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Abstract: Over the past decade, a large number of academics and start-ups have devoted
themselves to developing kites as a renewable energy source. Determining the trajectories the
kite should follow is a modeling and optimization challenge. We present a dynamic model and
analyse how uncertainty affects the resulting optimization problem. We show how measurements
can be used to rapidly correct the model-based optimal trajectories in real time. This novel
real-time optimization approach does not rely on intensive online computation. Rather, it uses
knowledge of the structure of the optimal solution, which can be studied offline.
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1. INTRODUCTION

The concept of using kites, or airplanes on tethers, as a
renewable energy source has received increasing attention
in recent years, both from industry and academia. A kite
is a wing (just like the blades of a turbine, the wings of an
airplane or the sails of a yacht) that is connected to the
ground by a cable. Kites can fly at speeds many times that
of the the wind. At such high speeds a large aerodynamic
force acts on the kite, and the force is transmitted to
the ground via the cable. A number of different ways
of using kites as an energy source are being investigated
by ‘kite-power’ start-ups (Skysails GmBH, 2012; Makani
Power, 2012; Ampyx Power, 2012). For example, the cable
can be wound around a reel whose shaft is connected
to a generator. When the tension in the cable forcibly
unwinds the reel, the generator produces electricity. In
a second phase, the generator works as a motor to reel
the cable back in. The kite flies a trajectory designed to
maximize the cable tension during the reel-out phase, and
to minimize it during the reel-in phase, resulting in a net
production of power. Kites are thought to have two main
advantages over conventional wind turbines:

• The cable transmits the forces directly to the ground,
so there is no need for a costly tower.

• Kites can fly at altitudes of several hundred meters,
where the wind is stronger and more stable (Thuillier
and Lappe, 1964). The highest wind turbine towers
stand 135 metres tall.

The trajectory the kite follows directly determines the
aerodynamic force on the kite, and thus the power the kite
generates. Determining the optimal trajectory is a periodic
dynamic optimization problem, which can be solved using
a mathematical model of the system. However, construct-
ing an accurate dynamic model of a kite is still an open
problem. Standard airplane dynamic models cannot be
used to model a kite, as the cable inhibits many of the
dynamics found in un-tethered flight, and introduces new
ones (Breukels, 2010). Various models have been proposed

Fig. 1. A superimposed sequence of frames shows a kite
following a closed path during testing of EPFL’s lab-
scale system.

(Diehl, 2001; Erhard and Strauch, 2012; Argatov et al.,
2009; Breukels, 2010) and some comparisons have been
made with experimental data (Erhard and Strauch, 2012;
Dadd et al., 2010; Breukels, 2010). While those authors
were able to glean valuable insight about certain aspects of
a kite’s behavior from these experiments, no one model has
been shown to very accurately reproduce a kite’s behavior.
Even were an accurate model available, the kite’s behavior
will depend on external time-varying disturbances, mainly
the wind speed and direction. These disturbances cannot
be directly measured as, due to wind shear, the wind at
the kite’s altitude will generally not be the same as the
wind measured at ground level.

Real-Time Optimization (RTO) is a family of techniques
for achieving optimal operation despite uncertainty. Mea-
surements are used to counteract modeling error and dis-
turbances. The measurements contain information about
the real process and, if they are correctly interpreted, can
be used to correct the model-based trajectories during



operation. RTO for dynamic optimization problems has
often been applied to batch chemical reactors (Srinivasan
et al., 2003; François et al., 2004), as these are repeated
(periodic) optimization problems. RTO is particularly ap-
plicable to these problems because measurements from
past iterations can be used to improve the performance
of the current one. Luckily, the optimization problems in
kite power are also periodic, as the kite will typically trace
out the same path in the sky many times over. This means
that many of the ideas from RTO for chemical problems
can be carried over to the problem of determining optimal
trajectories for kites. Indeed, some characteristics of the
kite problem make it even easier to do RTO:

• The period of the kite’s trajectory is measured in sec-
onds, rather than hours. This is an advantage because
measurements quickly become available, however on-
line computations must be fast.

