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Abstract 

Micro-scale solid oxide fuel cells (µ-SOFCs) constitute a promising power generation technology for portable devices such as 

aerospace exploration, medical devices and consumer electronics. Fuel cell systems include several functional units providing 

gas reforming, electrochemical power generation, and post-combustion of unused fuel. All such units require operation at 

controlled temperature with appropriate gases. Although various µ-SOFC components have been demonstrated, the evaluation 

of the thermal balance is cumbersome, as there is no micro platform providing thermal insulation, controlled heating, 

temperature control, and gas exchange. Our testing platform is designed for this purpose. It consists of two sealed glass 

substrates with integrated platinum thermistors for heating and temperature control, and channels to supply and evacuate 

gases. Its fabrication is compatible with silicon chip bonding. The heating elements are thick-film platinum thermistors allowing 

to heat up to 700°C. Efficient thermal decoupling along the carrier allows convenient low-temperature electrical and fluidic 

connections. A fluidic MEMS module – a prototype gas reformer - was bonded onto the carrier to demonstrate tight gas 

connections at elevated temperature.  

 
Keywords: micro-scale solid oxide fuel cell; gas processing unit; hydrocarbon reforming  

 
Introduction 

 

The demand for portable power storage and delivery systems has greatly increased in the past 

decades with the development of portable electronics such as portable computing devices, 

medical devices and personal electronic devices. To meet such needs, micro-scale solid oxide 

fuel cell systems (μ-SOFCs) are studied as an alternative, promising power generation 

technology [1]. As a solid-state device, the µ-SOFC electrochemically converts chemical energy 

into electrical energy, offering high energy density and fuel flexibility [2], which can employ 

common hydrocarbon fuel such as butane or propane with using an additional gas processing 

approach. This additional step in the µ-SOFCs aims to reform fuels to syngas (H2 and CO), 

avoiding coking at the μ-SOFC membrane and enhancing the working efficiency [3]. Moreover, it 

is reported recently that a high yield of syngas can be achieved through a catalytic partial 

oxidation (POX) of n-butane in a micro-reactor [4-6]. The POX is an exothermic reaction that can 

be used as start-up energy for the μ-SOFC [7]. However, no integrated micro-scale platform for 

testing the μ-SOFC and its gas processing is available so far, which prompted us to develop such 

a device in this work. The design and fabrication of the testing platform with integration of 
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fluidic connection, mechanical support and temperature regulation are presented, and its 

heating performance is examined using an in-house voltage regulation module. Finally, the 

performance of the gas connection is demonstrated by attaching a prototype gas forming MEMS 

unit.  

 

Design of a µ-SOFC testing system 

 

In order to test the µ-SOFC components reliably and accurately, the testing platform has to meet 

requirements including thermal regulation with an adequate power supply that can heat them 

up to the desired temperature. Additionally, the platform is supposed to provide a large degree 

of thermal decoupling between the high-temperature zone (hot end) hosting the component 

and the low-temperature zone (cold end) that allows the use conventional fluidic and electrical 

connections, rendering the testing easy and efficient. Therefore, we proposed a simple concept 

of sealing the part on a thermally matched and temperature-regulated glass carrier (Fig. 1). The 

carrier itself was soldered onto a thick-film ceramic base that allowed a reliable and well-

defined electrical and thermal interface to the testing jig (Fig. 2). The carrier was designed as a 

beam of dimensions 75 × 12 × 1.7 mm3, consisting of two pieces of aluminosilicate glass 

substrates (Schott AF32, Schott AG), one is in thickness of 0.5 mm thick and another one is 0.7 

mm thick, bonded by an additional sealing glass layer. The layout of the sealing glass layer 

consists of two rectangular shaped rings individually placed at the edge and inside the carrier, 

which defines two parallel inlet channels at the sides of the carrier and one outlet channel at 

the center, between both glass plates. This rather simple design was chosen over more 

advanced approaches such as three dimensional patterning of low-temperature co-fired ceramic 

(LTCC) [8-11], as it allows a wider selection of substrate materials in order to achieve close 

thermal expansion match with a wide range of parts, ranging from micromachined silicon to 

stabilized zirconia. The cross-section area of the inlet fluidic channel was proposed to be 2 × 0.2 

mm2 in order to minimize pressure drop of the inlet n-butane gas. Two holes with a diameter of 

2 mm were drilled at the hot end of the lid for connecting the µ-SOFC part, and another two 

holes with same diameter at the cold end were used for external gas connections (Figures 1). 

