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Eduardo Huarte8, Craig R. Tomlinson5, Jiang Gui7, Jan L. Fisher1,5, Camilo E. Fadul1,5,

Joshua W. Hamilton9, Marc S. Ernstoff1,5*

1 Medical Oncology Immunotherapy Group, Section of Hematology/Oncology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, United States of America,

2 Department of Gastroenterology, Hepatology and Infectious Diseases at University Hospital of Tübingen, Germany, 3 Hannover Biomedical Research School,
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Abstract

Lymphocytes are a key component of the immune system and their differentiation and function are directly influenced by
cancer. We examined peripheral blood lymphocyte (PBL) gene expression as a biomarker of illness and treatment effect
using the Affymetrix Human Gene ST1 platform in patients with metastatic renal cell carcinoma (mRCC) who received
combined treatment with IL-2, interferon-?-2a and dendritic cell vaccine. We examined gene expression, cytokine levels in
patient serum and lymphocyte subsets as determined by flow cytometry (FCM). Pre-treatment PBLs from patients with
mRCC exhibit a gene expression profile and serum cytokine profile consistent with inflammation and proliferation not found
in healthy donors (HD). PBL gene expression from patients with mRCC showed increased mRNA of genes involved with T-
cell and TREG-cell activation pathways, which was also reflected in lymphocyte subset distribution. Overall, PBL gene
expression post-treatment (POST) was not significantly different than pre-treatment (PRE). Nevertheless, treatment related
changes in gene expression (post-treatment minus pre-treatment) revealed an increased expression of T-cell and B-cell
receptor signaling pathways in responding (R) patients compared to non-responding (NR) patients. In addition, we
observed down-regulation of TREG-cell pathways post-treatment in R vs. NR patients. While exploratory in nature, this study
supports the hypothesis that enhanced inflammatory cytotoxic pathways coupled with blunting of the regulatory pathways
is necessary for effective anti-cancer activity associated with immune therapy. This type of analysis can potentially identify
additional immune therapeutic targets in patients with mRCC.
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Introduction

Renal cell carcinoma (RCC) accounts for approximately 5% of

all malignancies. [1,2] Currently available treatment options for

patients with metastatic disease (mRCC) rarely result in a cure.

Although IL-2 based immunotherapy carries significant acute

toxicity, it is the only treatment to date, that results in durable

complete remissions in about 5% of patients. [3–5] Due to the lack

in understanding of both the complex interaction between the

tumor and the host immune system, and the host of factors that

lead to response to immune therapy, it cannot be as yet predicted

who will benefit from IL-2. While initial studies suggested that

tumors expressing high levels of carbonic anhydrase IX (CAIX), a

hypoxic inducible factor, respond better to IL-2 therapy, a

prospective trial failed to confirm this. [6,7].

Gene expression profiling, an important tool to study complex

biological processes, can map involved genes to known pathways

and thus is useful for hypothesis generation. [8,9] In this study we

used microarray technology to highlight differences in gene

expression of the peripheral blood lymphocyte population (PBL)

in mRCC patients compared to healthy controls. We further

evaluated PBL gene expression patterns for pre and post-therapy

from patients treated with a combined immunotherapy regimen

which resulted in a 50% clinical response rate. Since the PBL

includes most of the cellular subsets thought to participate in the

immune surveillance of cancer (T cells, B cells, and NK cells), this
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analysis can provide a comprehensive snapshot of immune status

using a simple tool and potentially complement measurements

made on tumor infiltrating lymphocytes. [8,10–12].

Materials and Methods

Treatment of Patients and Isolation of PBLs and Serum
Protocol D0238 (Phase II Clinical Trial with IL-2, IRN-a2a and

autologous dendritic cell (DC) tumor vaccination) and Leukaphe-

resis Protocol D9726 were approved by the Dartmouth College’s

Committee for the Protection of Human Subjects (CPHS).

As previously described, 18 informed and consented patients

(mean age 61 years, 5 females, 13 males) with advanced mRCC

were treated within a phase II clinical trial with IL-2, IFN-a2a and

autologous dendritic cell (DC) tumor vaccination. [13] All

procedures are conducted according to the principles expressed

in the Declaration of Helsinki. Briefly, peripheral blood monocytes

were cultured ex vivo into mature autologous tumor lysate loaded

DCs and frozen for future vaccines. Treatment consisted of 5

cycles of one intranodal vaccination of DCs, 5-days of continuous

intravenous infusion of IL-2 (18MiU/m2) and 3 subcutaneous

injections of IFN-a2a (6MiU) every other day. PBLs for

microarray analysis and flow cytometry, and serum samples for

cytokine analysis were obtained pre-treatment and post-treatment

(3 weeks after the 2nd of 5 vaccination cycles and 2 weeks after

completion of the 2nd cycle of IL-2 and IFN-a2a therapy). PBLs

were isolated from pheresis product by elutriation fractionation.

