
Semi-Automated Reconstruction of Curvilinear Structures in Noisy 2D Images
and 3D Image Stacks
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Abstract

We propose a new approach to semi-automated delin-
eation of curvilinear structures in a wide range of imaging
modalities. Earlier approaches lack robustness to imag-
ing noise, do not provide accurate radius estimates for the
structures and operate only on single channel images. In
contrast, ours makes use of the color information, when
available, and generates accurate and smooth paths with
minimal supervision. We demonstrate the applicability and
generality of our approach on a wide range of imaging
modalities ranging from a 2D dataset of aerial images to
various 3D datasets of micrographs.

1. Introduction
Modern microscopy and imaging techniques produce

large volumes of data of complex curvilinear structures such
as vascular and neuronal arbors. Manually delineating them
in image stacks typically requires hours to days of tedious
work. Reconstructing them automatically and reliably has
therefore emerged as a pressing need for a variety of sci-
entific disciplines. For example, in the DIADEM compe-
tition [2], the lack of powerful and effective computational
tools to automatically reconstruct neuronal arbors has been
recognized as a major technical bottleneck in neuroscience
research. The same argument also applies to several other
medical fields.

Despite substantial research efforts and recent advances
in reconstruction techniques and computing hardware, au-
tomated approaches still do not match human performance
in terms of quality on noisy and complex data. This is, in
part, due to the paucity of ground truth delineations avail-
able to serve as training data and as a baseline for algorithm
evaluation. As a result of these needs and the need for high
quality delineations, a wealth of semi-automated tools have
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emerged.
Although significant progress has been made over the

last decade, current approaches to semi-automated delin-
eation still lack robustness to noise and complex appear-
ance, can’t produce accurate radius estimates for curvilin-
ear structures and don’t make use of available color infor-
mation. As a result, many approaches are rather limited to
a small number of imaging modalities.

In this work, we address these issues using a two-step
approach. The first step involves computing a scale-space
representation of the input image using a local tubularity
measure, which quantifies the likelihood that there exist a
curvilinear structure of a certain radius at a pixel. We pro-
pose a new measure based on the Optimally Oriented Flux
(OOF) descriptor [20]. Unlike the OOF measure that re-
quires the filaments to have circular cross-sections, ours can
handle arbitrary shaped cross-section profiles by leveraging
the OOF response along multiple directions and radius val-
ues. Furthermore, we use an additional color-based term to
suppress background noise and nearby irrelevant structures.
The second step comprises of successively connecting pairs
of user-provided seed points by tubular geodesics that fol-
low the underlying curvilinear structures. This is achieved
by applying the fast marching algorithm in the metric scale-
space defined by the tubularity scores, which we weight by
a color term to enforce color uniformity along the recon-
structed paths.

We have demonstrated the effectiveness and versatility
of our approach on a wide range of modalities from bright-
field and brainbow micrographs of neurons to aerial images
of road networks. Our software is incorporated in the trac-
ing tool Simple Neurite Tracer (SNT) [26] and will be made
publicly available as open source Fiji [36] plugins.

2. Related Work

Most delineation techniques and curvilinear structure
databases use a sequence of cylindrical compartments as a
representation of these structures [46, 10, 30, 26, 31, 44, 40,
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7, 16, 11]. Besides being compact, this geometric represen-
tation captures two important properties, namely connect-
edness and directedness, which are common among many
structures such as blood vessels and neurons and are es-
sential in studying their morphology. With respect to the
level of user input required to build the compartments, cur-
rent approaches can be roughly categorized into three major
classes: manual, semi-automated and automated.

Manual delineation tools require the compartments or
their joint points to be sequentially provided by the user
starting from the structure roots such as soma or optic disc
and ending at branch tips [13, 6, 7, 30, 5]. Since they are
quite labor intensive and time consuming, these tools are
most often used for proof-editing the reconstructions ob-
tained by more automated tools.