The part to be tested was glass-sealed onto the carrier, although other methods may be 

envisioned (metal-glass composite, nano-silver sintering, etc.). The temperature regulation was 

integrated onto the carrier by using a thick-film self-heating thermistor concept [12]. Here, two 

thick-film platinum heaters were deposited at the back side of the bottom glass substrate 

underneath the µ-SOFC part. These heaters also act as self-heating thermistors due to the 

positive temperature dependence of their resistance [13]. They were extended to the cold end 

by thick-film silver conductors, which also defined the solder pads allowing attachment and 

electrical interconnection to the ceramic base (Fig. 2). The use of silver conductors can reduce 

the overall resistance of the heating elements and optimizes the production cost. 



 3 

 

Figure 1 

 

 

Experimental 

Fabrication of the carrier 

In order to print sealing glass onto the designed carrier plates, a glass frit powder (Ferro IP760c, 

35% by weight) was made into a printable paste by mixing with organic vehicle (65% by weight) 

using a three-roll mill. The organic vehicle was made (by weight) of 57.1% terpineol (Fluka), 

23.8% bis (2-butoxyethyl)ether (Sigma-Aldrich), 14.3% triethylene glycol bis(2-ethylhexanoate) 

(Sigma-Aldrich) and 4.8% ethylcellulose (Sigma-Aldrich, "300 cps" grade, 48% ethoxy 

substitution of OH groups), which were mixed using a hotplate stirrer (Fisher Scientific, USA) at 

ca. 80°C and 300 rpm for 2 hours (Table 1). The figure 3 shows the process flow of assembling 

the carrier. The thick-film Pt thermistors (Heraeus CL11-6109) were first screen-printed (Aurel 

C900, Italy) onto the back side of the bottom carrier plate and fired in a belt furnace 

(Sierratherm, USA) at 850°C for 10 minutes with a ramp rate of 20 K/min (Fig.3-2). Secondly, as-

prepared sealing glass paste was printed onto both top and bottom glass substrates and dried at 

150°C for 10 minutes. Such a printing-drying cycle repeated 5 times. Then the glass substrates 

with the sealing glass were assembled together and sealed at 725°C for 20 minutes with a ramp 

rate of 20 K/min (Figure 3-3). A weight of 80 grams was placed onto the carrier with a contact 

area of 0.9 cm2 during the firing. A micro-fabricated fluidic MEMS device, consisting of a micro-

machined silicon part that is anodically bonded by a piece of Pyrex, was used to demonstrate 

the gas connections (Figure 3-1). After fabrication of the carrier and the MEMS device, a layer of 

sealing glass was printed onto the Pyrex side of the device, which was then placed and sealed 

onto the hot end of the carrier at 675°C for 20 min with ramp rate of 19 K/min (Fig.3-4). 

Afterwards, thick-film Ag conductors and solder pads were printed at the back side of the carrier 

using two types of Ag conductors (ESL 590-G and DuPont 6145), connecting the thick-film Pt 

thermistors and having solder terminals at the “cold” end (Fig.3-5). The conductors were then 

fired at 500°C for 20 minutes with ramp rate of 14 K/min. Finally, the resulting sample was 

attached onto a ceramic base (Fig. 3-6) via soldering (62% Sn + 36% Pb + 2% Ag by weight, 

Nordson EFD). Two fluidic connectors (Fig. 3-7) were glued onto the cold end using epoxy 

(STYCAST 2741 W1 – Catalyst 15, Emerson & Cuming). 

Table 1 

 

Figure 2 

 

Testing platform 
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The ceramic base with soldered carrier was installed onto an aluminum mechanical base (Figure 

2f). The printed circuit board for measuring the temperature of thick-film Pt thermistor was 

connected to the ceramic base through spring contacts, providing the electrical connection from 

an in-house made voltage regulate module (Figure 2e). Two pieces of thermal blocks (WDS© 

Ultra, thermal conductivity at 500°C: 0.027 W/m/K, Figure 2g) covered the carrier and the 

attached fluidic MEMS module. 