Since age is known to affect the status of the immune system, we

identified 9 older healthy donors who signed our CPHS approved

consent and underwent leukapheresis. [14,15].

PBL mRNA Extraction and Gene Microarrays
Total RNA was isolated from PBLs using RNAeasy kit

(Quiagen, Valencia, CA) according to the manufacturer’s instruc-

tion. Hybridizations were performed according to Affymetrix

guidelines (Affymetrix, Santa Clara, CA) at the Dartmouth

College Microarray Shared Resource. Biotin-labeled cDNA was

generated from 5.5 mg of total RNA and hybridized to the

GeneChipH Human Gene 1.0 ST Array. The stained array was

scanned at 532 nm using an Affymetrix GeneChip Scanner 3000.

Microarray analysis and description was carried out according

to Minimum Information About a Microarray Experiment

(MIAME) guidelines. The dataset has been deposited in NCBI’s

Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc = GSE34465) and is accessible through GEO

Series accession number GSE34465.

Flow Cytometry of Lymphocyte Subpopulations
Lymphocyte subpopulations were characterized by standard

five-color flow cytometry and analyzed with FlowJo software. [16]

Intracellular staining for IL-4 (R&D) and IFNc (BD Pharmingen)

was done following cell fixation and permeabilization and intra-

nuclear staining for FoxP3 (BioLegend FoxP3 kit) was done as

previously described. [13].

Luminex Assay for 27 Serum Cytokines
LuminexH fluorescent bead technology was used to measure

serum levels for 27 cytokines [IL-1b, IL-2, IL-4, IL-5, IL-6, IL-7,

IL-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17, basic fibroblast

growth factor, Eotaxin, granulocyte colony-stimulating factor,

granulocyte macrophage colony-stimulating factor, IFN-c, IP-10,

MCP-1 (MCAF), MIP-1a, MIP-1 b, platelet-derived growth factor

(PDGF), RANTES, tumor necrosis factor-a, vascular endothelial

growth factor]. Serum of 7 patients PRE (3 R, 4 NR) and 8

patients POST (4 R, 4 NR), as well as 5 healthy controls were

analyzed according to manufacturer’s protocol. [13] Due to

limitations in patients material serum could not be analyzed for all

patients.

Response Criteria
To determine how gene expression, lymphocyte subsets and

serum cytokine levels related to clinical outcome, we categorized

patients according to clinical response using RECIST 1.0 criteria.

[17] Overall objective clinical response rate for the total of 18

patients treated was 50% with three complete responses. The 17

pre-treatment patients included in our analysis were 9 R and 8

NR. Post-treatment, 13 patients (8 R, 5 NR) could be included in

our microarray analysis, due to limited availability of PBLs for this

time point.

Microarray Data Analysis & Statistics
Chip-quality was controlled with AffymetrixH expression

consoleTM. As the computational basis, open source R software

package (http://www.r-project.org) and tools from Bioconductor

(www.bioconductor.org) were used. Probe level data of raw

Affymetrix cell intensity (CEL) files were normalized and

summarized using robust multichip average (RMA). When

discussing gene expression, we refer to summarized probe set

expression values. Our analysis follows practices suggested by The

MicroArray Quality Control (MAQC) project augmented with a

novel exploratory use of k-means analysis in the context of

pathway analysis. [18–20] The MAQC recommends selection of

genes of interest based on a fold change cutoff combined with a

non-stringent p-value. We identified genes as differentially

expressed if they achieved: A) a fold difference between conditions

of 1.4 or greater and B) a t-test significance ,0.05 assuming

unequal variance. For comparison of serum cytokine levels as well

as surface marker expression, Student t-Test or Whitney rank sum

test was used to test for differences between groups. P,0.05 was

considered significant and values were expressed as mean 6 StD.

Biological Interpretation
Pathway analysis. Canonical pathways were generated

through the use of Ingenuity Pathway Analysis (IPA, Ingenuity

SystemsH, http://www.ingenuity.com) and Kyoto Encyclopedia of

genes and genome (KEGG) database. IPA provides computational

algorithms to identify and generate significant biological networks

and pathways that are particularly enriched with identified genes

of interest. The significance of the association between the data set

and the canonical pathway is measured by: 1) a ratio of the

number of molecules from the data set that map to the pathway

divided by the total number of molecules that map to the

canonical pathway. 2) Fisher’s exact test for p-value calculation,

determining the probability that the association between the genes

in the dataset and the canonical pathway is explained by chance

alone. We also performed independent Gene set enrichment

analysis (GSEA) for up-regulated and down-regulated gene lists to

test for enrichment of involved pathways. [21] KEGG and IPA

derive their data from published work. Since there is a recognized

lack of consistency between these two databases, [22] we focused

on pathways that are enriched in both platforms or in one

platform as well as in GSEA.