• A large number of continuous measurements are avail-
able, such as position, velocity, orientation, wind-
speed at the ground, and line tension.

The first contribution of this article is to review the kite-
modeling literature and present a modified dynamic model
of a kite that is suitable for dynamic optimization (Section
2). We focus on the trajectory optimization problem that
arises when the kite pulls a boat, a system that has been
implemented on several large German vessels (Skysails
GmBH, 2012). As other kite-power trajectory optimization
problems are usually a variation of this basic problem, the
technique we propose could be adapted to other kite-power
setups. An analysis of how uncertainty affects the optimal
solution is presented in Section 3. The second contribution
is a novel RTO scheme for repeated dynamic optimization
(Section 4). In Section 5 the RTO scheme is applied to
the kite and boat system in simulation, achieving optimal
performance in a matter of minutes. The difficult path
following control problem is not addressed in this paper.
In order to focus on RTO, an ideal (simulation-based)
controller is used.

2. PROBLEM FORMULATION

2.1 Dynamic Model

A number of kite models have been proposed in the
literature. The simplest model assumes the kite has no
mass (Erhard and Strauch, 2012; Argatov et al., 2009).
A slightly more complex model considers the mass of the
kite to be lumped (Diehl, 2001). Embellishments of the
lumped-mass model take into account tether drag (Canale
et al., 2010; Houska and Diehl, 2006) and rotational inertia
(Breukels, 2010). Far more complex models have also
been developed, such as the multi-body kite simulator
developed by Breukels (2010) . For trajectory optimization
we choose to work with the zero-mass model. Dadd et al.
(2010) showed experimentally that this model gives a
reasonable prediction of line forces during dynamic flight,
while Erhard and Strauch (2012) experimentally identified
a turning law for this model that agrees well with measured
data. The generated power in our optimization problem
is based on line forces, which depend chiefly on the
position of the kite. It is mainly the turning behavior that
determines how the kite’s steering input (the manipulated

variable) influences the kite’s position. Thus, although
we have chosen a simple model, it should reasonably
accurately represent the dependance of power generation
on how the kite is steered.
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Fig. 2. The spherical co-ordinate system used.

We first give the dynamics of a kite attached to a fixed
point by a tether of fixed length, as shown in Figure 2. The
model is copied almost exactly (our co-ordinate system
differs slightly) from Erhard and Strauch (2012), where a
full derivation can be found. Here we merely describe the
underlying physical assumptions. We use a spherical co-
ordinate system with the tether point as the origin (Figure
2). The zenith angle, θ, is the angle between the wind
vector and the tether. The azimuth angle, φ, is the angle
between the vertical (z axis) and the tether’s projection
onto the y-z plane. As the kite will not fly upwind of
its tether point, it is free to move on a quarter sphere:
θ ∈ [0, 90◦], φ ∈ [−90◦, 90◦]. A third angle, ψ, defines the
kite’s orientation. This is the angle by which the kite’s
longitudinal axis is rotated around the tether (see Erhard
and Strauch (2012) for an exact definition). The reference
angle, ψ = 0, occurs when the kite is aligned with the
longitudinal lines running from the downwind position to
the windward edges of the quarter-sphere. The velocity
of the kite on the sphere is given by θ̇ and φ̇. These two
degrees of freedom are determined such that the following
two assumptions are satisfied:

(1) The velocity is such that the angle between the kite’s
longitudinal axis and the apparent wind (the air
velocity relative to the kite) is minimized. This is
comparable to the way an airplane’s tail keeps it
pointing towards the oncoming air.

(2) The kite’s inertia is negligible compared with the
aerodynamic force acting upon it. Thus, when it is
acted upon by a net external force, it accelerates
infinitely fast, instantaneously reaching a velocity at
which there is no longer a net force acting upon it.
This means the aerodynamic force must always be
directly opposed by the line tension (as these are the
only forces acting on the kite). By applying basic
aerodynamic theory (Anderson and Eberhardt, 2000)
(which necessitates several more assumptions), we
can conclude that the angle between the apparent
wind and the kite’s tether is constant. This angle
depends on an aerodynamic coefficient: the kite’s
glide ratio E.

