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Abstract It has been shown that multi-people tracking could be successfullly
formulated as a Linear Program to process the output of multiple fixed and syn-
chronized cameras with overlapping fields of view. In this paper, we extend this
approach to the more challenging single-camera case and show that it yields ex-
cellent performance, even when the camera moves.

We validate our approach on a number of basketball matches and argue that
using a properly retrained people detector is key to producing the probabilities of
presence that are used as input to the Linear Program.

Keywords People Tracking - Multi Target Tracking - Monocular Videos

1 Introduction

Early approaches to finding people in images tended to rely on frame-to-frame
tracking, which involves predicting the pose in a frame given an estimate in the
previous one. The emphasis has now shifted to tracking-by-detection in which
people are detected in individual frames and the detections then linked across
time, which prevents drift and provides robustness to occasional failures.

Most state-of-the-art approaches follow this tracking-by-detection paradigm
and operate on graphs whose nodes can either be those where a detector has
fired [27,17], or short temporal sequences of consecutive detections that are very
likely to correspond to the same person [22,32,1,24,3]. On average, they are much
more robust than the earlier tracking methods but typically require the careful
setting of edge costs in the graph, the introduction of special purpose nodes to
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handle occlusions, and an assumption that the appearance of people remains both
unchanged and discriminative from frame to frame.

In the multi-camera case and when background subtraction provides usable
information about people’s location in individual images, we have shown in ear-
lier work [5] that operating on a graph whose nodes are all the spatio-temporal
locations where somebody could potentially be, many of these limitations can be
removed. This yields a formulation that is robust over very long sequences and
requires very few parameters.

In this paper, we extend this approach to the monocular case and demonstrate
that it brings the same benefits, namely robustness and simplicity, even in cases
where background detection is not an option, for example because the camera
moves. However, to achieve satisfactory results it is necessary both to train the
people detector for the kind of activities they actually perform and to refine it
so that it takes geometric constraints into account. We will demonstrate this in
the context of basketball and show that we can approach the performance of a
multi-camera system using a single-camera one.

2 Related Work

People tracking is an intensively studied area of research. Most state-of-art ap-
proaches rely on a paradigm that has been dubbed “tracking by detection” [8],
which implies a two-step process. Typically, a people-detector [9,14,23] is used to
find potential people in individual frames and these detections are then grouped
into individual trajectories.

Particle filtering [10] has been extensively used to perform this grouping. For
example, it has been used to great effect to follow multiple hockey players [21] or
to track multiple people in the ground and image planes simultaneously [11].

However, in recent years, this approach has been superseded by one in which
detections are first connected into short tracks or tracklets, which are then linked
together using a higher-level method [22,32,1,24,3]. It derives its power from the
fact that, in many cases, consecutive detections can be unambiguously linked and
that grouping the resulting tracklets can then be done far more reliably than
grouping individual detections.

However, while yielding good results in many situations, these tracking-by-
detection methods rely on an ad-hoc mathematical formulation, which does not
guarantee convergence to a global optimum. They are therefore prone to mistakes
such as identity switches. In our own earlier work [5], we showed that reformulat-
ing the linking step as a constrained flow optimization results in a convex problem
that fits into a standard Linear Programming framework. It can be solved very
efficiently using the k-shortest paths algorithm [28], which yields real-time per-
formance on realistically-sized problems. Our method does not present any of
the limitations mentioned above, nor does it require an appearance model. We
demonstrated excellent performance with respect to the-state-of-the-art in the
multi-camera case [6] and our approach has served as a reference in several recent
papers.

In this paper, we show that the same framework can be used to good effect in
the single-camera case, even when that camera is moving and we cannot rely any-
more on background subtraction as we did before. We use basketball sequences that
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involve severe occlusions and sudden motions to demonstrate our approach. This
specific application has been tackled in a recent paper [20]. As in our own work,
this involved training a Deformable Part Model [14]. However, this was done by
manually cropping positive and negative examples from a specific match whereas
our approach to training is completely automated and applies across matches.