Clustering Analysis
Nonhierarchical unsupervised cluster analysis: K-means analysis

was used to identify candidate paths as follows: we identified 190

KEGG paths with at least 5 genes that mapped to our microarray
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probes. We used k-means as implemented in R to identify two

distinct sample clusters based on the gene expression values in

each pathway. Finally, we then used p values from Fisher’s exact

test to assess the strength of the association between k-means

clusters.

In addition, we used Manhattan distance to perform hierarchi-

cal unsupervised clustering. The degree of similarity using the

Manhattan distance tends to become larger for pairs of vector data

that are less similar, and outlying data are slightly emphasized.

[23].

Confirmation of Selected Genes with Quantitative Real
Time PCR

After reverse transcription of 1 ug total RNA using Quiagen

reverse transcription kit (Quiagen, Valencia, CA), quantitative real

time PCR was performed using the iCycler iQ Real-Time

detection System (Bio-Rad Laboratories, http://www.bio-rad.

com) and specific primer assays from Quiagen (Quiagen, Valencia,

CA, Table S1). GAPDH was used as house-keeping gene. PCR

analysis confirmed the gene chip expression data (Table S2).

Analysis of Gene Expression Data, PBL Subsets and
Serum Cytokine Levels

Analysis of gene expression (GE), serum cytokine levels (SCL)

and lymphocyte subsets (LS) was performed for disease effects by

comparing results for HD vs. mRCC patients PRE (GE: n = 9 vs.

17, SCL: n = 5 vs. 7, LS: n = 9 vs. 17). For analysis of treatment

effects mRCC patients PRE vs. mRCC patients POST results

were compared (GE: n = 17 vs. 13, SCL: n = 7 vs. 8, LS: n = 17 vs.

17). We also examined differentially expressed genes for R vs. NR

PRE and POST as well as R PRE vs. R POST and NR PRE vs.

NR POST (R PRE: n = GE:9, SCL:3, LS:8, R POST: n = GE:8,

SCL:4, LS:8, NR PRE: n = GE:8, SCL:4, LS: 9, NR POST:

n = GE:5, SCL:4, LS:9).

Results

Difference in Gene Expression, Serum Cytokine Level and
Lymphocyte Subsets of mRCC Patients vs. Healthy
Controls

The gene expression profiles of PBLs from patients PRE and

POST and from healthy donors (control) were all compared by

unsupervised hierarchical clustering using Manhattan distance

after mean centering for definition of hierarchy. This cluster

analysis revealed that patients with mRCC, both PRE and POST,

have a gene expression profile signature that is clearly distinct from

HD (Figure 1A). To identify key biological pathways altered in

mRCC patients, we used IPA. This platform identified pathways

reflecting an overall activation of the immune system (Figure 1B).

The most enriched pathway in PBLs was the polyamine regulation

in colon cancer pathway (p = 261027), which revealed the

transcription factor Myc as over-expressed in lymphocytes from

mRCC patients suggesting an overall increase in gene transcrip-

tion, as Myc may regulate up to 15% of all genes. [24].

Additional identified key pathways are involved in regulating

effector T cell activation. Supervised hierarchical clustering for T-

cell and B-cell receptor associated genes for all arrays revealed a

clear clustering of patients from healthy controls (Figure S1). On

closer inspection, the pathways that are up-regulated in association

with mRCC reflect a gene expression profile of enhanced

transcriptional activity and overall activation of innate and

adaptive immune pathways. The overall up-regulation of genes

in the cytotoxic T lymphocyte-associated antigen 4 (CTLA4)

signaling pathway (p = 561025 Figure 1B) suggests active inhib-

itory pathways in CD4 effector T cells or a potential TREG cell

involvement in mRCC patients. Among the top 5 most

significantly affected canonical pathways, we noted an increased

expression of genes associated with the cdc42 signaling pathway

but an overall decrease in genes associated with the eicosanoid

signaling pathway (Figure 1B) for mRCC PBLs. In addition,

GSEA showed activation of FoxP3 targets, as well as activation of

T-cell receptor signaling and TGFß-signaling for patients when

compared to HD (Figure 2).