Under these two assumptions the velocity of the kite is
given by:



θ̇ =
va

L

(

cosψ − tan θ

E

)

, (1)

φ̇ = − va

L sin θ
sinψ, (2)

where L is the tether length and va is the magnitude of the
apparent wind vector projected onto the quarter sphere’s
tangent plane. The later is given by:

va = v0E cos θ, (3)

where v0 is the wind speed. Note that φ does not affect the
kite’s dynamics; having neglected mass, and thus gravity,
the kite’s behavior is unchanged by rotation around the
wind vector.

While the differential equations for θ̇ and φ̇ (the kite’s
velocity) follow directly from physical assumptions, the
equation for ψ̇ (the turning behavior) does not. Erhard
and Strauch (2012) experimentally validated the law:

ψ̇ = gvau+ φ̇ cos θ, (4)

where g is a constant and u(t) is the steering deflection
applied to the kite. Using the expression for va (3) and
Assumption 2, we derive an expression for the line ten-
sion 1 :

T = PDA cos2 θ(E + 1)
√

E2 + 1, (5)

where PD = ρv20
/

2 is the wind’s dynamic pressure and
A is the area of the kite. Note that the line tension
depends on the angle between the tether and the wind,
θ, and the glide ratio, E. In Erhard and Strauch’s model
E is constant. This is a reasonable approximation if the
model is used for controller design, but not if it is used
for optimization. A constant E would imply that the
tension in the tether is maximized if the kite is kept
as directly downwind as possible, regardless of the large
steering deflections which are required to keep it there. In
our experiments, it was observed that steering deflections
cause a reduction in tether tension. This is particularly
noticeable for very large steering deflections, which will
almost cause the kite to stall, drastically reducing the
apparent windspeed, and hence the tether tension. We
propose the following law to model this behaviour:

E = E0 − cu2, (6)

where c is a constant that determines how much the kite’s
glide ratio is penalized for a steering deflection. The basic
idea is that, unlike the way an airplane steers (by rolling),
a kite steers by increasing the angle of attack on one side of
the kite. This will decrease the kite’s overall glide ratio. A
detailed justification goes beyond the scope of this paper.

Consider that the tether is attached to a boat, which
is moving at constant velocity. This is a reasonable as-
sumption, because (i) the boat’s huge inertia will dampen
any inconsistency in the kite’s pull, and (ii) the current
industrial system is designed to supply only a fraction
of the boat’s thrust (Skysails GmBH, 2012). Figure 3
illustrates the relationship:

V wb = V wind − V boat, (7)

where V wb is the wind relative to the boat. In our kite
model, v0 = |V wb|, and the x-axis in Figure 2 is aligned
with V wb. We are interested in maximizing the component

1 To do so we assume the kite operates with a lift coefficient of 1.
While this may not be exactly true, it only introduces a proportional
error in T , which does not affect the kite’s optimal path.
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Fig. 3. Vector diagram illustrating how the wind experi-
enced on a moving boat depends on the wind (relative
to the water) and the boat’s velocity.

of the tether tension in the boat’s direction of motion. The
unit vector in this direction is:

ewb = (cosβ)ex + (sinβ)ey, (8)

while the unit vector aligned with the tether tension is:

eT = (cos θ)ex + (sin θ sinφ)ey + (sin θ cosφ)ez. (9)

The component of the tether force in the boat’s direction
of movement (referred to as thrust) is the the dot product
of these vectors:

TF = T (cos θ cosβ + sin θ sinβ sinφ). (10)

