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Abstract
ABSTRACT (ENG). The thesis describes how demixing of binary colloidal mixtures could be

used to design new kinds of amorphous structures. We show that a rich phase behavior

emerges, dependent on density (colloidal concentration) and composition (species relative

populations). A simple model is adopted for the colloidal particles, which are assumed to be

hard spheres interacting via an effective short-ranged attractive square-well (SW) potential.

We show that demixing - due to composition fluctuations - can strongly interfere with typi-

cally dominating condensation mechanism - due to density fluctuations,- if the inter-species

attraction is significantly reduced with respect to intra-species one. Thermodynamic pertur-

bation theory (TPT) calculations and extensive numerical simulations have been performed

on binary mixtures of the SW model.

In the whole range of compositions and densities, we demonstrate how the enhancement of

demixing over condensation brings to distinctive properties of the arrested structures. If the

population of one colloidal species largely exceeds the other (asymmetric composition), the

typical condensation mechanism dominates and brings to the percolation of only the main

species. Instead, demixing separation prevails approaching the symmetric composition, and

results in two interpenetrating sub-gels, both percolating. We name this structure a BiGel.

The formation of BiGels has been analyzed in the thesis, pointing out structural differences

and similarities with the usual one-component gel. In particular, we implemented a novel

method that enables an explicit topological characterization. Despite the sub-gel branches of

a BiGel present longer and thinner arms, we quantified the resemblance of gels and BiGels at

large length-scales in light of their congruent porosities.

Furthermore, we propose an experimental exploration of the dominant demixing scenario.

The possibility is offered by the fine tuning of inter-species interactions that can be achieved

in DNA-coated colloids (DNACCs). Thus, the numerical investigation is complemented with

experiments on symmetric mixtures of DNACCs and the proof of BiGel’s actual realization.

The main result of the thesis is the demonstration that, in presence of tunable inter-particle

interactions, phase separation driven by the demixing mechanism can be arrested in the

same fashion as condensation. We show how to enhance the demixing and demonstrate, by

simulations and experiments, the possibility of multi-component gelation. Notably, com-

plex structures result without requiring complex architectures of the single particles, nor

anisotropic potentials, as isotropic spherical colloids already constitute suitable building

blocks. Hence, the results and ideas here presented may find application in the design and

development of novel types of materials.
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RIASSUNTO (ITA). La tesi descrive come il demixing di miscele colloidali binarie possono

essere utilizzate per nuovi design di strutture amorfe. Mostriamo che un ricco comportamento

di fase emerge, dipendente dalla densità (concentrazione di colloidi) e dalla composizione

(popolazioni relative delle specie). Adottiamo un semplice modello di sfere dure interagenti

tramite un potenziale efficace, square-well (SW, buca rettangolare) ed attrattivo a corto raggio.

Mostriamo che il demixing - dovuto alle fluttuazioni in composizione - può fortemente inter-

ferire con il meccanismo tipicamente dominante di condensazione - dovuto alle fluttuazioni

di densità,- quando l’attrazione inter-specie è significativamente ridotta rispett oa quella

intra-specie. Calcoli di Teoria di perurbazioni termodinamiche (TPT) e estensive simulazioni

numeriche sono state eseguite per miscele binarie del modello SW.

Dimostriamo per una vasta gamma di composizioni e densità come il prevalere del demixing

sulla condensazione porta a proprietà distintive delle strutture arrestate. Se la popolazione di

una specie colloidale eccede largamente l’altra (composizione asimmetrica), allora il tipico

meccanismo di condensazione domina e porta alla percolazione della specie principale. Il

meccanismo di demixing invece prevale per una miscela più simmetrica, la cui aggregazione

risulta in sotto-gel interpenetranti ed entrambi percolanti. Chiamiamo questo tipo di struttura

un BiGel.

Nella tesi la formazione dei BiGel è stata analizzata, chiarendo le differenze e somiglianze

strutturali con l’usuale gel mono-componente. In particolare, abbiamo implementato un

nuovo strumento che permette l’esplicita caratterizzazione della loro topologia: nonostante

le ramificazioni dei sotto-gel costituenti un BiGel presentino braccia più lunghe e fini, noi

riusciamo a quantificare la somiglianza a larga scala dei gel e dei BiGel alla luce dei loro simili

valori di porosità.

Proponiamo inoltre uno studio sperimentale nel caso in cui il demixing sia dominante: la

possibilità ci è offerta dalle interazioni inter-specie regolabili realizzabili con colloidi funzion-

alizzati in superficie con DNA (DNA-coated colloids, DNACCs). La trattazione numerica e

teorica trova quindi complemento negli esperimenti svolti su miscele binarie di DNACCs e,

conseguentemente, nell’evidenza fornita dalla concreta realizzazione del BiGel.