A pattern of immune system activation in mRCC patients is

further supported by results from our serum-cytokine analysis of

27 immune relevant cytokines and chemokines. In serum from

healthy donors (n = 5), only 4 cytokines had detectable levels in

every healthy control (IL-6, IFN-c, PDGF and RANTES). 15

cytokines had higher levels in patients PRE serum compared to

serum from healthy controls (IL-1ra, IL-4, IL-6, IL-7, IL-8, IL-12,

IL-13, G-CSF, IFN-g, IP-10, MIP-1a, MIP-1b, PDGF, RANTES,

VEGF). 10 of these contrasts reached statistical significance

(Table 1). Up-regulation of PDGF-signaling was further supported

by the IPA results (Figure 1B). The significantly up-regulated genes

are important in T-cell, as well as B-cell development, activation

and proliferation (IL-1ra, IL-4, IL-6, IL-7 and RANTES),

angiogenesis (PDGF, VEGF), inflammation (MIP-1b, VEGF) or

are stimulated by IFN gamma (IP-10). Th1 as well as Th2 specific

cytokines were up-regulated, reflecting a state of immune

activation.

Lymphocyte subset analysis by flow cytometry showed that

mRCC patients had an up-regulation of CD4+ T-cells

(47.6615.6% HD vs. 61.7612.7% mRCC, p,0.05) and a

simultaneous down-regulation of cytotoxic CD8+ T-cells

(48.3614.7% HD vs. 35.8613.0% mRCC, p,0.05). Furthermore

regulatory T(TREG) cells, defined as CD25+FoxP3+ T cells

(CD3+CD4+) were significantly up-regulated in mRCC patients

(1.360.5% vs.2.961.0%, p,0.001). [13].

The properties of circulating T regulatory cells of the same

patients and healthy volunteers were evaluated separately com-

bining phenotype examination, DNA methylation analysis and

global transcriptome analysis. [25] Data from all three types of

analysis, microarray analysis, serum cytokine levels and cell subsets

based on FCM show patterns which are indicative of immune

activation including more inhibition and suppression of the

immune system in mRCC patients compared to healthy donors.

Treatment-related Effects on Gene Expression
To explore treatment-related effects on gene expression in

mRCC patients, in addition to unsupervised hierarchical cluster-

ing (Figure 1A), a supervised cluster analysis was performed that

revealed broad similarities in the gene expression profiles of

patients’ pre and post-treatment PBLs (Figure S2). We could not

discern a specific set of genes or key pathways that could

discriminate a treatment effect.

Gene Expression Profiles and Clinical Outcome
We investigated the data set for a gene expression profile that

could predict response to immune therapy by comparing the gene

expression of responders and non-responders pre-treatment PBL.

Supervised analysis of patient PRE data revealed broad similarities

in both groups of patients, as responders and non-responders

clustered together (Figure S3A). Furthermore, there were no clear

differences in the gene expression profile of patients POST PBL

that could be correlated with clinical outcome (Figure S3B).

To interrogate the data further we analyzed lists of differentially

expressed genes between R POST vs. R PRE (n = 8 vs. 9) as well

Gene Expression in PBLs of RCC Patients

PLOS ONE | www.plosone.org 3 December 2012 | Volume 7 | Issue 12 | e50221



Gene Expression in PBLs of RCC Patients

PLOS ONE | www.plosone.org 4 December 2012 | Volume 7 | Issue 12 | e50221



as NR POST vs. NR PRE (n = 5 vs. 8) with IPA. This analysis

revealed that T-cell (Figure 3A) and B-cell (Figure 3B) receptor

pathways were differentially regulated in responders and non-

responders upon treatment. Responding patients, as a group,

exhibit up-regulation of genes enriched for these pathways

(Figure 3 A and B, right) while non-responding patients seemed

to down-regulate those genes (Figure 3 A and B, left). This is again

complemented by flow cytometry results, where the subset of TH2

T cells (IL4+ % of CD4+) significantly increases with treatment

(PRE mRCC: 4.263.0% vs. POST mRCC: 8.967.1%, p,0.05)

and this effect is due to the subset of responding patients (PRE R:

4.863.7% vs. POST R: 12.068.1%, p,0.05) not the non-

responding patients (PRE NR: 3.662.2% vs. POST NR:

4.861.5%, ns).

