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We calculate the maximal absorption enhancement obtainable by guided mode excitation in a weakly absorbing
dielectric slab over wide wavelength ranges. The slab mimics thin film silicon solar cells in the low absorption
regime.We consider simultaneouslywavelength-scale periodicity of the texture, small thickness of the film, modal
properties of the guided waves and their confinement to the film. Also we investigate the effect of the incident
angle on the absorption enhancement. Our calculations provide tighter bounds for the absorption enhancement
but still significant improvement is possible. Our explanation of the absorption enhancement can help better
exploitation of the guided modes in thin film devices. © 2012 Optical Society of America
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1. INTRODUCTION
Enhancing light absorption in solar cells has been a topic of
research for decades. The relatively weak optical absorption
of silicon at long wavelengths necessitates the application of
methods to trap light inside the cell. One might thus benefit
from different types of optical resonances in solar cells [1–4].
Specifically, guided mode excitation has attracted a lot of at-
tention in recent years [3–6]. Due to their confined nature,
guided modes have been regarded as a promising tool to
enhance absorption in the solar cells and the extent to which
they can increase light absorption in solar cells has been of
interest [4–8].

Guided modes are solutions of Maxwell equations in the
optical system, which, ideally, do not exchange energy with
the outside environment. For this, they are sometimes called
“trapped modes” [8]. To excite them in a multilayered solar
cell stack, the interfaces of the device must be changed from
planar into textured either randomly, periodically, or a com-
bination of both [9–15].

To excite the guided modes, the following conditions need
to be met [16]:

1. The guided mode exists: The transverse resonance
condition (TRC) of the multilayered stack should be satisfied.
This means that the wave canmake constructive interferences
along the thickness of the guide. Approximately, this is equiva-
lent to the condition that the resonances are solutions of the
dispersion of the multilayer with flat interfaces. The approx-
imation comes from the difference between the dispersion of
the flat and the textured structure. Figure 1 shows schemati-
cally a slab waveguide textured using a one-dimensional
(1D) periodic pattern. The sinusoidal curves represent symbo-
lically change of the wave phase along the longitudinal and
the transverse directions. The green curves correspond to
the cases where the phase change in one round trip along the
film thickness is a multiplicand of 2π, i.e., where TRC is
satisfied.

2. The guided mode gets excited: Periodicity must be
considered by satisfying the Bragg condition. For 1D gratings
and under normal illumination, this is equivalent to the
condition

k∥ � 2m0π∕Λ: m0:integer; Λ:grating period; (1)

where k∥ is the propagation constant of the guided mode. The
red curves in Fig. 1 show the cases where phase change along
the periodicity direction is a multiplicand of 2π, i.e., where the
Bragg condition is satisfied.

The two conditions above imply the existence of a discrete
spectrum of the distribution of the wave vectors and the
wavelengths corresponding to guided modes. However, if
d ≫ λ, where λ is the incident wavelength, the resonant wave-
lengths can be treated as a continuum. Similarly, if Λ ≫ λ, the
wave vectors (k∥) of the resonances can be imagined contin-
uous. The two latter approximations have been used by differ-
ent authors to find the ultimate light trapping limit [4–8].

The most well-known limit was proposed by Yablonovitch
and Cody [7] and is equal to 4n2 where n is the refractive index
of the absorber. They considered that the texture acts as a
Lambertian scatterer and it scatters light into a continuum
of angles (continuity of k) since they wanted to model random
interfaces. Also, they assumed a thick slab of material (con-
tinuity of λ). Stuart and Hall [8] derived the upper limit for thin
absorber films but still for random textures (equivalent to
large periods). Since in thin films, a guided mode is not totally
confined to the structure, their limit is lower than 4n2. Yu et al.
proposed the limit for thick devices with grating couplers
[5,6]. Their results tend to the 4n2 limit as the period of the
grating is increased but over a considerable wavelength range,
they surpass 4n2. Their calculations show that the maximal
enhancement that can be obtained for thick cells is 2πn and
8πn2∕

���
3

p
for 1D and two-dimensional (2D) gratings, respec-

tively. Such high values are obtained for only a single wave-
length. Yu et al. have also considered the case of a thin film
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that supports only a single mode. However, they assumed a
continuum of resonances that is valid only for large period
gratings or random textures [6]. Recently, we extended their
model to thin film devices with grating couplers at the scale
of the wavelength [4]; i.e., we used none of the simplifying
assumptions Λ ≫ λ or d ≫ λ.

