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Extended Abstract

Evolutionary algorithms were proposed to automatically
find solutions to computational problems, much like evo-
lution discovers new adaptive traits (Fogel et al., 1966).
Lately, they have been used to address challenging questions
about the evolution of modularity (Kashtan et al., 2007), the
genetic code (Vetsigian et al., 2006), communication (Flore-
ano et al., 2007), division of labor (Lichocki et al.,2012) and
cooperation (Riolo et al., 2001; Waibel et al., 2011). Evo-
lutionary algorithms are increasingly popular in biological
studies, because they give precise control over the experi-
mental conditions (Floreano and Keller, 2010) and allow the
study of evolution at unprecedented level of detail (Adami,
2006). Nevertheless, evolutionary algorithms have their own
caveats, which are often overlooked. Here, we highlight one
of them by exposing a terminological conflict between def-
initions of fitness used in biology and in evolutionary algo-
rithms.

Fitness is a core concept in evolutionary biology (Wagner,
2010). Although used to mean subtly different things (Orr,
2009), it is commonly agreed that fitness is a variable that
describes competitive abilities of a given genotype against
others in a population under some environmental condi-
tions (Wagner, 2010). The understanding of fitness is very
well captured in selection equations (Fisher, 1930; Wright,
1969), where the relative fitness, i.e., the ratio between a
fitness value and the mean fitness in a population, directly
translates into a proportionate reproductive success. Conse-
quently, only relative fitness bears meaning, i.e., all fitness
values may be scaled by the same constant and the evolu-
tionary dynamics would remain the same (Wagner, 2010).
For convenience, fitness is usually taken to be the expected
or realized number of offspring (Rice, 2004; Orr, 2009).

In contrast to biology, in evolutionary algorithms the term
fitness does not usually refer to the reproductive success. In-
stead, fitness means the performance of a given genotype
in solving a given problem. For example, if a genotype
encodes a control system that guides a robot’s movement
in a labyrinth, its performance could be measured as the
time needed to find the exit. Once all genotypes are eval-
uated, they are selected according to their performance val-

ues, and then copied and varied. Several popular selection
methods exist: proportionate selection (Goldberg (1989);
or roulette wheel selection; used by Waibel et al. (2011)),
truncation-proportionate selection (used by Lichocki et al.
(2012)), truncation selection (Schlierkamp-Voosen (1993);
or (u, A)-selection (Back, 1994); used by Floreano et al.
(2007); Kashtan et al. (2007)), rank selection (Baker, 1985)
and tournament selection (Goldberg and Deb (1991); used
by Riolo et al. (2001)).

Here, we experimentally and formally show that the re-
productive success of genotypes is proportional to the per-
formance only with proportionate selection. Consequently,
only then a genotype’s performance, called fitness by evo-
lutionary algorithms practitioners, is actually fitness in the
biological sense. All other selection methods introduce a
non-linear transformation of performance values into repro-
ductive success. Thus, in all these cases performance is not
fitness in the biological sense. This observation has a lim-
ited practical meaning in engineering application, where the
goal is to find optimal solution to a problem. Usually, the
best suited selection method is used and terminological is-
sues are not of any relevance.

In contrast, in biological studies that rely on evolution-
ary simulations a clear distinction between performance and
fitness is necessary for a meaningful interpretation. We sup-
port this claim with numerical experiments in which we con-
ducted 1000 generations of artificial selection in groups of
agents. Each agent displayed selfish or altruistic behavior to-
wards its teammate. We show that the outcome of the evolu-
tionary simulations of cooperation (i.e., emergence of repro-
ductive division of labor) depends on the selection method
and its parameters (Fig. 1).

‘We considered the evolution of cooperation as our model
system, because evolutionary algorithms are a popular tool
in this domain (see, e.g., Riolo et al. (2001); Floreano et al.
(2007); Waibel et al. (2011)). In the evolution of coopera-
tion, the crucial concepts are cost and benefit of a coopera-
tive act. Importantly, these cost and benefit of cooperation
are additive to fitness. In contrast, an experimenter who uses
evolutionary simulations may influence costs and benefits
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Figure 1: (A) Mean level of reproductive division of labor in pop-
ulation of 500 teams, each consisting of two agents. (B) Proportion
of teams in the generation 999 that contributed both agents to the
last 1000th generation. Each agent was assigned one performance
point by default, and then could transfer it to its partner in the team.
The team displayed reproductive division of labor when one agent
was selfish, i.e., kept the performance point to itself, and the other
agent was altruistic, i.e., gave its performance point to the partner.
The evolutionary simulation was replicated 30 times for each of the
100 treatments (truncation coefficient was set to a value from 0.01
to 1, with a step of 0.01). The result of each replicate is shown in

grey.

additive to performance. Consequently, in order to validate
the predictions of biological models of cooperation, a cor-
rection for the selection method must be applied to fitness, in
the case of a non-proportionate selection. Alternatively, one
may use proportionate selection. Then, performance is fit-
ness, and cost and benefit additive to performance are auto-
matically additive to fitness. Note, however, that proportion-
ate selection is known to display several disadvantageous
properties, e.g., premature convergence (Baker, 1987).

Overall, we call for caution when using evolutionary algo-
rithms in biological studies and advise to carefully account
for effects that a selection method has on the fitness land-
scape.
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