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ABSTRACT   

We propose and experimentally demonstrate the possibility to use a pump signal based on bipolar pulse sequences using 
single-sideband suppressed-carrier (SSB-SC) modulation in Brillouin optical time-domain analysis (BOTDA) sensors. 
The SSB-SC modulated pump makes a sequential use of the Brillouin gain and loss spectra, increasing the intensity 
contrast of the measurements. The method is demonstrated using bipolar Golay codes along a 50 km sensing fiber and 
2 m spatial resolution. Results indicate that the use of bipolar sequences provides a higher SNR enhancement and 
stronger robustness to pump depletion in comparison to BOTDA systems employing conventional unipolar sequences.  
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1. INTRODUCTION  
Distributed optical fiber sensing based on stimulated Brillouin scattering (SBS) is a widely-used technique to measure 
distributed temperature and strain along several tens of km with meter-scale spatial resolution. The conventional time-
domain approach, so called Brillouin optical time-domain analysis (BOTDA)1, uses a pulsed pump signal and a counter-
propagating probe wave, which interact through mediation of an acoustic wave generated in the fiber through SBS. By 
sweeping the frequency detuning between optical waves, the Brillouin gain spectrum (BGS) as a function of the distance 
can be scanned with a spatial resolution fixed by the pulse width: the shorter the pulse width, the better is the spatial 
resolution. However, the weak SBS process leads to measurements with low SNR, mostly when long sensing ranges are 
involved, since the pump peak power cannot be increased indefinitely as a result of the onset of other nonlinear effects. 
During the past few years, methods such as distributed Raman amplification2 and optical pulse coding3 have been 
proposed to increase the sensing distance of BOTDA sensors, reaching ranges beyond 100 km with meter-scale spatial 
resolution. While the former method requires the use of high-power lasers to produce distributed optical amplification 
along the fiber2, the latter technique increases the signal-to-noise ratio of the measurements by launching a sequence of 
pulses into the fiber, followed by a data processing procedure to retrieve the single-pulse response of the fiber3. The 
coding spreads the energy over many pulses, but the response after processing is equivalent to a single pulse containing 
the summed energy of all pulses in the sequence. 
Known coding methods suitable for BOTDA applications employ unipolar (binary) pulse sequences, in which bits ‘0s’ 
and ‘1s’ represent the ON-OFF status of the light3,4, and hence, they can be easily implemented using standard intensity 
modulation. However, the acoustic wave decay time imposes some restrictions to standard coding methods, since pulses 
in a sequence can easily interact with pre-existing acoustic waves activated by preceding pulses in the same sequence5. 
To avoid distortions and maintain a linear Brillouin amplification, pulse coding has to be implemented using return-to-
zero (RZ) format5, allowing the acoustic wave amplitude to decay before other pulses are transmitted through the fiber. 
In this paper we propose a new method to modulate the pump signal in BOTDA sensors. The technique is based on the 
combination of intensity-RZ pulse sequences with single-sideband suppressed-carried (SSB-SC) modulation, following a 
pattern described by bipolar pulse sequences. The bipolar pulses make use of Brillouin gain and loss processes, 
mitigating the impact of pump depletion and increasing the intensity contrast of the measured BGS, while optimizing the 
energy in the sequence since all pulses are ON. Here we unambiguously demonstrate the feasibility of the technique 
using a complementary-correlation pair of bipolar Golay codes in a 50 km BOTDA sensor with 2 m spatial resolution, 
but the method can be perfectly adapted to any suitable bipolar codes. 
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2. SSB-SC MODULATION BASED ON BIPOLAR CODES FOR BOTDA SENSORS 
The limitations imposed to the sensing distance when short pump pulses are used (to provide high spatial resolution) 
have been partially overcome using optical pulse coding methods3-5, in which a large number of pulses are launched into 
