler

5.1 Introduction

The compiler of the framework presented in Chapter 4 generates a program based on a model description. The program takes sensor readings and calculates the model parameters. With this, the program can then answer queries from the user. In this context, a query is a call to one of the model functions with specific values for the query parameters. The model function depends on the model parameters, which are determined by applying the learning functions to the sensor readings. In this chapter we present our implementation, the DSDM compiler, which generates the code to determine the sensor data model parameters in a partially distributed fashion while also minimizing the overall power consumption of the WSN. One particular feature of our compiler is its extensibility and configurability. This approach allows specialists in different fields to optimize particular modules of the compiler without having to understand all aspects of the compiler.

5.2 Implementation of the Compiler

A compiler takes a program as input, analyzes and transforms it, and produces the program in a different form as output. The compiler for the DSDM framework reads a model description and produces code in the NesC and Java programming languages as output. To do this, the compiler reads the model description and forms an internal representation (IR) of the model by splitting the description into small pieces that each form a meaningful unit. Such units or tokens are, for instance, numerical constants, variable names, or mathematical operators. The compiler then analyzes and records the relationship between tokens. For instance, an operator operates on one or more input values, and thus the token associated with it has a relationship with the tokens that describe the operator’s input values. Certain tokens, such as parentheses, only serve to determine the relationships between other tokens and can be discarded once all relationships have been established. The tokens with their relationships form an abstract syntax tree (AST). The AST representing the distributed regression model
Figure 5.1: (a) The linear regression model with (b) the learning function shown as abstract syntax trees. Note that not the entire model function is shown. In (b) the learning function has been arranged such that the multiplicity of the data sources and paths can be seen.

is shown in Figure 5.1a. In this AST the root node represents the model as a whole. The child nodes of the model node represent the different learning and model functions that together form the complete model. The nodes representing these functions in turn have child nodes that represent, in the case of model functions, the arguments to the functions, and that describe the mathematical expressions used to calculate the function.

The DSDM compiler differs from a regular compiler in three key elements: an enhanced AST (e-AST), a cost function, and a set of optimization modules. The DSDM compiler is modular, every core function is implemented as a module that can easily be replaced by a custom module simply by changing the configuration file. The basic compilation process involves the following steps: the model definition is converted by a parser/lexer module into an AST format. A series of optimization modules modify and enhance the information in the AST. Some of these modules pursue incompatible optimization approaches, and thus multiple versions of optimized ASTs will be created. The expected cost for running a given optimized version is estimated with the cost function, and the AST with the lowest expected cost is chosen. Finally, the AST is converted to TinyOS and Java code.

5.2.1 Modular Compiler Design

At startup the compiler reads the configuration file and loads the modules specified there. The user can provide custom modules as long as they implement the required interfaces and are
5.2. Implementation of the Compiler

Figure 5.2: Flow chart showing the different steps in the compiler process.
in the classpath. Among the modules that can be specified by the user are the lexer/parser,
the optimization modules, the cost function module and the modules generating native code.
The order in which the optimization modules are called to modify and extend the AST is also
specified in the configuration file. We provide our own implementation of these modules
and a default configuration file, which the user might wish to change or extend. A sample
configuration is shown in Listing 5.1.

5.2.2 Parser / Lexer

The parser/lexer module takes as input a string representing the model definition and pro-
duces as output the AST. The parser/lexer module can be adapted to support different lan-
guages without having to modify the remaining parts of the compiler. Our version is designed
for the language we present in Section 4.3. The module is generated using the Java com-
piler compiler (JavaCC) [64]. JavaCC takes a language definition as input and generates a
parser/lexer module. The AST produced by our module represents the model definition with-
out any modifications or enhancements. At this stage, the lexical correctness is ensured as
otherwise the lexer would fail. However, the syntax of the model definition has not yet been
verified. Up to this point the compilation process is normal. Additional information about
compiling in general can be found, for instance, in [5].

5.2.3 Enhanced AST

The AST is a representation of the program as a tree where each node in the tree stands for
an element in the program. The connection between the nodes represents how the nodes
are related. Leaf nodes are typically data sources, such as variables or sensors. Mathematical
5.2. Implementation of the Compiler

operators are intermediate nodes operating on the values of their child nodes.

In our case, the root node of the AST represents the model as a whole. The root node has child nodes representing the individual statements of the model, which are the individual learning and model functions. For our compiler, a statement is always either an assignment or an iterator (the forall operator). The statement for a learning function assigns a value to a variable while the statement for a model function assigns the result of the model computation to the model function. The iterator iterates over the defined set of values for each iterator variable and in each iteration evaluates a list of statements assigned to it. The remaining node types are mathematical expressions representing numerical relationships between their child nodes, or, if they are leaf nodes, representing directly numerical values, such as sensor readings, constants and variables.

An AST can be seen as a set of Nodes \( N = \{ n_1, n_2, \ldots, n_s \} \), where each node \( n_i \) has a set of child nodes \( C_{n_i} = \{ n_{C_{i,1}}, n_{C_{i,2}}, \ldots, n_{C_{i,t}} \} \in N \). Each node represents the computation of a value and thus has an associated value type (e.g., integer, float, array of integers, etc.). In addition, some nodes have an associated value range. For instance, a node representing an iterator variable may know the range of possible values it can be assigned, thus allowing the compiler to allocate the proper amount of memory. Each node has exactly one parent node (the root node has no parent node) and a (potentially empty) set of child nodes. Thus the set of nodes \( N \) forms a tree without loops.

The enhanced AST we use in this compiler has a number of enhancements with respect to the basic AST described above. As the programs we want to express with the AST are processing sensor data models, most nodes will perform a specific step in the calculation of a learning or model function. The functionality of each node will have to be implemented either on a sensor node or on the back-end system. Therefore, each node has a reference to where its functionality should be implemented. Each node in the AST has references to its parent node and its child nodes to facilitate the insertion of intermediate nodes that, e.g., represent communication links. To facilitate debugging, each node has a list of modifications, where optimization modules can add a short message about how they were treating that node. With respect to simple ASTs, our e-AST thus has the following enhancements: execution location (WSN or back-end), value ranges in addition to value types, reference to parent node, and debugging information logging the modifications made by optimization modules.

5.2.4 Optimization Modules

The initial AST produced by the lexer/parser module plainly represents the model description. Before being able to generate distributed code to process this model, the AST must be augmented to include information related to specific nodes in the tree, such as the data type of each node and its processing location. Furthermore, while the AST represents the model description, there might be an equivalent AST that has some more favorable properties, such as requiring less data transmissions. Augmenting and generally optimizing the AST is done by
Data Types

A first optimization module progressively assigns data types to nodes in the AST. By doing so, the module also verifies the syntax of the program. The DSDM compiler distinguishes between integer and floating-point numbers, sensor nodes, sensors, vectors, and matrices. Vectors and matrices have associated dimensions and their elements have associated data types. In the case of sensor nodes, the compiler needs to know which sensors are actually used and what information needs to be stored on the nodes. In addition, the compiler needs to determine how many sensor readings have to be retained.

To determine the data types, the compiler starts with the nodes whose data type is evident, such as constants and sensors. Before the data type of a variable or model parameter can be determined, the data type of the expression defining this variable or parameter needs to be determined. The data type of an expression is typically based on the data types of its arguments. If possible, the compiler also determines value ranges for variables. Sometimes, information in one part of the tree affects a completely different part of the tree, for instance, when the data type of a variable is determined in one place but the variable is also used in a different place. It is thus possible that not everything can be determined in one pass. Therefore, the compiler reiterates the passes for as long as there is some information still missing and new information is obtained in every pass. If no new information is obtained, but not everything has been determined, the compilation process is aborted with an error.

A fundamental aspect of model processing is to obtain the sensor readings. The data type optimization module determines which sensors are accessed on a sensor node, and then for every sensor used by the model, the compiler includes the appropriate code to sample the sensors and reserves memory for storing a history of the sensor readings. For instance, the expression \texttt{si.temp[t]} in the learning function in Listing 4.2 tells the compiler that the temperature sensor is accessed. By default, the history size is 1, which means that only the last (current) sensor reading is stored. The current sensor reading is accessed from the model either by simply accessing the sensor object (e.g., \texttt{si.temp}) or by specifying 0 as the time value (e.g., \texttt{si.temp[0]}). Older readings are accessed by specifying a time value greater than 0. To determine the amount of memory to be reserved for storing the sensor readings' history, the compiler analyzes the value range of the time value. In the learning function in Listing 4.2, the sensor readings are accessed with the expression \texttt{si.temp[t]}. The variable \texttt{t} is defined in the context of a \texttt{forall} statement, which declares \texttt{t = 1 .. 5}. Thus, in the example above, the compiler infers that the values for \texttt{t} vary between 1 and 5, and therefore reserves memory space for 6 sensor readings\(^1\).

If an element of a sensor node is accessed, and that element is not a known sensor, the data type optimization module assumes it to be a configuration parameter associated with the

\[^1\text{The compiler also needs to store the current sensor reading.}\]
sensor node. For instance, the expressions $s_i.x$ and $s_i.y$ in the learning function do not refer to any known sensors. As no method has been defined to determine the values for $x$ and $y$, the compiler adds the necessary code for the DSDM execution framework to configure these values (see Section 4.4).

**Classical Optimization**

As an example of a simple optimization approach, we have implemented a module that, if a node's children are all constants, calculates the results of the mathematical operation represented by that node at compile-time and then replaces the corresponding node with the calculated constant. Similarly, if a variable is assigned a constant, all of its occurrences can be replaced by this constant. Analogous to the data type optimization module, the constant optimizer module repeatedly processes the AST until it does not find any further optimizations.

**Splitting Code**

With the information the compiler extracted from the model definition so far, it is straightforward to generate code for an off-line model processor that takes sensor readings as input and computes the results for a given query. All that needs to be done is to calculate the expressions and update the model parameters. The DSDM framework can produce a standalone program that reads sensor data from a variety of different sources and answers queries. We used this to compare two different statistical sensor data models and published our findings in [55]. The results are shown in Section 6.7. The next step is to generate code for an on-line, distributed model processor that can run in a WSN. To do this, the compiler needs to determine for each node in the AST, whether the node is to be processed in the network or on the back-end system.

Sensors obviously have to be sampled on the sensor nodes. The DSDM framework currently stores all sensor readings (including historical sensor readings) and all node variables on the sensor nodes themselves. Constants are located in the same place as the operator accessing them. This reduces the processing-location-assignment problem to determining where to locate the operators, such that the overall energy consumption in the WSN is minimized. Once data has reached the back-end system, it makes little sense to send it back into the WSN to process it further. Thus, operators that are closely associated with sensor nodes are more likely to minimize overall energy consumption if they are also located in the WSN. Distributed aggregation (see Section 2.9 is an operation that drastically reduces the amount of data that needs to be transmitted inside a WSN. Therefore, if there is an aggregation operator somewhere in the data flow, then in most cases the optimal approach is to process all operators between the sensor readings and the aggregation inside the WSN, to perform a distributed aggregation, and then to compute the remaining operators on the back-end system. The DSDM framework tries to find an aggregation operator. If one is found, it is used as the separation point between the part of the AST to be processed in the WSN and the part to be
processed on the back-end system. The operator placement for the distributed regression model is shown in Figure 5.1b. Every sensor node executes the code in the rectangle in the lower part of the AST (this multiplicity is indicated by overlapping rectangles). For a specific number of past sensor readings, a portion of this code execution is repeated (again, the multiplicity is indicated in the graph). The aggregation is distributed among the nodes, and Gaussian elimination to determine the optimal fit of the curve takes place on the back-end system.

We have implemented three modules that assign processing locations to nodes in the AST with the following approaches: (1) all data is transmitted as-is from the sensor nodes to the back-end and all processing is done on the back-end, (2) all data is transmitted as-is from the sensor nodes to the back-end, but low-power listening (LPL) is used to reduce the power consumption, and (3) data processing is distributed according to a simple heuristic.

The first approach, transmitting all data to the back-end, is chosen as a baseline for evaluating the other approaches. The compiler determines which sensors need to be sampled and constructs the message formats. No special power saving techniques are enabled. The TinyOS version we used for our tests will duty-cycle the microcontroller but will not attempt to save energy by turning off the radio when not used.

The second approach, transmitting all the data with LPL, is used to show the effects that the standard approaches to power savings have on power consumption in WSNs. Essentially, this approach adds duty-cycling of the radio interface. Using more complex approaches to distribute the sensor data processing only makes sense if these approaches are more efficient than the simple approaches presented here.

The third approach uses a simple heuristic to assign a processing location (either WSN or back-end) to nodes in the AST. The algorithm tries to detect aggregation operators in the AST. If the aggregation operator can easily be distributed (see Subsection 2.9), then the aggregation operator can be used as the cutting point. The implementation evaluates, for every node in the AST, whether moving that node (and all the nodes between that node and the sensors) from the back-end system into the WSN reduces communication. The solution that reduces communication the most will be chosen.

Our algorithm is shown in Listing 5.2. It starts at the leaves of the AST and works its way up to the root (Lines 2–3). The sensors are leaves in the AST as they produce input. They are physically located on the sensor nodes, and therefore the nodes in the AST corresponding to the sensors are automatically configured to be part of the code inside the WSN (Lines 5–7). Once a node is configured to run on the back-end, its parent and all nodes further towards the root of the AST automatically also run on the back-end (Lines 14–15). If a node represents an aggregator function, it is configured to run on the back-end (Lines 12–13). However, this is a special case as the aggregation will already happen during the data transmission within the WSN. Only the final result of the aggregator operator will be calculated on the back-end. Finally, if a node's processing location has not been determined, the algorithm compares the
amount of data that would need to be transmitted within the WSN if the node was processed on the back-end with how much would be transmitted if the node was processed inside the WSN. If processing it on the back-end is not more expensive, the node will be processed on the back-end. After the AST has been processed, any node not having a processing location is assumed to run within the WSN.

To help debugging and analyzing how the algorithms work, we implemented a module that uses the same interfaces as the optimization modules, but does not itself optimize anything. Instead, this debug print module prints detailed information of the current status and the information contained within the AST. In the configuration file, the debug print module can be inserted in different places during the optimization process to help monitor the evolution of the optimization.

### 5.2.5 Cost Function

The cost function takes as input the AST and a WSN topology. Based on this information it then calculates the expected cost to run this program in the WSN. The cost can express different aspects related to the execution of the program, including memory usage, latency, bandwidth, and power consumption. For this work, we focus on the power consumption and express the cost in Joule per hour. In a first approximation, the communication cost dominates the total cost, and we thus only estimate the power consumption of the radio module. Since it is difficult to determine in advance the WSN topology that will be used, we use a simple topology
as a placeholder to compare different optimization approaches.

5.2.6 Code Generation

The final step in the compilation process is the generation of the output code. The DSDMC compiler generates code in the nesC language [45] for the TinyOS operating system and in Java for the back-end system. Using nesC, TinyOS and Java allows us to be reasonably platform-independent, both for the WSN hardware and the back-end systems.