Automated approaches, on the other hand, require at
most one seed point (usually the root) for each connected
structure of user’s interest. Alternatively, these initial seeds
and some additional ones along the filaments can be fully
automatically generated by finding the local maxima of
a tubularity measure, such as functionals of Hessian and
Oriented Flux matrices [24, 35, 15, 20], which signifies
how likely an image location is along the centerline of a
curvilinear structure. Starting from the seeds, they then
grow branches that follow high tubularity paths in the im-
age. Depending on how the final solution is obtained,
existing algorithms can be categorized broadly into three
main groups: greedy tracking methods that incrementally
add new paths to the current solution [1, 3, 29, 8], seg-
mentation methods that first threshold the tubularity scores
and then skeletonize or voxel code the resulting binary im-
ages [22, 18, 47, 46, 34, 42, 48, 10, 9], and finally graph-
based methods that first build a graph of candidate paths and
then find the solution in one shot through global optimiza-
tion [14, 49, 44, 41, 40, 39].

Semi-automated techniques are similar in the sense that
they also use the tubularity scores to link the seeds. How-
ever, in addition to the roots, they require additional seed
points along the structure branches to be specified by the
user [28, 12, 38, 31, 26, 30, 5]. Most such methods employ
an interactive sequential procedure, where the user speci-
fies one seed point at a time and the algorithm constructs
a high-tubulariy path that links the given seed to the cur-
rent reconstruction. Other techniques include those that
prompt the user for a new seed only when the algorithm is
stuck [38] or require only the root and the branch-terminal
points [32, 31, 5].

Table 1 presents an incomplete list of most of the existing
software tools for reconstructing curvilinear structures. The
columns summarize several key features such as the tubu-
larity measure used and the level of automation. As can be
seen from the table, only few tools make use of the color
information and allow delineating both 2D and 3D images.

Furthermore, most of them don’t produce accurate centre-
line location and radius estimates and can operate only on
certain imaging modalities.

To address these problems, we’ve developed a simple
and generic tool that supports delineating both color and
grey scale images of various modalities in 2D and 3D. Our
approach produces high-quality reconstructions such as the
ones illustrated in Fig. 1(c) with minimum user interaction.

3. Method
Our interactive reconstruction algorithm goes through

two steps, namely the tubularity computation and the in-
teractive tracing, as depicted by Fig. 1 for three different
modalities. We first compute a tubularity value at each im-
age location x and possible radius value r within a range
[rmin rmax]. It quantifies the likelihood that there exists
a curvilinear structure of radius r, at location x. Given an
N -D image, this step creates an (N + 1)-D scale- space
tubularity image such as the ones shown in Fig. 1(b), where
the scale dimension is color coded. We then use the Fast
Marching algorithm [37] to iteratively trace, in the scale
space, the curvilinear structure branches that lie between
pairs of user-provided points.

Our tubularity measure extends the well-known Opti-
mally Oriented Flux (OOF) [20] filter, which we first re-
view briefly for completeness. We next introduce our ap-
proach to handling the irregularity of curvilinear structure
cross-sections and then extend it to color images. Finally,
we describe the interactive tracing step, which relies on the
precomputed tubularity images.

For simplicity’s sake and without loss of generality, we
will assume that curvilinear structures are brighter than the
background, and deal with 3-D image stacks, hence N = 3.

3.1. Optimally Oriented Flux

As discussed in Section 2, many existing approaches
to enhancing curvilinear structures [24, 15, 35] rely on a
Hessian based measure obtained by convolving the image
with second order Gaussian derivatives. This involves some
amount of smoothing. As a result, they take into account
image intensities in the vicinity of the structures, which can
adversely affect their accuracy in the presence of adjacent
structures. Furthermore, in order to estimate the structure
radius from the Gaussian standard deviation, they use an
idealized intensity profile model, which is not trivial to ob-
tain and is not applicable to all imaging modalities.

