On the stability of traffic perimeter control in two-region urban cities

In this paper, stability analysis of traffic control for two-region urban cities is treated. It is known in control theory that optimality does not imply stability. If the optimal control is applied in a heavily congested system with high demand, traffic conditions might not change or the network might still lead to gridlock. A city partitioned in two regions with a Macroscopic Fundamental Diagram (MFD) for each of the regions is considered. Under the assumption of triangular MFDs, the two-region MFDs system is modeled as a piecewise second-order system. Necessary and sufficient conditions are derived for stable equilibrium accumulations in the undersaturated regimes for both MFDs. Moreover, the traffic perimeter control problem for the two-region MFDs system is formulated. Phase portraits and stability analysis are conducted, and a new algorithm is proposed to derive the boundaries of the stable and unstable regions. Based on these regions, a state-feedback control strategy is derived. Trapezoidal shape of MFDs are also addressed with numerical solutions. (C) 2012 Elsevier Ltd. All rights reserved.

Published in:
Transportation Research Part B Methodological, 46, 9, 1159-1176
Oxford, Elsevier

Note: The status of this file is: Anyone

 Record created 2012-12-16, last modified 2020-10-28

Publisher's version:
Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)