Generating TinyOS Code

The TinyOS code generation module takes the nodes in the AST that are selected for execution in the WSN and generates code to perform the node’s functionality. It further generates all the necessary code to access sensor readings, storing these readings if older readings are necessary for model processing, to exchange data with neighboring nodes, and to transmit data to the back-end system. In addition, the module generates the necessary code to modify configuration variables that are accessed from the code executing on the sensor nodes.

Generating Java Code

The Java code generation module produces the code for the part of the program that should be executed on the back-end system. In addition, it generates all the necessary code to communicate with the WSN over the interfaces provided by TinyOS. It further generates the code to configure the nodes, and it prepares the interface to communicate with GSN.

5.3 Compiling the Models

We give here an overview how the compiler described above handles the models we presented in Chapter 3 and in Section 4.3. The DSDM framework first parses the model description and generates a simple AST representing the model. The optimization modules transform the AST into its enhanced form and assign processing locations. After the optimal AST has been chosen, the framework generates the Java and TinyOS code and compiles the program. To run the model processing code, the compiled binaries need to be installed on the sensor nodes, after which the back-end process can be started on a computer connected to one of the sensor nodes.

5.3.1 Linear Regression as Example with Details

The first step to build a distributed sensor data model processing application is to choose a model. Here we assume that the user of our framework, for example a domain expert, has decided to use linear regression with the curve-fitting function from [46] and shown in
5.3. Compiling the Models

Equation 3.7. The linear regression model is described in more detail in Section 3.3. Once the model is chosen, it has to be expressed in the model description language. To use this particular model, we need to determine the linear coefficients $a_1 \ldots a_5$, we need to calculate the least-squares solution for the curve fitted to the measured data. This is shown in Listing 4.2 and the listing is explained in Section 4.3.1.

Once the chosen model is expressed in the model description language, the compiler parses the model description (for further details see Section 5.2.2). First, the model description is broken up into atomic elements of the language called tokens. A token can be a key word or a constant. The tokens, together with some context information such as neighboring tokens, are then combined into an internal representation of the model in the form of an abstract syntax tree (AST). Some tokens, such as for example parentheses, are only necessary to describe the relationship of other tokens and will be removed from the model representation. Other tokens form the nodes of the AST. The AST for the linear regression model is shown in Figure 5.1a.

The AST can now be analyzed and optimized (for further details see Section 5.2.4). The compiler needs to determine the data types of the nodes in the AST. The data types of constants, such as 1 and 5 in $t = 1 \ldots 5$ are obvious and automatically assigned. The data type for the variable $t$ is determined as being integer because the assignment expression returns an integer. Furthermore, our compiler notes that $t$ will only vary from 1 to 5. As $S$ is a predefined constant representing the set of all sensors, its data type is obvious. The compiler determines the data type for $s_i$ as sensor node as it is an element of $S$. The element $\text{temp}$ for the sensor node $s_i$ is defined in the sensor node definition and is a temperature sensor that gives temperature readings as floats. Therefore the compiler determines the data type for the expression $s_i.\text{temp}[t]$ as being float. Furthermore, as the compiler previously found that $t$ varies only between 1 and 5, it determines that it needs to allocate memory to hold 6 values of sensor readings (the current reading and 5 previous readings). The elements $x$ and $y$ do not appear in the sensor node definition and the compiler thus assumes that they are variables specific to individual nodes. As they do not have a corresponding assignment, the compiler reserves memory to hold their values and adds them to a list of variables that the resulting execution environment can configure. By default, the expressions $s_i.x$ and $s_i.y$ are assigned the data type float. Finally, the return value of the $\text{LMS}$ operator is an array of floats whose dimension depends on the number of equations passed to the $\text{LMS}$ operator (here 5).

The framework then generates three enhanced ASTs and assigns processing locations with the three different algorithms described in Section 5.2.4. The first algorithm simply assigns the sensor readings (the expression $s_i.\text{temp}$) the location in the network and the rest of the model is on the back-end. The second algorithm results in an almost identical enhanced AST with different network transmission costs taking into account the more power-efficient approach used for low-power listening. Finally, the third approach shown in Listing 5.2 finds the aggregation operator and assigns all operators between the actual sensors and the aggregation to be computed on the wireless sensor nodes. The aggregation itself is implemented as a distributed algorithm for which the initialization and merging (see section 2.9) are performed.
Chapter 5. Compiler

on each sensor node, and the final evaluator is implemented on the back-end. All operators after the aggregation operator are implemented on the back-end.

The cost function evaluates the expected power consumption for each of the three ASTs. It currently ignores the power consumption for processing as our measurements presented in Section 6.4 have shown that in most cases this is negligible. The power consumption is essentially based on the radio transmissions (sending and receiving) as measured in Sections 6.2.1 and 6.2.2. In this case, the compiler determines that the enhanced AST with distributed processing is most power-efficient. This is confirmed with hardware simulations presented in Section 6.6.

The chosen AST is then used to generate the corresponding TinyOS and Java code. The nodes of the AST that are flagged as being executed in the network are used to generate the TinyOS code in the NesC language. The compiler generates a module, a code and a message definition (header) file and copies a set of standard library files for the execution environment. This library contains the clock synchronization algorithms as well as basic network transmission methods. The generated code contains functions to configure node variables. The nodes of the AST flagged for execution on the back-end are used to generate Java code. The TinyOS tool called message interface generator (MIG) is used to generate Java classes for parsing messages received from the sensor nodes. As a small detail, the MIG currently does not support floating point values and we had to implement our own conversion functions to use floats. The compiler further generates a dynamic Java interface to invoke the query function defined in the model description and it generates the interfaces to set the node variables on the individual sensor nodes.

The framework uses Java system calls to invoke the TinyOS MIG, the NesC compiler and the Java compiler to compile the generated code files into actual executable binaries. We investigated the option to use Deluge [53] to reprogram over-the-air (OTA) a deployed WSN with the newly compiled program. Deluge needs to exchange its own messages, which will interfere with the power consumption optimization implemented by this framework. We concluded that integrating Deluge would be quite cumbersome and would not provide an essential contribution to our research. As our main targeted scenario is networks that are designed and deployed for one particular task, we implemented instead a tool that detects when new TelosB nodes are connected to a computer and we then automatically reprogram these nodes with the newly generated binaries. As this allows us to reprogram several nodes in parallel, we managed to greatly simplify and speed up the reprogramming task.

Once the sensor nodes are programmed and powered up, they are in management mode and await their configuration. The generated back-end program running on a computer connects to a connected sensor node acting as a gateway. In the case of the TelosB node hardware, the program running on the back-end can detect the presence of a connected node and connect to it automatically, otherwise the program needs to know which serial interface to use. As Java does not directly support serial port interfaces, the program needs to use Java Native
5.3. Compiling the Models

Interface (JNI) libraries to communicate with sensor nodes. These libraries are difficult to install and used to cause a lot of problems for people trying to use them. We have implemented a mechanism that allows the whole back-end program to be packaged in a single Java archive (JAR) file. The program then determines the operating system on which it is running, extracts the corresponding JNI libraries from the JAR file into temporary files and loads the libraries from these files. This approach works for Linux (Intel 32-bit and Intel 64-bit), Mac OS X (PPC, Intel 32-bit and Intel 64-bit) and Microsoft Windows (Intel 32-bit and Intel 64-bit) and is now part of TinyOS.

After the back-end program is started and has connected to the gateway node, it will read the network configuration from a file. Using a file to determine the network configuration allowed us to simulate different topologies in a lab with limited space. It was from the beginning expected that an implementation for real network would use some form of network discovery, and this is indeed what happened (see Sections 7.6.1 and 7.6.2). The program further configures node variables using the dynamic interface generated for the particular sensor data model. In this case, it configures the x- and y-coordinates of the nodes.

When the whole network is configured and ready, the back-end program starts the regular operation mode, which turns time synchronization broadcasts on on the gateway node. From this moment on the network uses duty-cycling to minimize power consumption and transmits model updates to the back-end. Queries can now be sent from other applications to the back-end program and will be answered based on the dynamic interface to the query function specified in the sensor data model description.

5.3.2 Multivariate Gaussian Random Variables

The model based on multivariate Gaussian random variables is described in Listing 4.3. Contrary to the linear regression model described above, there is no aggregation operator. The code-splitting algorithm initially assigns all processing locations on the back-end and then iteratively attempts to assign processing locations on the sensor nodes. It finds that transmitting the sensor readings only to the neighboring nodes, where the local model parameters are calculated, is advantageous as the newly calculated model parameters are less frequently transmitted to the back-end. Thus, all operators between the sensor readings and the calculation of the model parameters is done on the sensor nodes, and the other operators are computed on the back-end.

5.3.3 Wind-flow Model

A simple wind-flow model is described in Section 4.3.3. Essential parts of the model definition are shown in Listing 4.4. As this particular model does not implement any sensor readings, the framework will simply assign all operators to be computed on the back-end.

We can imagine a similar model, for which the initial condition is based on actual sensor
readings. This kind of model based on partial differential equations is computationally very intensive. Distributed computing of the model would involve very high amounts of data exchanges. Thus, the framework would simply assign all the model computations to be performed on the back-end.

The calculation of the initial condition based on actual sensor readings can be performed inside the sensor network. Typically, there are not as many sensors in the network as there are grid points in the model. The initial condition would then be based on a model like the linear regression model presented above, which then is used to estimate values at the individual grid points. Thus the framework presented in this thesis can well be used to calculate the initial condition and feed this information to an external simulation program.

5.3.4 Vibration model

The model used in DIN 4150-3 [34] and described in Section 3.5 and Section 4.3.4 is implemented in Listing 4.5. This model is different from the previous models in that it uses only data from a single sensor, and thus data exchange between sensor nodes is not an issue. The data rate from the sensors is very high. The data processing from the model would allow a drastic reduction of the amount of data to be transmitted by radio but is also very costly in terms of required memory and processing power. To determine the optimal distribution of the processing steps between the WSN and the back-end, the evolution of the data rate throughout the processing steps has to be analyzed.

To satisfy the requirements of DIN 4150, we need to measure acceleration between $+\cdot 2g^2$, with a resolution better than 0.5 mg. Thus, we have to distinguish between $2g - (-2)g \cdot 10^{-3}g = 8000$ different values, which we can express in a binary number with $\log_2(8000) = 13$ bits. As the sensor itself, the analogue circuit, as well as the A/D converter all introduce some noise, we decided to sample at a resolution of 16 bits.

The accelerometer needs to be sampled at a given frequency that depends on the highest frequency of the vibration that we are interested in. In order to have a power of two, we decided to analyze frequencies up to 128 Hz. Because of the Niquist frequency (see, e.g., Oppenheim et al. [94]), we need to sample at least at twice this frequency. However, the original signal should already be band-limited to avoid aliasing (see again, e.g., Oppenheim et al. [94]). As an analogue low-pass filter would introduce additional noise, we decided to use digital filtering. To void aliasing effects from sampling the unfiltered signal, we decided to oversample four times and settled on a sample rate of 1024 Hz.

Sampling 3 channels (for the three dimensions) at a resolution of 16 bits each at 1024 Hz produces data at 48 kbps. Thus, if we were to send the sensor data directly over the air without any pre-processing, considering protocol overhead and managing access to the media, this is close the the sustainable transmission rate of the radio (250 kbps), without any possibility

$^{2}$ $g$ is earth's gravity constant $10 \text{ms}^{-2}$
5.3. Compiling the Models

for energy saving, and without multi-hop functionality. Even if we somehow managed to filter the signal, we would still need to transmit \(316 \times 256\ Hz = 12\ kbps\) per sensor node. If we want to use ten or more sensor nodes in a multi-hop network and also use duty-cycling as a power-saving measure, we need to find a way to substantially reduce the amount of data that needs to be transmitted.

Figure 5.3 shows the data processing tree. At the top the three sensors for the three dimensions (X, Y and Z) are sampled at 1024 S/s with a 16 bit resolution. This results in a data rate of approximately 50 kbps. This data is then filtered with a low-pass filter with a cut-off frequency of 128 Hz. The reduced data rate is then \(3 \times 256 \times 16 \sim 12\ kbps\). After this, the data is processed in batches of 512 values per sensor every second, resulting in a doubling of the data rate if every window were to be transmitted to the back-end for processing. To obtain velocity values as required by DIN 4150-3 we need to increase the number size of the values from 16 bit to 18 bit to avoid overruns, resulting in a data rate of \(3 \times 512 \times 18 \sim 28\ kbps\). After we determined the maximum velocity we can reduce the window size to 1 s and center it around the peak value, thus also reducing the data rate to \(14\ kbps\). The Hanning operator and the fast Fourier transform do not change the data rate. After determining the dominant frequency we can drastically reduce the data rate to 8 bps for the frequency, 16 bps for the timestamp of the peak velocity, and 18 bps for the peak velocity itself, resulting in a data rate of 42 bps. Determining whether the vibration energy is above the threshold could reduce the data rate to 1 bps. In practice, however, we need to keep a log of the peak velocities and their respective dominant frequencies.

After analyzing the processing tree for the data, we concluded that it would only be possible to attain the necessary reduction in bandwidth usage if we could do all the processing on the sensor node and just transmit a short update indicating whether the vibration was too strong. Note that for legal reasons we had to store the complete waveform of the vibration signal if the vibration is too strong. We finally decided on a compromise, where a short status report is sent on a regular basis, the waveform of the signals that exceed the threshold are stored for an extended period of time (at least one day), and the back-end system can retrieve the complete waveform at a later time.

Optimizing the data processing with the current version of the DSDM framework is not possible, as the optimization really is at the limits of what is possible with the hardware. The 8-bit microcontroller we used (running at 8 MHz) takes several seconds to perform an FFT operation of a signal with 256 measurements using floating-point numbers, and it still takes several 100s of milliseconds to perform an FFT with 16-bit fixed-point numbers. With the standard I/O interface of our microcontroller it would already be a challenge to just read the raw data in time. If we consider that we would need to do this for three channels (for the three dimensions), we would not have any processing power left to handle the network protocols and we could not use duty-cycling for the microcontroller. Even if we were to do the data processing in a separate, dedicated microcontroller, we would still have the problem of reading the raw data into the microcontroller, even if the data rate was somehow reduced with
Figure 5.3: The data rates for the vibration processing.
5.4. Implementation of the Execution Environment

To solve the problem with the processing power we decided to use a low-power FPGA. This allowed us to read the data over a parallel interface bus at much higher speed, and to optimize the hardware for the data processing. Designing hardware optimizations is at this time clearly outside of the scope of the DSDM framework. Even if we had foreseen the possibility to generate VHDL code that could then be compiled for the FPGA, it would have been difficult to optimize the code such that it would have fitted the FPGA. At first, automatic tools were used to generate the VHDL code for the FPGA. The code was then optimize by hand to make the footprint small enough to fit on the actual chip, and even so almost all available resources of the FPGA were used.

Thus, implementing a system for DIN 4150-3 using data sensing with accelerometers and doing the processing on the sensor nodes is really at the limit of what is feasible with current hardware and in terms of processing power, bandwidth usage and limited power usage beyond of what is done in the state-of-the-art.