In this work, we focus on the enhancement provided by the
guided modes in periodically textured thin film solar cells and
we extend the previous works on the upper limit of light trap-
ping [4–8]. By using a coupled-mode approach and investigat-
ing its underlying physics, we study the angular dependence
of the limit of light absorption enhancement. Our model is
distinguished from calculations of Yu et al. for thin films [6]
by simultaneous consideration of both the thin film and the
wavelength-scale grating texture. Also, our calculations can
handle multiple modes in the thin film as well as a single mode
in contrast to the model of Yu et al. for thin films. Recently, we
considered the discrete nature of resonances and we showed
that due to the presence of a discrete spectrum of modes, it
is possible to reach very high absorption enhancement over
limited wavelength ranges under normal incidence [4]. In this
manuscript, we extend the analysis to wide wavelength ranges
and oblique illumination. Besides, we take into account the
modal structure of the thin film absorber to weight the guided
modes based on their impact on the absorption. For the ease
of calculation, we apply our model to a dielectric slab with
refractive index n � 4 and thickness d � 200 nm embedded
in air, but we have observed similar results for a complete
solar cell stack, which will be published elsewhere. The re-
fractive index and the thickness are selected such that the film
resembles a thin film amorphous silicon solar cell. While pre-
senting the temporal coupled-mode theory, we show that the
enhancement factor depends on how much the energy of the
guided mode is confined to the thin film absorber. This con-
finement is characterized with the “energy overlap,” which is
defined here as the fraction of the electromagnetic energy of
the mode that is spread over the waveguide. We also demon-
strate that if a high index cell is used, e.g., a silicon solar cell,
almost all energy of the incidence field occurs to be inside the
film regardless of the incidence angles. Therefore, we can nor-
mally neglect the impact of the energy overlap; however, we
do not use this simplification in our calculations in this paper.

This manuscript is organized as follows. First, in Section 2,
we describe the coupled-mode theory. In Section 3, we find
the limit of absorption enhancement under normal illumina-
tion for a thin film solar cell using 1D grating coupling and we
extend the calculations to the case of oblique incidence in
Section 4. The impact of the guided mode energy confinement

to the cell is mainly discussed in the appendices to simplify
reading the manuscript.

2. OVERVIEW OF TEMPORAL
COUPLED-MODE THEORY
We start with describing the impact of a resonance on the ab-
sorption enhancement. Time evolution of a single resonance
with amplitude a, resonant angular frequency ω0, coupling γe
to the external radiation source S and the internal loss rate of
γi can be described using temporal coupled-mode theory
[6,17]:

da∕dt � � jω0 − �Nγe � γi�∕2�a� j
�����
γe

p
S; (2)

where j �
������
−1

p
. The resonant system is assumed to have one

input port and N output ports with the same coupling to the
resonant mode; therefore, the external coupling rate γe is mul-
tiplied by N . Since guided modes in solar cells are resonant
phenomena, the latter equation can describe their temporal
evolution. The coefficients γe and γi are assumed to be inde-
pendent of the wavelength for simplicity.

It has been shown in [6] that the absorption in an absorber
with the absorption coefficient α can be enhanced by M
guided modes at most by a factor of

F � 2πMγi∕�αdΔωN�; (3)

provided that the resonances are narrowband compared to
the spectral range of interest, Δω, and the absorber is weakly
absorbing. The variable F in Eq. (3) is referred to as the “ab-
sorption enhancement factor” in the literature [6]. The refer-
ence of the absorption for this calculation is the single-pass
absorption over the same thickness as the film, which is ap-
proximately equal to αd.