3 Approach

In our earlier multi-camera work [5,26], we assumed that the ground plane was
represented by a discrete grid and that, at each time step over a potentially long
period of time, we were given as input a Probabilistic Occupancy Map [15] (POM)
containing probabilities of presence of people in each grid cell, which were gen-
erated using multiple cameras. Inferring trajectories from these potentially noisy
POMs was formulated as a Linear Program, which we solved using the K-Shortest
Paths algorithm (KSP) [5].

In this paper, we replace the POM maps by the output of a people detector [13]
which we modify for our purpose and adapt the KSP algorithm to process this
new output most efficiently. In the remainder of this section, we first summarize
the original Linear Programming Formalism and then describe our modifications.

3.1 Multi Target Tracking as Linear Programming

As in [5], we model people’s trajectories as continuous flows going through an area
of interest.

More specifically, we discretize it into K grid locations, and the time interval
into T instants. For any location k, let N'(k) C {1, ..., K} denote its neighborhood,
that is, the locations a person located at k at time ¢ can reach at time ¢t + 1. To
model occupancy over time, let us consider a labeled directed acyclic graph with
K X T vertices such as the one depicted by Fig. 1(a), which represents every location
at every instant. Its edges correspond to admissible motions, which means that
there is one edge €} ; from (t,7) to (t+1,7) if, and only if, j € N'(¢). Note that to
allow people to remain static, we have Vi,7 € N (¢), hence there is always an edge
from a location at time t to itself at time ¢ + 1.

As shown in Fig. 1(b), each vertex is labeled with a discrete variable m! stand-
ing for the number of persons located at i at time t. Each edge is labeled with a
discrete variable ff)j standing for the number of persons moving from location i
at time ¢ to location j at time ¢t + 1. For instance, the fact that a person remains
at location ¢ between times ¢ and t 4 1 is represented by ffz =1.

In general, the number of people being tracked may vary over time, meaning
some may appear inside the tracking area and others may leave. Thus, we introduce
two additional nodes vUsource and vgink into our graph. They are linked to all the
nodes representing positions through which people can respectively enter or exit
the area, such as borders of the camera field of view. In addition, a flow goes from
Usource t0 all the nodes of the first frame to allow, the presence of people anywhere
in that frame, and reciprocally a flow goes from all the nodes of the last frame to
Usink, t0 allow for people to still be present in that frame. In the case of a small
area of interest that can be modeled using only three locations, this yields the
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Fig. 1 Directed Acyclic Graph and corresponding flows. (a) Positions are arranged on one
dimension and edges created between vertices corresponding to neighboring locations at con-
secutive time instants. (b) Basic flow model used for tracking people moving on a 2D grid. For
the sake of readability, only the flows to and from location k at time t are printed.

Fig. 2 Complete graph for a small area of interest consisting only of 3 positions and 3 time
frames. Here, we assume that position 0 is connected to the virtual positions and therefore a
possible entrance and exit point. Flows to and from the virtual positions are shown as dashed
lines while flows between physical positions are shown as solid lines.

directed acyclic graph depicted by Fig. 2. vsource and vsink are virtual locations,
because, unlike the other nodes of the graph, they do not represent any physical
place.

Under the constraints that people may not enter or leave the area of interest
by any other locations than those connected to vsink Or Usource and that there can
never be more than one single person at each location, it was shown in [5] that
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the flow with the maximum a posteriori probability is the solution of

t
Maximize z:log(lpZ t) Z fit,j
ti

Y jen )

subject to  Vt,i,j, fi; >0
Vi, Y. fii<1

JEN (D) (1)
JEN(3) k:ieN (k)

Z fvsourceJ - Z fkyvsink <0.
JEN (Vsource) k:vgink €N (k)

where p! is the probability that someone is present at location 4 at time ¢ returned
by a people detector, such as POM [15].