5.4 Implementation of the Execution Environment

For the experiments we present in Chapter 6 we implemented the basic services of the execution environment presented in Section 4.4. Our implementation is optimized towards experimental evaluation of our framework and is only partially suitable for real deployments. For the commercial deployment presented in Chapter 7, we used the implementation described in this section, but with significant enhancements to make it robust enough for long-term operation.

The code for the sensor nodes generated by our framework operates in two modes: management mode and regular operation mode. The code starts up in management mode, where no power saving measures are implemented, and waits to be configured. Once everything is set up, the whole network is switched into regular operation mode. It is in this mode that the actual power-optimized sensor data acquisition happens.

The configuration service is only available in the management mode. It enables the setting of parameters for a particular node. Our simple implementation broadcasts a given configuration message to the whole network, and only the node, for which the message is destined, changes its configuration. The configuration service is used for parameters used by the model (e.g., the geographic coordinates of the location of the node), and also to configure the routing layer.

For the data transmission in regular operation mode we use an aggregation tree inspired by CTP [43]. Instead of constantly updating the routing information, as CTP in TinyOS would do, we use a static routing tree configuration. As we explain in Section 6.3, we expect the management overhead to be negligible, and thus want to avoid route maintenance to interfere with our energy measurements. In addition, this allows us to test our code in a lab environment,
where normally all nodes can directly communicate with each other. Each node needs to
know its parent and children in the routing tree, and a node will only accept an incoming data
transmission from either its parent or one of its children, depending on the direction of the
communication.

Synchronizing the clock of the nodes can be achieved by a variety of different protocols and
algorithms. We found that one of the simplest approaches is also well suited to minimize
energy consumption, as determining required active periods for the radio is straight forward.
Our approach, based on the synchronization mechanism of the flooding time-synchronization
protocol (FTSP) [79], synchronizes the network by broadcasting the time from the sink node
to the leaves of the tree. The sink node starts by broadcasting its time. Nodes, which have the
sink node as their parent, then synchronize their clock with the received time. They, in turn,
broadcast their now updated time, and their children synchronize their clocks. Collisions
between nodes attempting to send at the same time are minimized with CSMA as implemented
in TinyOS.

5.5 Conclusion

In this chapter we presented a modular implementation for our framework. The compiler
is designed, such that the individual compile steps are separate modules. Modules can be
replaced, added, and the order of the modules can be changed. Thus, our compiler can serve
as the basis for future, more advanced research into distributing model processing in a WSN.

Our implementation of the execution environment is a simple solution well suited for lab
experiments. Real deployments need a more advanced implementation of the execution
environments, such as the one presented in Chapter 7. The modular design of the framework
allows to easily replace services of the execution environment. In the future it is expected that
multiple competing implementations of different services are provided and that the compiler
then decides on a particular implementation that is best suited to the given model.
6 Performance Evaluation

6.1 Introduction

To analyze the impact of the different processing approaches presented in Chapter 3, we developed a hardware setup that allows us to automatically measure the power consumption of motes running in a WSN. To better understand the power consumption figures and to facilitate the power consumption analysis for researchers without access to expensive lab equipment, we extended the supported platforms of the Avrora [115] hardware simulator and integrated it into the framework. In this chapter we present our measurement approaches and findings.

6.2 Measurement Setup

While power consumption is already analyzed in previous work, e.g. in [108, 107, 115, 123], we decided to implement our own measurement setup for four reasons: (1) we want to measure the power consumption of complete applications, not only of individual operations, (2) the state of the art is mostly based on old hardware and does not take new developments into account or compare different platforms, (3) we want a setup to automatically perform measurements, so that experiments can easily be repeated, and (4) we wanted to repeat the experiments on different platforms and with different parameters. Our setup consists of an active measurement circuit connected to an oscilloscope. To automate measurements, we have additional control circuits.

To measure the power consumption of sensor nodes, we looped the power supply to the battery connectors through the active measurement circuit shown in Figure 6.1. The active circuit avoids the drop in tension that occurs in the more traditional measurement setup using a resistance, while at the same time amplifying the signal to a level more suitable for most oscilloscopes. Assuming that the operational amplifier is in its linear regime, the differential input tension $e$ is 0 V, and the output $V_{out}$ of the circuit is proportional to the current $i$ drawn by the mote. In fact, $V_{out} = R_1 i$. 
Figure 6.1: Active circuit for precise power measurements. If the operational amplifier is in its linear regime, it will ensure that $\epsilon$ is 0 V. This, in turn, ensures that the tension at the battery connectors of the mote is constant, and at the same time amplifies the signal. The current drawn by the sensor node can be calculated from the output signal using the following formula: $i = \frac{V_{\text{out}}}{R_1}$. For $R_1 = 200\,\Omega$ the current is easily calculated with $i\,[\text{mA}] = \frac{5\,\text{V}}{V_{\text{out}}\,[\text{V}]}$.

Our test setup is shown in Figure 6.2. The sensor node's (6) connections are controlled by a switching circuit (5). The switching circuit is controlled by a computer (1), which can enable the data connection to the sensor node, or power the node from the power supply (2). If the sensor node is powered from the power supply, the current it draws is measured (4) either by a simple voltage measurement over a resistance or by an active circuit (e.g., the one shown in Figure 6.1). The power consumption is analyzed by an oscilloscope (3) which is controlled by the computer.

It is difficult to measure the power consumption of a sensor node while it is connected to the computer, because this connection can introduce a ground loop (which it did in our case), and can add additional hardware that also consumes power. For instance, the TelosB platform communicates over a USB connection. When connected to a computer, the node draws its power from the USB connection and uses an on-board voltage converter to transform the 5 V provided by USB to power the 3 V circuit of the rest of the node. The USB connection also activates an additional USB-to-serial converter chip on the node. The Mica-family of nodes (Mica2, MicaZ and Iris) need an additional programming board for both programming the flash memory of the microcontroller and for serial communication. When we tried to power a MicaZ node over its battery terminals while it was connected to such a programming board that was otherwise unconnected, the node reverse-powered the programming board, and this introduced additional power consumption.
6.2. Measurement Setup

Figure 6.2: Setup for automatic power measurements. It consists of (1) the computer controlling the measurements, (2) the power supply used for simulating the battery, (3) the oscilloscope that acquires the waveform of the power consumption over the action of interest, (4) a power measurement circuit, (5) a simple switching circuit that can connect/disconnect a sensor node to/from the computer, enable the battery power, and trigger external interrupts on the sensor node, and (6) the sensor node whose power consumption is measured.
Chapter 6. Performance Evaluation

At the beginning, after reprogramming a sensor node, we manually disconnected it before measuring its power consumption. This became tedious when we started to repeat experiments and to perform multiple experiments with varying parameters. To reprogram sensor nodes automatically, we implemented a means to plug in and unplug the nodes in an unsupervised manner. We used the Velleman K8055 USB interface experiment board to control a number of relays to perform the emulated connection/disconnection operation. The resulting switching circuit is designed to independently connect and disconnect a USB connection, the connection to the programming board for the Mica-family of sensor nodes, and the 3 V battery power used to measure the power consumption. In addition, the switching circuit can trigger an interrupt on the platforms we used.

USB plugs are designed such that during the plug-in operation the power pins make contact before the data pins. The idea behind this is that the device gets powered up and has time to initialize before receiving data. We emulated this behavior with two different sets of relays, which are activated in sequence with a small delay. We first tried to only switch the supply voltage and the data cables while leaving the ground cable permanently connected. This, however, resulted in a ground loop that caused a 50 Hz interference with the measurements, which we were unable to eliminate. To avoid this problem, we finally also switched the ground cable. Although the USB connection is unshielded over a short distance (through the relays), we did not experience any problems.

The Mica-family of motes uses a 51-pin Hirose connector to connect to sensor and programming boards. For programming the flash memory of the microcontroller, only 6 pins (from the 51 pins on the connector) are needed: supply voltage (Vcc), ground (Gnd), reset (Rst, to enter programming mode), clock (Clk), MOSI (master-out-slave-in, data from the computer to the microcontroller), and MISO (master-in-slave-out, data from the microcontroller to the computer). Instead of connecting the node directly to the programming board, we built a cable connecting only these six pins and confirmed that programming is indeed possible. The switching circuit connects or disconnects all six pins simultaneously.

A single relay is used to switch the power supplied to the sensor node's battery connectors (the ground wire is always connected and does not interfere with programming). Furthermore, the switching circuit controls an optocoupler which is connected to one of the digital inputs of the sensor node and can be used to trigger interrupts. This allows us to control, for example, the start time of an experiment.

Power consumption is measured by sampling the current drawn by the sensor node at very short intervals (e.g., at 100 kHz or every 10 μs). The current drawn by the sensor nodes is first converted to a tension with either the simple or the active measurement circuit. This tension is then measured with an oscilloscope. We use a Tektronix DPO 4054 oscilloscope connected over Ethernet to the controlling computer. The oscilloscope supports the virtual instrument software architecture (VISA). The Ethernet protocol used by VISA is the VXI-11 protocol (VME extensions for instrumentation), which in turn is based on the open network computing
remote procedure call (ONC RPC) protocols originally developed by Sun Microsystems. We used the free ONC RPC implementation provided by the Remote Tea project to implement the VXI-11 protocol in Java. With this, the computer can adjust any setting of the oscilloscope and read the full acquired waveform. A waveform can consist of up to $10^7$ measurements, each with a 16-bit resolution, whereby the time window and the value range depend on the settings.

This setup allows us to remotely control and change the application that should run on the sensor node and to repeat measurements as often as necessary. A typical measurement cycle consists of the following steps: connect the sensor node to the programming hardware, program the flash memory of the microcontroller, disconnect the sensor node from the programming hardware, connect the sensor board to the battery power (with the power measurement circuit), configure the oscilloscope (including triggering conditions), prepare the oscilloscope for the acquisition of a single waveform, trigger the interrupt on the sensor node, wait for the acquisition to finish, copy waveform data from the oscilloscope and save it to a file.

Some networking protocols use random delays, e.g., to avoid colliding transmissions. To get meaningful results, measurements need to be repeated multiple times. As the randomness in TinyOS (and other software for embedded systems) is implemented using a pseudorandom number generator (PRNG), reseting a node and starting anew would also reset the PRNG and the sequence of random numbers would simply be repeated. To avoid this, the test programs were written such that after the first run the experimental condition can be repeated by triggering further interrupts without having to reset the sensor node.

### 6.2.1 Sending Data

To understand the power consumption and the potential for power savings in communication, we decided to study the basic element of communication, namely, the sending of a single packet. We implemented a simple application, in which a sensor node wakes up from sleep mode, sends a single message, and then immediately returns to sleep mode. Such an application might be used in a simple network where every sensor node is only one hop away from the base station, and the data is sent on a best-effort basis. To measure the power consumption of this first application, our test program waits in sleep mode for an external interrupt. When the interrupt occurs, the microcontroller wakes up, sets a timer, and returns to sleep mode. When the timer expires, the microcontroller wakes up again and turns on the radio. Once the radio is ready, our program starts sending a message with a predefined length. When the network stack signals that the message has been sent, the program turns the radio off. Once the radio has entered the power saving mode, the microcontroller will enter the sleep mode as well.

Instead of sending the message directly when the interrupt occurs, we opted for a timer to avoid any overhead by the interrupt circuit and to make the test program behave more like a real sensor application, in which most likely a timer will be used as well. We assume that the length of the random back-off time is determined with a pseudo-random-number generator.
(PRNG), which always generates the same sequence of values after a reset. For this reason we trigger experiments with an external interrupt without resetting the mote between instances of the experiment.

The basic flow of the experiment is as follows: The circuit connects the sensor node to the computer. The computer then programs the sensor node with the test application using a new set of parameters (message length and transmission power level). The circuit disconnects the sensor node from the computer and provides power to the battery connectors. The computer starts the experiment by arming the oscilloscope for a single sweep after the oscilloscope detects the trigger condition, and then initiates the experiment on the sensor node by signaling an interrupt on one of the external digital inputs. After a short amount of time, the sensor node sends the message. The acquisition of the power-consumption waveform is triggered on the oscilloscope by the spike in power consumption caused by the radio turning on. After the measurement, the controlling computer downloads the sampled waveform from the oscilloscope and stores it for later analysis. The process of capturing the power consumption for sending a single message is repeated 100 times, after which the mote is reprogrammed with a new set of parameters.

Figure 6.3 shows the power-consumption waveform for sending a single message on a Moteiv Tmote Sky mote using its ChipCon CC2420 radio module. The power level is set to −25 dBm, which, according to the datasheet [113], results in a current consumption of 8.5 mA, which corresponds well with the current measured during the transmission phase. The payload length of the message in this figure is 1 byte. The actual number of bytes transmitted is higher because of the message envelop (see [50] for details on the TinyOS network stack).

Because of the randomness of the duration of the back-off phase, we repeated the experiment 100 times. Table 6.1 shows the average duration of the different phases for different payload lengths as measured with a Moteiv Tmote Sky mote using a transmission power of −25 dBm. The durations were determined automatically by scanning the measured waveforms for characteristic patterns of the different phases. As expected, the duration of the actual transmission phase varies with the message length. The switching time seems to be 0.94 ms and constant; the observed variations are most likely due to imperfections in the algorithm used to detect the phases. Similarly, the time it takes to switch the radio off also seems to be constant (0.29 ms); again the variations in the table are most likely due to imperfections in the algorithm. The random back-off time measured over all waveforms is on average approximately 4.91 ms. Considering that the observed maximum back-off time for 700 transmissions is just below 10 ms, it seems reasonable to expect the random back-off phase to be upper-bounded by 10 ms.

We expected the total energy for transmitting a data packet to depend on the length of the message as well as the transmission power level. We were surprised to find that the random back-off algorithm used for checking the radio channel uses more than half of the total energy for sending the packet. It was further unexpected that the radio activation phase also depends
6.2. Measurement Setup

Figure 6.3: Power consumption for sending a single message on a Moteiv Tmote Sky. The payload length is 1 byte and the message is sent with a transmission power of -25 dBm. In (1) the radio is being activated. In (2) the TinyOS network stack performs a random back-off phase to ensure that the channel is free (the radio is in receive mode). In (3) the radio switches to transmit mode. In (4) the message is transmitted. In (5) the radio is turned off.

Table 6.1: Average duration of the different phases for transmitting a single message (for a transmission power of -25 dBm). The observed maximum and minimum durations for the random back-off phase are given as superscript and subscript, respectively, next to the average number.