In Eq. (3), the relation between α and γi is worth investiga-
tion. If we assume that the optical wave observes the solar cell
as a bulk material, the bulk approximation

α � nγi∕c; (4)

can be used [5,6] where c is speed of light in air. However,
Eq. (4) does not hold for thin films [4] since γi is related to
the “whole structure” whereas α describes the absorption
coefficient only for the “bulk” of the absorber. Here, we find
the “effective absorption coefficient” of the complete struc-
ture, say αwg, such that it can be expressed versus γi analo-
gous to Eq. (4). In general, the evolution of the amplitude a
of a guided mode resonance can be described in the temporal
or the spatial domain

da∕dt � � jω − γ∕2�a�…; da∕dz � �jk∥ − α0∕2�a�…;

(5)

where γ and α0 represent the photon loss rate and the damping
factor, z is the propagation direction along the waveguide,
and the source terms are not shown in Eq. (5). Both γ and
α0 include internal loss and external coupling effects. At the
absence of external coupling, α0 � αwg and γ � γi and one
might conclude from Eq. (5) that

Fig. 1. (Color online) Schematics of a slab with a 1D periodic tex-
ture. The field phase variations are symbolically shown with sinusoi-
dal patterns. The green and red curves correspond to the cases where
TRC and Bragg condition are satisfied respectively.
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dz
dt

� vp � ω

k∥
� γi

αwg
� c

nwg
; (6)

where vp is the phase velocity and nwg is the “effective refrac-
tive index” of the waveguide. Hence, the loss rate γi is related
to αwg via

αwg � nwgγi∕c: (7)

Equation (6) is not strictly correct since it considers the phase
index np � k∥∕k0 (k0 being wave vector of light in air) as the
effective refractive index of the guide while the group index
ng � ∂k∥∕∂k0 provides a better approximation of the effective
refractive index. This can be explained by considering a
guided mode traveling inside the slab over an infinitesimal dis-
tance dz. The wave energy goes under a decay equal to e−αdz in
space domain or equivalently e−γidt in time domain where dt is
the time that the wave takes to travel the distance dz. Since
energy is guided in the waveguide at a speed equal to the
group velocity, vg [16], the infinitesimal time and space ele-
ments can be related via dt � dz∕vg. The paradox of the latter
conclusion and Eq. (6) can be explained by noting that Eq. (6)
is a slowly varying approximation of the resonant mode evo-
lution, so, it only considers the phase variations.

To obtain the link between α and γi we still need to find the
relation between α and αwg since Eq. (7) links αwg and γi. The
ratio αwg∕α is equal to the energy overlap η. This is shown for a
slab in Appendix A as a proof of principle. So, Eq. (3) can be
rewritten as

F � 2πc
nwgdΔω

M
N

η: (8)

It is explained in Appendix B that for high index films,
almost the whole energy of the mode will be inside the film.
So, most of the times α ≈ αwg (η ≈ 1). To be more accurate, we
do not apply this simplification to our calculations, i.e., we
consider the impact of energy overlap.

In Eq. (8), the parameters M , N and nwg and η need to be
calculated. The number of diffraction orders,N , is obtained by
counting the integers m that satisfy j2πm∕Λj ≤ k0, where k0 is
the wave vector of light in air. The number of guided modes,
M , is calculated by considering the number of intersections of
the device dispersion diagram (condition 1) and the lines k∥ �
2πm0∕Λ (condition 2) in the intervalΔω (equivalent to energy
interval ΔE). Figure 2 shows the dispersion diagram of the
slab (n � 4 and d � 200 nm) under TE-polarized illumination,
i.e., the case where the electric field is normal to the incidence
plane. For simplicity, this waveguide is used for our calcula-
tions throughout this paper but our method can be generalized
to complete solar cells consisting of several layers. We assume
that the slab is textured into a 1D grating shape with period
Λ � 500 nm and we consider TE-polarized illumination. The
TM polarization can be treated analogously. The energy inter-
val of interest is equivalent to wavelengths from 600 to
1200 nm since amorphous silicon cells need light trapping
mainly in the range from 600 to 800 nm and the different types
of crystalline silicon cells, e.g., microcrystalline and mono-
crystalline, can be enhanced by light trapping mainly in the
range from 800 to 1200 nm. The vertical lines correspond to
different diffraction orders m � 1; 2; 3 for normal incidence.
The allowed excitations inside the wavelength range of inter-
est are marked with circles. For each one of the allowed
excitations, a specific nwg and η apply.