Il principale risultato della tesi consiste nella dimostrazione che, potendo regolare le inter-

azioni fra particelle, il processo di separazione di fase docuto a demixing può essere arrestato

allo stesso modo che nel caso di condensazione. Mostriamo come far prevalere il demixing e

dimostriamo, con simulazioni e sperimentalmente, la possibilità di ottenere gel di miscele

multi-componente. Considerevole è anche la realizzazione di strutture complesse che non

richiedono particelle con struttura di per sé complessa, né richiedono potenziali anisotropi:

colloidi sferici isotropi sono già elementi sufficienti. Di conseguenza, i risultati e le idee qui

presentate possono sperabilmente apportare impulso nuovo allo sviluppo, design e appli-

cazione di nuovi tipi di materiali.

Keywords: COLLOID, GEL, THERMODYNAMIC PERTURBATION THEORY, DEMIXING, BIGEL, PER-

COLATION, TOPOLOGY, DNA-COATED COLLOID
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1 Introduction.

SIMPLE LIQUIDS. The study of liquids and their properties have attracted and attract the

attention of researchers from different scientific and industrial domains, for both the ubiquity

of the processes involved and for the fascinating, underlying physics. The theories of statis-

tical mechanics, are readily applicable to liquid systems. In the passage from a continuous,

macroscopic description to a microscopic, local interpretation, liquids have been originally

based on simple model entities, the “particles”. These are general, elementary building blocks

of liquids. The definition of “liquid” itself intimately depends on the kinetics and the spacial

configurations taken by a vast quantity of such building blocks.

Even at densities where their movement results as slow as in solids, still the structure can

present non-crystalline features. A crystal can be considered as a spatially inhomogeneous

fluid that is periodically modulated, while liquids are translationally invariant fluids, similarly

to gases, but can still present short- and long-range correlations between the constituent

particles. When very dilute systems of particles are considered, what differentiate a liquid

from a gas is the impossibility for the particles to overcome the attractive forces that hold them

together. Unlike gases, liquids cannot expand indefinitely if unconstrained.

When the particles composing a liquid are considered to be identical and interacting through

a radially symmetric, pairwise additive potential V (|~r |) - for each particles pair at distance

~r - then the kind of system under study is named1 a “simple liquid”. Examples of simple

liquids are water, ethanol or metallic glasses [Greer (1995); Banerjee et al. (2009)], and typical

examples for the particle models are the hard sphere or the Lennard-Jones potentials [Hansen

and McDonald (2006)].

COLLOIDAL SOLUTIONS & SOFT MATTER. The domain of liquids and of their constituents

includes a large variety of systems, whose distinctive peculiarities have been rationalized into

the unified view of soft matter [Gompper et al. (2008)]. The Fig. 1.1 depicts the continuum of

materials, classified accordingly to the components characteristics and arranged in a triangle.

1Despite the long history and the apparently obvious definition, nowadays is still debated if such a definition
for simple liquids is sufficient or if, instead, a more quantitative definition could or should be used [Ingebrigtsen
et al. (2012)].
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Chapter 1. Introduction.

From left to the right, it describes their amphiphilicity, while from the top to the bottom it

describes their elongation. Great relevance as a soft matter have dispersions of particles called

colloids, at the bottom-left of the triangle. In the thesis we focus on these constituent particles.

Figure 1.1: The main components of Soft Matter systems are shown arranged in a triangle,
from [Gompper et al. (2008)]. This provides an ideally continuum of molecules and materials
which fills the space between spherical colloids, flexible polymers, and surfactants.

For a large variety of applications, colloids can be described by means of spherical, isotropic,

pairwise potentials: colloidal suspensions are then simple liquids. The term colloidal refers to

a state of separation of matter and can be referred to a wide variety of materials. The IUPAC

definition of colloidal particles reads in fact [Everett (1972)]: “The term refers to a state of

subdivision, implying that the molecules or polymolecular particles dispersed in a medium

have at least in one direction a dimension roughly between 1 nm and µm, or that in a system

discontinuities are found at distances of that order.”

This classification includes an astonishingly vast number of systems, as illustrated in Tab.1.1.

Among all these possible combinations, the colloidal solutions in which solid or semi-solid

particles are suspended into a continuous liquid solvent, represent a fundamental case.

Besides their practical use, colloidal systems have been used as a model to test several theoret-

ical predictions [Carpineti and Giglio (1992); Poulin et al. (1999); Ramakrishnan et al. (2002);

Anderson and Lekkerkerker (2002)]. In statistical mechanics, their use as benchmark has

been fundamental, for example, to test the static and dynamical properties of the hard sphere

model that, before the modern evolution of colloidal synthesis, may have been considered a

toy model [Lancon et al. (1982); Pusey et al. (1989)].