<table>
<thead>
<tr>
<th>Payload length</th>
<th>Turning radio on</th>
<th>Random back-off</th>
<th>Switching to TX</th>
<th>Sending packet</th>
<th>Turning radio off</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.59 ms</td>
<td>4.44 ms - 27 ms</td>
<td>0.36 ms</td>
<td>0.95 ms</td>
<td>0.25 ms</td>
</tr>
<tr>
<td>2</td>
<td>0.64 ms</td>
<td>5.09 ms - 32 ms</td>
<td>0.33 ms</td>
<td>0.94 ms</td>
<td>0.26 ms</td>
</tr>
<tr>
<td>4</td>
<td>0.72 ms</td>
<td>6.24 ms - 28 ms</td>
<td>0.37 ms</td>
<td>0.98 ms</td>
<td>0.25 ms</td>
</tr>
<tr>
<td>8</td>
<td>0.96 ms</td>
<td>4.72 ms - 33 ms</td>
<td>0.81 ms</td>
<td>0.94 ms</td>
<td>0.29 ms</td>
</tr>
<tr>
<td>16</td>
<td>1.44 ms</td>
<td>4.75 ms - 40 ms</td>
<td>0.94 ms</td>
<td>0.78 ms</td>
<td>0.30 ms</td>
</tr>
<tr>
<td>32</td>
<td>2.38 ms</td>
<td>5.21 ms - 35 ms</td>
<td>0.96 ms</td>
<td>1.29 ms</td>
<td>0.31 ms</td>
</tr>
<tr>
<td>64</td>
<td>4.27 ms</td>
<td>4.91 ms - 37 ms</td>
<td>0.94 ms</td>
<td>2.31 ms</td>
<td>0.29 ms</td>
</tr>
</tbody>
</table>
Chapter 6. Performance Evaluation

on the message length. In fact, it is likely that turning the radio on takes approximately as long as turning it off. The most likely explanation is that the message is first copied into the internal buffer of the radio chip, after which the micro-controller is turned off. This would explain the difference in power consumption during the copying of the message. The reason for having the receive mode activated on the radio chip while copying the message is probably to prevent missing a message that might be sent by a different sensor node during this period.

Using linear regression, the following approximations for the durations of the radio activation and the transmission times based on the number \( n \) of bytes in the payload can be given:

\[
T_{\text{radio-on}} = 0.51 + 0.059n \tag{6.1}
\]

and

\[
T_{\text{transmit}} = 0.26 + 0.032n \tag{6.2}
\]

From Equation 6.2 it appears that sending a single byte takes 0.032 ms, which corresponds to a transmission speed of \( 1/0.032 \text{ms} \times 8 = 250 \text{kbps} \), which is the nominal transfer speed of the radio. From Equation 6.1 the copy-speed from the micro-controller to the radio appears to be \( 1/0.059 \text{ms} \times 8 \approx 136 \text{kbps} \). The internal copy-speed seems slow and might indicate a suboptimal implementation.

6.2.2 Receiving Data

Optimizing the energy for sending data is simple once the factors affecting the power consumption are known. The real challenge lies in optimizing the power consumption for receiving data, as a sensor node might not know in advance when it should receive messages. For rare and truly random transmissions, the LPL approach of TinyOS is very interesting, as it does not rely on synchronization and is completely distributed. However, the network topology is usually not random and remains stable over long periods of time. It is therefore possible to synchronize nodes and assume fixed routes. One approach is to use the beaconing mode of the IEEE 802.15.4 MAC-layer [57]. However, this beaconing mode is implemented at the level of the MAC layer and does not take application requirements into account.

We propose to synchronize the low-power periods on the application level. With a tree routing structure (such as CTP), most of the time, only the children of a node will send data to their parent node. As sender and receiver are known beforehand, they can agree on a transmission schedule. If the clocks of all motes within a network are synchronized, the nodes furthest down in the tree routing hierarchy could, for instance, send their data in a given time slot. The potential collisions among nodes in the same level can be avoided with the usual mechanisms available in the MAC protocols. Once a node has received the data from all its children, it can forward the data in its own slot. This approach is particularly suitable if the nodes need to aggregate the data from their children and thus will never send more than a single message in
6.3. Network Topology Changes and Management Overhead

For application-level synchronization to work, the sensor nodes need a means to synchronize their clocks. TinyOS, for instance, includes mechanisms to synchronize the clock, with which it is possible to adjust the clocks of two motes to within less than 1 ms [79]. As the clocks will start to slowly drift while waiting for the next synchronization to occur, the application will need to take this into account by providing a small overlap of the transmission windows. This means that the sensor node expecting to receive a message should activate its radio slightly early in case the other node's clock is running faster. The clock source on a typical sensor node has a maximal time drift of approximately 20 ppm. Therefore, for every minute between synchronizations, \(60 \cdot 20 \text{ ppm} \cdot 2 \text{ nodes} = 2.4 \text{ ms}\) need to be added to this safety window. If the duty-cycle of an application is set to one transmission every minute or less, then the addition of a few milliseconds to the active period will have almost no impact on the duty-cycle and the overall energy consumption.

For periodic transmissions it makes sense to synchronize the low-power modes on an application level.

6.3 Network Topology Changes and Management Overhead

A WSN needs to establish and maintain its routing structure. Doing so involves discovering nearby nodes and exchanging messages with them to determine the quality of the links. Even a static network deployment will have some changes in the topology, for instance, because objects move around or sensor nodes are damaged. It is therefore important to know how the network topology changes over time to optimize network management and reduces the reconfiguration overhead.

Papers [129, 4, 23] suggest, as a first hypothesis, that there are a substantial number of links in any given network that are extremely unstable. In this experience, this is true for sensor nodes based on the ChipCon CC1000 radio but the more modern ChipCon CC2420, and more generally radios based on IEEE 802.15.4, show links that are symmetric and either very good or very bad. Intermediate links and very asymmetric links (where communication in one direction works well, but not in the other) are very uncommon. This has been shown this measurement campaign we did in 2008, and this behaviour is also confirmed in other publications like [111].

We developed a means to analyze the network topology and especially the topology changes over time. To observe the radio topology, a network is deployed. The application running on the nodes does not transmit actual sensor readings, instead each second a different node becomes the active node and transmits a number of messages. All the other nodes are passive nodes and just count how many messages they receive. In addition, they retain the maximum, minimum and the sum for the received signal strength indicator (RSSI) values and the corresponding values for the link quality indicator (LQI). The sums are used together with the
Figure 6.4: The topology of a WSN deployment in an industrial complex (as made in 2008). Links between nodes with a packet transmission success rate of more than 90 % are shown with solid lines, links with a packet transmission success rate of more than 50 % are shown with dashed lines. The nodes were placed by the customer.

count to determine average values. Our measurement application takes advantage of the flash memory available on many sensor nodes, and stores the measured values there. To ensure that there are no network collisions, the transmitted messages are at the same time used by the receiving nodes to synchronize their clocks. To avoid inconsistencies with this clock synchronization process, a node only adjusts its local clock if it receives a synchronization message from a node with a lower node number.

Our measurements have shown that such changes occur infrequently and the network topology can be treated as static for most of the time. In particular, in September 2008 we had an opportunity to analyze the network dynamics of a static deployment in an industrial environment. To this end we deployed 30 nodes for 22 hours in an outside industrial complex with heavy metallic machinery. Figure 6.4 shows the layout of the deployment. In spite of the metallic structures there were many good links between nodes. We saw links with a strong signal and very little message loss that connected sensor nodes that were more than 100 m apart. We assume that the metallic structures can act as wave guides. We also saw nodes that were less than 10 m apart and could not communicate with each other. We analyzed one such case in detail, and in that case the reason for the communication failure was that the antenna of one of the nodes was mounted behind a metal pole, which blocked all radio transmission in the direction of the other node.

Analyzing the data in more detail shows that the links were not only very good, they remained
6.4 Energy Consumption for Data Processing

In order to evaluate whether, for the commercial project described in Chapter 7, implementing the data processing on the microcontroller of sensor nodes is possible, we made an experimental evaluation of the power consumed by the microcontroller for performing mathematical operations. While most operations on the microcontroller consume extremely little energy, there is one complex operation that consumes a significant amount of energy: the fast Fourier transform (FFT). We experimented with multiple implementations and used the measurement setup presented in Section 6.2 to measure how much energy would be consumed. Table 6.2 shows the measured results and Figure 6.5 shows the evolution of the power consumption over time for a single operation. All operations were done on 512 data values. The floating-point calculations used 32 bits to represent a single value, while the fixed-point calculations were done using 16-bit numbers. All measurements were done on a Tmote Sky (for a specification see Section 2.5).

Table 6.2: Power consumption comparison for different FFT implementations for 512 data points on a Tmote Sky.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Duration</th>
<th>Energy Consumed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floating Point</td>
<td>17 s</td>
<td>10.11 µAh</td>
</tr>
<tr>
<td>Floating Point with Lookup-Table</td>
<td>2.9 s</td>
<td>1.74 µAh</td>
</tr>
<tr>
<td>Fixed Point</td>
<td>0.084 s</td>
<td>0.05 µAh</td>
</tr>
</tbody>
</table>

According to these results, we see that only calculating the FFT, even with the fastest approach, will monopolize the microcontroller for a significant amount of time during which it will be unavailable for the other processes it has to manage (for instance communication and sensor acquisition). As expected, the fixed-point approach is the the fastest one; this is because embedded microcontrollers, such as the TI MSP430 used for the Tmote Sky sensor nodes, do
not have hardware-support for floating-point arithmetic and floating-point operations need to be implemented in software.

6.5 Measurements Using Soundcards

The measurement setup using the oscilloscope is very convenient, but it is also rather expensive. Based on the measurements presented in Section 6.2 we conclude that we do not need the full capabilities of the oscilloscope. The events that are interesting for us, e.g., changes in the radio state, usually last for a few milliseconds. Hence a temporal resolution of approximately 0.1 ms would be sufficient. We think that for most applications a measurement resolution of 0.1 mA would be sufficient. The sensor node platforms that we used for our experiments consume at most 25 mA, unless they activate additional modules, such as external serial flash memory or special sensor devices. Hence, a measurement range from 0 to 25 mA with an 8-bit resolution and with 10 kS/s would be sufficient for many applications.

There is a very common device that provides measurements with 48 kS/s at a 16-bit resolution. The measurement range varies between devices and is typically between 0 and 3 V. This device is, of course, the soundcard present in every modern computer. There are external
USB soundcards available for less than 10 $. In all the low-cost external soundcards that we found on the Swiss market, the core of the device is the C-Media CM108 headset audio controller [24]. The CM108 integrates all the essential functions of a soundcard with a USB-2.0 interface. It should thus easily be possible to combine several such soundcards to provide multiple measurement channels.

While in principle soundcards should work fine, in practice they have a bandpass filter and in particular filter out the DC component of the input signal. After checking the datasheet of the CM108 it appears that the filter is implemented in the external electronic circuit. The sound card we used for our experiments, a Sanwa Supply MM-ADUSB, uses the reference application circuit from the CM-108 data sheet. Replacing a single capacity (C11) with a 0 Ω resistor should remove the bandpass filter. A web post by an amateur radio operator [93] further suggests that this approach has successfully been attempted in the past. We modified our soundcard and proceeded to calibrate it. Our results suggest that there still is a high-pass filter. It appears that there are two versions of the CM108 chip. The newer version, the CM108AH [25], has an integrated high-pass filter.

Although USB soundcards seem to be an ideal solution for an inexpensive measurement setup that nevertheless allows to observe the actual power consumption of an application running on real hardware, current systems cannot be used for this purpose. There might be soundcards based on different chips that would allow the required modifications to work, but we were not able to find any such cards.

6.6 Hardware Simulation

To understand in detail how power is consumed by the application, we used the Avrora hardware simulator [115]. Avrora is a cycle-accurate hardware simulator for microcontrollers and complete WSN hardware platforms. As the name implies, Avrora was originally developed for the Atmel AVR microcontrollers. The current version supports the Crossbow Mica2 and the Crossbow MicaZ platforms. We extended Avrora to also simulate the TI MSP430f1611 low-power microcontroller and the open TelosB platform. Thus, the same simulator can be used for three different platforms (using a combination of two different microcontrollers and two different radio interfaces). Additionally, the simulator is independent of the embedded operating system (as opposed to, e.g., PowerTOSSIM [107]) as it executes the programs at the byte-code level.

In the current release of Avrora support for the MSP430 microcontroller has been started. The code to load programs and execute arithmetic and most other control instructions is already included. Memory management is incomplete and in particular does not take into account that parts of the memory on the MSP430 can be accessed from different address ranges. 16-bit access to memory and registers is not working properly. To get the hardware simulator of the TelosB platform to work properly, we first fixed the memory management and register access of the MSP430. We then implemented the most important peripheral modules of the
microcontroller, including the timers, basic clock module, watchdog, hardware multiplier, USART (including serial and SPI communication modes), and general-purpose I/O (GPIO) pins. Low-power modes were implemented taking into account the deactivation of different clock domains. Interrupt handling is different on the MSP430 than on the Atmel microcontrollers in that multiple interrupt sources share the same interrupt level and additional control registers need to be set to indicate which source triggered the interrupt. We had to modify external peripherals to not simply trigger a given interrupt level, but to trigger a given interrupt source, which would then set the corresponding registers and trigger the actual interrupt.

With these modifications we can connect the MSP430 simulator with the Chipcon CC2420 radio module from the MicaZ simulator. We can also reuse the LED and the serial interface modules. In addition, we have implemented the Sensirion SHT11 humidity and temperature sensor.

Our implementation of the TelosB simulator is missing the following functionalities: ADC (for light sensors), DAC (not really used on the main platform), write access to the internal Flash and EEPROM (e.g., used for over-the-air-programming (OTAP) in Deluge), I2C-mode for the USART, light sensors, user button, serial-ID, and external serial Flash memory. Nevertheless, the current implementation of the TelosB simulator is sufficient to simulate most WSN applications.

We use the Avrora simulator to evaluate the effectiveness of our distributed-processing approach. We run the distributed regression algorithm generated by our framework on the three platforms and compare the power consumption with a program that transmits all readings to the back-end (also generated with our framework, using a different optimization algorithm). We actually use two versions of this program: one version uses low-power listening (LPL) [98, 85], the standard low-power approach in TinyOS [51], while the other program does not optimize radio power consumption. The application samples the sensor every minute, a time interval which we found to be sufficient in most cases.

The Atmel ATmega128L microcontroller used in both the Mica2 and the MicaZ platform is a common microcontroller for embedded systems. The TI MSP430f1611 microcontroller used on the TelosB platform is a low-power microcontroller that not only consumes less power in active mode than the ATmega128L, but can also wake up faster from power-saving modes. The TI Chipcon CC1000 radio interface used on the Mica2 platform is a byte-oriented radio; it sends a stream of bytes and the microcontroller is responsible for handling the MAC layer protocols. The TI Chipcon CC2420 used on the MicaZ and TelosB platforms is a packet-oriented radio; the microcontroller copies a complete packet to the radio, and the radio handles almost all aspects of the MAC layer protocol independently. For the Mica2 and MicaZ platforms Avrora simulates the Crossbow MTS-300 sensor board. For the TelosB platform we implemented the simulation of the Sensirion SHT-11 temperature and humidity sensor, which is an optional on-board sensor for this platform.

We run each version of the program for 300 simulated seconds on all three platforms. Table 6.3
lists the detailed power figures from the simulation runs. This data is also visualized in Figure 6.6.

