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ABSTRACT 

An analytical model is presented to describe the behavior of the acoustic wave, probe signal and Brillouin gain in 
double-pulse Brillouin optical time-domain analysis (DP-BOTDA) sensors. The proposed model is a tool that provides a 
full physical insight into the Brillouin interaction occurring in this double-pulse configuration, and allows the 
optimization and complete analysis of the system. The proposed solution is experimentally validated in a long-range 
system, which is optimized to demonstrate experimentally, for the first time, the capability of DP-BOTDA to achieve a 
11 km sensing distance with 20 cm spatial resolution and a frequency resolution of 0.5 MHz. 
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1. INTRODUCTION  
During the last years the sensing capability of distributed optical fiber sensors to measure a physical variable along an 
optical fiber has attracted the attention of many industrial sectors. In particular, distributed strain and temperature sensing 
using stimulated Brillouin scattering (SBS) in a pump-probe configuration1 has been widely studied in both academia 
and industry. Unfortunately, using the standard time-domain approach, so-called Brillouin optical time-domain analysis 
(BOTDA) method, the best attainable spatial resolution is limited down to 1 meter, due to the response time of the 
acoustic waves involved in the SBS process. In order to achieve sub-meter resolution, several configurations have been 
proposed for the past decade. For instance, methods such as differential pulse-width pair BOTDA (DPP-DOTDA)2, 
Brillouin echoes (BEDS)3, pulse pre-pump BOTDA (PPP-BOTDA)4 or double-pulse BOTDA (DP-BOTDA)5 have been 
demonstrated to be suitable methods to achieve sub-meter resolution, reducing or even cancelling the well-known 
broadening of the Brillouin gain spectrum (BGS) occurring when short pulses (< 10 ns) are concerned. 

In particular, DP-BOTDA combines two pulses, which are sequentially launched into the fiber with a time difference 
shorter than the acoustic wave decay time, producing an interference pattern that narrows the actual Brillouin gain 
spectral response and increases the signal-to-noise ratio (SNR) of the measurement5. Nevertheless, the use of DP-
BOTDA to achieve centimeter-scale resolution has only been studied through numerical simulations based on the three-
wave SBS model5, and hence, to the best of our knowledge, the technique has never been experimentally implemented to 
achieve sub-meter resolution over long distances. In order to optimize the parameters of the pulses (such as pulse width 
and pulses interval) and to provide a better insight of the SBS process taking place in this double-pulse configuration, an 
analytical mathematical model could be of great interest. In Ref. 6 an analytical solution of the three-wave SBS 
equations has been proposed for a single pulse composed of three sections (the first section taking place from t=-∞ to 
t=0, the second one from t=0 to t=T, and the third section from t=T to t=∞). Even though such a model properly 
describes the SBS process in all single pulse schemes, it does not cover the double-pulse configuration, and therefore, a 
dedicated analytical model could be a useful tool to analyze, design and optimize DP-BOTDA systems. 

In this paper we present an analytical model that describes the behavior of the acoustic wave, probe signal amplitude and 
Brillouin gain in DP-BOTDA systems, considering arbitrary pulse widths and intervals. The validation of the model is 
carried out in an 11 km-long DP-BOTDA sensor, which is designed and analyzed with the proposed model. Thus, with 
the optimized double-pulse configuration, we demonstrate, for the first time to our knowledge, distributed measurements 
along an 11 km using a DP-BOTDA sensor with spatial / frequency resolution of 20 cm / 0.5 MHz. 
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Aiming at 20 cm spatial resolution, we have first calculated the response 
of a DP-BOTDA system using two pulses of 2 ns, and separated by τ = t2-
t1, which has been varied from 3 ns up to 7 ns. To provide a better 
understanding of the SBS process in this case, Fig. 2(a) shows the broad-
spectrum acoustic wave resulting from only one 2 ns pulse, and then the 
longer decay time after the passage of the pulse (including off-resonance 
oscillations). Then, the passage of second pulse generates a similar 
acoustic wave; however, since the pulse separation is shorter than the 
acoustic wave decay time, both acoustic fields superimpose, resulting in 
the acoustic field depicted in Fig. 2(b) (in the figure, τ = 4 ns). As we can 
see, the superimposition generates a pattern of destructive and 
constructive interferences that depends on the frequency detuning with 
respect to the peak gain. Fig. 3 illustrates the BGS resulting from the 
double-pulse configuration for several time intervals τ. We can clearly 
observe that for the resonance frequency (f = fB = BFS = 10.47 GHz), the 
in-phase generation of the acoustic waves leads to a constructive 
interference, while the acoustic fields interact destructively when the 
phase difference is π. Thus, for instance in case a pulse interval of 
τ  = 4 ns, the first destructive interference occurring in the frequency-
domain is at fB + 125 MHz (i.e. 2π×4 ns×125 MHz=π) and the peak of the 
first sidelobes (constructive interference) takes place when the phase 
difference is 2π, i.e at fB + 250 MHz (2π×4 ns×250 MHz=2π). We can 
observe that with longer intervals τ the main BGS lobe narrows, while the 
amplitude of the sidelobes increases due to the weaker interaction among 
both acoustic fields. We have found that a good trade-off between spectral 
narrowing and maximum acoustic-wave interaction occurs when the 
amplitude of the sidelobes is equal to half of the amplitude of the main 
lobe. This condition occurs when the pulse interval is about τ = 4 ns; and 
therefore, we have experimentally tested our model under such a pulse 
configuration. To evaluate this scheme, the parameters of the pump in 
Fig. 1 and Eq. (1) are: t1 = 5 ns, t2 = 9 ns, and T1 = T2 = 2 ns.  