As aggregates, colloids also represent a prototypical reference for soft matter. More than

2



Solute Solvent Notation Technical name Examples
Solid Gas S/G Aerosol Smoke
Liquid Gas L/G Aerosol Hairspray, mist, fog
Solid Liquid S/L Dispersion or Sol Printing ink, paint
Liquid Liquid L/L Emulsion Milk, mayonnaise
Gas Liquid G/L Foam Fire-extinguisher foam
Solid Solid S/S Solid dispersion Ruby glass, some alloys
Liquid Solid L/S Solid emulsion Road paving, ice cream
Gas Solid G/S Solid foam Insulating foam

Table 1.1: The various types of colloidal dispersions with some common examples
(from [Hunter (1986)].)

from the specific nature of colloidal particles, the “softness” depends on their size. Follow-

ing [Likos (2001)], the ratio of the elastic constants G (proportional to the critical shear stress)

required to cleave a colloidal or an atomic crystal, is Gcoll.
Gatom.

≈ 10−12 ∼ 10−3. Their overall rigidity

against mechanical deformations, orders of magnitude smaller than the atomic counterparts,

mainly depend on G difference of the sizes. If ε is the energy scale of the cohesive energy

per particle, and a is the colloidal typical size, then the elastic constant can be written as

G = 1
a3 εV ′′(r = a; {p}), where the family of interaction potentials V (r = a; {p}) depends on a

set {p} of parameters. It is rather insensitive to {p} and so are the second derivatives V ′′. For

atomic and colloidal systems, the energy scale ε is about the same. For atomic systems, the en-

ergy scale ε ranges from 10−1eV for the noble gases to 10eV for the metals; for typical colloidal

crystals, it ranges between kB T and 100kB T , the thermal energy. Since kB T ∼= 1/40eV at room

temperature, colloids have acoll.
∼= 10−9 ∼ 10−6m, while for atoms it is aatom.

∼= 10−10m. This

argument, made for colloidal crystals, is reinforced when considering the very low densities

that colloidal suspension can attain in other states.

EFFECTIVE INTERACTIONS. In reality, when for example a single water molecule or a single

colloid are closely analyzed, they do not appear to have a structure as simple as the models. A

large class of liquids exists which are mainly solutions (or suspensions) of solid particles much

larger than atomic size, plus additional constituents (like polymeric coils or salt). Due to the

constitutive richness and variety, such systems are called “complex fluids”. The knowledge of

the microscopic description plays then a fundamental role. Despite this definition, complex

fluids may be greatly simplified by adopting effective interactions. If only pair interactions

between the large particles can be considered, then complex fluids may be rendered as simple

liquids. When considering a sample of liquid at a certain scale, in space or in time, the

possibility of reducing in complexity its constitutive particles relies on the possibility to retain

the physical description that pertains to the scales considered.

The model colloidal systems represents a perfect example2. Mixtures of colloidal spheres in a

2Considering a spherical shape for the dispersed particles simplifies their study in terms of effective interactions,
as in absence of internal degrees of freedom (for example magnetic or electric moments) the symmetry imposes a

3



Chapter 1. Introduction.

polymeric solution, for instance, allow the definition of an effective (depletion) potential: as

schematized in Fig. 1.2, the short polymer chains in solution can be modeled as little isotropic

particles, and the degrees of freedom associated to these particles can be traced out [Likos

(2001)]. Therefore, colloidal solutions and their model counterparts constitute an optimal

playground for studying simple liquids. An example of model is the Dejaguin-Landau-Verwey-

Overbeek (DLVO) potential

VDLVO(r ) =
{

∞ if r < 2R

VvdW(r )+VC (r ) if r ≥ 2R
,

where a hard core repulsion is summed to the attractive (VvdW) and repulsive (VC ) contri-

butions. The core radius R approximates the Born repulsion [Born (1962)], that forbids the

overlaps between the colloids during the random collisions with the solvent molecules (con-

stant Brownian motion with thermal energies of the order kB T ). The van der Waals and the

the screened Coulombic interactions give an attractive and a repulsive terms, VvdW(r ) and

VC (r ) respectively. The DLVO potential is shown in Fig. 1.2 (left). The hard core repulsion,

rendered as an isotropic potential, constitutes the main reason why hard spheres are adopted

as the reference model for the perturbative approaches used in soft matter.

Other commonly used models are the Asakura-Oosawa (AO) or the square-well (SW) poten-

tials, where a colloid is described by an impenetrable, spherical core (hard sphere) plus an

attractive well [Hansen and McDonald (1986); Likos (2001)]. Even if mapping complex fluids

into simple liquids is not always possible3, these coarse-grained models constitute a powerful,

indispensable tool on which not only theories can settle, but that also allow computer simula-

tions. The first numerical simulations in the 1960s have proved their possibility to achieve

the different configurations and phase transformations a liquid can attain, and have boosted

the succeeding development of theories involving the crude, yet essential building blocks

that define simple liquids. They also made the solution of approximate integral equations

tractable, providing information about the structure of the liquids. What is more, by reason of

the densities involved, perturbative approaches can be hardly applicable, but with computers

they have become numerically tractable, as they are based on simple reference systems (non-

interacting gas, hard spheres).