 

Figure 3 

 

Characterization 

The thickness of fired thick-film Pt thermistors and thick-film Ag conductors were characterized 

by a non-contact profilometer (BMT, Germany). The dimension of the sealing glass in the carrier 

and the fluidic channels in the carrier were analyzed by observing the carrier at its cross-section 

under a microscope (Leica M165C, Germany). 

 

The hermeticity of the glass sealing in the carrier was examined using the dye penetrating 

testing method. After the carrier was sealed, the dye (Allura Red AC, Sigma-Aldrich) was injected 

into the fluidic channels in the carrier and the sample was observed under the microscope. If 

there were cracks in the sealing glass, the dye would flow through the cracks which can be 

identified by the red color of the dye. 

 

The heating capability and thermal power of the system were characterized by the voltage 

regulation module. The temperature at the hot end of the carrier by heating the thick-film Pt 

thermistors is accurately calibrated by using a Pt1000 temperature sensor (Heraeus). Applying a 

22 V of constant voltage to the carrier, the temperature at the hot end is indicated by the thick-

film Pt thermistors, and that at the cold end is measured by a Pt1000 temperature sensor. The 

time and the electrical power consumed at the carrier to reach 600°C in steady-state were 

measured to analyze the heating rate and thermal power of the system. 

 

The assembled test module was connected to the gas supply and heated up from 500°C to 

550°C. The mixture of butane and air gas was used as the carried gas for testing the pressure 

drop. The volumetric flow rate of the carried gas at inlet and outlet was measured and 

calculated. The temperature of the testing gas at both inlet and outlet was assumed to be at 

ambient (≈22°C), because the external gas tube connections were longer than 20 cm, which 

could cool down the gas from the hot zone in the testing module efficiently. The pressure of the 

input gas was at 1.05 bar.  

 

Results and discussion 
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Figure 4 shows the two individual thick-film Pt thermistors that were fired at back side of the 

carrier. Their resistance values at room temperature are ca. 32 Ω for the large one and 22 Ω for 

the small one. The thickness of the fired thick-film Pt was measured to be 2.5 ± 0.4 µm, but 

some sinking into and intermixing with the glass is possible, impacting the electrical properties 

[14], as the glass transition temperature of both the glass frit in the thick-film Pt thermistors 

(600°C) and the glass substrate (717°C) are lower than the processing temperature (850°C) [15-

16]. The resulting high surface resistance of the thick-film Pt prompted the use of wide 

meanders (0.4 ~ 0.6 mm), which benefited on providing an efficient heat transfer to the glass. 

No crack between the thick-film Pt and the glass substrate was observed after the firing.  

 

Thick-film Ag conductors could not be fired together with the thick-film Pt at high temperature 

(ab. 650°C), as cracks were seen at the interface between the glass substrate and the thick-film 

Ag layer, especially at the overlap area between thick-film Pt and thick-film Ag (Figure 5). The 

cracks were ascribed to the mismatched thermo-stress between the low-melting glass frit 

content of the thick-film conductors and the substrate. The coefficient of thermal expansion of 

glass frit content in thick-film conductors products is usually higher than that of the used glass 

substrate (3.3 ppm/K) [17]. During firing, both glass frit and glass substrate become less viscous 

and inter-diffuse, possibly forming initial cracks upon cooling. Therefore, we circumvented this 

problem by post-firing the thick-film Ag conductors at a lower temperature, which successfully 

avoided the occurrence of observable cracks when firing below 600°C. Achieving good bonding 

to glass was possible to use the low-temperature firing thick-film Ag, ESL 590-G, which was 

bonded to the glass substrate at 500°C. In order to improve solder wetting behavior, another Ag 

conductor layer (DuPont 6145) with less glass frit content was overprinted and fired togather 

with the layer of ESL 590-G. This combination of two thick-film Ag conductors was successful in 

achieving crack-free conduction tracks and solder pads with an average thickness of 40 ± 5 µm 

and an average resistance of 0.2 Ω at room-temperature. The electromigration of the Ag thick-

film tracks can be a potential failure to the testing platform [18]. However, in this study, using 

thick film alloy conductor such as Ag-Pd or Ag-Au-Pd instead of the thick-film Ag materials is 

limited by their firing temperature (> 800°C), in which the thick-film Ag conductors cannot co-

fire with the thick-film Pt thermistor.  Therefore, to avoid the issue, the Ag thick-film conductor 

was only placed at low temperature region where the temperature below 300°C was observed. 

