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Extended Abstract

High levels of cooperation are often cited as the primary
reasons for the ecological success of social insects (Oster
and Wilson, 1978; Hölldobler and Wilson, 1990). In social
insects, workers perform a multitude of tasks such as for-
aging, nest construction and brood rearing without central
control of how work is allocated among individuals (Gor-
don, 1996). It has been suggested that workers choose a
task by responding to stimuli gathered from the environment
(Robinson, 1992). Response threshold models assume that
individuals in a colony vary in the stimulus intensity (re-
sponse threshold) at which they begin to perform the corre-
sponding task (see Beshers and Fewell (2001)). In (Lichocki
et al., 2012), we investigated the limitations of the models of
division of labor that base on the response thresholds. This
abstract is meant to convey a brief summary of the points we
raised in that study.

The two most often used models of division of labor are
the deterministic response threshold model (DTM; Page Jr
and Mitchell (1998)), and the probabilistic response thresh-
old model (PTM; Bonabeau et al. (1996)). Both models
assume that all workers receive information of the colony
needs via commonly perceived stimuli. With the DTM each
worker performs the task with the highest positive differ-
ence between the stimulus and its own corresponding re-
sponse threshold. If all the stimuli are lower than the cor-
responding thresholds the worker remains idle. With the
PTM the relation between stimulus and threshold is inter-
preted as a probability to perform the task. While these re-
sponse threshold models are frequently used to explain di-
vision of labor in colonies of social insects (Bertram et al.,
2003; Graham et al., 2006; Jeanson et al., 2007), no attempts
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tion. In (Lichocki et al., 2012), we showed with formal
analysis and quantitative simulations that DTM (Page Jr and
Mitchell, 1998) and PTM (Bonabeau et al., 1996) lead to
sub-optimal colony performance under some stimulus con-
ditions. To overcome these problems we proposed an ex-
tended response threshold model (ETM) that can result in
)5 -.F+1-5; ;):2 )336+);165 .69 )5@ :;14<3<: +65,1;165:� (-
experimentally compared all models by means of directed

evolution (see, e.g., Floreano and Keller (2010)) in a forag-
ing scenario that required a dynamic re-allocation of workers
to different tasks according to colony needs (Tarapore et al.,
2010).
The common understanding of the response threshold

models is that the workers’ tendency to perform various
tasks depends on its thresholds and that, by changing the
threshold values, the worker can express any behavior, from
generalist (switching between tasks) to specialist (dedicated
;6 ) :7-+1F+ ;):2� �$6*15:65� ����� �65)*-)< -; )3�� �����
Beshers and Fewell, 2001). However, a mathematical anal-
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bility depends not only on the worker’s thresholds, but also
on the difference between stimulus intensities. In particular,
a worker can switch from task A to task B, only if there is
a decrease in the difference between stimulus intensities of
task A and task B. A worker can switch back from task B to
task A, only if there is an increase of the aforementioned dif-
ference. Thus, contrary to the intuition standing behind the
response threshold models (Robinson, 1992), the workers’
*-0)=169: )9- 15G<-5+-, 56; 653@ *@ ;0- )*:63<;- 15;-5:1;1-s
of the stimuli, but also by their relative intensities. Con-
sequently, the values of the stimuli constrain the worker’s
ability to switch tasks regardless of the values of the indi-
vidual thresholds. In the PTM this constraint is less marked,
because the workers’ responses are stochastic, thus allowing
them to switch tasks more easily. However, stochastic indi-
vidual responses make the response at the colony level more
<59-31)*3-� -=-5 <5,-9 F?-, :;14<31 +65,1;165: �1�-�� .69 ;he
same stimuli intensities the response of a worker may be dif-
ferent, due to its random component). Thus, both the DTM
and the PTM have limitations, which could be detrimental to
colony performance (Fig. 1). These problems can be over-
come by extending the DTM with additional variables that
weigh stimuli (ETM). The weights relax the constrains on
;0- G-?1*131;@ 6. ;):2 )336+);165 *@ )336>15/ ;0- >692-9: ;6
scale the stimuli if needed. At the same time, the determin-
istic decision rules employed in the ETM allow the workers
to precisely response to changing colony needs.
Overall, our analyses highlighted the limitations of the re-
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Figure 1: Mean ± s.d. (in grey) performance with the deter-
ministic (DTM), probabilistic (PTM), and extended (ETM)
response threshold models over 1000 colonies (30 repli-
cates). To quantify the workers’ performance in task alloca-
tion we used a stochastic agent-based simulation to model a
situation in which workers had to perform two distinct tasks.
Our aim was to mimic situations with two vital tasks such as
foraging and regulation of nest temperature. If the colony is
-.F+1-5; 15 .69)/15/ *<; ,6-: 56; 9-/<3);- 5-:; ;-47-9);<9-
well, the brood may die. Conversely, if nest temperature is
well regulated, but little food is collected, only few offspring
can be reared. Thus, the performance was high only if the
>692-9: -.F+1-5;3@ 7-9.694-, *6;0 ;0- 9-/<3);69@ )5, .69)/-
ing tasks.

sponse threshold models that are currently used in the litera-
ture (see, e.g., Bonabeau et al. (1996); Page Jr and Mitchell
(1998); Bertram et al. (2003); Graham et al. (2006); Jean-
son et al. (2007)). We extended these models by weighting
the stimuli. In (Lichocki et al., 2012), we also showed that
;0- 9-:765:- ;09-:063, 46,-3: +)5 *- .694<3);-, ): )9;1F�
+1)3 5-<9)3 5-;>692: �:--� -�/�� ��)@215� ������� �9;1F+1)l
neural networks have been successfully used to control the
behaviour of individuals in a colony (see e.g. Floreano et al.
(2007); Waibel et al. (2009)) making it a useful approach to
consider in modeling task allocation in social insects. The
neuronal formalism will be useful for further extension of
models, e.g., changing the threshold values with age or the
integration of adaptive learning. Consequently, it constitutes
a comprehensive framework for modeling task allocation in
social insects. Finally, it is worth mentioning that although
threshold models have been developed to explain division of
3)*69 15 :6+1)3 15:-+;� ;0-@ 4)@ )3:6 *- <:-, ;6 ,-=1:- -.F�
cient systems of task allocation and dynamic scheduling in
engineering (see, e.g., Campos et al. (2000); Bonabeau et al.
(2000)).
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