Equation (8) shows that the application of the phase index
as the effective refractive index of the film can result in over-
estimation of the enhancement factor F since ng > np. Still,
the phase index can provide an approximation of the effective
index to be used in Eq. (8), especially in cases where the de-
finition of the group index is not trivial. For example, if absorp-
tion is included in the slab, the guided modes deviate from
extremely sharp spectral features into broadband resonances.
Hence, there might be points in the dispersion diagram, i.e., in
�k∥ − ω� plane, which are not on the guided modes but still oc-
cur in their close vicinity so they feel the impact of the broad
guided mode resonance. For such cases and especially if more
than one guided mode is influencing the absorption, a certain
group index is hard to define but a unique phase index can be
found to approximate nwg. Anyway, since in this manuscript
we deal with an ideal slab, we consider the group index as
the effective refractive index of the film.

The presence of nwg instead of n in the denominator is a
major difference between Eq. (8) and the calculations of
[6] for thick solar cells. Of course in [6] the case of a thin film
solar cell has been investigated as well in which modal proper-
ties have been considered. However, there are at least two
main differences between their method and our approach.
First, they use a continuum model to count the resonances
supported by the grating texture (equation 11 in [6]). This
can be a good approximation for large periods but its applic-
ability is questionable when dealing with wavelength-scale
gratings since the resonances might be well distinguished
in this case. Second, their model for thin films is appropriate
to treat a single-mode film since they count the resonances in
the 2D kyz space but our model can treat multiple modes since
we count the resonances in the three-dimensional kxyz space.

In summary, by using the group index as the effective guide
refractive index and applying the appropriate energy overlaps,
we weight the impact of resonances based on where they
appear in the dispersion diagram of Fig. 2; hence, we take into
account the modal properties of the waveguide.

3. LIMIT OF ABSORPTION ENHANCEMENT
UNDER NORMAL INCIDENCE
Figure 3 shows the enhancement factor F of the slab (n � 4,
d � 200 nm) as a function of Λ∕λ for two wavelength ranges

Fig. 2. (Color online) Dispersion of a film with refractive index n � 4
and thickness d � 200 nm in TE polarization. The guided modes
(green curves) occur between the light line of air (dashed black)
and dielectric (dotted-dashed blue). The periodic texture excites
the guided modes where they satisfy Bragg condition (vertical
lines). The dashed horizontal lines correspond to 600 and 1200 nm.
Resonances are illustrated by the red circles.
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from 600 to 800 nm and from 800 to 1200 nm. F is calculated
for a certain grating period (Λ) in each of these two spectral
ranges over tiny wavelength subintervals to consider the dis-
persion diagram point by point. Then, we averaged F over the
considered spectral range. The value Λ∕λ is subsequently
obtained by dividing the period to the central wavelength
of each interval. This gives use one point in the graphs of Fig. 3.
To complete the graph we need to change the period and re-
peat this procedure. Due to consideration of the group index
as the effective refractive index of the film, the enhancement
factors that we obtain are smaller than the limits suggested by
Yu et al. for thick layers regardless of polarization and wave-
length range. Similar results can be obtained for a 2D grating
pattern and we have found smaller values than the 2D limit
4πn2 for square geometry 2D gratings [6]. The only difference
from the 1D case is that the counting procedure is more com-
plicated. Note that the wavelength intervals used in our simu-
lations are wide; however, over small wavelength ranges,
higher values of F are obtainable.

Another important observation is that by changing the per-
iod of the grating (Λ), F follows an oscillating trend [5,6]. This
type of behavior results from the balance between two differ-
ent phenomena; on one hand increasing the period leads to
appearance of more diffraction orders (N) and hence, reduc-
tion of F via Eq. (8). On the other hand, it increases the
number of excited modes (M) which in turn, increases F .
Such oscillations are observed in all our results as well as
the prediction of Yu’s model c.f. the black curve.