the fiber, avoiding the use of high peak power levels that could potentially induce detrimental nonlinear effects. In this 
way, the intensity contrast of the BOTDA traces is increased, leading to measurements with enhanced SNR.   
Optical coding techniques for sensing applications are based on sequences of pulses which are intensity modulated 
according to specific unipolar (binary) codes, such as Simplex3 or Golay4 codes. These two coding methods have been 
found to be optimum when intensity pulses are used, providing practically the same SNR enhancement when using a 
large number of bits. The coding gain (which correspond to the SNR improvement) actually depends on the number of 
bits used in the sequences, and is given for such binary codes by: ܥ௚௔௜௡ ൌ  .where L is the code length ,2/ܮ√
Considering complementary-correlation Golay codes6, they are by definition bipolar codes consisting in sequences of ±1. 
Physical constrains have impeded the direct implementation of bipolar codes in systems based on intensity pulses; this 
limitation could be eventually overcome by modifying the bipolar Golay codes into unipolar (binary) pulse sequences6. 
Even though the unipolar Golay codes offers a lower coding gain with respect to bipolar Golay sequences (the coding 
gain of bipolar Golay is ܥ௚௔௜௡ ൌ  representing 3 dB more than the unipolar Golay codes) they have allowed the real ,ܮ√
implementation of the method in systems employing intensity pulses, such as OTDR and BOTDA sensors.  
In order to obtain a higher SNR enhancement, we propose in this paper the use of bipolar sequences (such as the original 
bipolar Golay codes6) in BOTDA sensors, making simultaneous use of the Brillouin gain and Brillouin loss spectra. This 
method can be implemented using a dual-parallel optical modulator7, in which high carrier suppression can be achieved 
using a proper DC bias, providing also the possibility to select either the lower- or upper-frequency sideband (using 
another bias voltage7). Thus, every bit of the bipolar code is transmitted in one of the single sidebands according to the 
patterns defined by the bipolar codes. Figure 1(a) shows the optical SSB-SC modulated spectra obtained with a dual-
parallel Mach-Zehnder modulator (DP-MZM) when the intensity level of either the upper- or lower-frequency sideband 
is maximized. Considering that the probe signal is spectrally placed at the suppressed carrier frequency (see Fig. 1), i.e. 
at the nominal laser frequency, both single sidebands can be symmetrically generated at equal spectral distance from the 
probe frequency. In this way, bits ‘1’ in the bipolar codes are generated using the upper-frequency sideband (inducing 
Brillouin gain in the probe), while bits ‘-1’ are in the lower-frequency sideband, inducing Brillouin loss. It is important to 
notice that in this configuration the pump-probe frequency detuning is maintained independently of the sign associated to 
the transmitted pulses, ensuring that the magnitudes of Brillouin gain and loss are indeed identical. Since the carrier of 
the SSB modulated pump and the probe signal counter-propagate in the fiber at the same frequency, carrier suppression 
is essential to avoid interference noise in measured BOTDA traces. Figure 1(b) shows an example of a pulse sequence 
corresponding to a 16-bit bipolar Golay codeword. The pulses at both lower- and upper-frequency sidebands and 
belonging to the same Golay sequence are illustrated by two different curves obtained by selective spectral filtering (in 
red and blue), to clearly identify the two frequencies involved in the implementation of the bipolar coded pump signal.  

3. EXPERIMENTAL SETUP 
The implemented BOTDA system using SSB-SC and bipolar coding is shown in Fig. 2. The light from a distributed 
feedback laser (DFB) at 1551 nm is split into pump and probe arms using an optical splitter. The probe signal is 
generated at the nominal laser frequency. A variable optical attenuator (VOA) has been used to adjust the probe power 

         
Figure 1. Principle of the SSB-SC modulation to generate a pump signal based on bipolar codes. (a) Spectra of the SSB-SC 

modulation obtained using a dual-parallel modulator. (b) Example of a single SSB-SC modulated 16-bit bipolar Golay codeword. 
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