The OOF filter addresses these issues by considering
intensity values only within a spherical volume of certain
diameter, which provides a good estimate of the structure
width [20]. The filter is computed by convolving the sec-
ond derivatives of the image with the indicator function of



Tool Type Output Tubularity Platf. Lang. Dim. Color Radii 3D P. 3D V. Code Free
AxonTracker [38] S T: Greedy tracking Gradient Vector

Flow (GVF) and
smoothness prior

W C++ 3D no no yes yes no yes

Imaris [5] M/S/A T: Fast marching
minimal path in
image space

Hessian functional M/W unknown 2D/3D no yes yes yes no no

Farsight [45, 44] A T: Open-curve
snake

GVF and regular-
ization priors

L/M/W C++ 3D no yes yes yes yes yes

Geodesic-SNT
(ours)

S T: Fast marching
minimal path with
a color prior in
scale space

Multi-directional
oriented flux
(MDOF)

L/M/W C++
and
Java

2D/3D yes yes yes yes yes yes

HCA-Vision [43] S S Directional tem-
plate responses

W C, C++
and C#

2D no no N/A N/A no no

NeuriteTracer [34] A S: Thresholding
and skeletonization

Pixel intensities
after illum. and
contrast enhance-
ment

L/M/W ImageJ
Macro

2D no no N/A N/A yes yes

Neurolucida [27] S/A T unknown W unknown 2D/3D unknown yes yes yes no no
Neuromantic [30] M/S T: Dijkstra short-

est path in image
space

Hessian eigen-
values and geom.
prior

W C++ 2D/3D no yes yes yes yes yes

Neuron Morpho [6] M T N/A L/M/W Java 2D/3D no no no no yes yes
NeuronGrowth [12] S T: Greedy tracking

based on Hessian
eigenvector direc-
tions

Hessian max.
eigenvalue

L/M/W Java 2D+t no no no no no yes

NeuronJ [28] S T: Dijkstra short-
est path in image
space

Hessian eigen-
values and geom.
prior

L/M/W Java 2D no no N/A N/A no yes

NeuronStudio [46] A T: Thresholding,
skeletonization
and Rayburst sam-
pling for diameter
estimation

Pixel intensity val-
ues after denoising
and deconvolution

W C 2D/3D no yes yes yes yes yes

NCTracer [9] A T: Voxel coding ap-
plied to binarized
stacks

Center surround
filter: Laplacian of
Gaussian

W Java
and
Matlab

3D no yes yes yes no yes

Reconstruct [13] M/S T: Region growing A function of the
region hue, satura-
tion and brightness

W C 2D/3D yes no no yes yes yes

Simple Neurite
Tracer (SNT) [26]

S T: Bidirectional A*
search

Hessian functional L/M/W Java 3D no yes yes yes yes yes

TrakEM2 [7] M T (treeline object) N/A L/M/W Java 2D/3D no no no yes yes yes
TREES Tool-
box [10]

M/A T: Thresholding
and skeletonization

Pixel intensities L/M/W Matlab 2D/3D no yes yes yes yes yes

Vaa3D [32, 31] S/A T: Dijkstra short-
est path in image
space

An exponential
function of the
inverse pixel
intensity

L/M/W C++ 3D no yes yes yes yes yes

Table 1. Existing tools for reconstructing curvilinear structures. From left to right, the columns list tool name with a reference, algorithm
type (M: manual, S: semi-automated, A: Automated), output type and short description of the algorithm (T: tracing=vector graphics, S:
segmentation=binary or label image), tubularity measure, supported platforms (L: Linux, M: Apple Macintosh, W: Microsoft Windows),
language of implementation, supported image dimensions (i.e., application domain), whether color information is taken into account in the
processing, whether radius estimates are automatically produced, whether processing takes place directly in 3D or done slice by slice (for
3D images only), whether 3D visualization of the reconstructions is supported, whether source code is publicly available, and whether the
tool is free. For more detailed information, see the associated references and tool web-pages.

