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1 Introduction

It is known since more than 20 years that an odd degree extension of finite
fields has a self-dual normal basis (cf. [14]). This result can be reformulated in
terms of G—forms, that is forms invariant by the action of a group G. It is easy
to check that the trace form of a Galois extension with group G is a G-form,
and the above result is equivalent to saying that this G-form is isomorphic
to the unit G-form. More generally, one can ask for the classification of trace
forms of extensions with group G as G—-forms.

It is more natural, and also more useful, to study this problem in the more
general framework of Galois algebras rather than just of Galois extensions.
This is the point of view of the papers [1]-]5], where some partial results
are proved. For instance, if G is a group of odd order, then any G-Galois
algebra has a self-dual normal basis (cf. [1], [2]). §2-5 of the present paper
contains a survey of the basic notions and results in this topic. Further results,
obtained for fields of characteristic # 2, are often formulated in terms of
cohomological invariants. This is the subject matter of §6, where the notion
of G -discriminant is introduced (this invariant is implicit in [5]). For the fields
of cohomological dimension 1 (for instance, finite fields) the G—discriminant
is a complete invariant.

In the case of extensions of finite fields, the G-discriminant can take at
most two values, hence there are at most two possibilities for the isomorphism
class of the G-trace form. This leads to the notion of semi-dual normal basis
(cf. §8) and the result that every extension of finite fields of characteristic
# 2 has either a self~dual normal basis or a semi-dual normal basis. Some
explicit models for the corresponding G—forms are given in §9.

2  Which Galois Extensions Have a Self-Dual Normal
Basis ?

As pointed out in the introduction, there are several ways of formulating this
question. In this section, we start with the most elementary one.
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Let k be a field, and let L be a Galois extension of k with Galois group G.
A normal basis of L over k is a basis of the form (g(€))q4eq, for some e € L*.
It is well-known that every Galois extension has a normal basis.

The extension L/k being separable, the trace form

qr: LxL—=k

qr(z,y) = trp i (zy)
is a non-degenerate symmetric bilinear form.
We say that a normal basis (g(e))gec is also self-dual if

qL(g(e), h(e)) = dg,n-

As we will see, not every Galois extension has a self-dual normal basis.
To my knowledge, the question of deciding which Galois extensions have a
self-dual normal basis was first raised in the context of finite fields, in the
book of McWilliams and Sloane [12]. It is proved in [12] that Fa» has a
self-dual normal basis over Fy provided n is odd. In the 80’s, this question
was taken up by several authors : Imamura [8], Beth-Fumy-Miihlfeld [6],
Morii-Imamura [13], Lempel [10], and Lempel-Weinberger [11]. This led to a
complete solution to the self~dual normal basis problem for finite fields, that
is (cf. [11]) :

Theorem 2.1. Let k be a finite field. Then an extension L/k of degree n has
a self-dual normal basis if and only if one of the following holds :

1. char (k) #2, and n is odd ;
2. char (k) =2, and n Z 0 (mod 4).

More recently, some other authors — in particular, Conner—Perlis [7], H.W.
Lenstra, Jr. — raised the question of the existence of self-dual normal basis
for more general fields. The following result of Lenstra extends th. 1.1. to
abelian extensions of arbitrary fields (cf. [3])

Theorem 2.2. Let L be a Galois extension of finite degree n over k, and let
G = (Gal)(L/k). Suppose that G is abelian.
1. Assume that char (k) # 2. Then there ezists a self-dual normal basis of

L over k if and only if n s odd.
2. Assume that char (k) = 2. Then there ezists a self-dual normal basis of

L over k if and only if the exponent of G is not divisible by 4.

In the case of Galois extensions with non-abelian group, no complete
criterion for the existence of self-dual normal bases is available. However, the
fact that extensions of odd degree always have a self-dual normal basis does

extend to this case.
Theorem 2.3. [1], [3] Every Galois extension of odd degree has a self-dual
normal basis.