Figure 3(c) shows the dispersion plot of the slab in TE po-
larization. The vertical dashed lines represent the boundaries

of the wavelength ranges of interest, i.e., from 600 to 800 nm
and from 800 to 1200 nm. In the high energy range (600–
800 nm) there are three guided modes but at low energy range
(800–1200 nm), there are only two modes. This is the reason
why in Fig. 3(a) TE-polarized light can result in higher F in the
high energy range compared to the low energy range. In TM
polarization [Fig. 3(d)], the highest order mode is very close to
the light line of air and it is shown in Appendix B that a major
part of its energy extends over the region outside the slab.
Therefore, there remain two TM modes that occur in both en-
ergy ranges and there is not a significant difference between
the F of the two energy ranges in TM polarization as depicted
in Fig. 3(b).

It is worth mentioning that due to Eq. (8) huge enhance-
ment factors are expected close to the light line of air regard-
less of taking the group index or the phase index since both of
these quantities take their lowest values there. This happens,
for example, for the second TM mode in Fig. 3(d). However,
this advantage might be compromised by the low confinement
of themode to the guide in some cases as the third TMmode in
the last example. Nevertheless, one should be able to find a
region of optimized conditions close to the light line of air.

4. ABSORPTION LIMIT UNDER OBLIQUE
ILLUMINATION
In this section, we calculate the absorption enhancement limit
provided by the guided mode excitation at arbitrary angles.
For simplicity, we consider in-plane incidence over the slab
(n � 4, d � 200 nm) as depicted schematically in Fig. 4(a)

Fig. 3. (Color online) (a) Enhancement factor introduced by 1D gratings in TE polarization versus the normalized period (Λ∕λ) for the slab
(d � 200 nm, n � 4). Dashed: wavelength range from 600 to 800 nm. Solid with markers: wavelength range from 800 to 1200 nm. Bold solid:
Yu’s model (thick absorber). (b) Same as (a) but for TM polarization. (c) Dispersion diagram of the slab for TE polarization. (d) Same as (c)
for TM polarization. The horizontal dashed lines in (c) and (d) correspond to the wavelengths 600, 800, and 1200 nm.
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and we investigate the impact of a 1D texture. By in-plane in-
cidence we mean that the incident beam and the reflection
orders are all in x-z plane. The incident angle θ affects the
calculations only by changing the Bragg condition

k0∥;m � k∥;m � k0 sin θ; (9)

where k∥;m and k0∥;m show the parallel component of the wave
vector of the m-th diffraction order at normal and oblique in-
cidence, respectively, and k0 is the wave vector of light in air.
Figure 4(b) shows the variation of the energy (equivalently the
resonant frequency) of positive and negative orders intro-
duced by changing the incident angle. The vertical and tilted
dashed lines correspond to the Bragg conditions under normal
and oblique illumination both for Λ � 500 nm. For simplicity,
only one mode of the film and two orders (�1) are demon-
strated between the light lines of the air and the dielectric
n � 4. By a positive change of θ from zero, the positive orders
go farther from the origin (k∥ � 0) but the negative orders get
closer to it. This is shown in Fig. 4(b) where the dashed lines
correspond to the case in which θ has been changed to 20°. As
Eq. (9) suggests, both positive and negative orders go under a

shift equal to k0 sin θ, which means that they do not excite the
same guided mode of the film at the same energy any more.
This asymmetry in satisfying the resonance condition is a nat-
ural result of breaking the symmetry provoked by changing
the incident angle.

Figures 4(c) and 4(d) show the angular behavior of F for
the slab (n � 4, d � 200 nm) under TE- and TM-polarized
light over the wavelength range from 600 to 800 nm and
Figs. 4(e) and 4(f) are the same as Figs. 4(c) and 4(d) for
the interval from 800 to 1200 nm. As explained in Appendix B,
the impact of energy overlap is negligible except very close
to the line of the air; still we consider it in our calculations.
At normal incidence (θ � 0°), F follows the same sawtooth
trend as observed in Fig. 3. However, as the incident angle
is increased, the peaks of F are moved in an ordered way
in both polarization directions.