the sphere. More formally, its value f(x,p, r) for image
location x, radius r, and orientation p is obtained by inte-
grating the projected image gradients in the p direction over
a sphere ∂Sr of radius r centered at x. This is written as

f(x,p, r) =
1

4πr2

∫
∂Sr

((∇(Gσ0 ∗ I)(x+ h) · p)p)·nda, (1)

where n is the outward unit normal of ∂Sr, Gσ0
is a reg-

ularizing Gaussian with a small standard deviation σ0 typi-
cally equal to voxel spacing, h = rn is the position vector
with its tip on ∂Sr, and da is the infinitesimal area on ∂Sr.

The smaller the value of f(x,p, r), the more likely it is that
x is the center of a tube with radius r and orientation p.

For each x, we therefore look for the values of p and r
that minimize f . It can be shown that f(x,p, r) can be
rewritten as the quadratic form pTQx,rp, where Qx,r is
known as the oriented flux matrix [20]. Using the diver-
gence theorem, its entries can be expressed as

Qi,jx,r =
1

4πr2
(∂i,jGσ0(x) ∗ 1r ∗ I(x)) , (2)

where 1r is the indicator of the sphere of radius r. The OOF
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(a) (b) (c)
Figure 1. Overview of the approach. Each row corresponds to an
image stack of different modality. From top to bottom: a brainbow
image stack of neurite fibers [25], a confocal micrograph of blood
vessels, which appear in red, and a brightfield image stack of neu-
rons. (a) Original image stacks. (b) Maximum intensity projection
of the scale-space tubularity images along the scale dimension.
The images are color-coded so that higher tubularity values appear
more saturated, going from white to red. (c) Reconstructions ob-
tained with the interactive tracing procedure. For each connected
curvilinear structure network (marked with a distinct color), the
user selects a sequence of points in the image and the algorithm
traces the curvilinear branches that lie between each consecutive
pair of them.

tubularity measure is defined as the sum of the two OOF fil-
ter responses evaluated along two orthogonal directions p1

and p2 defining the structure’s cross-sectional plane [20]:

fOF (x, r) = max
p1,p2,p1⊥p2

− f(x,p1, r)− f(x,p2, r)

= max
p1,p2,p1⊥p2

− pT1 Qx,rp1 − pT2 Qx,rp2 , (3)

which can be shown to be equal to the negative sum of the
two smallest eigenvalues of Qx,r. Their associated eigen-
vectors e1

x,r and e2
x,r provide the optimal directions for the

above maximization.
Due to its intrinsic symmetry, the OOF filter yields high

responses along centerlines of curvilinear structures at their
associated scales. However, it also responds strongly to
edges. To prevent this, a gradient antisymmetry function
g(x,p, r) was introduced in [21]:

g(x,p, r) =
1

4πr2

∫
∂Sr

(∇(Gσ0
∗ I)(x + h) · p)da, (4)

which is equal to the inner product pTqx,r. The term qx,r

is called the oriented flux antisymmetry vector (OFA) whose
entries are computed as follows:

qix,r =
1

4πr2
(∂iGσ0

(x) ∗ 1r ∗ I(x)) , (5)

The absolute value of the antisymmetry function takes
high values at structure boundaries and vanishes on per-
fectly symmetric shapes, for instance, along the centerline
of a tube. Using this principle, the OOF tubularity measure
can be refined to take into account structure symmetricity
as follows [21]:

fOFA(x, r) = fOF (x, r)−
√
g(x, e1

x,r, r)
2+g(x, e2

x,r, r)
2

= fOF (x, r)−
√
e1T
x,rHx,re1

x,r+e2T
x,rHx,re2

x,r

(6)

with Hx,r = qx,rq
T
x,r. The two antisymmetry terms above

act complementary to the OOF filter as they annihilate the
OOF response away from the structure centerlines. How-
ever, since both OOF and OFA are evaluated only at two
directions and a single radius value, the measure of Eq. 6
tends to favor circular and symmetric cross sections.