2.2 Optimization Problem

How should the kite be controlled to maximize the average
thrust? The input and state trajectories (functions of
time), u(t) and x(t) = [θ(t) φ(t) ψ(t)]T , must be periodic,
i.e. the kite must return to its original position at the end
of each cycle. In addition, the kite must respect a minimum
altitude constraint to ensure it will not crash in the case of
disturbances. The dynamic optimization problem can be
formulated mathematically as

maximize
ũ(t),tf ,x0

TF =
1

tf

∫ tf

0

TFdt (11)

subject to ẋ =





θ̇

φ̇

ψ̇



 =





va
L

(

cosψ − tan θ
E

)

− va
L sin θ

sinψ
va
L
ũ+ φ̇ cos θ



 , (12)

va = v0E cos θ, (13)

E = E0 − c̃ũ2, (14)

TF =
(

PDA cos2 θ(E + 1)
√
E2 + 1

)

×
(cos θ cosβ + sin θ sinβ sinφ) ,

(15)

x(0) = x0, (16)

x(tf ) = x0, (17)

L sin θ cosφ ≥ hmin, (18)

where tf is the final time, TF is the average thrust, x0
is the initial state vector and hmin is the kite’s minimum
permissible altitude. We used the following substitutions
to simplify the problem formulation:

ũ = gLu, (19)

c̃ =
c

(gL)2
. (20)

Equations (11) to (18) consist of a) the integral cost,
b) the dynamic system equations, and c) the periodicity
and height constraints (the dashed lines indicate this
separation). The solution to this problem depends on



numerous model parameters, the nominal values of which
are given in Table 1. These parameters have been chosen
to be consistent with the current commercial system (g
and c were estimated). Among these we distinguish the
uncertain parameters, π = [c̃, v0, E0, β], that are prone to
variations or inaccuracy.

Table 1. Nominal and perturbed parameters.

Parameter Units Nominal value
L m 400
A m2 300

hmin m 100
c - 0.25 Perturbed
g m−1 7.5× 10−3 scenario

π

c̃ - 0.028 .005
v0 m s−1 10 15
E0 - 5 6.5
β degrees 0 15

The nominal optimal path (the kite’s position on the
sphere) is shown in Figure 4. The kite follows a roughly
circular path. This allows it to stay close to the downwind
position in which it generates maximum thrust. Note that
it takes only 11 seconds for the kite to complete one period,
as it flies at approximately 130 km/h.

Fig. 4. Nominal optimal path on the sphere the kite is
constrained to (the direction of flight is clockwise).
The blue line is the height constraint.

3. UNCERTAINTY ANALYSIS

We now investigate how the optimal solution varies along
with π, the vector of uncertain parameters. The windspeed
v0 is the greatest source of uncertainty. Interestingly,
the windspeed does not affect the optimal path the kite
should follow on the sphere. This is because the kite’s
dynamic equation is proportional to v0. Thus, an increase
in windspeed simply accelerates the optimal input and
state trajectories in time (and scales the cost function).

Figure 5 shows the optimal paths that are obtained when
the parameter c̃ is varied. There is a loss in optimality
if the system follows the nominal optimal path (in red),
as depicted in Figure 6. To illustrate this we use an ideal
controller, which is capable of following the nominal path
very precisely (of course, such a controller can only be
achieved in simulation). The optimality loss can reach 10%
of the thrust for unexpectedly small values of c̃. If c̃ is
much larger than the nominal value it becomes impossible
to track the nominal optimal path, as the kite is not
maneuverable enough.

The same analysis can be carried out for the two remaining
uncertain parameters, β and E0. Varying β changes the
optimal trajectory significantly (Figure 7), yet the opti-
mality loss from tracking the nominal path is tiny (less
than 1%). The effect of E0 on the dynamics is similar to
that of v0, thus it causes very little change in the optimal
path (not shown), and tracking the nominal path leads to
negligible optimality loss. However, if E0 is much smaller
than the nominal value, the trajectory-tracking problem
becomes infeasible. The results of the uncertainty analysis
are summarized in Table 2.
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Fig. 5. The optimal path as c̃ varies from 0.0041 to 0.0460
(the optimal path dilates as c̃ increases). The blue line
is the height constraint.
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Fig. 6. The optimal thrust and the thrust obtained by
following the nominal path, for different values of c̃.
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Fig. 7. The optimal path as β, the angle between the wind
relative to the boat and the boat’s velocity, varies
from −15◦ to 15◦.