3.2 Creating the Probability Occupancy Maps

In the multi-camera version of our algorithm [5], the probability of presence p! at
location ¢ at time ¢ of Eq. 1 was computed a generative model operating on the
output of a background subtraction algorithm [15]. As we will see in the results
section, this approach can still be used in the monocular case but only if the
camera is static so that background subtraction remains effective.

To handle a moving camera, we replaced background subtraction by the out-
put of a state-of-the-art people detector, known as a Deformable Part Model
(DPM) [13], which has been consistently been found to outperform many others
in numerous competitions. Nevertheless, we found that directly using its output
to estimate the p! resulted in poor performances and we had to modify it in the
following ways.

Re-training the DPM Model The original DPM model [13] was trained using videos
and images of pedestrians whose range of motion is very limited. By contrast
and as shown in Fig. 3, the basketball players tend to perform large amplitude
motions. Thus, they do not look like typical pedestrians and are often missed.
A similar phenomenon was observed in [30,25] and it was shown that adding
synthetic training data could boost performance.

However, creating synthetic data and ensuring that it truly matches the behav-
ior of basketball players, is a cumbersome task. Instead, we used our multi camera
setup [26] to acquire additional training data from two basketball matches for
which we have multiple synchronized views, which we add to the standard INRIA
pedestrian database [9]. By combining background subtraction information with
the ability to occasionally read the numbers on the players jerseys and to take into
account the color of their uniforms, we can track individual players over a whole
period and therefore obtain long trajectories. The system models humans as cylin-
ders of uniform height hgsiq defined by their positions in the 2D ground place. We
take their image projections to be the bounding boxes for our detected humans.
Of course, real players are either shorter or taller than the standard height but
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Fig. 3 Detection results of the DPM trained using only the INRIA pedestrian database (left)
vs. our retrained DPM (right). In both cases, we use the same parameters at run-time and
obtain clearly better results with the retained DPM.

the system is very robust to such deviations. Furthermore, because the players are
positioned on the ground plane, we know exactly who is in front of who in any
given view, and consider a player to be un-occluded in a specific camera view when
his bounding box is fully visible and does not intersect that of any other player or
referee.

We use the bounding boxes corresponding to these un-occluded players as
positive examples and images of empty courts as negative ones. However, clean
frames of the empty court are not always available because they are of very little
interest to the broadcaster who acquired the images. Since this is the case for the
data in our possession, we created a virtual empty court by taking a short video
sequence in which the players are moving and creating a color histogram for each
pixel. The dominant color is then taken to be the background one. In fact, we used
the same approach to learn the background model for our multi-camera tracking
system [26].

This yields a fully automated retraining procedure, which could be duplicated
for any other sport or activity that can be filmed using multiple cameras.

Imposing Geometrical Constraints. It has often been shown [31,7] that imposing
geometrical consistency constraints on the output of a people detector significantly
improves detection accuracy. In the case of basketball, we can use the court mark-
ings to accurately compute the camera intrinsic and extrinsic parameters [29].

This allows us to reject all detections that are clearly out of our area of in-
terest, the court in this case. In addition, people’s head typically are dominant
features that tend to be easier to detect and locate accurately than other body
parts, as can be seen in Fig. 4. We use this feature of the DPM to estimate the
height corresponding to each candidate person and we keep only those that ap-
pear to be between heights hmin and hmax. In all the experiments reported in the
following section, we assign them the values listed in Table. 1 as do we for all other
parameters introduced below.

Adapted Non-Mazimum Suppression. Non-Maximum Suppression (NMS) is widely
used to post-process the output of object detectors that rely on a sliding window
search. This is necessary because their responses for windows translated by num-
bers of pixels are virtually identical, which usually results in multiple detections
for a single person. In the specific case of the DPM we use, the head usually is the
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most accurately detected part and, in the presence of occlusions, it is not uncom-
mon for detection responses to correspond to the same head but different bodies.
In our NMS procedure, we therefore first sort the detections based on their score.
We then eliminate all those whose head overlaps by more by a fraction larger than
Thead With that of a higher scoring one or whose body overlaps by more than o4y -

A further refinement is to compute the overlap not in terms of intersection of
rectangular bounding boxes as is often done but, instead, in terms of overlapping
ellipses as was proposed in [2] to handle occlusions. We take the two ellipse diam-
eters to be the height and width of the rectangular bounding box produced by the
DPM and have observed that this leads to an increase in performance, especially
when players occlude each other.