3.2. MDOF: Multi-Directional Oriented Flux

Curvilinear structures such as the ones shown in
Fig. 1(a), often appear as irregular filaments in microscopic
imagery due to reasons such as imaging noise, non-uniform
staining and point-spread function. We address this is-
sue by finding multiple directions and radii of maximal re-
sponse of the joint oriented flux and antisymmetry opera-
tors. More specifically, given a set of predetermined radius
levels Sr, we compute a number of direction and radius
pairs (pi ∈ R3, ri ∈ Sr) that maximize

fMS(x) =−
d∑
i=1

pTi (Qx,ri + αHx,ri)pi (7)

=−
d∑
i=1

pTi Fx,ripi ,

subject to the constraint that all pi lie on the same plane at
regular angular intervals.



As in Eq. 6, the matrix Hx,ri is equal to the quadratic
form qx,riq

T
x,ri of the antisymmetry vector as defined in

Eq. 5 and α is a regularization parameter that determines
the amount of symmetry enforced along each direction. It
is set to 0.1 in all our experiments. Note that, in contrast
to [21] which first finds the two dominant eigenvalues of
Qx,r and then plugs their eigenvectors into the antisymme-
try term, we jointly optimize for the oriented flux and the
antisymmetry terms.

An important consideration when solving Eq. 7 is to do
it fast because it needs to be done for each individual voxel.
To this end, we employ a greedy approach, which first finds
the dominant direction p∗1 and the associated radius r∗1 that
maximizes fMS(x) for d = 1 and then (p∗2, r

∗
2) that max-

imizes the same function subject to the constraint that p∗2
is perpendicular to p∗1. The first step involves computing
p∗1 as the eigenvector associated with the smallest eigen-
value among those of Fx,ri , for all ri ∈ Sr. Although solv-
ing the second step requires satisfying the linear constraints
pT2 p

∗
1 = 0 and pT2 p2 = 1, it can be done in closed form by

solving the following eigenvalue problem [17]:

(e∗, r∗2) = argmax
e,ri∈Sr

− eTP Fx,ri P e , (8)

where the matrix P is defined as P = I − p∗1p
∗T
1 . The

vector e∗ can be computed as the eigenvector associated
with the smallest eigenvalue among those of P Fx,ri P , for
all ri ∈ Sr. The optimal second direction p∗2 can then be
found as p∗2 = P e∗ [17].

We then find the additional d− 2 directions by sampling
them at equiangular intervals to span π radians in the plane
defined by p∗1 and p∗2. The corresponding radius values are
found by maximizing the same cost function of Eq. 7 in the
set Sr. This produces a 3-D score image, which we then ex-
tend to 4-D by adding the strongest response of pTi Fx,ripi
for each radius level. We take the final score for radius r at
location x to be

fMDOF (x, r) = −λ1
x,r +

1

d
max

{pi,ri}di=1

fMS(x), (9)

where λ1
x,r is the smallest eigenvalue of Fx,r. At each ra-

dius level, we use only a single eigenvalue, which gives the
strongest response, because, in most datasets, the gradient
information is strong and provides a reliable estimate only
along one direction in the irregular cross-sectional profiles.
For instance, in the brightfield stack shown in the last row of
Fig. 1, this direction usually lies in the lateral (x-y) plane of
the in-focus z slice. Taking into account the gradient in out-
of-focus regions therefore usually results in overestimation
of the scale and mislocalization of the structure centreline.

The second term in Eq. 9 measures the likelihood of x
being on the centerline of a curvilinear structure, while the
first one measures the contribution of the radius level r. As

a result, at each image point x, the radius level r that yields
the strongest gradient flux on the associated sphere Sr will
be assigned the highest score.