4. REAL-TIME OPTIMIZATION METHODOLOGY

Skysails, the company that developed kite power for boats,
uses three manipulated variables to define the kite’s trajec-



Table 2. Summary of the uncertainty analysis.

Uncertain parameter v0 c̃ β E0

effect on optimal path none large large small
effect on optimal thrust large small tiny large
potential optimality loss none 10% 1% 1%

tracking can become infeasible no yes no yes

tory (Erhard and Strauch, 2012). These could be adjusted
online to maximize the thrust (perhaps Skysails does so),
but the resulting trajectory would probably be far from
‘optimal’ with respect to the optimization problem formu-
lated in Section 2.2. We now propose a RTO technique
that ensures this optimality.

Let us begin with the mathematical reasoning behind the
RTO scheme. The solution to the dynamic optimization
problem is the optimal path z∗(l, π) = [θ∗(l, π) φ∗(l, π)]T ,
where l ∈ [0, lf ] is the path length. The optimal path can
be decomposed into two intervals:

z∗(l, π) =

{

z∗UC(l, π) for l ∈ [0, ls]

h = hmin for l ∈ ]ls, lf ]
(21)

where z∗UC(l, π) is the path during the unconstrained
interval (when the height constraint is inactive), ls is
the point at which the constraint becomes active and
h := L sin θ cosφ is the kite’s altitude. It can be shown that
in general, for parametric optimal control problems, small
variations of the uncertain parameters π do not alter the
sequence and type of intervals in the solution (Maurer and
Büskens, 2001). In our case, simulation studies confirmed
that this also holds for larger variations of π. This allows
us to develop a Taylor series for the optimal path around
the nominal parameter values, π0:

z∗(l, π) ≃











z∗UC(l, π0) +
∂z∗

UC(l,π)
∂π

∣

∣

∣

π0

∆π for l ∈ [0, ls]

h = hmin for l ∈ ]ls, lf ]

(22)

The Taylor-series analysis yields the directions,
∂z∗

UC(l,π)
∂π

∣

∣

∣

π0

,

in which the path should be adapted in response to a
perturbation in the parameters, ∆π = π−π0. The problem
is that the magnitude of the adaptation in each direction
is unknown. We propose to find this using real-time opti-
mization.

A block diagram of our iterative RTO scheme is shown
in figure 8. There are three components: (i) the Path
Generator, which maps a vector of decision variables, αk,
to the reference path, zk(l, αk), for each period, k, (ii) the
Controller, which tracks this path, and (iii) the Periodic
Optimizer, which adjusts the decision variables αk once
per period, in order to eventually maximize the thrust. At
the end of each period the resulting average thrust, TF,k,
is fed back to the Periodic Optimizer.

Path Generator Controller

αk

Periodic Optimizer

Kite System

Fig. 8. The iterative RTO scheme.

The path generator is based on the Taylor-series expansion
(22). The vector of decision variables αk determines the
magnitude of the adaptation in the directions given by
the expansion 2 :

zk(l, αk) :=











z∗UC(l, π0) +
∂z∗

UC(l,π)
∂π

∣

∣

∣

π0

αk, l ∈ [0, ls]

h = hmin, l ∈ ]ls, lf ]

(23)

The periodic optimizer solves an unconstrained optimiza-
tion problem at each iteration. It chooses the decision
variables αk+1 for the next period. From its point of view,
each period is a function evaluation, and it can be any
unconstrained optimization algorithm. In this paper we
use a standard technique from numerical optimization, the
Gradient Descent method. This method is attractive for
RTO because it generally requires far fewer function eval-
uations to converge than more sophisticated algorithms.
An unconstrained optimization algorithm suffices because
the path generator only produces closed paths satisfying
the height constraint.