AGGREGATION. The phase transition of a liquid (into crystal or gas) can depend on macro-

scopic changes of quantities such as temperature T or density φ. But the kinetics of the

process, as for instance the speed at which T or φ are altered, also has an important role and

can bring to completely different results. Upon cooling, for example, if the temperature is

lowered at enough high speed to suddenly subtract particles kinetic energy, crystallization can

be avoided and particles maintain a disordered configuration proper of liquids. Unlike phase

dependence solely on the distance between particles.
3Polymers in solution, for example, can be considered as soft penetrable particles (with size given by their

gyration radius) under certain conditions. Nonetheless, many applications admit as maximum simplification
strings made up of “simple” monomers, held together by (possibly unbreakable) bonds. Even this can be an
over-simplification if monomer’s structure strongly influences the description of the phenomenon.

4



Figure 1.2: (Left) The sum of a hard core repulsion (for r /2R < 1), the van der Waals attraction
and the screened Coulomb repulsion for weak screening (adapted from [Likos (2001)].). The
screening value is in terms of the radius times the inverse Debye length, κ=λ−1

D . Inset: for high
screening the electrostatic repulsion dominates over the vdW attraction. (Right) Schematic
of colloidal spheres suspended in a polymer solution (adapted from [Mutch et al. (2007)].
The depletion layers surround the colloids - spheres of diameter 2R - as indicated by dashed
lines, and the excluded volume caused by overlapping layers - darkly shaded - indicates the
depletion zone. The attraction range depends on the gyration radius rg of the polymers in
solution.

transitions, this non-equilibrium process brings frustration: macroscopic rearrangements

cannot take place as a globally favorable configuration is prevented at advantage of local,

more (energetically) favorable rearrangements. As the particles mobility slows down, a phase

separation occurs that becomes arrested, with consequent coarsening processes responsible

for the formation of a dense (solid-like) phase aggregate [Zaccarelli et al. (2004); Mattsson et al.

(2009)]. We call the sudden arrest of the kinetics a quench. In the left panel of Figure 1.3, a

schematic of the phase diagram (T,φ) highlights the domains of the non-crystalline arrested

liquids. A quench can be made not only by suddenly lowering T , but can also be triggered by

means of other changes. The possible ways of quenching a system ultimately depend on the

interaction potential of colloids and on external parameters4.

For keeping the colloidal suspension stable against the aggregation, some stabilization mech-

anisms can be put in place. Stabilization is difficult as there always exists the van der Waals

attractive interaction VvdW(r ) between the particles5. Quantities such as density, tempera-

ture, solvent quality, etc., directly affect the Coulomb screening. Being sensitive to external

4In the phenomenological study of gels, open questions still remain. For example, whether gelation could occur
coming from equilibrium states or not, or if, more generally, a unique scenario ranging from very diluted fluids up
to glasses could incorporate a description of gels.

5This can be strongly suppressed by index matching the two materials, colloids and solvent. By setting the two
optical refractive indexes like ncoll. ≈ nsolv., the Hamaker constant A ∝ (ncoll. −nsolv.)

2 and in turn the attraction
VvdW(r ) ∝ A are suppressed. However, index matching is not always possible.

5



Chapter 1. Introduction.

parameters, such mechanisms are used also in order to tune the interactions and thus to

trigger or control the aggregation. A common method to enhance the aggregation works by

adding salt in order to modify the characteristic length6 of the screened Coulombic repulsion

VC (r ). For weak screening, the potential barrier is barely capable of keeping the particles

apart: a further weakening would bring the system towards irreversible aggregation. Unlike

the atomic systems, where the interactions are determined by the electronic structure, for

colloidal suspensions changes in the “external” conditions (solvent quality, temperature, salt

concentration, chemistry of the mixture) can involve dramatic changes in the effective inter-

actions between the macromolecular aggregates. The colloidal density, for example, plays a

crucial role in the resulting structure. A homogeneous glass emerges when the solute occupies

more than 50% of the available volume, and presents an extremely large number of voids of

sizes smaller than the typical colloidal size [Pham et al. (2002); Trappe and Sandkühler (2004);

Mezzenga et al. (2005); Zaccarelli (2007)]. At lower densities, arrested states can occur due to

pronounced heterogeneities: relatively coarse and non-uniform structures, in which the voids

are larger than particle size. Short-ranged attractive colloidal systems, for example, can form

crystals, two glasses of different origin, or gels.

Aggregation can be also induced for hard-sphere colloids by the presence of polymers in

solution. The so-called depletion mechanism, carried out by adding non-adsorbing polymers,

represents another example of externally controlled aggregation. A schematic colloid-polymer

mixture is shown in Fig. 1.2 (right). The presence of polymer clumps in the region between

two nearby particles is entropically unfavored, giving rise to an unbalanced osmotic pressure

that pushes the two colloids together; this results in an attractive potential. The range and

strength of this attraction are controlled by the size (molecular weight) and the concentration

of polymers respectively. The aggregation of HS induced by short-range attraction is partic-

ularly important, as a reference model where microscopic details at the colloid scale can be

neglected [Miller and Frenkel (2003)]. With just this simplification, it is possible to reproduce

the rich phase behavior of colloidal suspensions of Fig. 1.3 (left). The disordered, arrested

aggregates formed by quenching a colloidal solution represents the main argument of the

thesis, the colloidal gels [Hurtado et al. (2007); Lu et al. (2008); Ronsin et al. (2009); Pineiro

et al. (2009)].