From Detections to Maps Given a set of reliable detections, which correspond to
players on the court, we create an occupancy map by projecting their bounding
boxes to the ground. We project the middle point of the top of the bounding box
to the ground, which, as discussed before, is assumed to be at height hsiq above
the ground. It is worth noting, that in the case of the DPM detector, the top of
the head is usually correctly placed as opposed to the legs that often are wrongly
placed. As at this point, most of the detections are reliable, we fill the occupancy
map with a fixed score of high probability pgetection. The occupancy probability
at locations where no one as been detected are set to a low value pno_detection tO
account for the fact that the detector could have failed to detect somebody who
was actually there. For all our experiments, we set pdetection and Pno_detection tO
the values listed in Table. 1. Note, that these probabilities could also be learned in
an automated fashion given sufficient amounts of multi-camera video sequences.

3.3 Modifying the Directed Graph

In our earlier work [5], the KSP tracker received as input very reliable detec-
tions from our multi-camera algorithm using background subtraction results as
input [15]. It was rare for a player to be occluded in all views and occlusions in
specific ones therefore had little impact. It therefore made sense to build graphs
such as the one of Fig. 2, which force trajectories to begin and end at the boundary
of the area of interest.

However, in the single-camera case, this is not true anymore. Occlusions be-
come significant and a player may be missed for several frames in a row. Further-
more, even after retraining, the DPM detector remains more sensitive to unusual
poses than background subtraction, which may also result in consecutive missed
detections. In theory, this could result in whole segments of trajectories being lost
because the player only begins to be seen once he is already in the middle of
the court. In such cases, hypothesizing trajectory segments across consistently low
probability graph nodes to connect high-probability ones to the borders can be
more expensive than simply ignoring them. In practice, what happens even more
often is that trajectory fragments corresponding to different players can be mis-
takenly connected to form trajectories that start and end of the area of interest.
They would then have to be broken up as part of a post-processing step if one
wished player identity to be preserved along individual trajectories.
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[ Parameter [ Role [ Value |
hstd Standard height of a player 1.85m
Amin Maximum distance of head above floor 2.20m
Amax Minimum distance of head above floor 1.60m
Pdetection Probability of presence if detector has fired 0.97
Pro_detection | Probability of presence if detector has not fired 0.03
Wpenalty Weight of edges connecting virtual to physical locations +5
Thody Threshold of body overlap in NMS 0.75
Thead Threshold of head overlap in NMS 0.75

Table 1 Numerical values of the parameters defined in Sections 3.2 and 3.3 used to produce
all the results of Section 4.

To avoid this, we connect all the nodes of our graph to the Ugink and vsource
virtual locations of Fig. 2 so that a trajectory can begin or end anywhere. Unlike
edges connecting the exit and entry locations to the source and sink whose weight
is zero, these new edges are given the high weight wpenaity listed in Table. 1.
As a result, only several successive detections can be grouped into a trajectory
that starts or ends in the middle of the scene. In other words, this produces long
tracklets and is similar in spirit to what is done in [24] while still guaranteeing
that we find a global optimum of our Linear Program.

In practice, this prevents different players from being lumped into the same
trajectory, or even missed, at only marginal increase in computational costs. It
may result in disconnected trajectory fragments for the same player but they can
then be reconnected on the basis of appearance [26].

4 Results

We first validate our results on long basketball sequences acquired using several
fixed and synchronized cameras so that we can compare our single-camera results
against those obtained with our earlier multi-camera approach [5]. The latter is a
meaningful reference because it has been shown to perform well when compared
to state-of-the-art approaches on the PETS’09 dataset [6].