3.3. Handling Color Images

With the advent of new imaging techniques, color in-
formation has gained increasing importance in the analy-
sis of complex curvilinear structures. The Brainbow [25]
and STORM [19] techniques, for instance, allow labelling
neuron cells in a tissue slice with multiple colors using a
random mixture of few fluorescent proteins. This results in
each neuron being labelled with a sufficiently distinct color,
which is nearly constant along its axon and dendrites. In
fact, color constancy property also widely holds for other
curvilinear structures such as road networks.

We use this property to compute, for each image location
x, a similarity image, which signifies how likely both x and
another location y in its vicinity belong to the same curvi-
linear structure based on their color. We then use the re-
sulting similarity image to compute the tubularity measure
of Section 3.2 at location x. More precisely, given an RGB
image stack I , we first convert it into the CIELAB space.
We then compute the similarity image Jx for x as a func-
tion s(.) of the color distance between x and y, weighted
by the value of the brightness image L, which is equivalent
to max(R,G,B). We write

Jx(y) = L(y) s(I(x), I(y)), ∀x. (10)

In this work, we take the similarity function s to be a
multivariate Gaussian distribution with mean vector I(x)
and a diagonal covariance matrix with diagonal entries σ.
In practice, computing the similarity image for each loca-
tion is quite expensive. That is why we limit the number of
similarity images to a number of color clusters, which we
compute using the k-means algorithm. Let C be the set of
resulting cluster centroids. Then, Eq. 10 becomes:

Jx(y) = L(y) s(ch(x), I(y)), ∀ch(x) ∈ C, (11)

where h(x) is a function that returns the cluster label for lo-
cation x. Note that, Eq. 11 requires sequentially computing
only |C| similarity images, which serve as input to the tubu-
larity computation described in the previous section. The
result is that, for each location, only image evidence from
nearby locations of similar color are taken into account.

3.4. Interactive Tracing

The interactive tracing starts by the user selecting a root
point along a curvilinear structure and then an end point
to connect it. It then proceeds sequentially by adding each
time a new path that links a user-provided point to the rest
of the delineation. The resulting reconstructions can either
be trees without any cycles or loopy graphs whose branches
intersect each other.



We compute tubular paths connecting pairs of points us-
ing a minimal path method applied in the scale space. A
geodesic tubular path connecting a source point xs to a tar-
get one xt in the scale space can be obtained by first com-
puting a minimal action map U(x) using the Fast Marching
algorithm [37], and then sliding back from xt to xs on this
map using a gradient descent procedure [23, 4]. U(x) is
defined as the minimum energy integrated along a path be-
tween xs and any other point x:

U(x) = inf
C(s)∈Axs,x

{∫
Ω

P (C(s)) ds

}
, (12)

where s ∈ Ω = [0, 1] is the arc-length parameter, C(s) ∈
R4 is a curve parametrized along its length (i.e., ||C ′(s) =
1||), and Axs,x is the set of all paths linking x to xs. P is
a potential function, which we take as the following expo-
nential mapping of the tubularity measure:

P (x) = exp(α T (x) + β), (13)

where T (x) is the scale-space tubularity score of Eq. 9
at point x. The coefficients α and β are computed such
that min {P (x) | ∀x} = 1.0 and max {P (x) | ∀x} =
Tmax > 1.0, where Tmax is a smoothness parameter with
smaller values corresponding to smoother paths. Its value is
dynamically determined by the user during the tracing.

For color images, we apply a linear mapping to the tubu-
larity scores to enforce the paths to pass through points of
uniform color similar to the mean color of the source and
the target points:

Txs,xt (y) = T (y) s((I(xs) + I(xt))/2, I(y)), (14)

where we use the same color similarity function s of
Eq. 10.

4. Results
In this section, we first describe briefly our evaluation

datasets and then present our results on them.