Furthermore, genes associated with the CD28 and NFAT

signaling pathways were differentially expressed in responding and

non-responding subjects in POST vs. PRE comparison. The

CD28 co-stimulatory, nuclear factor of activated T cell (NFAT)

and HIFa pathways were relatively up-regulated in responding

subjects upon immunotherapy (Figure 4A–4C). Another key

pathway (IPA) differentially regulated in R vs. NR PBL was the

Flt3 signaling pathway (fms-like tyrosine kinase receptor-3) where

genes were overall down-regulated in non-responding patients but

up-regulated in responding patients (Figure 4D) as a result of

treatment. Unsupervised clustering of genes from this pathway

grouped POST responders and POST non-responders in 2

distinct groups (Figure 4D, bottom, left), suggesting that stimulat-

ing this pathway may be required to achieve a good clinical

response.

Our analysis of possible response related genes also revealed

that our immunotherapy regimen altered the CTLA-4 status of

responding patients. Whereas patients PRE compared to healthy

controls showed an activation of CTLA-4 signaling, this activation

appeared to be reversed in responding patients following

treatment. CTLA-4 pathway related genes in responders POST

PBL are down-regulated compared to POST PBL of non-

responding patients (Figure S4).

Subset analysis by FCM and cytokine multiplex results also

revealed differences between responding and non-responding

patient samples. The proportion of TREG cells in the PBL, a key

inhibitory cell subset, increases as a result of treatment for the NR

patients compared to the R patients. (R PRE: 1.561.0% vs. R

POST: 2.761.0%, NR PRE: 2.360.8% vs. NR POST:

7.062.8%). [13] Cytokine multiplex results showed an overall

treatment related increase in serum levels of anti-angiogenic factor

IP-10 (PRE 126671 pg/ml vs. POST 5216244 pg/ml, p = 0.002,

(Figure S5). Responding patients had higher levels of IP-10 in PRE

serum than non-responding patients (R 139641 pg/ml vs. NR

82644 pg/ml, p = 0.08). Baseline IP-10 levels have been shown to

correlate with clinical outcome in renal cell carcinoma and

hepatocellular carcinoma. [16,26] IP10 was the only serum

cytokine level measured which differed based on treatment or

response.

Discussion

Global immune dysfunction develops in many patients with

advanced tumor burden and alterations of the immune response

may compromise immunotherapeutic approaches. [27–30] To

investigate this further, we interrogated the gene expression profile

of immune cells in the peripheral blood compartment. In this

study, to corroborate microarray data, we measured the mRNA of

selected genes independently by quantitative real-time PCR. We

Figure 1. Comparison of gene expression of PBLs of mRCC patients and healthy controls following normalization of microarray
expression data. A: Microarray Data: The gene-expression profiles of PBLs from all patients (pre- and post-treatment) and from healthy donors
(control) were compared by unsupervised hierarchical clustering using Manhattan distance after mean centering for definition of hierarchy. Shown is
a correlative or adjacency matrix. A gene expression profile for each chip is calculated and compared with those of all other chips. The chips with
similar gene expression profile cluster together. Red denotes a large distance between gene expression of arrays; dark blue means no distance
(diagonal line). The largest distance can be detected for the comparison Control1 versus mRCC patient 16 Post. B: Ingenuity Pathway Analysis (IPA): A
list of highly altered pathways after comparing gene expression between healthy controls and patients pre-treatment. Percentage of genes (of all
known involved genes) altered in our dataset is shown on the top axis. Orange bars indicate up-regulation of genes and blue bars indicate down-
regulation of genes. The bottom axis shows the log p-value that indicates how significantly the identified genes are associated to the pathway. IPA
identified pathways reflecting an overall activation of the immune system as well as an alteration of T- and B-cell signaling pathways.
doi:10.1371/journal.pone.0050221.g001

Figure 2. Comparison of gene expression of PBLs of mRCC
patients and healthy controls following normalization of
microarray expression data. Gene Set Enrichment Analysis
(GSEA) was performed for 17 mRCC patients PRE (yellow
background, #10–26) vs. 9 healthy controls (grey background,
#1–9). GSEA uses a Kolmogorov Smirnov statistic to explore unique
gene signature of small groups of genes within a data set. Shown are
representative pathways that were up-regulated in the mRCC samples
(p,0.05).
doi:10.1371/journal.pone.0050221.g002
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also quantified serum cytokine levels by enzyme-linked immuno-

sorbent assay (ELISA) based multiplex analysis and determined

the proportions of key lymphocyte cell subsets by flow cytometry

analysis.