We then show that the results of this comparison still hold in the more in-
teresting case of a single moving camera, which precludes both the multi-camera
approach and the use of background subtraction.

4.1 Fixed Camera

To compare the different approaches, we used two very different datasets:

— The FIBA dataset comprises several multi-view basketball sequences captured
matches at the 2010 women’s world championship. We manually annotated the
court location of the players and the referees on 1000 frames of the Mali vs.
Senegal match and 6000 frames of the Czech Republic vs. Belarus match. One
frame from each match is depicted on the left and center of Fig. 4. The same
ten cameras were used to film all sequences but their locations was changed
from match to match.
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Fig. 4 Representative detection results of our retrained DPM on images acquired using static
cameras. We remove detections that correspond to locations outside of the court. The players’
bounding boxes are overlaid in red, the head in green, and the remaining body parts in blue.
The heads tend to be located much more accurately than the other body parts.
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Fig. 5 MODA scores for different player detectors, static camera. Multi-camera POM, Monoc-
ular POM, DPM trained with INRIA pedestrian dataset, DPM trained with pedestrian and
basketball dataset. The MODA scores were calculated with respect to the overlap threshold in
the camera view. Top Detections alone. Bottom Linked detections. The corresponding videos
are supplied as supplementary material.

— The APIDIS dataset [4] is a publicly available set of video sequences of a bas-
ketball match captured by seven stationary unsynchronized cameras placed
above and around the court. It features challenging lightning conditions pro-
duced by the many direct light sources that are reflected on the court while
other regions are shaded. We present monocular results on the video acquired
by Camera #6 that captures half of the court, as can be seen at the right of
Fig. 4.

We ran several versions of our detection algorithms on these video sequences:

— Multicam POM: Since we have synchronized video sequences from multiple
views, we ran our earlier multi-camera approach [5], which relies on background
subtraction in each view to compute probability occupancy maps in each frame
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Fig. 6 Detection results: MODA scores for different player detectors, static camera. Multi-
camera POM, Monocular POM, DPM trained with INRIA pedestrian dataset, DPM trained
with pedestrian and basketball dataset. The MODA scores were calculated with respect to a
distance threshold on the ground plane. Top Detections alone. Bottom Linked detections.

independently [15]. An alternative would have been to use the approach of [19],
which also creates a probability occupancy map from background/foreground

likelihood maps.

— Monocular POM: The formalism of [15] does not require multiple views
setting and also supports the single-camera case, which is what we use to
produce probability occupancy maps. They are less peaked than the multi-
view ones, however, they can still be used as input to the KSP algorithm of [5].

— Vanilla DPM: We use the vanilla DPM algorithm [13] trained on the INRIA
pedestrian database [12], which is the way it is often used the in Computer
Vision literature, to instantiate our probability occupancy maps as described in
Section 3.2. They are then fed to the modified KSP algorithm, as also described

in Section 3.2.

— Trained DPM: We replace the vanilla DPM algorithm by one we have re-
trained, as described in Section 3.2. To this end, we used two matches from the
FIBA dataset other than those we used for testing, Czech Republic vs. Aus-
tralia and Spain vs. Belarus, each of which was filmed using 10 static cameras.
We automatically extracted 2000 samples of non-occluded players and referees,
and added them as positive examples to the INRIA pedestrian database [9]. In
addition, we used 20 images of the empty court, one for each camera in each
match to produce negative examples. The DPM was then retrained using this
augmented training set and publicly available code [16]. This yields detection

results such as those of Fig. 4.

We operate on grids whose cells are 25cm x 25c¢m and set the parameters
introduced in Sections 3.2 and 3.3 to the values given in Table. 1. We will express
our results over complete sequences in terms of the standard MODA CLEAR

1000
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Fig. 7 Representative detection results of our retrained DPM on images acquired using a
moving broadcast TV camera. As before, we remove detections that correspond to locations
outside of the court.

metric [18], which stands for Multiple Object Detection Accuracy and is defined as

1 Et(mt + fpe)
MODA = 1 I (2)

where g; is the number of ground truth detections at time ¢, m: the number of
miss-detections, fp; the false positive count.