GELATION. Gelation occurs when colloidal suspensions are driven to a state where strong

inter-particle attraction dominates. When the depletion potential is deep enough, for example,

non-equilibrium aggregation occurs, which can result in gelation7. The lowering in tempera-

tures of a quench can be associated to an increase in attraction [Foffi et al. (2005b)] and the

6Additional counterions and coions form spontaneously into the mixture, resulting into an enhancing of the
inverse Debye screening length κ−1 =λD =√

εr ε0kB T /
∑

i ni qi (where ni is the mean concentration of charges
of the species qi ).

7Common examples of gels formed via depletion attraction are PMMA colloids with non-adsorbing
polystyrene [Pusey et al. (1993); Poon et al. (1995)]. Systems with combined mechanisms of charge and steric
tuning are also possible, like for example colloids coated with flexible chains which carry a net charge, such as
gelatin [Ward and Courts (1977)] or polyelectrolytes [Pincus (1991)] or DNA [Seeman (2003); Valignat et al. (2005);
Dreyfus et al. (2010); Rogers and Crocker (2011)].
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Figure 1.3: (Left) Temperature versus volume fraction schematic phase diagram,
from [Sciortino (2002)]. The vertical black dashed line represents the hard-sphere glass line
(for short-range attractive colloids the re-entrant, non-monotonic glass line - solid red and
blue lines - creates a pocket of liquid states, stabilized by the short-range attraction). A lower-
ing in temperatures is associated to an increase in attraction, from [Foffi et al. (2005b)]. (Left)
Scanning electron micrographs of a colloidal gel (scale bar = 1µm) and relative macroscopic
formation, from [Wang et al. (2010)].

resulting non-equilibrium mechanism of arrested phase separation represents the main route

to colloidal gelation. At equilibrium the system in the same state point would separate in two

liquids of different density so to minimize the total free energy, but in reality the bonding time

among particles stretches and this causes the dynamical slowing down of the rearrangements.

Fluctuations in density are arrested after an initial transient and this results in ramified amor-

phous structures instead of two completely separate phases [Gado et al. (2004)]. As soon as

a space-spanning, percolating structure emerges that is capable of sustaining mechanical

stress, a gel is observed8. It has only recently been understood the universality of colloidal

gelation mechanism arising as a consequence of a dynamic arrested that interferes with phase

separation [Manley et al. (2005); Foffi et al. (2005b,a); Lu et al. (2008)], and it has been observed

experimentally in colloidal and protein systems [Cipelletti and Ramos (2005); Poon (2002);

Cardinaux et al. (2007); Lu et al. (2008)] and by computer simulations [Soga et al. (1998); Foffi

et al. (2005b); Del Gado (2010)].

Found at densities typically lower than a glass, gels are liquids rapidly frozen out of equilibrium

that become unable to flow, if not over large time scales. Indeed, what characterizes a gel (or

8Examples of gels are silica aerogels [Hasmy et al. (1994)]; silica particles coated with stearyl alcohol or proteins
suspensions (like lysozymes) induced to aggregate by cooling [Verduin and Dhont (1995); Piazza (1999)]; percolative
networks of proteins aggregated through filaments (as for actin).
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Chapter 1. Introduction.

a glass) is the arrest of the kinetics9. An example of colloidal gel is shown in Fig. 1.3 (right).

Colloidal gels play a fundamental role in the soft matter context [Segré et al. (2001); Trappe

and Sandkühler (2004)]. When structural heterogeneities are pronounced and the arrested

amorphous state occurs, we are dealing with a gel. Obtained by colloidal solutions, they

display elastic properties close to those of solid, but possess an amorphous ramified structure

that spans space. Colloidal gels find applications in synthetic porous materials [Duguet et al.

(2011); Lo Verso et al. (2006)], functionalization of surfaces and films production [Miljanic

et al. (2008); Wang et al. (2008)], ceramics processing [Schenker et al. (2008); Wyss et al. (2005)],

protein assemblies [Cardinaux et al. (2007); van Gruijthuijsen et al. (2012)], food science [Dick-

inson (1992); Bergenholtz et al. (2003); Mezzenga et al. (2005); Gibaud et al. (2012)] and soft

matter [Zaccarelli (2007); Dorsaz et al. (2011)].

In the context of amorphous aggregation, if an attractive selectivity exists among distinct col-

loidal particles such that they can be identified in “species”, then a demixing mechanism can

affect the gelation and lead to amorphous structures with different properties. We will describe

how both fluctuations in the total density φ and in the relative composition c of the species

drive the thermodynamic instability leading to phase separation but, depending on whether

the two phases differ more in φ or c, the aggregation brings to condensation (usual gelation)

or demixing, respectively. The demixing brings each species to aggregate separately from the

others, with consequent segregation. The nature of the gel obtained by a 2-component mixture

does not allow, a priori, a simple liquid description, but brings to an intrinsically irreducible

complex fluid. Complexity arises in this case from the distinction between inter-species and

intra-species interactions, even if the potential is radially symmetric and pairwise additive.