During the test, the average current density of 4.7 A/mm2 was reached and no electromigration  

damage of thick-film Ag was observed after operating several hours. Such an issue needs to be 

further investigated when the platform is running in long term basis. 

 

Figure 4 
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Figure 5 

 

Figure 6 

 

Figure 7 

 

Two glass rectangle rings with a width of 0.5 mm were used to bond both the carrier plates and 

form separate inlet and outlet fluidic channels (Figure 4, sealing glass = white contrast). A crack-

free and hermetic glass seal is desired in order to inhibit any unwanted intermixing of gas. The 

hermeticity of the glass sealing was determined by the sealing glass paste during the screen 

printing, the sintering process, the CTE of both used glass frit and substrate as well as its 

geometry design [19]. The properties of the sealing glass paste and the sintering process were 

investigated in this study. To achieve a reliable seal and avoid bubble formation, 

evaporation/burnout of the organic vehicle of the sealing glass paste has to be progressive and 

complete before densification of the glass by sintering and flow. Using rather high amounts of 

plasticizer in the paste allows it, in the dried state, to conform to the seal under the influence of 

the weight, reducing the degree of required flow upon firing. Long sealing time at high 

temperature (> 10 minutes) and using weights improve glass flow, but can have the adverse 

consequence of deforming the glass substrates and/or breaking the carrier [20]. Here, the best 

results were obtained by sealing the carrier at 725°C for 20 minutes with a weight of 80 grams; 

no cracks were observed in the sealing glass layer as verified by the dye penetration test, as 

shown in Figure 6. The fabricated carrier was cross-sectioned and observed under the 

microscope. It was observed that the thickness of the inlet fluidic channel is 0.15 ± 0.01 mm and 

its width is 2.71 ± 0.02 mm (Figure 7). Using the cross-section area of the fluidic channel, the 

Reynolds number for the n-butane gas is 5, indicating the gas flow will be laminar. The pressure 

drop of the inlet n-butane gas was estimated at 228 mbar given by the viscosity of n-butane (7.4 

µPa∙s at 1.013 bar and 20°C) and the flow rate (30 ml/min) according to equation (1) and (2). 

 

Equation 1 

Equation 2 

 

The advantage of the slender bridge design of the carrier is to greatly decouple the thermal 

conduction along the bridge direction. Figure 8 shows the temperature at the hot and cold ends 

of the carrier on which the thick-film Pt thermistors were applied a constant voltage of 22 V. The 

hot end on the carrier easily reached 500°C in 3 minutes and finally achieved 700°C after 10 

minutes, while the cold end stayed below 50°C all the time. The thermal loss along the carrier is 

limited by the high thermal resistance of the Schott AF32 glass substrate (linear thermal 

conductivity 1.16 W/m/K), ensuring that conventional low-temperature fluidic and electrical 
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connections can be used at the cold end. Although the maximum heating capability of the test 

module can reach 700°C, continuous operation above 650°C is not recommended, because the 

temperature would lie close to the softening temperature of both glass frit and AF32 glass 

substrates, potentially leading to mechanical failure for the device [21,22]. However, such a 

heating capability of the carrier was totally adequate for the temperature requirement of high-

temperature testing and reliability characterization of various devices envisioned for application 

in the 400-600°C range, such as MEMS for µ-SOFCs, catalytic oxidation of hydrocarbons for 

hydrogen generation, as well as electronics and sensors for harsh environments. For testing the 

proper working of the gas channels and device bonding, the pressure drop across a catalytic 

MEMS chip supplied with a gas mixture of air and butane was measured, while the module was 

heated up from 500°C to 550°C at constant flow rate. At 500°C, the pressure drop of the test 

module was 213 mbar. As the temperature rose, the pressure drop increased to 225 mbar at 

525°C and 238 mbar at 550°C. This drop exceeds the effect increasing viscosity. It is therefore 

believed that the butane was decomposed in the fluidic MEMS device, resulting in expansion of 

the volume of the carrying gas and thereby of the pressure drop, in agreement with 

observations made in ref. 7. 