The proof of this result uses a reformulation of the self-dual normal basis
problem in terms of G~forms. This will be the topic of the next section.
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3 A Reformulation of the Self~-Dual Normal Basis
Problem

Let k be a field, and let L be a Galois extension of k with group G. Let us
denote by k[G] the group algebra. The fact that L has a normal basis over k
can be reformulated by saying that the k[G]-module L is free of rank one, in
other words we have an isomorphism of k[G]-modules L ~ k[G]. It is natural
to look for a similar “structural" formulation of the existence of a self-dual
normal basis. This leads to the notion of G-form. Indeed, if qz is the trace
form of L/k then it is immediate that

qr(9z,9y) = qr(z,y)

for all g € G, and for all z,y € L. More generally, one defines the notion of
G-form as follows :

For any finite group G, a G-form will be a pair (V, q), where V is a k[G]-
module and also a finite dimensional k-vector space, and ¢: V xV = k a
non-degenerate symmetric bilinear form such that

q(g9z,9y) = q(z,y)

forall g€ G, and for all z,y € V.

We say that two G—forms (V, ¢) and (V', ¢') are isomorphic if there exists
an isomorphism of k[G]-modules f : V — V' such that ¢(fz, fy) = q(z,y)
for all z,y € V. If this is the case, we write (V,q) ~¢ (V',¢'), or g ~¢ ¢’ for
short.

The unit G-form will be the pair (k[G], ¢o), with

(IO(gs h) - (Sg,h-

The unit G-form will often be denoted by gy.
The reformulation of the self-dual basis problem is based on the following
fact :

Proposition 3.1. Let L be a Galois extension of k with group G. Then L
has a self-dual normal basis over k if and only if ¢1 ~c o

Proof. This is clear. O

We see that the question of the existence of a self-dual normal basis is
equivalent to a question about the structure of the trace form as a G-form,
namely whether it is isomorphic to the simplest possible G-form, the unit
G-form. More generally, one could ask for the characterisation of trace forms
of Galois extensions with group G as G—-forms. We will come back to this
question in a slightly more general context in section 5.
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4 0Odd Degree Extensions

According to th. 3, every Galois extension of odd degree has a self-dual
normal basis. The aim of this section is to outline a proof of this result, and
to stress the importance of base change (extension of the base field) in the
process. This again will lead us to look at the self-dual normal basis problem
in a different way.

Let L be a Galois extension of k with group G. We have seen that the
existence of a self-dual normal basis of L over k is equivalent to the existence
of an isomorphism (L, qr) ~¢ (k[G], g0)-

It is interesting to note that such an isomorphism always exists after a
finite base change. Indeed, let us look at the field extension L/k, and let us
base change the G—form (L,qy) to this field extension. We have L ®; L =
L x --- x L, the number of copies being equal to n = [L : k] = |G|. This is an
L{G]-module, the action of G being a transitive permutation on the factors.
The extension of the G—form g7, to L/k is the unit G form go over L. Hence
we obtain an isomorphism (L, q.) ®k L ~¢ (k[G], o) ®k L. The two G-forms
(L,qr) and (k[G), go) become isomorphic over the field extension L/k.

The above isomorphism holds independently of the value of the degree of
the field extension [L : k] = n. However, if this degree is odd, then we have
a result that enables us to deduce that the G-forms are already isomorphic
over k :

Theorem 4.1. [3] Suppose that char (k) # 2. If two G-forms become iso-
morphic over an odd degree extension of k, then they are isomorphic over
k.

Note that we recover th. 3 as a consequence of th. 5 :

Corollary 4.2. {1}, [3] Every Galois extension of odd degree has a self-dual
normal basis.

If char (k) # 2, then the corollary is an immediate consequence of th. 5.
The statement still holds for fields of characteristic 2, but the proof is less
direct, cf. [1].

It would be interesting to have an analogue of th. 5 for fields of charac-
teristic 2.