From the data it can be seen that the TinyOS LPL approach is much better than the version without optimization. As can be seen with the distributed regression approach, there is still room for further optimization. We did not try to optimize the duty cycle of LPL, and the high-level radio scheduling algorithm for the distributed regression version still uses the low-level CSMA/CA mechanism implemented by TinyOS. Thus, there is room for further optimization of the power consumption for both approaches.

The data shows further that for the TelosB platform the radio module is clearly the biggest power consumer. For the other platforms the difference is not as accentuated, and in particular for the Mica2 platform CPU power consumption becomes more important when radio duty-cycling is used. We think that for the non-optimized version on the MicaZ platform and for all versions on the Mica2 platform the low-power modes, which should have been activated automatically by TinyOS, were not used. For the MicaZ platform, this might be due to a serial
interface being used while the radio is active, which in turn prevents the microcontroller from entering a low-power mode. On the Mica2 platform this could indicate a software problem. The difference in power consumption for the sensors is likely due to the MTS-300 sensor board not being well optimized for very-low-power operation while the Sensirion SHT-11 is only turned on for a single sensor reading.

### 6.7 Experimental Results

In this section we show how the framework can process the linear and Gaussian models and measure their effectiveness by comparing the introduced error. The model is processed in off-line mode, we do not show the impact on the cost to acquire data. We have focused on the model accuracy and the reliability of data acquisition. The model accuracy is measured by observing the prediction error as a function of the sampling interval and the size of the historical data. The reliability is determined by observing the model’s accuracy if not all the data is received. For experimental purposes, we used three different data sources: outdoor sensor data from the SensorScope project [105], indoor sensor data from the Intel Research Berkeley Lab [61], and our own indoor sensor network [56]. All these experiments provide, among others, temperature, relative humidity, and light measurements; we have focused on temperature measurements. We present the results obtained with the data from SensorScope. With the data from the two indoor networks, we obtain very similar results and come to identical conclusions.

We started with an experiment that compares the accuracy of the data models. The experiment iterates through the sensor data, and for each time step the model predicts the temperature value measured by an arbitrarily chosen sensor node. This value is compared with the actual value. Figure 6.7 shows the average absolute error of the predictions and its standard deviation at different sampling intervals. For better clarity, results for various sampling intervals are
6.7. Experimental Results

Table 6.4: Detailed results of the model comparison.

<table>
<thead>
<tr>
<th>Sampling Interval</th>
<th>Linear Average</th>
<th>Linear Std Dev</th>
<th>Gaussian Average</th>
<th>Gaussian Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 min.</td>
<td>0.55</td>
<td>0.70</td>
<td>0.10</td>
<td>0.75</td>
</tr>
<tr>
<td>5 min.</td>
<td>0.59</td>
<td>0.83</td>
<td>0.21</td>
<td>0.90</td>
</tr>
<tr>
<td>10 min.</td>
<td>0.66</td>
<td>0.99</td>
<td>0.27</td>
<td>1.15</td>
</tr>
<tr>
<td>30 min.</td>
<td>1.03</td>
<td>1.22</td>
<td>0.31</td>
<td>0.85</td>
</tr>
</tbody>
</table>

presented in Table 6.4. It appears that the Gaussian model outperforms the linear model in terms of average error and standard deviation of the average error. This trend is amplified for large sampling intervals; in fact it appears that the Gaussian model is an excellent tool for long-term estimation. This can be explained by the fact that neighboring sensor node readings are correlated, which benefits the Gaussian model as it is based on the reading's cross-correlations. These observations should, however, be considered with one's quality and energy consumption requirements in mind: The linear model is much simpler than the Gaussian model and requires less data exchange. Therefore there is a clear trade-off to be made in terms of the accuracy required by the application and the WSN energy consumption.

To determine whether the Gaussian model could be used to predict sensor readings over a long period of time, we performed a second experiment. We trained the Gaussian model over a period of one day and used the resulting system to predict the sensor readings for an arbitrarily
chosen sensor node for the remaining data of the data set. The model parameters were not updated anymore. Figure 6.8 shows that the Gaussian model gives good predictions for sensors whose data has been missing for a long time. As expected, the prediction accuracy degrades with time. The spikes in the graph appear with a period of approximately 5 days. We do not have an explanation for these spikes; they could be related to a local weather phenomenon.

6.8 Conclusion

In this chapter we presented a versatile experimental setup that allows to automatically and repeatedly measure the power consumption of applications on real WSN hardware. We have repeatedly found that measuring the power consumption on the hardware revealed shortcomings in our assumption. We discovered software bugs in TinyOS that prevented the sensor nodes from taking advantage of power-saving mechanisms. An important conclusion for us is thus that we should always test the final system as a whole to make sure that everything works together as planned and that all of our assumptions are correct.

As the hardware measurements do not show how the power consumption is distributed across the different elements of a sensor node, we used an accurate hardware simulator, Avrora [115], in addition to real measurements. To maximize the benefits of the chosen hardware simulator,
we extended it to support the simulation of an additional hardware platform. This allowed us to compare the impact of different modules that are part of sensor nodes. For instance, the MicaZ and TelosB platforms use the same radio module but different microcontrollers, which allowed us to conclude that choosing a more power-efficient micro-controller (the TI MSP430 on the TelosB platform) does have an impact on overall power consumption. However, the impact of software on power consumption is greater than the choice of hardware modules. Carefully designing the software is thus crucial.

We compared our distributed model processing approach with standard sensor acquisition approaches on different platforms. Distributed processing of sensor data models inside WSNs can reduce the power consumption. It is at least as important to carefully choose the right implementation of the services for the execution environment.

Finally, we compared the performance of the two stochastic models presented in Chapter 3. The longer the sampling interval is, the bigger the error becomes, but also the bigger the power saving become. Hence there is an inherent trade-off between power-saving and error in the final result. The right choice of the sensor data model can significantly improve this trade-off.
7 Commercial Deployment

7.1 Introduction

We validated the concepts of our work with the development of a prototype for a commercial
WSN for a client, which resulted in the intelligent, manageable, power-efficient and reliable
internetworking architecture (IMPERIA) [120, 54, 73]. The automated framework could not
directly be used, as our custom hardware platform design uses an FPGA for low-power pro-
cessing of large amounts of raw data, and the framework has no modules yet to include the
generation of code for the FPGA. IMPERIA continues being used for other sensing applica-
tions [121].

The commercial project that resulted in IMPERIA had some unique requirements that we
describe in Section 7.2. The commercial project is particularly interesting in the context of this
thesis as it is the only project known to the author that requires a battery-operated low-power
multi-hop wireless sensor network.

The project described here was a group effort at the IBM Zurich Research Laboratory. The
project itself is much bigger than what is described here. For instance, the optimization of
the data processing to make it fit the FPGA could be a whole chapter by its own, and similarly
the work on designing a sensor board being able to measure weak vibration signals at high
resolution and high speed, as well as the design of the back-end integration and routing could
be presented in their own chapters. We have decided to only present in this chapter the work
to which we have directly and significantly contributed. To give a better understanding of how
the project evolved and how work from this thesis contributed to the project, we describe the
design process in Section 7.3.

The various constraints, in particular the development time constraints, were rather extreme,
and the development of IMPERIA was only possible because of work previously done for this
thesis. The design and implementation of the WSN communication is done using an extended
version of the execution environment presented in Section 5.4.
Our client operates several large oil processing plants and is required to monitor the vibrations generated by the heavy machinery, since some of the plants are located near buildings or recently discovered archaeological sites, which could be damaged by harmful vibrations [34] (see also Section 3.5). Currently, this monitoring is done with seismographs. The seismographs are expensive, do not allow continuous monitoring, and need to be operated manually. The company would like to have a network of permanently installed sensors where all the data is centrally collected and analyzed. The petrol industry’s safety is heavily regulated. Installing a wired network is extremely expensive and time consuming, as the installation needs to be approved by state agencies, and the mounting of the sensors needs to be done by specialists with state-approved safety certificates. It is estimated that the state agencies need more than six months to process a modification request.

The expensive procedures of the safety regulations do not apply to battery-powered devices with low-power radio emissions. We were told that a radio transmission power of up to 10 mW is acceptable, WiFi networks and cellphones are not permitted on site. Solar panels for energy scavenging are not acceptable to our client, as they expect pollution in the air to deposit on the panels and render them inefficient in a short period of time. Each processing plant consists of many large metallic structures, which strongly influence the radio environment.

A battery-powered multihop wireless sensor network is the best approach in this situation. A battery-powered device using radio communication can be taped to non-critical equipment or stuck into the ground by any certified plant worker without the need of government approval. As the permitted transmission power is limited, a multihop network is needed, which also permits routing around obstacles.

### 7.2 Sensor and Network Requirements

The client’s requirements can be summarized as follows:

1. The vibration data should cover ± 2 g with a resolution of 0.5 mg \( \Rightarrow \frac{2g}{0.5mg} = 4000 \Rightarrow \approx 12 \text{ bits.} \) Considering margins around the measurement range and additional sources of noise, we need an analog-to-digital converter (ADC) with a resolution of 16 bits.

2. To fulfill the industry norm DIN 4150-3 [34], we need a frequency range of 0 – 128 Hz \( \Rightarrow \) the sampling rate has to be > 256 Hz. To implement digital anti-aliasing filters, the sampling rate needs to be even higher.

3. The prototype network will consist of 15 sensor and 30 relay nodes.

4. The network should have a lifetime of > 6 months.

5. The nodes have to send with less than 10 mW.

6. A complete sensor node including packaging should weight < 2 kg.
7. Every sensor node will send for every consecutive, non-overlapping one-second window the maximum energy detected and the frequency, which contained this energy.

8. If the measured vibration energy exceeds a given threshold on a sensor node, the node will signal this as an exception event.

9. When an exception event occurs, the node has to store the complete waveform data for 0.5 s before and 0.5 s after the the exception event was detected.

10. Exception events need to be signaled to the back-end with time stamps, whose error is < 5 ms with respect to the global GPS time.

These requirements are rather stringent. Although we explored different approaches, we are left with the conclusion that a battery-operated low-power multi-hop WSN is the only solution. There are many WSN network implementation, commercially available or research projects, that have an expected life span of more than 6 months or that can transmit the amount of data required by this project. To the best of our knowledge, there is currently no other WSN implementation available that can do both at the same time while also providing the absolute time guarantees.

7.3 WSN Design Process

When we, the research team at IBM, were presented with the project, we had a suspicion that it could only be solved with in-network processing. One member of the team took the role of the domain expert and elaborated the data processing steps. This work was done independently from the work so far described in the thesis, and the process to define the processing steps corresponds to what has been presented previously, thus confirming that our approach is indeed valid and corresponds to the intuitive process employed by domain experts. We proceeded to evaluate four strategies: (1) transmit all sensor readings to the back-end and perform the processing there, (2) compress the data on the nodes and calculate the results on the back-end, (3) process the data at least partially on the node and transmit the results to the back-end, (4) jointly compress the data from multiple nodes in the network and transmit the data to the back-end, and (5) jointly process the data at least partially in the network and transmit the results to the back-end.

An estimate of the amount of sensor data generated showed that the bandwidth required to transmit all data unprocessed to the back-end would approach the theoretical throughput of the radio technology we planned to use, ignoring protocol overheads, multi-hop network transmissions and duty-cycle requirements to reduce power consumption. It was thus quickly decided to not pursue this approach. It was further doubtful that traditional compression techniques, both for individual nodes and applied to data of several nodes, would allow a sufficient reduction in bandwidth needs. Options (2) and (4) were thus discarded as well.

Based on the processing steps (presented in Figure 3.2) we evaluated bandwidth requirements
Chapter 7. Commercial Deployment

based on where in the presented processing tree (from left to right) we decided to cut the processing into an in-network and an off-network part. The bandwidth requirement remains extremely high until after the FFT step, which means that essentially the whole processing needs to be done on the nodes if we want to achieve a significant reduction in the required bandwidth. Based on this analysis we concluded that option (5) would not be feasible as the whole data processing would have to happen before any network transmissions. We thus only retained option (3) and concluded that if the requirements of the project could not be changed, then the goals could only be achieved if the data could be processed on the nodes themselves.

We were now focusing on whether the data processing could be implemented on a standard commercial sensor node. We used the measurement setup presented in Section 6.2 to test different implementations of FFT to evaluate the power consumption and processing time. The results are presented in Section 6.4. Based on these results we concluded that the processing could not be implemented on the commercial sensor node. Because the project requirements made it necessary to design a custom sensor board, we decided to include the necessary processing capacity on this sensor board. The design steps and the decision process that resulted in the conclusion that we should use an FPGA for the processing are outside the scope of this thesis. At this point it was clear that the compiler developed for this thesis (Chapter 5) could not be used for this project, as optimizing hardware is clearly out-of-scope of the thesis presented here. Furthermore, the framework presented in this thesis does not anticipate at this time to include support for exceptional events that require the transmission of large amounts of data (see Section 7.7.2).

Even after the data was completely processed on the node, the bandwidth requirements were still significant and common existing network solutions were deemed unable to transmit the data with a sufficiently low duty-cycle to meet the power consumption requirement. Additionally, the client voiced concerns that the harsh industrial environment would cause severe problems with low-power wireless data transmissions. We thus decided to evaluate the planned deployment site with a measurement campaign. We used a WSN measurement application developed in the context of this thesis and presented in Section 6.3. The goals of the campaign were to assess (1) whether radio communication is possible, (2) whether radio links are stable, and (3) how the transmission power affects the radio links. We further wanted to estimate the required complexity of the routing protocols, and we were concerned that the reflections introduced by the metallic structures would penalize high transmission powers.

The results presented in Section 6.3 confirmed that (1) a WSN could be deployed inside the processing plant, that (2) the route maintenance overhead would be minimal, and that (3) the best transmission strategy was to simply send messages at the maximum power. We further concluded that a multi-hop network was required, and that such a network should work reliably. Indeed, we saw that network topologies on the tested site were extremely stable, and we decided to implement a centrally managed solution based on TDMA with, again, a centrally determined schedule. As basis we used the the execution environment developed for
this thesis and presented in Section 4.4. The execution environment treats route maintenance as an exceptional task and therefore concentrates on optimizing the communication strategies for regular data. It therefore was already operating in two distinct modes, the management mode (Section 7.6), which is used to configure sensor nodes, and the regular operation mode (Section 7.7), which implements the low-power operation of the network (see, e.g., Section 6.6).

The network discovery and probing are not part of the original execution environment and were developed as part of this project based on the network testing application mentioned before and presented in Section 6.3. The basic design of the superframe is already present in the original execution framework, as is the synchronization protocol (which resulted in a patent application). The execution framework uses a simple schedule with concurrent network access in the regular operation mode. As part of this project, we optimized the scheduling and gave nodes exclusive network access, thus preventing collisions, which helped us to further optimize the duty-cycle. Finally, we added optional frames to the superframe design.