The optimization method requires the experimental eval-
uation of the gradient of TF with respect to α. So, in
general, the number of periods until the entire scheme con-
verges will increase (at least) linearly with the dimension
of α. As the dimension of α equals that of π, we must
focus on a subset of the uncertain parameters if we wish
to speed up the RTO scheme, while rejecting the effect
of the most significant disturbances. The path generator
then uses a Taylor-series expansion with respect to these
“important” parameters alone. Indeed, we do not assume
the other uncertain parameters to be fixed, rather we deem
it unnecessary to react to their variations.

5. RTO RESULTS

The RTO scheme was applied to the kite and boat system
in simulation. In order to focus on the RTO algorithm
without the results being biased by control error we again
used the “ideal” path-following controller. The Taylor-
series expansion (22) was performed with respect to c̃,
as (i) it is the only uncertain parameter whose variation
incurs large optimality loss, and (ii) the resulting Taylor
expansion allows the RTO scheme to be initialized at a
path the controller can easily track. The result was less
than 1% optimality loss for a wide range of uncertainties.
Here we illustrate one scenario (labelled ‘Perturbed sce-
nario’ in Table 1) in which all the uncertain parameters
are significantly different from their nominal values.

The evolution of the average thrust per period is shown in
Figure 9. Initially the kite generates about 25% less thrust
than is possible. It is initialized with a large α0, which gives
a dilated trajectory that is easy to track. After 15 periods
the RTO scheme has reduced the optimality loss to about
1%. Interestingly, the path the RTO algorithm converges
to (Figure 10) is quite different from the optimal path, yet
this difference only results in a negligible optimality loss.

2 In order for the path to be continuous, a continuity condition must
be enforced at the junction between the two intervals. Methods for
performing this slight correction, which is due to neglected higher-
order terms in the Taylor expansion, are discussed by Pesch (1989).



This is due to the variation in β, which we (correctly)
decided can be neglected by the RTO algorithm based on
the uncertainty analysis in Section 3.
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Fig. 9. Convergence of the RTO scheme from a conserva-
tive initial path. The red line is the thrust that would
be obtained by following the nominal optimal path.
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Fig. 10. The initial and final paths for the RTO scheme.

6. CONCLUSION

The aim of this article is to illustrate the usefulness of
RTO for maximizing the efficiency of kite-power systems.
Although we analyse a kite towing a boat, the technique
we propose can readily be adapted to electricity-generating
kites. We use the only partially validated, low-dimensional
dynamic kite model available in the literature. An equation
is proposed to model the negative influence of steering de-
flections on the tether tension, a phenomenon we have ob-
served in practical tests. Unfortunately, the model differs
substantially from reality, due to a number of uncertain
parameters. The main source of uncertainty is the wind-
speed, but luckily the optimal path the kite should follow is
invariant with respect to changes in the windspeed. Hence,
we concentrate on calculating this optimal path, with
the assumption that a path-following controller tracks it.
Our analysis indicates that the variation of one particular
parameter is likely to cause the largest optimality loss.
This parameter c̃ models the kite’s turning behavior. We
propose a simple RTO scheme to reject the effect that any
variation in this parameter has on the thrust.

An alternative approach would be to systematically esti-
mate the uncertain parameters. The new estimates could
then be used to recalculate the optimal path. This leads
to a difficult estimation problem, as all the parameters
must be estimated simultaneously, even though the only

one of real interest for optimization is c̃. Our RTO scheme
essentially allows us to avoid this estimation problem, as
we indirectly estimate c̃ (which ideally should correspond
to α), through its influence on the thrust.

Finally, we note that the successful implementation of this
approach on a practical system (work in progress) depends
very much on a functioning path controller. Although
many simulation studies exist, at the point of writing,
no practical implementation of such a controller has been
reported in the literature. This would be an important
step forward for kite power. For the same reason, we
cannot claim our approach outperforms Skysail’s. While
in theory it achieves more thrust, it may be more difficult
to implement in practice.
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