5 Galois Algebras

In the last section, we have seen that it is sometimes useful to pass to finite
extensions of the ground field. However, this operation does not preserve the
property of being a field extension. If L/k is a separable extension of finite
degree, and k'/k a finite extension, then L ®; k' is not a field in general. It is
a product of separable extensions of k', that is, an €tale algebra. If moreover
L/k is a Galois extension with group G, then L@, k' = L' x --- x L', where
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L'/K' is a Galois extension with group G’ C G. The group G operates on
L®i k', and the k'|G]-module L®; k' is still free of rank one. In other words,
we obtain a G-Galois algebra over k'. This notion can be defined in several
ways (cf. for instance [5], [9]). For instance, one can define it as follows :

Let k; be a separable closure of k. For any finite group G, we say that a
k-algebra L of finite rank with an operation of G is a G-Galois algebra over
kif Lrks = ks x---xk,g, and if the group G permutes the factors k, simply
transitively.

The category of G-Galois algebras is stable by base change : if L is a
G-Galois algebra over k, then L ®; k' is a G-Galois algebra over k'.

Let L be a G-Galois algebra over k. We still denote by ¢;, : Lx L — k the
trace form, defined as before by g1 (z,y) = (tr; . (zy). Then g is a G-form.

The split G-Galois algebrais Ly = kx:--x é, where G acts by permuting
the factors transitively. The trace form qr,, is isomorphic to the unit G-form
qo-

We see that the self-dual normal basis question is equivalent to asking
whether the trace form g of a Galois extension — or, more generally, of a
G-Galois algebra - is isomorphic as a G-form to the trace form of a specific
G-Galois algebra, namely Ly. More generally, it is natural to ask the following
questions :

Question 5.1. Let Ly and Ly be two G-Galois algebras over k. When do we
have
qL, ~c qL, ?

Question 5.2. Let q be a G-form. Does there exist a G-Galois algebra L such
that
gL =g q7?

In the case of groups of odd order, both questions can be answered :

Theorem 5.3. Let G be a finite group of odd order, and let L be a G-Galois
algebra. Then qr ~g qo.

The proof is the same as in the case of Galois extensions, cf. section 4.
For groups of even order, a few results are known, and the following sections
will give a survey of these. However, questions 7 and 8 are far from being
solved in general.

6 Cohomological Invariants

Classification results of quadratic forms are often formulated in terms of
cohomological invariants. It is natural to try this approach also for trace
forms of G-Galois algebras.

From now on, we always suppose that the field k has characteristic dif-
ferent from 2. Let k, be a separable closure of k, and set Iy, = Gal(ks/k).
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To any G-Galois algebra L, one associates a continuous homomorphism
¢r : Iy, = G (see for instance [5], 1.3.1.). Under this correspondence, the
isomorphism classes of G-Galois algebras are in bijection with the conjugacy
classes of continuous homomorphisms I'y, — G. The algebra L is a field if and
only if ¢, is onto; it is split if and only if ¢y = 1.

The homomorphism ¢;, can be used in several ways to attach cohomolog-
ical invariants to L, and to q;.

6.1 Galois Descent

Recall that if U is a smooth linear algebraic group over &, then one defines
a pointed set H'(k,U) = H' (I, U(ks)), cf. [14], L5. and IIL1. This pointed
set is very useful in classification questions when U can be identified as an
automorphism group. For instance, if U is the group of automorphisms of
the unit G-form qg, then H!(k,U) is in bijection with the set of isomorphism
classes of G-forms that become isomorphic to gy over k,.

Let - : k[G] - k[G] be the canonical involution of the group algebra k[G).
Recall that this involution is characterised by the fact that § = g~! for all
g €q.

For any commutative k-algebra E, set

Ug(E)={z € E[G] |zx =1 }.

Then Ug is a smooth linear algebraic group defined over k. It is immediate
that U is the group of automorphisms of go. Hence the isomorphism class
of q1, corresponds to an element u(L) € H'(k,Ug).