### 7.4 Hardware Design

Based on our experience with different sensor node platforms, we decided to use the Iris mote. The Iris mote is a recent platform based on a proven design (Mica2Dot and MicaZ) and consists of the Atmel ATmega1281 microcontroller and the Atmel RF230 radio chip. The platform uses an established interface for external sensor boards, for which many different boards are available. The Iris radio board comes with a battery and an antenna connector, thus no modifications of the radio board are necessary to equip the nodes with high-capacity batteries and with more efficient external antennas.

The bandwidth requirements were a major concern as it was soon clear that the network cannot sustain the continuous transmission of the raw data from all sensors, even when ignoring multi-hop issues and power saving requirements (see Section 5.3.4). We thus manually analyzed the data processing steps that should be preformed. As described in Section 3.5, the raw accelerator values are integrated to obtain instantaneous velocity values. The series of velocity values is then transformed into the frequency domain with a Fourier transform, and a simple threshold is applied to detect if the energy in a given frequency band surpasses the configured limits.

The analysis of the processing steps showed that the only step that actually reduced the data rate is the thresholding algorithm. Therefore, we decided to pre-process the vibration data on the sensor nodes and to only transmit full waveform data in case of exception events. Preliminary tests running the fast Fourier transform (FFT) algorithm on the Iris platform showed that the microcontroller is not powerful enough to process the data on time. Even if we managed to somehow optimize the algorithm, the microcontroller would have no time to handle the network protocol and would consume too much power for processing the data. Instead, we decided to use a low-power FPGA to do the processing directly on the sensor board.
To fulfill the sensing requirements we decided to design our own sensor board. The sensor board is composed of an analog 3D accelerometer, a high-precision 16-bit ADC, 2 MiB of non-volatile, high-speed, low-power RAM, a low-power accurate real-time clock, an efficient power management system and a low-power FPGA.

A sensor node consists of an Iris radio board, our sensor board, a high-capacity battery, an external antenna, and a rain-water-tight packaging. A relay node consists of an Iris radio board, a high-capacity battery, an external antenna, and a rain-water-tight packaging. The gateway node consists of an Iris radio board, a USB interface board, a GPS receiver optimized for time synchronization, and external antennas for GPS and WSN communication. The gateway node is directly connected to the back-end computer via USB, which also provides the power.

7.5 Protocol Stack

Normally, the philosophy behind wireless sensor networks is to have algorithms and protocols that are completely distributed and decentralized. Because of the large bandwidth requirements on the one hand, and the limited energy budget on the other hand, existing distributed solutions were inadequate, as they either used too much energy, or would not allow to transmit data fast enough. The time and resource budget of the project was too small to design, debug and thoroughly test new distributed algorithms. We therefore also looked at centralized algorithms as an alternative. Since the purpose of the network can only be fulfilled if data from nodes can reach the back-end, a centralized control does not limit the functionality of the network. As the development of centralized algorithms is much easier, and we could reuse our existing code, which was already designed as a centralized algorithm to better control the experiments (see Section 4.4), we finally decided to adopt a centralized network control mechanism.

From the preliminary field test we know that the radio environment is fairly stable. We therefore decided to design the network to operate in two modes: management mode and regular operation mode. In the management mode, all network management tasks, such as network discovery and node configuration, are performed. Once the network is configured, we expect the radio environment to be stable for long periods of time (hours to days). The network is thus switched to the regular operation mode, where only data is transmitted at a fixed schedule and no route maintenance is performed. The management mode does not minimize energy consumption, as it is expected to be used only for short intervals of time. The regular operation mode is expected to be active during most of the life time of the network, and hence we focused our energy consumption minimization efforts in this mode of operation.

To minimize energy consumption, any unnecessary activation of the radio should be avoided. We have seen in our experiments described in Section 6.2.1 that in a CSMA-based network most of the energy used to transmit a message is spent during the random back-off time, when the radio listens whether the channel is free. If each node knew exactly when it can have exclusive access to the channel, it would not need this contention phase. We decided to
centrally assign to each node exclusive transmission slots in a TDMA scheme. This not only avoids collisions, each node knows exactly when it can send and when it should be ready to receive. Thus the radio can be turned off most of the time and only needs to be activated when it is really needed.

Transmitting all vibration data measured by the sensor would be close to the nominal bandwidth capacity of the network (see Section 5.3.4), and too much energy would be needed for the transmissions, even if it was possible to attain this throughput, such that an extended operation would be impossible with a relatively small battery pack. Fortunately, in most cases only a summary of the vibration data is needed as a confirmation that nothing of importance was detected. We call these summary data regular data. When the vibration energy surpasses a critical level, we say that an exception was detected. In this case the nodes need to store the full waveform and make it available upon request by the back-end. For this exceptional data, we need additional transmission slots that we do not usually want to be activated. We therefore split the superframe of the TDMA scheduling into multiple frames. Some of these frames can be optional, and their use will be indicated with flags in previous control messages. Only nodes involved in transmitting data during these optional frames will activate their radios.

In order for the nodes to wake up at the same time and send messages during their designated time slots, the nodes need synchronized clocks. The crystals used for most sensor node platforms typically have a maximal clock-drift of approximately $20$ ppm. This means that after synchronization the clock of two motes might differ by $1$ ms after $1 \text{ms} \times \frac{20 \text{ ppm}}{2 \times 10^{-6}} = 25$ s. In regular operation mode, the time is transmitted in a broadcast from the gateway node to all the nodes in the network at the beginning of every superframe.

To exchange data between the sensor network and applications running on the back-end system we use MQTT-S [56]. To reduce the number of management messages, we have slightly modified the implementation of MQTT-S on the sensor network side. For instance, since this is not a general-purpose network, but rather has one specific application, it is well known in advance, which nodes will publish on which topics. Therefore we removed subscription and registration messages on the sensor networking side and do these tasks implicitly for the nodes on the back-end. To denote these changes, we call the light-weight implementation of MQTT-S on our sensors MQTT-S* (where the ‘*’ indicates the reduced functionality of the implementation).

### 7.6 Management Mode

The management mode by itself can already be used to fully operate a sensor network, albeit without any power saving mechanisms. Messages are either commands or responses to commands, and they are either sent locally between a node and its direct neighbors, or globally between the gateway and any node in the network. In management mode each node simply listens for radio transmissions. If it receives a message, it checks whether it is the message’s recipient. If so, it executes the command embedded in the message or handles the
results it received for a command it previously sent out.

In management mode, nodes can handle commands to discover their neighbors, to probe links with their neighbors, to configure their routing layer and their scheduling mechanism, to obtain debugging information, and to enter the regular operation mode described in Section 7.7. The typical processes done in management mode are described in more detail in the following sections.

### 7.6.1 Network Discovery

Global messages are source-routed. A node receiving a global message first checks whether it is the intended recipient. If so, it handles the message, otherwise, it checks whether it is the next hop in the message's source route, in which case it relays the message. All global messages are automatically acknowledged on a hop-by-hop basis. If a sending node does not receive an acknowledgement for a transmission, it automatically retransmits the message up to three times, after which the message is silently dropped. Although in management mode messages are sent using CSMA, nodes try to avoid collisions by waiting a short period of time sufficiently long for the previous node to retransmit the message three times before forwarding the message to the next hop. For many commands, these link-level retransmissions are complemented by end-to-end retransmissions, where the back-end resends a command several times if it does not receive a reply within a given time. Local messages are typically exchanged between a node and one or several of its neighbors as the result of receiving a command from the back-end.

Before the network can be used, the back-end needs to know, which nodes are available. The network is iteratively probed by requesting the list of neighbors from all known nodes. At the beginning, no nodes (not even the gateway node) are known. The back-end starts by sending a neighbor discovery command as a broadcast message over the serial port (emulated on the USB connection), which is then received and handled by the gateway node. The gateway node then broadcasts a local neighbor discovery command on the radio, to which its neighbors respond. The local neighbor discovery command is sent three times in case a neighbor did not receive the first transmission. This also results in the neighbors responding multiple times, thus increasing the chance that one of the responses is received by the node performing the discovery in case previous transmissions were lost, e.g., due to transmission collisions.

The first node discovered is the gateway node. Its ID is added to an ad-hoc routing table on the back-end, and it is used as the start of every source route. The next nodes that are discovered are the neighbors of the gateway node. Their node IDs are added to the routing table as being routed directly through the gateway. The node IDs of their neighbors are, in turn, added to the routing table as being routed through the nodes announcing them. A node being reported as the neighbor of multiple other nodes might thus have multiple source routes. Only routes without loops, and which do not exceed the maximum length for the source route reserved in the command messages, are stored. Source routes in the ad-hoc routing table have
a failure counter that gets incremented every time a source-routed command does not receive a response. While the source routing mechanism in the back-end is using the ad-hoc routing table, it chooses in a round-robin fashion a source route with the lowest failure count.

### 7.6.2 Link Probing

Once all nodes in the network are discovered, the back-end starts to probe individual links. It sends link probe commands to each node for every of the node's neighbors. A node receiving a link probe command will send a local link probe request to the designated neighbor node. The neighbor will send a number of responses (by default 30 messages). The node counts how many messages it receives, and the minimum, maximum and sum of the RSSI and LQI values of the messages. Once all messages have been received, or after a short timeout sufficiently long for the neighbor to transmit all messages, the node sends this information back to the back-end. The back-end can then calculate the transmission success-rate and the average RSSI and LQI values in addition to the minimum and maximum RSSI and LQI values.

To only detect relatively good links, the local messages for neighbor discovery and link probing are sent with reduced transmission power. The actual transmission power can be configured and is typically set to $-6 \text{ dBm}$. The global messages are always sent at the maximum transmission power, as the preliminary field test presented in Section 6.3 has indicated that this is the best strategy. This is especially important when the messages are routed using the initial ad-hoc routing table, as the quality of the links used in these routes is not yet evaluated.

### 7.6.3 Routing

Once the network topology is discovered, the gathered information is used to create a weighted directed graph of the network. The weights are determined from the transmission success-rate, the average RSSI, or the average LQI. In our experiments with the Iris mote (using the Atmel RF230 radio chip) we found that the LQI values were almost always at their maximum and thus did not provide any usable values. The graph is then used to generate two spanning trees, one minimizing message loss for messages from the gateway node to the other nodes, and one minimizing message loss in the opposite direction. Both trees have the gateway as their root. Once the spanning trees are generated, the source routing mechanism of the back-end uses these trees to route messages rather than the initial ad-hoc routing table. Our experience shows that the routes from the spanning trees are very stable and reliable.

### 7.6.4 Scheduling

Once all the routing information has been processed, the back-end calculates the transmission schedules and assigns send and receive time slots to the nodes. It generates two different schedules, one for the time synchronization and one for the regular data transmissions.
Chapter 7. Commercial Deployment

The schedule for the time synchronization is straightforward and is based on the spanning tree with the routes from the gateway to the other nodes. Each node is assigned a depth as the number of hops from the gateway. The gateway node receives the first time slot as an exclusive transmission slot. All nodes having the gateway node as their parent will use this first slot as a receive slot. The subsequent time slots are assigned as transmission slots to nodes with children in order of their depth, with nodes having the same depth receiving time slots in an arbitrary order. The time slots are assigned as receiving slots to the children of the sending nodes. Nodes without children do not receive a send slot for the time synchronization frame.

Scheduling the transmission of the regular data is more complex, as much more data is generated. For synchronizing the time there is basically a single message that is broadcast into the whole network, but for the regular data every sensor node generates multiple messages that all need to be relayed to the gateway node. One could simply reverse the scheduling algorithm from the time synchronization frame and assign send slots first to the nodes furthest down in the spanning tree. The problem here is that intermediate nodes do not have enough memory to store all the messages before it is their turn to send. Another solution would be to assign consecutive send slots to a node and all the intermediate relaying nodes and so retrieve the data one node at a time. Here, the problem is efficiency. This second approach requires many short time slots, which waste time and energy as turning the radio on and off takes time and between slots one needs a guard time to overcome small errors in time synchronization.

What we need is time slots in which multiple messages can be transmitted and a scheduling algorithm that tries to best use the available time slots. Of course, the optimal solution would have time slots of varying length. As implementing varying time slot duration becomes very complex and requires much more configuration data to be transmitted and stored on the nodes, we decided to use slots of a fixed duration. However, our implementation can combine consecutive time slots and does not need to switch the radio off and on. For consecutive send slots the node also ignores intermediate guard times.

The scheduler is shown as pseudo-code in Listing 7.1. In Lines 2–6 it starts by assigning each node the number of messages the node will generate (different for sensor and relay nodes). The algorithm then uses a breadth-first search for the first node, whose queue is above a given threshold. The breadth-first search is implemented with a FIFO queue first populated with the root node (Lines 13–14). If a node with enough pending messages is found (Line 18), then the next time-slot is assigned as a transmission-slot to it (Line 20), the message counter of the node is decremented by the number of messages that can be sent during one time-slot (Lines 21–24), and the message counter of the parent node is incremented by the same number (Lines 25–26). If no such node is found (Line 35), then the last node with a non-empty queue is chosen for the next time-slot (Line 37). As many messages as are available and can be transmitted in one time-slot are deduced from the node's message counter and added to its parent's message counter (Lines 38–43). When all nodes have emptied their queue (Line 10), the algorithm terminates.
7.6. Management Mode

// initialize number of messages to transmit

for each node in Nodes
  if (node has sensors)
    node.pending = MSGS_SN
  else
    node.pending = MSGS_RN

// start scheduling algorithm
hasMore = true
while (hasMore)
  hasMore = false
  lastNode = null
  queue.clear()
  queue.put(root)
  while (queue not empty)
    node = queue.pop
    // check for threshold
    if (node.pending > THRESHOLD)
      hasMore = true
      slots.put(node.id)
      numMsgs = MAX_NUM_TX
      if (node.pending < numMsgs)
        numMsgs = node.pending
        node.pending -= numMsgs
      if (node.parent not null)
        node.parent.pending += numMsgs
      lastNode = null
      break;
    else if (node.pending > 0)
      lastNode = node

  // if no node above threshold found
  // then last node is the last one
  // encountered with data to transmit
  if (lastNode not null)
    hasMore = true
    slots.put(node.id)
    numMsgs = MAX_NUM_TX
    if (node.pending < numMsgs)
      numMsgs = node.pending
      node.pending -= numMsgs
    if (node.parent not null)
      node.parent.pending += numMsgs

Listing 7.1: Scheduling Algorithm for Time Synchronization
Currently, we use a fixed threshold and a fixed slot size. In the future, the threshold and the slot size could be dynamically optimized to minimize the overall energy consumption.

### 7.6.5 Configuration

The configuration information for each node comprises routing information and the schedules for the time synchronization and regular data frames. For the time synchronization frame, the routing information for a node is just the parent of the node in the routing tree, as a node will only accept time synchronization information from its parent. Time synchronization is sent as a broadcast, so no additional routing information is needed to transmit it. For the regular data frame, the routing information consists again of just the parent of the node, as a node will accept incoming packets from any node that transmits during a designated receive-slot of the node. The scheduling information for a frame consists of the number of slots in that frame and two bit-fields, one for send-slots and one for receive-slots. Each bit in a bit-field corresponds to a time-slot of the frame. If a bit is set in the send or receive bit-field, the corresponding time-slot is a send-slot, or respectively a receive-slot, for the node. If for a time-slot the bits in both bit-fields are set, then the time-slot is considered a send-slot. To make sure that only nodes with up-to-date configuration information participate in a network running in regular operation mode, every time new configuration is sent to the network, a unique configuration number is generated. This configuration number is also sent in time synchronization messages and nodes will only accept these messages if they match their configuration number.