The peaks of F move in the period-angle plane on two
series of curves with positive and negative slopes. These
two groups of curves are associated with the positive and
the negative diffraction orders. Increasing the incidence angle
results in higher resonant energy for positive orders, as shown
in Fig. 4(b). This means that for a fixed grating period, the

Fig. 4. (Color online) (a) Schematic view of the grating under in-plane oblique incidence. (b) Shift of the resonant energy of the positive and
negative orders due to the change of the incident angle from 0° to 20°. (c) Angular dependence of the F under TE-polarized illumination over the
wavelength range (600–800) nm. (d) Same as (c) for TM-polarized illumination. (e) Same as (c) for the wavelength range (800–1200) nm. (f) Same as
(e) for TM-polarized illumination.
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normalized period (Λ∕λ) will become larger too. Therefore,
the curves with positive slopes in Fig. 4 correspond to the
appearance of the positive diffraction orders. Similarly, it is
concluded that the curves with negative slope represent the
negative diffraction orders. Figure 4 shows that relatively high
enhancement factors can be obtained at angles other than
normal. This is a direct result of the asymmetric shift of the
resonant energies of the positive and negative orders under
oblique illumination.

Figure 5 shows the enhancement factor of the 1D grating
discussed in Fig. 4 for only two incident angles of 20° and
60° and for the first wavelength interval, i.e., from 600 to
800 nm. It is observed that the smaller incident angle permits
higher Fmax at periods close to the incident wavelength. How-
ever, for larger periods, there is no significant difference be-
tween the two angles. This is a general conclusion and agrees
with the intuition that at the limit of large period, the grating
should resemble a Lambertian scatterer [6].

Altogether, the incident angle affects the absorption by
changing the number of diffraction orders. Close to the
normal incidence, absorption can be more dramatically en-
hanced. Since solar illumination occurs at a limited range
of incidence angles, it is possible to keep the condition of
normal incidence at least to some extent. Based on the wave-
length range, which affects the performance of the cell, per-
iods can be found that can enhance light more drastically.

It is worth mentioning that in all the calculations in this
manuscript and also in the prior research [4–8], the impact
of the coupling strength is still missing. It is expected that
by considering the coupling efficiency, F drops to values smal-
ler than the ones presented here and maybe all of the other
mentioned works [4–8]. Also, other loss mechanisms, such
as parasitic absorption, imperfect collection of photogener-
ated carriers and reflection from the top interface of the cell,
would lead to a decrease in the achievable photocurrent.

5. CONCLUSIONS
In summary, we study light absorption enhancement using
guided modes at normal and oblique incidence. We include
simultaneously the small thickness of the cell and wavelength-
scale periodicity of the texture in the coupled-mode approach
previously introduced by Yu et al. [6] to find the upper bound
of the absorption enhancement in thin film silicon solar cells.
In [6], the authors did not consider these two at the same time
so they were able to approximate the number of resonances in
the solar cell with a continuum. However, our model takes
into account the discrete nature of the diffraction phenomena

and the guided modes in thin film solar cells. In our calcula-
tions we include also the effect of confinement of the guided
mode energy to the thin film absorber as previously suggested
[6,8]. Our results are obtained over two wide wavelength
ranges: from 600 to 800 nm and from 800 to 1200 nm to meet
the light trapping conditions of amorphous and crystalline si-
licon solar cells. We show that by benefiting from the discrete
spectrum of the guided modes and their modal properties in
thin films, it is possible to enhance absorption significantly;
however, the absorption enhancement limit is lower than
the values predicted by Yu et al. [6]. We also investigate the
effect of incident angle. Our calculations show that increasing
the incident angle does not necessarily reduce the absorption
enhancement factor. We attribute this to the asymmetric shift
of the resonant frequencies corresponding to positive and
negative Bragg orders.

APPENDIX A: THE ABSORPTION
COEFFICIENTS
The wave loses energy with the effective absorption coeffi-
cient αwg as it is guided along the film. If the whole space is
filled with the absorber, this absorption coefficient will be
equal to α. In a film with finite thickness, energy will be dis-
tributed over both the device and the outer space with the en-
ergy overlap η. The wave energy after passing a length dz is

E�dz� � E�0�e−αwgdz � E�0��ηe−αdz � �1 − η��: (A1)

Taylor expansion of (A1) leads to αwg∕α � η.