It is easy to give an explicit description of u(L). Let fr : It — Ug(ks)
be the composition of ¢, : I, — G with the inclusion G = Ug(ks). We can
regard fr as a 1-cocycle, and its class is u(L) (cf. [5], 1.5.3.).

Stated in slightly different terms, the map that associates to an isomor-
phism class of G-Galois algebras the isomorphism class of its trace form is
given by

H\(k,G) = H'(k,Ug).

This cohomological description shows that the trace form of a G-Galois
algebra determines the trace forms of all subalgebras of fized points of normal
subgroups of G (see also [5], 1.4.1.). Indeed, let L be a G-Galois algebra,
and let H be a normal subgroup of G. Let L' be the subalgebra L#. Then
L' is a G/H-Galois algebra. The canonical projection G~ G/H induces a
homomorphism Ug — Ugp, which in turn gives rise to a map

H(k,Ug) = H'(k,Ug/n).

This map sends u(L) to u(L').



Self-Dual Normal Bases and Related Topics 31

6.2 Mod 2 Invariants

Set H'(G) = H"(G,Z/2Z), H"(k) = H"([,Z/2Z). The homomorphism
¢ : Iy = G induces ¢7 : H"(G) — H"(k) for all integers r > 0. Set
zy = ¢3(z).

Proposition 6.1. ([5], 2.2.1.) Let L and L' be two G-Galois algebras. If
qL ~c qu, then x, = ry for all z € H'(G).

Corollary 6.2. Let L be a G-Galois algebra. If L has a self-dual normal
basis over k, then zp, = 0 for all z € H'(G).

This property does not extend to r > 1 in general (see [5], 10.2). However,
for certain groups it is possible to associate higher cohomological invariants
to trace forms of G-Galois algebras in this way. This is done in some cases
in [5], §§7 and 9 (see also §7 of the present paper).

Recall that H'(k) ~ k*/k**. Hence for any x € H!(G), we obtain an
invariant z;, € k*/k*2. This invariant is easy to describe in concrete terms.
Indeed, any non-trivial element of H!(G) determines a quotient of order 2
of G. Let K be the corresponding subalgebra of fixed points. Then K is
a quadratic subalgebra of L, and 2, is its discriminant. By the preceeding
remarks the trace form gg, and hence also its discriminant, are determined
by the G—form qy..

6.3 G-Discriminant

Reformulating the 1-dimensional cohomological invariant defined in the pre-
ceding section leads to the notion of G-discriminant. Let G? be the subgroup
of G generated by the squares. The quotient G/G? is an elementary abelian
2-group. The projection G — G/G? induces

dg : H'(k,G) - H(k,G/G?).

Recall that H(k,G) is in bijection with the set of isomorphism classes of
G-Galois algebras. The G-discriminant dg(L) of a G-Galois algebra is by
definition the image by dg of the cohomology class corresponding to L. With
this terminology, we obtain the following reformulations of prop. 10 and cor.
11:

Proposition 6.3. Let L and L' be two G-Galois algebras over k. If q1 ~¢
qr then dG(L) = dG(Ll)

Corollary 6.4. Let L be a G-Galois algebra over k. If L has a self-dual
normal basis over k then dg(L) = 1.

Note that H'(k,G/G?) = Hom(I;,G/G?), the set of continous homo-
morphisms Iy, = G/G?. As G/G? is an elementary abelian 2-group of rank
r, this is also the product of r copies of the square classes k*/k*2.
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7 Groups of Even Order

As in section 5, we suppose that k& is a field of characteristic # 2, and G is
a finite group. We have defined an invariant z;, € k*/k*? for all z € HY(G).
This invariant is an obstruction to the existence of self-dual normal bases.
Using this invariant, one can show the following :

Proposition 7.1. Let L be a Galois extension of k with group G. Suppose
that G has a quotient of order 2. Then L does not have any self-dual normal

basis over k.