Our data show that the gene expression profile of PBLs in

patients with mRCC compared to healthy volunteers reflects an

inflammatory process with opposing signals: an increased expres-

sion of genes associated with T-cell activating pathways such as T-

and B-cell receptor signaling, as well as heightened expression of

genes involved in regulatory pathways such as CTLA4. This is

reflected in altered lymphocyte subsets in mRCC patients as well

as in increased serum cytokine levels. The overall gene expression

of patients post-treatment vs. patients pre-treatment did not reveal

relevant changes. This may reflect that the effects of mRCC on

immune status include pro-inflammatory signals as well as signals

that can inhibit anti-tumor responses. Our findings did not reveal

any clear predictive value in the gene expression profile of patient

pre-treatment PBL that could be correlated with outcome.

However, analysis of POST minus PRE changes in gene

expression in responders and non-responders demonstrated

differential regulation of regulatory and inhibitory pathways in

these two cohorts of patients and is supportive of the importance of

therapeutic targeting of such pathways. These findings underscore

the potential utility of gene expression signatures associated with

disease-specific immune pathways to identify immune therapeutic

targets in patients with cancer.

Twine et al. have reported disease-associated differences in the

gene expression profile of peripheral blood mononuclear cells

(PBMCs) from RCC patients compared to PBMCs of healthy

volunteers. [9] Similar to our observations they report an

induction of inflammatory-related genes. Correlation of fold

changes of the 132 m-RCC related genes identified in the Twine

dataset to fold changes for our data set revealed no similarities

(Figure S6), although clustering analysis applying the Twine gene

set, clearly discriminated our patients and healthy controls. The

differences in gene expression may be related to the source of cells

used for the two studies, PBMCs in the Twine study as compared

to PBLs used in our study, and may also relate to the pool of

healthy donors used for comparison in each study. [31] A meta-

analysis of 47 studies emphasizes the global predicting role of

systemic inflammatory response for relapse free survival in RCC.

[32].

In our study, further pathway analyses with Ingenuity revealed

an up-regulation of genes belonging to B-cell receptor and T-cell

receptor signaling pathways in mRCC patients compared to

healthy donors. The detected changes of genes in these pathways

are supported by the documented importance of T-cell function,

cell number, and specific T-cell functional pathways in the mRCC

literature. [27,33,34].

While we observed increased levels of cytokines in the serum of

patients with mRCC vs. healthy donors, [13] we were not able to

demonstrate a corresponding increased expression in peripheral

blood lymphocyte cytokine genes (data not shown). This suggests

that the cytokine production may originate from another source

(e.g. tumor infiltrating lymphocytes, RCC, endothelial cells,

macrophages) or that the clearance from circulation of these

cytokines is in some way diminished in patients with mRCC. The

increase of cytokine levels could as well be due to an increase

release of cytokines from internal compartments. [35].

We found treatment related up-regulation of 15 cytokines/

chemokines including interferon IFN-c inducible protein 10 (IP-

10), Interferon gamma (IFN-c), macrophage inflammatory protein

(MIP)-1b and regulated upon activation normal T expressed and

secreted (RANTES) in mRCC patient serum. Expression of these

four cytokines within hepatocellular carcinoma correlated with a

favorable prognosis. [26] This study of mRNA expression in

Table 1. Serum cytokine (27 plex) assay results.