Following standard Computer Vision practice, we decide whether two detec-
tions correspond to the same person on the basis of whether the overlap of the
corresponding bounding boxes is greater or smaller than a fraction of their area,
which is usually taken to be between 0.3 and 0.7. In Fig. 5, we therefore plot our
results as functions of this threshold both for the straight output of the people
detectors discussed above and for the detections that end up belonging to selected
trajectories. Because some valid detections could not be linked into long enough
trajectories, the latter is slightly lower than the former in most cases. The corre-
sponding tracking videos are supplied as supplementary material.

Since we operate on the ground plane, an alternative way to compute MODA
scores is to pick a distance threshold and consider that a detection corresponds to
a ground-truth person if the two are within some Euclidean distance of each other.
Fig. 6 depicts the resulting scores as a function of this threshold, both before and
after linking as in Fig. 5.

Unsurprisingly, in all cases multicam POM does best and provides an upper
limit of what can be done without appearance or motion models. Trained DPM
systematically outperforms Vanilla DPM. On the FIBA dataset, it performs sim-
ilarly to monocular POM, that is, slightly better when using the metric of Fig. 6
and slightly worse when using that of Fig. 5. In other words, we can give up
background subtraction without ill-effects, which is essential when dealing with
a moving camera as discussed below. On the APIDIS dataset, all methods per-
form worse than in the FIBA dataset, because of the numerous highlights that
disrupt both background subtraction and people detection. In the latter case, it
affects the ground-accuracy of the detections and, as result, more of them remain
unconnected at linking time.

4.2 Moving Camera

For the FIBA dataset, in addition to the images acquired using static cameras, we
have access to those acquired by broadcast TV cameras. As shown in Fig. 7, the
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Fig. 8 MODA scores for a sequence acquired using a moving camera, which makes it imprac-
tical to rely on background subtraction and use either versions of POM. We therefore only
plot results obtained using either the original DPM or the retrained one as functions of the
bounding-box overlap value used to decide whether two detections correspond to the same
person. As in Fig. 5, the MODA scores were calculated with respect to the overlap threshold
in the camera view. (a) Detections alone. (b) Linked detections. The corresponding videos are
supplied as supplementary material.

camera moves to follow the action. Out of a sequence of 1000 images from the Czech
Republic vs. Belarus match, we calibrated 10 keyframes by manually supplying a
few interest points such as the corners of the court. We then established SIFT
correspondences between each of the remaining frames and the closest keyframe
and used these to calibrate those frames as well. The resulting camera models are
not particularly accurate but nevertheless sufficient enforce geometrical constraints
on the detections prior to Non-Maxima Suppression. For evaluation purposes, we
also manually annotated 500 frames.

In this case, we cannot use either Multicam POM or Monocular POM since we
have a single moving camera, which precludes the use of background subtraction.
As shown in Fig. 8, retraining the DPM detector and using the same parameters
as before brings about a substantial performance improvement. Furthermore, the
MODA scores we obtain is better than the ones for the static cameras and de-
picted by Fig. 5, mostly because the cameraman is zooming on the action thereby
increasing the resolution.

5 Conclusions

We have demonstrated that we can achieve excellent people tracking accuracy
from a single video sequence by formulating the problem as an Integer Program
on sequences of probability of occupancy maps. The key to good performance is to
properly train the people detector that creates the required maps for the specific
activity the subjects are engaging in and the specific range of body poses it entails.
We have shown how to do this in the specific case of basketball but the approach
we advocate is generic and would apply to many other activities.

The current approach does not take people’s appearance into account to pro-
duce the trajectories, which is both good and bad. It is good because it can handle
similar-looking people such as basketball teammates wearing the same uniform and
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bad because someone’s trajectory can be broken into several disconnected frag-
ments. Future research will therefore focus in incorporating appearance cues to
overcome this problem.
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