Thus, complexity can be obtained - as we will show - even in the arrested structure of these

simple constituents.

TUNABILITY. In recent years the research on liquids, also thanks to the use of model particles

in computer simulations, has given birth to a fruitful branch: the self-assembly. Most of the

works in the domain of self-assembly point to the use of building blocks (ranging from nano-

to micrometers) with non-spherical shapes or directional, anisotropic potentials (and often

mixtures of these features), that cannot be reduced to simple particles. An important feature

of self-assembly is in that the aggregation relies on weak inter-particle interactions (hydrogen

bonds, van der Waals force, etc.), as for instance the hydrogen bonds, the Van der Waals

force, etc., and not on strong interactions (covalent, metallic, etc.). The main goal is to obtain

structures that show prefixed local arrangements of the constitutive particles from which a

macroscopic structure arises that is functional to outperform in certain tasks, depending on

the specific purpose. Generally, in the self-assembly process the components are initially

put in a disordered configuration and then organize into specific structures, according to

a desired pattern, without the influence of any external forces. Among the abundance of

possible solutions, the specific binding capacity of DNA results particularly promising, in view

9Though different microscopic mechanisms can contribute to the formation of such macroscopically disordered
structures, the models and techniques used in studying glasses and gels are often similar, if not the same.
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1.1. Thesis aim and layout.

of the realization of structures with peculiar geometries. In this context, DNA-coated colloids

have also assumed great importance [Alivisatos et al. (1996); Mirkin et al. (1996); Seeman

(2003); Valignat et al. (2005); Biancaniello et al. (2005); Dreyfus et al. (2010); Geerts and Eiser

(2010); Rogers and Crocker (2011)]. Understanding and, ultimately, controlling the properties

of amorphous materials is one of the key goals of material science. The properties of a material

depend on the interactions among its building blocks and by the conditions in which they

are prepared. It is by tuning these two properties that different structures can be obtained.

As more than one components are implied, their relative population - the composition c -

offers a suitable macroscopic tuning parameter. According to the Gibbs phase rule, in a binary

mixture a two-phase region has two degrees of freedom. For colloidal systems, a good choice

is the composition c = NX /N of a reference species X with respect to the total population and

the total packing fraction φ. It would be highly beneficial to devise new ways of tuning the

properties of the gels exploring novel interactions scheme between the constituent particles,

where the processes that bring to the gel formation can hopefully be controlled operating on

macroscopic observables as well as on simple fluid constituents. In the last years, a number

of efforts in depicting more complex particles emerged [Yethiraj and van Blaaderen (2003);

De Michele et al. (2006); Bianchi et al. (2006)] and new experimental processes are used in

order to obtain more complex gels formed by different species of colloidal particles.

1.1 Thesis aim and layout.

AIM. In this thesis we explore the possibility of having a macroscopic parameter that grants the

tuning of some specific properties of the final, aggregated structure, but without intrinsically

complex particles. Instead of particular shapes or anisotropic inter-particle potentials, we

use colloids of the same size with isotropic SW potential, the building blocks typical of simple

liquids. For such a simple model colloid, inter-species and intra-species interactions can be

distinguished. The selectivity between species is introduced to obtain a tuning parameter. For

single-species monodisperse systems, the density is a main control parameter in the aggrega-

tion process. Varying inter-species interactions, then, multicomponent mixtures of colloids

offer a way to form a completely new class of materials. Once the demixing effect is enhanced

due to the interaction selectivity, we aim to qualitatively and quantitatively prove that different

final gels can be obtained whose demixed structure depends on c (the composition of the two

species). We choose this route because this represents the simplest system where composition

fluctuations may be enhanced, with consequent demixing. When the inter-species attraction

is reduced, the system has a strong tendency to demix.

The arrested phase separation scenario for one-component mixtures (1CM) can be envisaged

for mixtures made of two or more components. Already in the case of a two-component mix-

ture (2CM) there is a fundamental increase in complexity. The thermodynamic instabilities

are expected to be driven by both density (φ) and composition (c) fluctuations, that bring to

condensation and demixing, respectively. We aim to show that the theoretical framework of
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Chapter 1. Introduction.

arrested phase separation holds: we use its extension from the 1CM classical gelation case, to

a 2CM gelation and we address the question of whether it is possible to arrest composition

fluctuations (demixing) in a manner similar to the arrest of density fluctuations in 1CM

(condensation).