Healthy control n = 5 Patients pre treatment n = 7

Limit of detection
[pg/mL] Mean [pg/mL] ± SD Mean [pg/mL] ± SD t-test p value

IL-1ra 1.4 13.2618.1 (in 2/5) 129.9638.5 0.111

IL-4 0.5 ,0.5 2.160.7 0.004*

IL-6 1.1 3.660.5 13.169.4 0.072

IL-7 0.5 3.663.9 (in2/5) 10.362.7 0.009*

IL-8 0.5 3.4 (in 1/5) 7.765.8 0.166

IL-12 0.5 ,0.5 2.661.9 0.326

IL-13 2.1 ,2.1 9.366.6 0.296

G-CSF 1.1 4.466.1 (in 2/5) 17.167.2 0.017*

IFN-c 1.0 7.063.1 16.664.0 0.025*

IP-10 6.5 8.8 (in 1/5) 106.9649.9 0.002*

MIP-1a 2.4 ,2.4 3.461.4 0.027*

MIP-1b 1.1 6.0 (in 1/5) 83.4624.6 ,0.001*

PDGF bb 1.0 1100.86764.3 6205.662242.2 ,0.001*

RANTES 1.2 2624.86772.9 5594.16908.3 ,0.001*

VEGF 0.5 7.867.6 (in 3/5) 123.4695.9 0.010*

*p,0.05.
Ten cytokines showed significant up-regulation in patients vs. healthy controls; 5 additional cytokines showed a clear increase in mRCC patients, but due to low sample
size and high standard deviations these contrasts did not reach significance. IL-1b, IL-2, IL-5, IL-9, IL-10, IL-15 and IL-17 had detectable values in very few of the 16 tested
samples and were thus excluded from the analysis and table.
doi:10.1371/journal.pone.0050221.t001
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Figure 3. Separate comparison of gene expression post-treatment versus gene expression pre-treatment for responding and non-
responding patients. Ingenuity pathway analysis suggests differences in regulation of T-cell (Figure 3A) and B-cell (Figure 3B)
receptor signaling. Most of the molecules in the B-cell as well as in the T-cell receptor pathway are down-regulated for non-responding patients
upon immunotherapy (POST ,PRE), whereas gene expression of the same molecules is up-regulated for responding patients (POST .PRE). Red: up-
regulation, Green: down-regulation.
doi:10.1371/journal.pone.0050221.g003
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hepatocellular carcinoma suggested that the anti-tumorigenic

activities of these cytokines may result from the recruitment of

tumor infiltrating lymphocytes to amplify the anti-tumor immune

responses. Another study of RCC tumor tissue revealed that Th1

cytokine expression, e.g. Interferon gamma induced cytokines like

IP-10, to be a favorable prognostic factor of survival after surgery.

[16].

There were no detectable global differences in the gene

expression profile of patients before (PRE) or after therapy

(POST) that could be correlated to response. The absence of

detectable treatment-related effects may be due to the timing of

the POST sample used for gene expression profile analysis. It is

possible that differences in gene expression are no longer

detectable at 2 weeks following treatment, when POST PBLs

were collected. Overall, these data suggest there are no lasting

effects in the PBL gene expression profile of patients after

treatment with DC-vaccine, IL-2 and IFN therapy.

However, further analyses revealed pathway-specific differences

in responders and non-responders. We observed an increase in

gene expression pathways that reflected more transcriptional

activity and enhanced T-cell responses and less co-stimulation in

responding patients, whereas non-responding patients had more

active immunosuppressive pathways. Our results confirm that

inhibitory pathways impact disease state and underscore the

importance of regulating these pathways while concomitantly

stimulating effector T cells for maximum clinical benefit.

Notably, in addition to up-regulation of genes associated with

lymphocyte activation pathways in responders, the CTLA4 gene

was less up-regulated in responders. We have previously shown

that the number of TREG cells induced by treatment correlates

with response in this cohort of patients and now we demonstrate

that the level of CTLA4 gene expression is altered and relates to

response as well. [36] CTLA4 manifold control of tolerance is

complex and involves competition with co-stimulatory molecules,

dysregulation of the immunological synapse, inhibition of inflam-

matory cytokines, and preservation of CD4+ TREG cell function.

[37] Therapies with anti-CTLA4 blocking antibodies have some

modest benefit in cancer patients. [38,39] Taken together with our

data, these studies suggest that suppressing CTLA4 signaling may

be necessary but not sufficient for robust clinical response in

cancer patients.

Gene expression of PBLs for responding patients also revealed

an up-regulation of the HIFa and Flt3 pathways, and cluster

analysis of genes in these pathways could discriminate NR from R

patients. Evidence has been provided that hypoxia may down-

regulate T-cell functions and an up-regulation of HIFa in

lymphocytes may contribute to more vigorous anti-tumor effect

at the hypoxic tumor microenvironment. [40] Flt3 is a tyrosine-

kinase receptor involved in the early stages of development of

hematopoietic cells. Flt3 is critical in the recovery of both B and T

cells following myeloablative therapy, and can promote myeloid

dendritic cell differentiation. [41–43] In contrast to its role in

hematopoietic malignancies, an increase in genes of the Flt3

pathway in responding patients suggests that the induction of

lymphopoiesis is an important step in stimulating anti-cancer

immune responses in solid tumors. Interestingly, other studies have

found that HIFa deficiency interferes with B and T cell function,

[44] while HIFa expression in immune cells promotes cell survival

and function. [45] These pathways may be useful biomarkers to

predict outcome if confirmed in larger prospective immunother-

apy studies.

Our goal of finding a predictive gene signature as a diagnostic

tool that correlates with clinical outcome may have been limited

by the small size of our study and the variation in the dataset due

to patient individuality. Even though multiple studies have shown

that expression profiling of the tumor itself can in principle be used

to develop classifiers that allow prediction of prognosis or

therapeutic responses, [46,47] it has been very difficult to translate

gene expression data into the clinic. [48,49] As have many others,

our study can distinguish between cancer patients and controls,

[8–10,50,51] but the use of expression profiling of PBL/PBMC of

patients as a surrogate biomarker in cancer will require much

more work e.g. gene signature monitoring under therapy in the

setting of much larger studies.