4.1. Datasets and Parameters

We evaluated our approach on six different datasets de-
scribed below:

• Aerial Images of Road Networks: Color images of
loopy road networks. We used 29 images to evaluate
our approach. We sampled 14 radius levels linearly
from [5 18] pixels to compute the scale-space tubular-
ity volumes described in Section 3.2.
• Brainbow Stacks of Visual Cortical Neurites: Four mi-

crographs of mice primary visual cortex acquired us-
ing the brainbow staining technique [25]. We used 9
radius levels uniformly sampled from the range [3 11]
voxels.

• Confocal Stacks of Olfactory Projection Fibers: Eight
image stacks of Drosophila fly brains taken from the
DIADEM challenge [2]. We used 11 radius levels
ranging between 1 to 6 voxels.

• Confocal Stacks of Retinal Vasculatures: Two confo-
cal micrographs of direction selective retinal ganglion
cells and loopy vasculature networks. We sampled 9
radius levels from the range [3 16] voxels.

• Brightfield Stacks of Neurons: Five brightfield image
stacks of biocytin-stained rat brains. We sampled 12
radius levels from 1 to 12 voxels.

• Brightfield Stacks of Visual Cortical Neurites: Six
brightfield micrographs of biocytin-labeled cat pri-
mary visual cortex layer 6 taken from the DIADEM
challenge [2]. We sampled 12 radius levels from 1 to
12 voxels.

We used the same parameters mentioned in Section 3 for
all the six datasets: the number of direction and radius pairs
L = 10, color similarity sigma σ = 50 in the the CIELAB
space and the number of color clusters |C| = 50. We set the
smoothness parameter Tmax to 1e3 and very rarely needed
to adjusted its value.

Our implementation of the MDOF measure employs the
Fast Fourier Transform (FFT) algorithm to efficiently com-
pute the entries of the oriented flux matrix and the antisym-
metry vector of Section 3.1. Our software uses the ITK li-
brary and will be made available as open-source.

4.2. Reconstructions

Fig. 2 shows representative results on the aerial, brain-
bow and the two confocal datasets. We used the color in-
formation available for the aerial and the brainbow datasets
to compute the tubularity measure of Section 3.2. For the
confocal stacks of vasculatures, we only considered the red
channel since it is the only one used to label the blood ves-
sels.

The brainbow and the confocal fibers form tree struc-
tures without cycles. The road networks and the blood ves-
sel arbors, however, are inherently loopy, which is why their
reconstructions contain cycles.

As can be observed from the aerial and the brainbow
images, radius estimates along the filaments undergo abrupt
changes. In the case of the road networks, this is because
trees occlude and cast shadows on them and in the case of
brainbow neurites, it is because of the high density of blob-
like synapses. In both cases, the regularization parameter
Tmax can be reduced to obtain smoother reconstructions.

In contrast, neurites and vasculatures in the confocal
stacks have smoothly changing scale values. Furthermore,
these stacks are fairly clean with a relatively high signal-to-
noise ratio and a small point spread function (PSF). As a
result, their networks are almost perfectly recovered both in



terms of centreline location and scale accuracy.
The neurites in the brightfeld stacks shown in Fig. 3,

however, appear as faint and irregular filaments due to
the staining and imaging techniques used. Furthermore,
the strong PSF distorts their cross-sectional profile with
halo-like shadows. Despite these adverse factors, our ap-
proach consistently produces high quality reconstructions
with minimal user input.

5. Conclusion
We have presented an interactive approach to delineation

of curvilinear structure networks and demonstrated its ef-
fectiveness on a wide range of 2D and 3D imaging modal-
ities. While existing approaches can only operate on a sin-
gle color channel and require the structures to have circular
cross-sections, ours can handle irregular structures both in
gray-scale and color images. This results in a simple and
generic tool, which we plan to release as open source and
platform independent Fiji [36] plugins.

The current approach, however, can not handle large im-
age stacks mainly due to the demanding scale-space pro-
cessing. Future work will therefore focus on sparse process-
ing techniques and data structures that will reduce memory
requirements and computational complexity.
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