APPENDIX B: THE ENERGY OVERLAP
At normal incidence, the electric field profile of even and odd
modes can be easily obtained [16]:

Ee �
�
cos�kxx�∕ cos�kxd∕2� jxj ≤ d∕2;
exp�−α�jxj − d∕2�� jxj > d∕2. �B1a�

Eo �
( sin�kxx�∕ sin�kxd∕2� jxj ≤ d∕2;

exp�−α�x − d∕2�� x > d∕2;
− exp�−α�−x� d∕2�� x < −d∕2;

�B1b�

where x refers to the direction normal to the interfaces and
Eo and Ee refer to electric field of the odd and the even modes,
respectively. The energy overlap can be obtained via the
electric field profiles:

Fig. 5. (Color online) (a) F under TE-polarized illumination over the wavelength range (600–800) nm for the incident angles of 20° and 60°.
(b) Same as (a) but for TM polarization.
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η �
�
n2

Z
jEslabj2dx

�
∕
�
n2

Z
jEslabj2dx�

Z
jEairj2dx

�
:

(B2)

At nonperpendicular incidence, TE and TM polarizations
must be distinguished. As in the case of normal incidence,
the guided modes can be classified into odd and even in each
polarization.

In TE polarization, the electric field is parallel to the slab
boundary and the electric field of the modes can be expressed
with Eqs. (B1a) and (B1b). Therefore, the energy overlap η
can be obtained similarly to the case of normal incidence.
Figures 6(a) and 6(b) show the energy overlap versus phase
index np and photon energy E for the slab (d � 200 nm,
n � 4) under oblique incidence. Since η is the same as the
case of normal incidence, Figs. 6(a) and 6(b) can also be used
for normal illumination of light. The energy overlap is very
close to unity almost everywhere except near the light line
of air (np ≈ 1). The guided modes corresponding to each case
are shown in Fig. 6 with red dotted curves. In a narrow spec-
tral range, there is an even TE mode partly in the low η region
close to the light line of air. As this mode approaches the light
line of air, its group index decreases gradually; therefore,
Eq. (8) predicts that the mode should provide high enhance-
ment factors. However, this advantage is compromised by the
small η, which means extension of the wave tail outside the
guide and subsequently, reduction of F .

In TM polarization, the magnetic field has a form similar to
the electric field in TE polarization but the electric field has
two components, which can be derived from the magnetic
field by using Maxwell equations:

Ex � −j
ωε

∂

∂z
Hy; (B3a)

Ez �
j
ωε

∂

∂x
Hy: (B3b)

By applying Eq. (B3) and using the form of the magnetic field,
which is already described in Eq. (B1), the electric field
profiles in TM polarization can be obtained. To calculate
the intensity profile, both components of the electric field
must be considered:

I � jEj2 � jExj2 � jEzj2: (B4)

After some algebraic manipulation the following intensity
profiles can be obtained for the TM polarized modes:

Ie �
(

μ0
ε0n2

k2x sin
2�kxx��k2

∥
cos2�kxx�

k20 cos
2�kxd∕2� jxj ≤ d∕2

μ0
ε0

exp�−2α�jxj − d∕2�� jxj > d∕2
; (B5a)

Io �
(

μ0
ε0n2

k2x cos
2�kxx��k2

∥
sin2�kxx�

k20 sin
2�kxd∕2� jxj ≤ d∕2

μ0
ε0

exp�−2α�jxj − d∕2�� jxj > d∕2
; (B5b)

where Io and Ie refer to intensity of the odd modes and even
modes, respectively. The energy overlap can be obtained via
the intensity profiles by applying Eq. (B2).

Figures 6(c) and 6(d) show the energy overlap for the slab
(d � 200 nm, n � 4) under TM-polarized illumination. As in
the previous cases, the energy overlap is almost unity every-
where except near the light line of the air (np � 1). Figure 6(c)
shows an even TM mode, which occurs only very close to the
light line of air. Since η is very small in this region, this mode
cannot result in very huge absorption enhancement although
its group index is small.

Altogether, the incident angle does not have a dramatic ef-
fect on the energy overlap for high index cells. Hence, one can
almost always approximate η ≈ 1 by considering a margin
around the light line of air and due to Appendix A, αwg ≈ α.

Note that the diagrams of Fig. 6 are plotted for a continuum
of energy and phase index values but dispersion of the film
produces a discrete spectrum. So, on the surfaces in
Fig. 6, only the np and E values corresponding to the
guided modes, i.e., the red dotted curves should be con-
sidered.
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