### 7.6.6 Reusing Configurations

Network topology data (both from node discovery and link probe) can be saved in a simple text file. The routing information and the schedules can be deterministically calculated from this data and hence are not stored in this network file. Since this is a simple text file, the file can be manually modified to remove undesired links or add new ones. Instead of performing network discovery or link probing, the file can be loaded. This also means that a complete topology can be run in a lab setup, where normally every node could perfectly communicate with every other node. To be able to modify and impose a certain network topology is extremely useful to debug the programs running on the actual hardware and to test various hardware-related aspects of the programming, such as proper implementation of the sleep cycles and accurate time synchronization.

### 7.6.7 Debugging

Whenever the program running on the motes detects an error condition, it turns on one of the LEDs. The state of a node can be queried with a debug command. This command is handled differently than the other commands, and the software tries to reply to this command even if
an error condition prevents other commands from properly executing. In some extreme error conditions, e.g., when the underlying radio stack is dead-locked, this command might still fail. In many cases where the radio stack somehow failed, we were able to retrieve useful debugging information over the serial port. Debugging information includes a bit-field for different error conditions, error numbers of selected key system calls, the current state of the protocol stack, the type of the last command message received, and the revision number of the software. The error bit-field was chosen as multiple error-conditions can occur, either independently or as a consequence of other error conditions. The revision number of the software is the SVN revision number of the source code when compiled. The compile process will retrieve this number from the SVN subsystem and automatically include it in the compiled binary via a pre-processor constant. It allows to ensure that a node is indeed running the software version it is supposed to run, as sometimes it can happen that one forgets to reprogram a sensor node after a software change.

7.7 Regular Operation Mode

Initially, the sensor nodes are in management mode. To start the regular operation mode after the nodes have been configured, the back-end issues a start command to the gateway node, which then starts sending time synchronization messages. The time synchronization messages indicate when the next superframe starts and how long a superframe is. When a node in management mode receives a time synchronization message from its parent with the correct configuration number, it switches to regular operation mode. In early implementations, a sensor node that just switched into regular operation mode would wait for the start of the next superframe before sending time synchronization messages itself. We had configurations with up to 6 hops for actual network deployments, and we used network topologies for testing with up to 10 hops. In such networks, waiting for the next superframe before starting with the time synchronization transmissions results in unnecessarily long delays until the whole network is operational. To shorten this time, we implemented a fast start mechanism, which starts the regular operation mode immediately upon reception of a time sync message, provided that the node did not miss any of its transmission slots.

Nodes synchronize their time to their parent node's time when they receive a time sync message. The message has a special format and is modified by TinyOS, such that the time indicated in the message is automatically translated from the sending node's clock into the time reference of the receiving node. More details can be found in [79]. Our measurements indicate that this time synchronization is accurate at the microsecond level. Since TinyOS only maintains a millisecond timer during sleep mode, we decided to use millisecond resolution for our clock. Since we only synchronize clocks at the millisecond level, we introduce a rounding error in every hop that is up to 1 ms between the parent and the child, and two clocks synchronizing to the same parent clock can differ by up to 2 ms. Our measurements indicate that this poses no problems for the TDMA schedules. However, to fulfill the timestamp accuracy requirement (listed in Section 7.2, we use a different time synchronization mechanism in case of an
exception (see Section 7.7.2).

The time sync message also contains the age of the time information. This age is indicated in number of superframes since this time information was synchronized from the gateway node. In a network with several hops, if every node synchronizes its time with the time from its parent before re-broadcasting the time information, the age of the time information is always 0. If a node cannot synchronize with its parent during one superframe but managed to do so before, it will re-transmit its current time with a time age of 1. This approach allows each node to estimate how up-to-date its time synchronization is even in complex situations, where intermediate nodes can only occasionally synchronize their time. The age of the time information is an indirect measure of the expected clock drift. Nodes that only have time synchronization information older than three superframes will leave the regular operation mode and re-enter management mode. If such a node then receives again valid and up-to-date time information, it will resume regular operation mode.

Regular operation mode can be stopped by issuing an expire command to the gateway node. The gateway node will then include in its time sync messages the number of superframes left until the network should stop regular operation mode and re-enter management mode. This is, for instance, useful when the network topology changes and the network needs to be reconfigured.

7.7.1 Reconfiguration

In regular operation mode, the topology of the network is assumed to be static. Of course, the topology can change, e.g., because obstacles, such as people and vehicles, move and block radio links. Our tests indicate that this occurs infrequently. Nevertheless, the network should be able to cope with such topology changes automatically. In this section we describe our implementation that automatically detects changes, and then enters management mode for reconfiguration. Instead of simply repeat the whole network discovery and link probing cycle, we present an optimized version that only probes the part of the network where changes have been detected.

The network should be able to automatically discover when new nodes become available. To this end, there is a listening frame after the time-sync and regular-data frames, where new nodes can announce themselves by sending a simple message. As there might be multiple new nodes, these announcement messages are sent using CSMA. In order for the nodes to know when the next listening frame starts, the time until the next listening frame is included as a further information in the time synchronization broadcasts. Thus when a node in management mode overhears a time synchronization broadcast with a valid time until the next listening frame, it will automatically start a timer and send an announcement during the next listening frame. This approach is not yet optimal, because a leaf node, which could be the only potential neighbor of a new node, does not send time synchronization broadcasts. We first wanted to include the information about the listening frame also in every regular data
message, but these messages are sent as unicasts in order to use the hardware feature for automatically generating acknowledgements for received messages. This hardware feature also prevents nodes from receiving messages that are neither broadcasts nor addressed to the node. Theoretically, the radio receiver could switch into a promiscuous mode, where it forwards every message received to the software, however TinyOS does not currently support such a feature. We therefore decided to send a simple broadcast message, containing only the time left until the next listening frame, as the first message a leaf node sends when sending messages in the regular data frame.

A node receiving announcements of unconnected nodes will send a list of such nodes as part of the next regular data transmission. The back-end will, in turn, know that a new node is reachable through a node that reported the new node, and thus have a first source route to reach the new node.

When nodes do not send data for more than three consecutive superframes, they are noted as being lost and applications connected to the back-end will receive a disconnect notification (using the will-message feature of MQTT-S). Reconfiguration of the network is, however, only triggered when new nodes announce themselves through the listening frame. The reason for this approach is that a node, which loses its normal connection, will enter management mode. If it then overhears other nodes but not its previous parent, it will announce itself as a new node to the other nodes. If the node does not overhear other nodes, then it does not have any connection to the network anyway, and there is no use to try to reconfigure the network.

When new nodes are discovered, the back-end switches the whole network back into management mode and then starts a partial network rediscovery. First, all newly discovered nodes, the neighbors of the newly discovered nodes, and the neighbors of lost nodes, if they are still part of the network, are queried for an updated list of neighbors. If new nodes are discovered during that process, the new nodes and their neighbors are also queried, until no new nodes are discovered. After all new nodes have been discovered, every link that is not currently in the network topology database is probed. Then the routes and the schedules are recalculated and the whole network is reconfigured. The reason we decided to reconfigure the whole network is that adding new nodes might change the routing for existing nodes and will change the schedules for many nodes. This also allows us to keep a unique and consistent configuration number in the whole network. Reconfiguring the network is relatively fast and the main time savings are in a drastically reduced network discovery and link probing phase if only small changes to the network topology occurred.

### 7.7.2 Exception Handling

When an exception occurs, i.e., when the energy in a given frequency spectrum of the vibration data exceeds a configurable threshold, the node detecting the exception indicates it with a flag in the regular data. The microcontroller of the node will further remain active until the regular data is transmitted to the parent, thus enabling the secondary microsecond clock.
Regular data messages containing an exception flag are transmitted before other messages, ensuring that they are forwarded as soon as possible. In addition, these messages contain a time stamp for the exception, which is synchronized at microsecond accuracy (for more details see [79]). Intermediate nodes that receive regular data messages with the exception flag set will keep their microcontroller active until these messages could be forwarded, ensuring that the timestamps are kept at microsecond accuracy. At each hop there is a rounding error of approximately 1 µs and, depending on the duration of a superframe, there is a clock drift error of up to several milliseconds. The typical superframe duration that we use is 10 s, so the maximal overall error for the timestamp of an event is below 2 ms, which is well below the targeted maximum error of 5 ms.

The back-end signals exceptions to registered applications, which can then request the exception data from the nodes. When an application requests exception data, the back-end sends the exception number and the source route, over which the data should be transmitted, to the gateway node. The gateway node includes this information in the time-sync message, which then gets distributed in the whole network. Nodes that are listed in the source route will activate their radios during the exception frame. The node listed as the source of the source route transmits during the exception frame the full vibration data corresponding to the exception number to the next hop in the source route. This vibration information consists of 15 messages. The next hop waits until it received the expected number of messages, or until more than a given time has elapsed since the reception of the last message. It then starts transmitting the received messages to its parent. The messages are transmitted without CSMA, they are acknowledged and retransmitted if necessary.

The transmission of the exception data is very important, and hence we implemented an end-to-end retransmission scheme to ensure we receive the full waveform. To this end, the time sync messages requesting waveform data also contain a bit-field (2 bytes) containing the waveform segments that should be transmitted. The waveform is split into 15 segments (15 messages), and the first 15 bits of this bit-field correspond to these segments. A source node only generates the messages for which the corresponding bit in the bit-field is set, and intermediate relay-nodes expect to receive as many messages as there are bits set in this bit-field. If during a first attempt not all messages are received, the back-end automatically reissues the request, this time setting only the bits for the missing segments (selective retransmission).

7.8 Reference Time

For time stamps we need a global reference clock. Short of having our own dedicated atomic clock, there are basically three sources for global time synchronization: synchronizing over the Internet, using one of the longwave time signals, or using GPS as the time reference.

The standard protocol for time synchronization over networks is the network time protocol (NTP), which is used to automatically set the clocks on most PCs and servers. Based on [83, 39], the main advantages are that it is readily available and a computer (e.g., the back-end) can
easily be configured to synchronize the time with any of the available time servers. The
disadvantages are that the system would constantly need an Internet connection, and that
the synchronization accuracy could not be guaranteed. To get accurate time, the system
needs a network connection with short delays (< 100 ms) and a time server itself having an
accurate reference clock. Especially for installations in the field or in isolated areas, it might be
difficult to have an Internet connection, or the connection might have to run over a cell-phone
network.

Within Europe, the longwave time signal transmitted from Mainflingen, Germany, is the most
popular source of time for radio clocks. Its technical sign is DCF77 (D standing for Germany,
C for longwave, F for Frankfurt and 77 for the transmission frequency 77.5 kHz). In Europe,
similar time signals are transmitted from Switzerland (HBG, which is scheduled to cease
operation on December 31, 2011), France (TDF) and the United Kingdom (GBZ). We focus
our analysis on DCF77, because time receivers for this service are readily available. Similar
arguments are also valid for the other longwave time services.

The reference clock used to operate the DCF77 transmitter is on a connected set of atomic
clock and is the official time for Germany. Very cheap receivers can be found, which would
easily allow us to equip every sensor node with its own receiver. However, with cheap receivers
the clock signal is only accurate to within 150 ms [100]. In addition, longwave signals are prone
to interference, and the radio propagation of the signal can change with the weather.

The global positioning system (GPS) works by calculating arrival time differences between
signals received from different satellites. For this to work with an accuracy of less than 100 m,
the GPS receiver must internally calculate the time with an accuracy below 1 µs. Therefore,
we should get an accurate reference time and could even use one of the integrated modules
available for sensor networks. However, while the GPS internally has an accurate knowledge
of time, normal GPS receivers are not designed to communicate this time in an accurate way.
Most GPS receivers will transmit various types of information, including time, over a serial
interface. As this interface has a relatively low priority (the first priority for the GPS receivers is
to determine the location), there is no guarantee by how much the time information might get
delayed. According to [100], normal GPS receivers are no more accurate than DCF77 receivers.
In our own experiments we have indeed observed that the arrival time of the time information
varied by more than 50 ms even from second to second.

There are special GPS receivers for time synchronization. They behave exactly like normal
GPS receivers, except that they have an additional time signal in the form of an electrical pulse
every second. This pulse-per-second (PPS) signal is normally accurate to within 1 µs. For even
higher accuracy, some of the GPS receivers allow to very accurately estimate the position of
a stationary receiver by averaging positioning information over a full day, and then use this
information to derive the exact time. With this method it is claimed [118] that it is possible to
have an accuracy below 100 ns.

Based on the information above, NTP was rejected because it would be difficult to guarantee
Chapter 7. Commercial Deployment

The availability of a low-latency, high-up-time Internet connection at all locations that are under consideration for future installations, as well as for the difficulty to achieve and guarantee accurate time synchronization. NTP would synchronize the back-end computer and the synchronization of the time between the sensor nodes and the back-end would still not be solved. DCF77 and similar longwave time signals were rejected because of the vulnerability of the approach to interference from the industrial environment where the network will run. Longwave time signal receivers would have to be adapted for different locations worldwide. Low price solutions do not guarantee sufficient accuracy. Normal GPS receivers were rejected due to insufficient accuracy.

We decided to use a special GPS receiver optimized for time synchronization. The GPS receiver directly synchronizes time on the gateway node, where we have very close control of the hardware and can thus ensure that the synchronization error due to arbitrary software delays is minimal. The time information is transformed into a date/time representation on the back-end, as the processing capability on the nodes is limited and the standard libraries for working with dates and times are not directly available for the microcontrollers. Synchronization with the external reference time is ensured by noting the time stamp of the PPS signal in the gateway’s local clock. The corresponding date/time string from the GPS is later added to the time stamp, and the time stamp and time information are then sent together to the back-end. The back-end parses the time string from the GPS and can calculate the date/time for any time stamp expressed with respect to the gateway’s clock. As the event time is translated from the original sender’s clock to the clock of the intermediate relay nodes to the clock of the gateway, the back-end receives event times with respect to the clock of the gateway and thus can finally express them as date/time information based on the GPS time reference.

7.9 Conclusion

In this chapter we presented the intelligent, manageable, power-efficient and reliable internetworking architecture (IMPERIA), which we successfully integrated into a commercial prototype [120, 73, 54] and which continues to be used for commercial deployments [121].

The sensor network deployment used data processing to reduce the amount of data being transmitted inside the network to manageable levels. The sensor data model [34] was imposed by the client. Because of the extreme processing requirements, not the least because of quality requirements requested by the client, data processing could not be implemented on the microcontroller of the WSN platform. The resulting hardware design is currently not supported by the DSDM compiler presented in Chapter 5. As a result, the implementation of the model processing was done independently of the work presented in this thesis, and by team members other than the author of this thesis. The design of the in-network processing matches well the approach described in Chapter 4, which validates the approach that we propose.