Figures 4(a)-(b) show the BGS along the first few meters of fiber as a function of time and frequency. In particular 
Fig. 4(a) presents the calculated results while Fig. 4(b) reports the respective measured BGS. We can observe in both 
figures a first broad gain spectrum generated by the first 2 ns pulse (which enters into the fiber at t = 5 ns), and then the 
expected interference pattern occurring when the second pump pulse enters into the fiber at t = 9 ns. For a clearer 
comparison, a top-view of the respective BGS is shown in Fig. 4(c) (analytical calculation) and Fig. 4(d) (experiment). 
We can clearly see the good agreement between both the analytical results and the experimental data.  

If we consider that at the resonance frequency the optical fields generated by both the acoustic waves superpose 
constructively, the resulting power variation of the probe signal, measured at the receiver, is four-fold higher than the 
intensity contrast obtained by a single short pulse. This feature gives a significant advantage to the use of double-pulse 
configuration, since the system benefits from the quadratic detection of the optical intensity rather than being 
proportional to the optical field amplitude. This behavior can also be observed in the analytical results, which can be 
fairly compared to the measured trace, as evidenced in Fig 5.  

 
 

Figure 4. Brillouin gain spectrum along the first meters of fiber. (a) Simulated, and (b) measured spectrum. The respective top-views 
are shown in (c) simulations and (d) measured spectrum. 

   

 

 
 

Figure 2. Acoustic wave created in SBS 
process when using (a) a single 2 ns pulse, 
(b) two 2 ns pulses separated by τ = 2 ns. 

 

 
Figure 3. BGS narrowing in a DP-BOTDA 

sensor as a function of the pulse separation τ.
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With the optimized double-pulse configuration we have carried out distributed measurements along a 11 km-long 
dispersion shifted fiber (using 1000 time-averaged traces), obtaining a uniform pattern of interference in the measured 
BGS, as shown in Fig. 6(a). The BGS measured at 1 km distance has been compared in Fig. 6(b) to the analytically 
calculated spectrum. Although a slight asymmetry in the measured BGS can be observed (due to potential variations of 
the probe CW power as function of the frequency, resulting from the double sideband modulation; for more details refer 
to the setup in Ref. 7), a good agreement between experimental data and the analytical expression can be verified.  

Finally, in order to demonstrate the real spatial resolution of the implemented system, a hot-spot of 20 cm, and 10°C 
difference with respect to room temperature, has been measured near the fiber end (at ~11 km distance). Figure 7 shows 
both the BFS obtained by analytical calculation (Fig. 7(a), without noise) and the one measured in the experiment (Fig. 
7(b)). As we can notice in Fig. 7(a), the weak and broad-spectrum acoustic wave generated by the first pulse introduces a 
small inaccuracy in the BFS estimation before the real hot-spot is measured. This inaccuracy has been estimated to be 
nearly 0.2 MHz, which is in agreement with previously reported results5. This issue can be neglected in many practical 
cases, since in general the introduced error is expected to be lower than the accuracy given by the system noise. As a 
consequence, a simple fitting of the measured BGS is enough to obtain the spatial information related to the BFS. In our 
experiment, the frequency resolution has been obtained calculating the standard deviation of the measured BFS, resulting 
in about 0.5 MHz (representing a temperature and strain resolution of 0.5°C and 10 µε), which leads to a negligible 
impact of the first pulse, as reported in Fig. 7(b). The high SNR of the traces (~14 dB) at the fiber end indicates that 
measurements can be extended at least up to 25-30 km maintaining the frequency resolution in the 1 MHz-scale. 

In conclusion, we have proposed and experimentally validated an analytical model that explicitly describes the behavior 
of the acoustic wave and the probe signal in DP-BOTDA sensors. The presented analysis, based on analytical calculations 
and experimental results, points out that DP-BOTDA is a simple and attractive solution to achieve accurate high spatial 
resolution measurements, requiring a single trace acquisition and no additional devices compared to standard BOTDAs.  
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   Figure 5. Probe intensity in the first               Figure 6. (a) BGS measured along an 11 km fiber. (b) Comparison of simulated 

    meters of fiber at resonance (f = fB).                                  and measured BGS at 1 km distance 

0 5 10 15 20

0

0.5

1

Time [ns]

N
or

m
al

iz
ed

 in
te

ns
ity

 [a
.u

.]

 

 

Simulation
Experiment

10.2 10.3 10.4 10.5 10.6 10.7 10.8
0

0.2

0.4

0.6

0.8

1

Frequency [GHz]

N
or

m
al

iz
ed

 a
m

pl
itu

de
 [a

.u
.]

 

Simulation
Experiment

(b)

        
Figure 7. 20 cm hot-spot detection at 11 km distance using the implemented DP-BOTDA sensor. (a) Simulated and (b) measured BFS.
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