REALIZATION. The variation from simple to complex fluids embeds new physics, as well as the

possibility of phenomenological comprehension and design of new materials. The acquisition

of expertise in the modeling of such systems and in their analysis are - at the same time -

the target and the tools that are developed here. Clearly the number of parameters involved

grows with the tunability that one desires to achieve, so computer simulations are ideal for

such an exploration. We use the Thermodynamic Perturbation Theory to explore the phase

diagram of the 2CM systems. Molecular dynamics simulations with model colloids are used

to actually obtain the 2-component gels. In the symmetric case of two components of equal

composition, we name the resulting structure a BiGel. What we propose is completely different

from stabilizing the phase separation in binary liquids (what has been called a bijel) through

freezing of the positions of colloids at the liquids’ interface [Herzig (2008)]. In fact, we propose

instead that the colloids themselves would form a bicontinous structure and, more importantly,

we do not limit ourselves to the stabilization of the phase separation process but we show

that the arrest of phase separation can be generalized and experimentally used by means of

tunable interactions among the constituents.

Because of the challenge offered by the study of structural properties for amorphous sys-

tems, some new analysis tools (conductivity, porosity, topology) as well as the experimental

realization have been developed within the research group and together with external col-

laborators. The 2CM gelation is studied theoretically, but also experimentally. DNA-coated

colloids (DNACCs) nowadays offer the essential features for implementing the interaction

selectivity: we use DNACCs for testing experimentally the realization of gelation through

demixing. As DNACCs, we used polystyrene hard spherical colloids coated with DNA sin-

gle strands10, which are specifically functionalized to attain the interaction selectivity we

ask for. The size of the colloidal particles, which is of the same order of magnitude as the

wavelength of visible light, opens up the possibility of performing direct observation of the

particles in real space: in particular we use confocal microscopy11. BiGels have been actually

observed, for the first time ever, thanks to state-of-art experiments (in collaboration with the

research group of Erika Eiser, Cavendish Laboratories, Cambridge, U.K.) and we will provide

their description, as they represent the proof of concept of BiGel formation driven by demixing.

SUMMARY. We present a novel gelation mechanism through arrested demixing in colloidal

10This kind of system embeds combined mechanisms of charge plus steric tuning [Seeman (2003); Valignat et al.
(2005); Dreyfus et al. (2010); Rogers and Crocker (2011)].

11Colloids of distinct species are labeled with distinct photosensitive dye. Light scattering is commonly used to
probe static and dynamical behavior of colloidal suspensions. Instead, the complementary approach of direct
imaging is used, which works instead in wavevector space [Dhont (1996a)], is used instead.
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1.1. Thesis aim and layout.

mixtures, implemented by tuning of inter-species attractions. This leads to the formation of

a yet unexplored class of materials. Employing a computer model, and through demanding

numerical simulations, we investigate the gelation dynamics and the structural properties.

We point out similarities and differences between the binary system and its well-known

monodisperse counterpart (gel). We also show how the interplay of fluctuations in different

variables can bring to different arrested structures. Thanks to a new analysis tool we developed,

we can report analysis about the geometrical and the topological properties of BiGels. The

computational tools and new analysis techniques open the doors to the characterization

of amorphous systems also in the experimental realm (as post-processes) in addition to

the computational one. We support our findings with experiments, in the case where 2-

components are present in the same concentration. The BiGel formation constitutes the proof

for the generalization of arrested phase separation mechanism.

1.1.1 Layout.

In the following Chapter 2, we portrait an introduction to the gelation phenomenon and its ob-

servation. Specifically, we will treat the phenomenology of the aggregation for one-component

colloidal systems and will explain the passage to the coarse-grained model particles, inserting

it into the context of numerical simulation (Par. 2.1). In the same chapter, some observables

for investigating the gelation are described in more detail (Par. 2.3). After a focus on the

informations carried by means of the static structure factor, we will briefly introduce the

characterization method of the percolation. This will be put in connection, respectively, with

the concepts of percolation and porosity.

In Chapt. 3 the model used for theoretical calculations, simulations and experiments is dis-

cussed. In particular, we will start with the adoption of the square-well model and will explain

its main features. The consequent modification to a multi-component colloidal system is

then elucidated (Par. 3.1.1). This model and its 2-component counterpart will be employed

in the theoretical calculations used for drawing the demixing behavior under arrested phase

separation (Par. 3.2.1). At the end of the chapter, we introduce a method of study for topology

that we extensively adopt for the characterization of arrested amorphous structures.

These techniques and ideas are at the basis of the results, presented in the next Chapt. 4. Here

the numerical and the experimental outputs are explored and analyzed. The chapter includes

the analysis from numerical simulations, with a comparison between this new gel family with

the known one-component counterpart. From the dynamical properties (Par. 4.1) the focus

will be moved to the structural properties of the final arrested structures (Par. 4.1.3). This anal-

ysis is conduced, among other tools, by means of both the structure factor and the topology.

After that, we will show how the BiGel is actually obtained in the experimental colloidal system

(Par. 4.2), hence demonstrating the validity of the used protocol for enhancing the demixing.

The passage to the experiments, where enhanced demixing is expected, is depicted.