The design and implementation of the WSN communication is based on the work done for this
thesis. The prototype uses for ultra-low-power communication IMPERIA, which is essentially an extended version of the execution environment presented in Section 5.4. Work done in this thesis was used to estimate the power consumption of the different implementations, and the results from the measurements presented in Section 6.4 were used to decide to integrate a separate data processing unit (the FPGA) on the sensor board.

The measurement setup presented in Section 6.2 was used to verify the proper low-power operation of IMPERIA. It allowed us to find software bugs in TinyOS related to the management of low-power operating modes of the microcontroller. We also compared the power consumption of an implementation of IMPERIA in TinyOS with one in IBM's MoteRunner [20], which showed that virtual machines can optimize some system services to lower the overhead of the interpretation and be as efficient as more traditional software implementations [21].

The commercial project described in this chapter is notable in two ways: (1) the project requirements can only be reasonably met with a battery-operated low-power multi-hop WSN, and (2) to the best of our knowledge, there is currently no other WSN implementation available that supports such high data rates with such a long lifetime.
8 Conclusion

Domain experts have certain expectations as to how sensor data behaves. Often, sensor data is post-processed to obtain the final results. In the context of WSNs, some approaches to process data inside the WSN exist [46, 31], and some projects try to implement a generic post-processing platform for sensor data [32]. To the best of our knowledge, no generic approach to generate in-network data processing applications based on a description of a-priory knowledge exists.

Wireless sensor networking (WSN) research is a vast field with many sub-fields. To develop energy-efficient distributed applications, it is necessary to know a broad set of related work: from hardware details over radio communication issues, routing approaches, transport mechanisms, middleware service to application requirements. We presented an overview of the related work in Chapter 2.

Sensor readings are by their very nature correlated in space and time. The correlation can be expressed with mathematical models, which we call sensor data models. Models are either deterministic or probabilistic. The deterministic models are too complex to be efficiently processed with a distributed application in a WSN. However, they typically need parametrization, which usually is calculated using probabilistic models. We presented two probabilistic models in Chapter 3 that were later used to demonstrate, how our framework operates. We further presented a deterministic model for windflow over a mountain ridge and a industrial model used to predict whether vibrations are harmful for buildings.

In Chapter 4 we proposed a modular framework to generate code that can process sensor data models as distributed applications in a WSN. The framework consists of a language to describe such models, a compiler that generates the distributed code, and an execution framework facilitating the operation of the distributed program.

We implemented a compiler and an execution environment for our framework and presented our approach in Chapter 5. Our implementation is modular; every element of the compiler can be replaced with a different implementation by simply changing a configuration file.
Thus, it is well suited for future research by experts in a specific field. Experts in a given field can optimize the modules corresponding to their expertise without having to worry about implementation details of other aspects of the framework.

To measure and evaluate our approaches we presented in Chapter 6 an automatic measurement setup, and an extended version of a cycle-accurate hardware simulator for three different WSN platforms. We further compared our distributed processing approach with two simple sensor acquisition approaches and showed the power consumption distribution across the different hardware modules of a sensor node. Finally, we compared the accuracy of the two sensor data models previously presented.

Our approach was validated with the implementation of the commercial prototype presented in Chapter 7. The prototype is based on the experience gained from the research presented in this thesis and uses an extended version of the execution framework previously mentioned. The performance of the prototype was evaluated with the measurement setup from Section 6.2.

Currently, a monitoring application using the extended execution environment from the commercial prototype is used in a deployment with more than 100 sensor nodes to monitor the operation of a commercial data center.

The framework and its implementation can be used to advance research on automatically generated distributed processing application. The framework's modular design makes it possible that experts from different fields can contribute their expertise without having to master the vast field of related work outside their particular domain.
In this appendix we briefly describe our contributions to various publications:

**e-SENSE Protocol Stack Architecture for Wireless Sensor Networks:** e-SENSE was an FP-6 project of the European Union to develop a wireless sensor network system, from hardware design over protocol and application design to marketing. In this project, we worked on the middleware used in the e-SENSE protocol stack. Essentially, our middleware approach is based on a publish/subscribe communications paradigm and allows distributed processing. To do so energy-efficiently, the middleware is tightly integrated into the complete protocol stack, which allows us to do various cross-layer optimizations by dynamically optimize the configuration of all layers down to the physical layer with information coming from the application layer. In this publication, we described the interaction of our middleware design with the other layers.

**MQTT-S – A Publish/Subscribe Protocol for Wireless Sensor Networks:** Message Queue (MQ) is a heavy-duty messaging system used by IBM for business-critical transactions. The message queue telemetry protocol is a light-weight publish/subscribe protocol based on a subset of MQ, and thus inter-operable with MQ systems. MQtt is optimized for communication over serial links between embedded systems and relies on TCP/IP. MQTT-S is a light-weight protocol based on MQtt and designed for WSNs. It works over a packet-oriented communication channels and does not rely on the strict guarantees provided by TCP. The complex protocol handling is done on a central broker, and the protocol implementation on the clients, whether they are publishers or subscribers, is kept as simple as possible. The protocol is designed to be very modular, and a client does not have to implement all elements, thus further reducing the implementation size. Nevertheless, MQTT-S retains the ability to interact almost directly with the large back-end systems based on MQtt and MQ. Interaction between MQTT-S and MQtt or MQ happens through an **MQTT-S gateway**, which does limited protocol translation.

We implemented MQTT-S on TinyOS and have working systems on the Temote Sky and MicaZ hardware platforms (we later also implemented MQTT-S on the Iris platform, see
Appendix A. Contributions to Publications

below). The original protocol design was based on ZigBee systems, and our implement-

ation allowed us to validate the protocol design for more generic systems. Our work
lead to an extension of the protocol design to allow for very simple elements, called
an MQTT-S bridge, translating between different network architectures. An MQTT-S
bridge can, for instance, translate between a WSN and a back-end network based on
TCP/IP. The bridge does not implement any protocol interaction and only forwards
data, allowing an MQTT-S broker or gateway to be anywhere on the network. In this
publication we describe our TinyOS implementation.

**A Quality-of-Information-Aware Framework for Data Models in Wireless Sensor Networks:**
In this paper we describe the basic idea of the framework to generate distributed code
to process sensor data models. We introduce our language to describe such models and
explain how a compiler can parse it. We further explain that there is a trade-off between
the accuracy of the sensor data and the energy consumption of the sensor network. This
paper is essentially a publication of Chapter 4. We also compare the accuracy of two
different sensor data models. The results of this comparison are shown in Section 6.7.

**MQTT-S Demonstration: Interconnection a ZigBee-Based Wireless Sensor Network with a
TinyOS WSN:**
We wrote the description of the demonstration showing how MQTT-S is network-
agnostic and communication will work just fine between clients on different networks.
The demonstration consisted of our implementation of an MQTT-S broker running on a
laptop, a client on a ZigBee network regularly publishing light sensor readings, and a
client running on our MQTT-S TinyOS implementation subscribing to the light sensor
readings and turning on or off a light bulb depending on the values in the received
publications.

**A Code generator for Distributing Sensor Data Models:** In this paper we present our first
implementation of the compiler to generate code to process sensor data models. We
show how an actual WSN topology can be represented in a hierarchical routing tree, and
how distributed processing elements can use this hierarchy to reduce the overall power
consumption of the network. We then show how a sensor data model can be represented
by an abstract syntax tree (AST), and how this AST can be transformed to represent a
distributed processing algorithm. We propose as an extension to traditional ASTs to
add location information to express where in the network a given node is executed, and
to add data transmission costs (expressed as energy consumed) to the links between
the nodes of the AST to capture the energy consumption not only of the processing
but also of the communication of the distributed algorithm. This paper is essentially a
publication of Chapter 5.

**Optimizing Power Consumption for VM-based WSN Run-Time Platforms:** In this publica-
tion our distributed sensor network application implemented in TinyOS is compared to
an implementation written in Java for the Mote Runner platform. The energy consump-
tion is analyzed with our measurement setup described in Section 6.2. Surprisingly, the
overhead of the virtual machine used for running the Java implementation is relatively small and offset by a more efficient implementation of the scheduling algorithm in Mote Runner as compared to TinyOS.

A Power-Efficient Wireless Sensor Network for Continuously Monitoring Seismic Vibrations:
This paper describes our implementation of a WSN used for monitoring seismic vibrations. The paper includes details of every aspect of the WSN implementation: hardware design, data processing algorithm, networking architecture, network control system, back-end communication, and various deployments and tests. Because of space limitations, the paper cannot go into the details of the various aspects. We therefore describe the networking architecture including the control system and the radio duty-cycling approaches to minimize energy consumption in Chapter 7.

Generating Distributed Energy-efficient Data Processing Applications for Wireless Sensor Networks:
In this paper, we describe the algorithms used to actually decide which parts of the model processing code should be executed inside the WSN and which parts should be run on the back-end system. We further present our modular implementation of the framework and present energy consumption measurements to compare the impact of model processing to more traditional data gathering approaches. This paper is essentially a publication of Chapter 6.

Methods for Using Message Queuing Telemetry Transport for Sensor Networks to Support Sleeping Devices:
With the basic design of MQtt, if a publication is sent to a device that is currently unavailable, the publication is simply lost and the device might even be assumed to be completely unavailable and removed from the database on the broker. This means that for MQtt to properly work, a device has to be continuously available, which, due to constraints of the typical radio hardware on WSN platforms, makes it extremely difficult to reduce the power consumption of a WSN. To address this issue, we developed a method by which a device can notify the broker that it will be unavailable for a given amount of time. The broker or gateway can then retain any publications to the device until the device wakes up and retrieves outstanding messages.

Distributed Server Election with Imperfect Clock Synchronization:
This patent application acknowledges that hardware clocks on computing devices are typically not very accurate. It presents an algorithm that allows to elect the first server available in spite of imprecise time information by taking into account the inaccuracies of the clocks. This allows to minimize the number of messages that need to be exchanged and thus reduces the complexity of the algorithm. We validated the algorithm for distributed role assignment in WSNs.

Methods for Routing of Messages within a Data Network:
In a typical data collection network, data from the sensors in a WSN is sent to a single sink. Thus, intermediate nodes
need to know exactly one parent node to which they send all messages. However, sometimes inverse communication, that is from the sink to the leaf nodes, is necessary, for instance to change the configuration of the sensor nodes. The two main routing approaches, source routing and destination table routing, both have important limitations for WSNs: Source routing requires additional data accompanying messages and thus increases energy consumption, while destination table routing needs potentially large routing tables, especially on nodes close to the sink. Our approach combines both approaches to minimize their limitations. Packets are first routed using source routing. Once they are past the congested nodes close to the sink, intermediate nodes forward the packets based on a table lookup. This approach permits reducing both the source routing information and the routing table size.

**Synchronizing Nodes of a Multi-hop Network:** For efficient radio duty-cycling, the clocks of the sensor nodes need to be synchronized. We assume a centrally controlled and scheduled network and present an algorithm that broadcasts time information from the sink node to the rest of the network. The individual node's broadcast times are scheduled such that the time information travels directly from the sink node to the leaves while at the same time avoiding transmission collisions. In addition, if a node does not receive an expected time broadcast from its parent, the node will first assume a temporary link failure and continue to broadcast its current time with an adapted freshness value. In a network where two consecutive links are alternatively unavailable, this ensures that time information is still forwarded, albeit with less accuracy than if the communication was done in a direct sequence.

**Topology Discovery Procedures for Centralized Wireless Sensor Network Architecture:**
Sometimes, a WSN deployment is only useful when all nodes can communicate, over multiple hops, with a sink node. In such a scenario it might be more efficient to have a network which is centrally controlled. In such a system, the central controller needs to learn about the network topology and the quality of the individual links. We present our algorithm to discover the network topology and to probe the link qualities. Further, some optimizations are presented which allow the discovery and probing procedures to perform more efficiently and thus reduce the time until the network is operational.
Bibliography


[34] Vibration in buildings - part 3: Effects on structures, Feb. 1999. DIN 4150-3, Deutsches Institut für Normung e. V.


Curriculum Vitae

Personal Data

Name: Urs Hunkeler
Date of birth: February 18, 1978
Place of birth: Wettingen AG, Switzerland
Nationality: Swiss
Languages: German (mother tongue), English (fluent), French (fluent), Italian (intermediate)
Email: urs.hunkeler@a3.epfl.ch

Education

PhD in Computer Science 2013
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
Distributed Information Systems Laboratory, School of Computer and Communication Sciences.

M.Sc. in Telecommunications 2005
Ecole Polytechnique Fédérale de Lausanne, Switzerland.
Bibliography

Work Experience

Sep. 2012 – present  CIO at Geosatis SA, Le Noirmont (Switzerland).

May 2011 – Aug. 2012  Research Assistant at EPFL, Lausanne (Switzerland).
RFIC Research Group.


Publications

1. Urs Hunkeler, Clemens Lombriser, Hong Linh Truong, Beat Weiss: *A Case For Centrally Controlled Wireless Sensor Networks*, Accepted for Publication in the Elsevier Computer Networks Journal


6. Alexandru Caracas, Rolf Adelsberger, Thorsten Kramp, Clemens Lombriser, Y. A. Pignolet, Thomas Eirich, J. Ellul, Urs Hunkeler: *Optimizing Power Consumption for VM-
**Bibliography**

- **Based WSN Run-Time Platforms.** In Proceedings of the 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON’11), June 2011


- **Urs Hunkeler, Paolo Scotton:** *A Code Generator for Distributing Sensor Data Models.* In Proceedings of the First International Conference on Sensor Systems and Software (S-Cube’09), Sep. 2009

- **Beat Weiss, Urs Hunkeler, Hong Linh Truong:** *MQTT-S Demonstration: Interconnecting a ZigBee-Based Wireless Sensor Network with a TinyOS WSN.* In Adjunct Proceedings of the 3rd IEEE European Conference on Smart Sensing and Context (EuroSSC’08), pages 40–44, Oct. 2008


**Patent Applications**

All patent applications have been done with the IBM Research Laboratory in Rüschlikon, Switzerland, and have passed an IBM-internal peer-review process, which determines the technical and commercial merits of the invention. The review is done by technical and legal experts. All patent applications listed here were approved internally and filed with at least one patent office in either Europe or the USA. The patent applications are handled by IBM’s legal department and the authors do not know their current status.

1. **Urs Hunkeler, Clemens Lombriser, Hong Linh Truong:** *Topology Discovery Procedures for Centralized Wireless Sensor Network Architecture*

2. **Urs Hunkeler, Hong Linh Truong, Alexandru Caracas:** *Synchronizing Nodes of a Multihop Network*
3. Urs Hunkeler, Hong Linh Truong, Beat Weiss: *Methods for Routing of Messages within a Data Network*

4. Daniel N. Bauer, Luis Garces-Erice, Urs Hunkeler: *Distributed Server Election with Imperfect Clock Synchronization*


Lausanne, January 18, 2013