Hollow Cylinder Tests on Boom Clay: Modelling of Strain Localization in the Anisotropic Excavation Damaged Zone

Boom Clay is extensively studied as a potential candidate to host underground nuclear waste disposal in Belgium. To guarantee the safety of such a disposal, the mechanical behaviour of the clay during gallery excavation must be properly predicted. In that purpose, a hollow cylinder experiment on Boom Clay has been designed to reproduce, in a small-scale test, the Excavation Damaged Zone (EDZ) as experienced during the excavation of a disposal gallery in the underground. In this paper, the focus is made on the hydro-mechanical constitutive interpretation of the displacement (experimentally obtained by medium resolution X-Ray tomography scanning). The coupled hydro-mechanical response of Boom Clay in this experiment is addressed through finite element computations with a constitutive model including strain hardening/softening, elastic and plastic cross-anisotropy and a regularisation method for the modelling of strain localization processes. The obtained results evidence the directional dependency of the mechanical response of the clay. The softening behaviour induces transient strain localization processes, addressed through a hydro-mechanical second grade model. The shape of the obtained damaged zone is clearly affected by the anisotropy of the materials, evidencing an eye-shaped excavation damaged zone. The modelling results agree with experiments not only qualitatively (in terms of the shape of the induced damaged zone) but also quantitatively (for the obtained displacement in three particular radial directions).

Publié dans:
Rock Mechanics and Rock Engineering, 47, 1, 71–86
Wien, Springer Verlag

 Notice créée le 2012-12-21, modifiée le 2018-03-17

Télécharger le document

Évaluer ce document:

Rate this document:
(Pas encore évalué)