 

Figure 8 

 

 

Figure 9 describes the power consumption of the thick-film Pt thermistors as temperature 

increased to 600°C. The temperature at the hot end increased rapidly to 550°C, and then slowly 

reached the target steady-state temperature without overshooting after 12 minutes. The overall 

power consumption was somewhat over 12 watts in the fast heating-up stage and finally 

stabilized at about 5 watts, indicating that the system has a relatively good thermal insulation. 

The power consumed in the system was lost by heat transfer in three manners, namely 

conduction, convection and radiation. Using a high-reflectance coating inside the thermal 

insulation such as aluminum foil or silver can reduce the heat transfer from the radiation in 

order to further decrease the power consumption [23].  

 

Figure 9 

 

Conclusion 

We have developed a micro-scale testing platform for characterizing fluidic MEMS modules at 

high temperature for applications such as µ-SOFCs or hydrogen generation technology. The 

carrier in the testing platform offers self-heating temperature regulation capability, convenient 

low-temperature fluidic and electrical connections, as well as facile hermetic attachment to a 

micro-fabricated MEMS module. Using thick-film Pt self-heating thermistors, the system can 
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easily reach 700°C at the hot end, where the device is attached, while the cold end stays below 

50°C. The total power consumption is 5 W when the system reaches 600°C in 12 minutes. The 

study suggests that the power consumption can be further lowered by means of cutting 

radiation from the hot end. In future, the µ-SOFC components and the hydrogen reforming 

through partial oxidation of the hydrocarbon gas will be investigated using the testing platform. 
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Tables 
 

Table 1 Fabrication process of GPU with its carrier 
Step Screen printing Drying 

temperature and 
time (°C / min) 

Peak temperature 
(°C) 

Time 
(minutes) 

Fired 
thickness 

(µm) 

I 
Platinum 

(CL11-6109) 
120 / 10 850 10 2.5 ± 0.4 

II 
Sealing glass 

(IP760) 
150 / 5 725 40 150.0 ± 10.0  

III 
Sealing glass 

(IP760) 
150 / 5 675 40 N.A. 

IV Silver (590-G) 120 / 10   
40.0 ± 5.0 

V Silver (DP 6145) 120 / 10 575 40 

 

Table(s)



Figures 
 

 
Figure 1 Schematic of high temperature testing carrier concept for testing SOFC components 

 

 
 

Figure 2 Photograph of assembled testing platform (a: a fluidic MEMS module, b: a carrier, c: a 
ceramic base, d: fluidic connectors, e: temperature measurement circuit board for the thick-film 

Pt thermistor, f: an aluminum mechanical base, g: a thermal insulation block). 
 

Figure(s)



 
Figure 3 Process flow chart of assembling the testing carrier with a fluidic MEMS module 

 



 
Figure 4 Photograph of top and bottom views of the testing module including a fluidic MEMS 

module, a carrier with fluidic connectors and a ceramic base. 
 
 

 
Figure 5 An image of back view of cracks at the interface between thick-film Ag conductor and 

thick-film Pt thermistor after co-firing at 850°C for 10 minutes with a ramp rate of 20 K/min. 
 



 
Figure 6 Photograph of dye penetrating testing results on the carrier after the glass sealing 

process. The main image is a magnification of the entire carrier that was shown right-below, 
demonstrating the crack-free sealing was obtained. 

 

 
Figure 7 An image of cross-section of fluidic channels in the carrier with measured value of 

channels width and height. 
 



 
Figure 8 Temperature at the hot (red) and cold (black) ends on the carrier at 22 V of voltage 

supplied by the in-house made voltage regulator. 
 

 
Figure 9 Power consumption and temperature of the thick-film Pt self-heating thermistor at the 

carrier that is supplied by a voltage regulator whose maximum voltage supply is 22 V. 
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