Nevertheless, we were able to observe differential regulation of

genes enriched in immune activation and regulatory pathways in

responding and non-responding patients upon immunotherapy.

This type of analysis remains promising for ultimately identifying

subpopulations of patients with unique potential to benefit from

specific targeted therapies. Knowing the disposition of each

patient’s immune system to activate regulatory or inflammatory

pathways upon immune therapy will select candidate patients for

e.g. a therapy with CTLA4-antagonist and IL2. Determining each

patient’s immune gene profile before therapy might guide the

decision for using immune therapy after a reasonable risk-benefit

assessment and therefore enhance therapeutic responses to

anticancer-immunotherapy by bolstering anti-tumor immune

responses.

Supporting Information

Figure S1 Supervised hierarchical clustering analysis
for T-cell and B-cell receptor associated genes of all
arrays was performed. Patients and healthy controls form

distinct clusters. This supports the finding of altered T- and B-cell

signaling and activation in mRCC patients.

(TIF)

Figure S2 Genes that were differentially regulated
between mRCC patients pre and post-treatment (based
on p,0.05, logFC .1,4) were selected for clustering
analysis that is displayed as a heatmap. (green means low

expression of a specific gene, red means high expression of a

specific gene) This supervised analysis shows no distinct grouping

of patient PBL gene signatures PRE and POST immunotherapy.

(TIF)

Figure S3 Supervised hierarchical clustering of re-
sponding versus non-responding patients (based on
p,0.05, logFC .1,4) is displayed as a heatmap for pre-

Figure 4. Comparison of treatment related changes in gene expression for responding versus non-responding patients (POST
minus PRE). Immune therapy leads to activation of stimulatory pathways in responding subjects. Examples of activated pathways are shown. The
CD28 co-stimulatory, nuclear factor of activated T-cell (NFAT) and HIFa pathways were relatively up-regulated (Figure 4A–4C) for responding subjects.
Another key pathway (IPA) differentially regulated in R vs. NR PBLs was the Flt3 signaling pathway (fms-like tyrosine kinase receptor-3; CD135) in
which genes were overall down-regulated in non-responding patients but up-regulated in responding patients (Figure 4D). To determine whether
the genes picked by ingenuity software are able to discriminate between responding and non-responding patients, we performed supervised
(selected genes) clustering analysis of genes important for Flt3 signaling. This clearly grouped responders and non-responders in 2 distinct groups
(Figure 4D), strengthening the IPA-result. Supervised clusters of pathways in 4A–4C led to similar results (data not shown).
doi:10.1371/journal.pone.0050221.g004
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treatment (3A) and post-treatment (3B) PBLs. No
distinct clustering of the two groups occurs.
(TIF)

Figure S4 Comparison of treatment related changes in
gene expression for responding versus non-responding
patients (POST minus PRE) and analysis with IPA.
Immune therapy leads to decreased expression of CTLA4 related

genes in responding subjects.

(TIF)

Figure S5 Peripheral blood serum concentrations for
the cytokine Interferon inducible factor 10, IP-10 for
healthy controls and mRCC patients PRE and POST
treatment as a group and split based on response (n: 5
healthy controls, 8 mRCC: 4 R PRE, 4 NR PRE, 4 R
POST, 4 NR POST). RCC patients show significantly higher

levels of IP-10. Responders have higher levels of IP10 PRE (ns,

p = 0.08). IP-10 serum levels increase with immune therapy in R

and NR. This increase is significant for the patient group (p,0.01)

and for the smaller group of responding patients (p,0.05).

(TIF)

Figure S6 Correlation between the Fold Changes of 132
RCC-associated transcripts identified in PBMCs by
Twine et al (1), and the corresponding fold change for
our PBL based data set. The analysis revealed no similarities

in gene expression levels which may be due to additional

monocyte derived cell types in the PBMCs.

(TIF)

Table S1 Primer assays for RT-PCR.

(DOCX)

Table S2 Validation of index genes with RT-PCR.
Differences in gene expression for patients vs. healthy
controls as well as PRE vs. POST seen in microarray
analysis could be confirmed with RT-PCR. Negative fold

changes in microarray analysis as seen on the right side for PRE

vs. POST correlate to corresponding RT-PCR fold changes. Two

methods of fold change calculation (difference vs. ratio) had to be

taken into account. Same RNA specimens were used for

microarray analysis and RT-PCR. A clear correlation between

relative expression values in RT-PCR with microarray analysis

could be shown for all tested genes.

(DOCX)
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