Proof. By hypothesis, G has a quotient of order 2. Let K be the corresponding
subalgebra of fixed points, and let z € H!(G) be the corresponding cohomol-
ogy class. As noted in §5, the trace form gx of the quadratic subalgebra K
is determined by qr, and its discriminant is xy. As L is a field, K is also a
field. But the discriminant of a quadratic extension of a field of characteristic
# 2 is never trivial. Hence L cannot have a self-dual normal basis.

It is natural to ask whether this property extends to all groups of even
order. As the following examples show, this is not the case in general.

If G = PGL(F,), ¢ = +3 (mod 8), then H}(G) = 0, and H(G) has
order 2. Let us denote by z the non-trivial element of H2(G). 0

Proposition 7.2. Let G = PGLy(F,), with ¢ = £3 (mod 8). Let L and L'
be G-Galois algebras. Then qp, ~g qu+ if and only if xp = x .

Proof. see [5], 8.1. and 7.5.4. o

Corollary 7.3. Let L be a Galois extension of k with group G = PGLy(F,),
where ¢ = %3 (mod 8). Then L has a self-dual normal basis over k if and
only if L can be embedded in a Galois extension of k with group SLy(F,).

Proof. [5], th. 8.1.1. and Remarque.

If G = SLy(Fs) or G = Jj, the first Janko group, then H'(G) = H*(G) =
0, and H3(G) is cyclic of order 2. Let us denote by z the non-trivial element
of H3(G).
Proposition 7.4. Let G = SLy(Fs) or G = J1. Let L and L' be two G-
Galois algebras over k. Then qr ~g qr+ if and only if zf, = z:.

Proof. See [5], 8.2 and 7.5.4.

Note that the groups of prop. 15 and 17 have elementary abelian 2-Sylow
subgroups (of rank 2 and 3, respectively). More generally, if G has elemen-
tary abelian or quaternionian 2-Sylow subgroups then one obtains complete
criteria for the G-isomorphism of the trace forms of G-Galois algebras : see
[5], §§7, 8 and 9. The criteria can often be expressed in terms of higher co-
homological invariants. A survey of these results is given in [2], 7.7 and 7.8,,

as well as in [14], III, Appendice 2.
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8 Semi-Dual Normal Bases

We have seen in §1 that an extension of finite fields of char # 2 has a self-dual
normal basis if and only if the degree of the extension is odd. The aim of this
section is to propose a substitute of self-dual normal bases, called semi-dual
normal bases, for extensions of even degree.

Several of the results that we need for this are valid in a much more
general context. Even though the main emphasis here is on finite fields, we
will state the results in a greater generality.

As in the preceeding sections, k will be a field of characteristic # 2 and
G a finite group.

8.1 Fields of Dimension <1

Let k, be a separable closure of k, and set I'y, = Gal(ks/k). We say that the 2-
cohomological dimension of I is < 1, written cd2(I%) < 1, if H*([},C) =0
for all n > 1 and for all finite 2-primary I'x-modules C (cf. [14], II.3.). For
instance, finite fields have this property.

It is proved in [5], 2.2., that when cdq(I}) < 1, the criteria of prop. 10
and cor. 11 are necessary and sufficient. More precisely, we have :

Theorem 8.1. Suppose that cdz(I%) < 1. Let L and L' be two G-Galois
algebras over k. Then q1, ~¢ qi' if and only if x;, =z for allz € HYG).

Proof. See [5], th.2.2.3.

This can be reformulated as follows :

Theorem 8.2. Suppose that c¢d2(I}) < 1. Let L and L' be two G-Galois
algebras over k. Then q ~¢ qu+ if and only if dg(L) = dg(L").

Corollary 8.3. Suppose that cd2(I'k) < 1. Let L be a G-Galois algebra over
k. Then L has a self-dual normal basis over k if and only if dg(L) = 1.

We also obtain a converse of prop. 14 in the case where cda(I%) < 1:

Corollary 8.4. Suppose that cdz(I'x) < 1. Let L be a Galois extension of
k with group G. Then L has a self-dual normel basis over k if and only if
HY(G,u3) =0, i.e. G has no quotient of order 2.

The preceding results show that the G-discriminant provides a complete
invariant when cdy(I%) < 1. It remains to see which elements of H' (k, G/G?)
= Hom(I'k,G/G?) are realised as G-discriminants of G-Galois algebras. This
is done in [4] :

Theorem 8.5. Suppose that cd2{Ix) < 1. Then
de : H'(k,G) = H'(k,G/G?) = Hom(Ix,G/G?)

15 onto.
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Combining th. 18 and 22 we obtain (cf. [4]) :

Corollary 8.6. Suppose that cdo(Ix) < 1. Then the set of isomorphism
classes of trace forms of G-Galois algebras is in bijection (as pointed sets)
with Hom(I'k,G/G?).

Suppose that G is a cyclic group of even order. Then G/G? has order 2,
we have H!(k,G/G?) ~ k*/k*?, and the G—discriminant becomes

dg : H'(k,G) = k* Jk*2.

Suppose also that cd2([%) < 1. Then by th. 22, the G~discriminant is
onto. For all d € k*/k*2, there exist G-Galois algebras with G-discriminant
d. Let us choose a G-Galois algebra Ly with dg(Lg4) = d, and let us denote
Q4 = q1, its trace form. As the G—discriminant is a complete invariant (cf.
th. 19), the trace form of any G-Galois algebra is isomorphic to @4 for some
d. We have Q; = qo, the trace form of the split G-Galois algebra.

Note that in the case of cyclic groups, the G-discriminant coincides with
the usual discriminant of the étale algebra (cf. [4]).

If moreover k has only two square classes, k*/k*? = {1, D}, then there
are only two possible discriminants, hence only two possible G-trace forms,
@1 and Qp. By definition, L has a self-dual normal basis if and only if
qr. ~ Q1 (=qo). We say that a G-Galois algebra has a semi-dual normal
basis if g, ~ Qp. Hence every G—Galois algebra has either a self-dual normal
basis, or a semi—dual normal basis.

Extensions of even degree of finite fields satisfy all the above hypotheses,

hence we obtain
Proposition 8.7. Let g be an odd prime number. Then

1. If n is odd, Fyn has a self-dual normal basis;
2. If n is even, Fyn has a semi-dual normal basis.

The above results raise the problem of constructing explicit models for
Qp, and hence for semi-dual normal bases. This will be done in the next

section.

9 Models for G—Trace Forms

Let k be a field of char # 2, and such that cd2(I;) < 1. Let G be a cyclic
group, and let L be a G-Galois algebra over k with discriminant d. As usual,
we denote by gy, its trace form. If G has odd order, then L has a self-dual
normal basis over k and the G—form ¢y, is isomorphic to the split G—form
go- If G has even order, then no self-dual normal basis exists in general. In
particular, if L is a field, Galois extension of k with group G of even order,
then L does not have any self-dual normal basis over k. However, we saw in
§8 that the G-form ¢, is uniquely determined by the discriminant of L. In
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other words, gy, is isomorphic to a G-form that we denoted by Q4 in §7. The
aim of this section is to give explicit models for the G-form Q4.

All the above hypothesis are satisfied in the case of extensions of finite
fields, which is the main case of interest here. The essential case is the one
where G is a cyclic group of prime power order. We consider this case first,
and then come back to the case of arbitrary cyclic groups.

9.1 Cyclic Groups of 2-Power Order

Suppose that G is cyclic of order N = 27, and let o be a generator of G. Let
V be the free k[G]-module of rank one with k-basis e,...,en, satisfying
o(e;) = eiy1 (indices mod N). Let d € k*. Set a = 15%, and let Qq: V = k
be defined by Qq(ei,e;) = a + 1, Qales,e;) = (=1)/*Ilaif i # j. It is easy
to check that Q4 is a G-form and has determinant d.

Note that d = 1 if and only if @ = 0, and this happens if and only if Q4
is the unit G—form.

Expressed in coordinates, we have

Qd(‘Ylv' "7Xd) = 2i=1,...,N‘Y,‘2 + a(Xl . X2 +-- —XN)2.

Another possible model for Q4 gives a diagonal quadratic form, but it
is no longer expressed in a normal basis. It is obtained by writing k[G] as
k[X]/(XN 1), factorising X~ — 1 as a product of cyclotomic polynomials,
and decomposing k[G] accordingly. We obtain in this way a natural basis
fi,..., fn together with the action of 0. We have Qq(f;) = 1if i # 2 and

Qu(f2) =d.

Ezample 9.1. N = 8, a(f1) = fi, o(f2) = —f2, o(f3) = fa, 0(fa) = = fs,
o(fs) = fs, 0(fe) = f1, o(f1) = fs, o(fs) = — fs.

9.2 Arbitrary Cyclic Groups

Let G be a cyclic group of order mN, where m is odd and N is a power of
2. Then G has a unique cyclic subgroup H of order N. A model of Q4 for
the group G, denoted by QY, is obtained by taking the orthogonal sum of m
copies of a model QY for H.

Example 9.2. Let G be of order 2m, m odd. Let d = —1. A model for the
cyclic group of order 2 is obtained by o(e;) = e2, o(e2) = e1, quadratic form

given by the matrix . A model for Q4 will be the orthogonal sum of m

01
10
copies of this model. The quadratic form is then hyperbolic, and one might
call this basis a hyperbolic normal basis.



36 Eva Bayer-Fluckiger
References
1. Bayer-Fluckiger, E. : Self-dual normal bases. Indag. Math. 51 (1989) 379-383
2. Bayer-Fluckiger, E. : Galois cohomology and the trace form. Jahresber. DMV
96 (1994) 35-55
3. Bayer-Fluckiger, E., Lenstra, H.W., Jr. : Forms in odd degree extensions and
self-dual normal bases. Amer. J. Math. 112 (1990) 359-373
4. Bayer-Fluckiger, E., Monsurro, M., Parimala, R., Schoof, R. : Trace forms of
G-Galois algebras over fields of cohomological dimension < 2. (in preparation)
5. Bayer-Fluckiger, E., Serre, J.-P. : Torsions quadratiques et bases normales
autoduales, Amer. J. Math. 116 (1994) 1-64
6. Beth, T., Fumy, W., Miihlfeld, R. : Zur algebraischen diskreten Fourier—
Transformation. Arch. Math. (Basel) 40 (1983) 238-244
7. Conner, P., Perlis, R. : A survey of trace forms of algebraic number fields.
World scientific, Singapore (1984)
8. Imamura, K., On self-complementary normal bases of GF(q™) over GF(q).
Trans. IECE Japan E66 (1983) 717-721
9. Knus, M., Merkurjev, A., Rost, M., Tignol, J.-P. : The book of involutions.
AMS Colloquium Publications 44 (1998)
10. Lempel, A. : Characterisation and synthesis of self-complementary normal
bases in finite fields. Lin. Alg. Appl. 98 (1988) 331-346
11. Lempel, A., Weinberger, M.J. : Self-complementary normal bases in finite
fields. STAM J. Disc. Math. 1 (1988) 193-198
12. MacWilliams, J., Sloane, N.J.A. : The theory of error-correcting codes. North-
Holland, Amsterdam (1977)
13. Morii, A., Imamura, K. : A theorem that GF(2*™) has no self-complementary
normal basis over GF(2) for odd m. Trans. IECE Japan E67 (1984) 655-656.
14. Serre, J.-P. : Cohomologie galoisienne. 5éme édition, Lecture Notes in Mathe-

matics 5, Springer-Verlag (1964, 1994) ; english translation, Galois cohomol-
ogy, Springer-Verlag (1997).