In the conclusive Chapt. 5, we will discuss the impact of the physics embedded in the Bigels in

the frame of new materials and their possible uses. We trace the first distinctive features of

multi-component gels from the experimental point of view. The introduced analysis tools are
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Chapter 1. Introduction.

also discussed, together with their applicability to systems other than colloidal gels. Finally,

conclusions are thus traced about the concepts of structure tunability and the generalized

mechanism of arrested fluctuations.

RELATED WORKS. As a complement to the principal subject, in appendix we discuss two

further projects developed during the thesis:

• in Appendix A, we describe how the gelation can be used to obtain structures that, even

for low content of colloidal particles, can feature high electrical conductivity;

• in Appendix D, an analytical treatment is reported and proved to account for the finite-

size effects in fractal (Apollonian) packings of d-dimensional spheres.
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2 Colloidal aggregation and gelation.

OUTLOOK. In this chapter we provide an overview on the phenomenon of gelation, together

with the introduction of some methods used for its characterization. The focus is on monodis-

perse systems, but all the concepts here introduced will be used for multi-component systems

in the next chapters.

Two main sections compose the chapter. In first place, the phenomenology of gelation will be

treated in its general aspects (Par. 2.1): the notion of non-equilibrium and the description of

the phase diagram are followed by the presentation of the short-ranged attractive colloids. We

will then explain the passage to the square-well (SW) model (Par. 2.2) along with its introduc-

tion into the field of numerical simulations (Par. 2.2.1).

The investigation conducted within this thesis is mainly carried out through simulations, but

we present some observation measurements that are usually performed on gels also experi-

mentally (Par. 2.3). In particular, we will introduce the concept of percolation and its meaning

for gelation (Par. 2.3.1). The percolation concept is also the basic ingredient of a study we

made on monodisperse gels of SW particles, that is put in Appendix A. For the study of the

multi-component gelation, however, we focus on other two measurements (among others).

The first quantity we studied is the static structure factor (Par. 2.3.2). The scattering of light is a

common investigation probe and the structure factor constitutes a prototypical measurement

in soft matter. This quantity can be studied also for particle systems generated by means

of numerical simulations, so making its use fully valuable1. The second quantity provides

a characterization regarding both the overall structure, as the porosity, and local features,

like the thickness of the gel’s arms. As it is a new method that we implemented, this will be

introduced in the next chapter 3.

1On the other hand, nowadays the reverse is also true: analysis methods applied on numerically generated
configurations of particles can be adopted to explore real world data.
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Chapter 2. Colloidal aggregation and gelation.

2.1 Phenomenology.

According to the IUPAC definition of colloidal particles [Everett (1972)], a colloidal dispersion

is a system in which particles of nanometer to micron size, of any nature, are dispersed in a

continuous phase (a solvent) of different composition. Soft matter systems can contain other

unities in solution, such as short polymeric chains, salt dissociated into ions, etc., smaller than

the colloidal particles (the solute). Both the solute and the solvent can be in any of the three

states of matter, thus giving rise to a large variety of colloidal dispersions. See Tab.1.1. The

solute can be either of solid particles as, for example, polystyrene, polymethylmethacrylate

(PMMA) or silica spheres, or complex objects such as polymer chains. Also anisotropic (non

spherical) particles, as clays or globular protein solutions, can be treated as colloidal systems2.

In the following, we do not explicitly treat the solvent, whose effect is only implicitly assumed:

this brings to a complete lack of hydrodynamical effects, assuming to be in conditions where

they do not play an important role in the gelation process [Furukawa and Tanaka (2010);

Whitmer and Luijten (2011); Cao et al. (2012)]. In suspensions of colloidal attractive particles

(because of depletion or some other effect discussed in the previous chapter), a structural

arrest is observed under quench: the colloidal gelation [Segré et al. (2001); Dinsmore and

Weitz (2002)]. Before describing the gelation process, we show in Fig. 2.1 a sequence of

configurations depicting the aggregation of spherical colloids with short-ranged attraction

(that we obtained from MD simulation), in order to familiarize with the morphology of such

materials.

Figure 2.1: An example of aggregation for the short-ranged SW model (introduced in in Par. 2.2),
at occupied volume fraction (density) φ= 0.03125. These pictures are 3D renderings capturing
the system before the aggregation (equil.), during the quench and, finally, at its arrested state.

The slowing down of dynamics, that is triggered by the quench (and starting from the equilib-

rium phase, like in Fig. 2.1), is associated to the formation of long-living structures bringing a

change in viscoelastic properties. Colloidal systems present a complex phase diagram [Mal-

lamace et al. (2000); Segré et al. (2001); Trappe et al. (2001)] that may be described using, as

parameters, the occupied volume fraction φ and the inverse of attraction energy (U /kB T )−1,

where U is the total potential energy of the system. In Fig. 1.3 the attraction vs. density

behavior (phase diagram) is divided in regions correspondent to the parameters pertaining to

2This diversity gives access to a lot of important properties related, for example, to the phase diagram [Dorsaz
et al. (2008)] and to the nucleation of crystals [Ruzicka et al. (2011); Cardinaux et al. (2007)].
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different kind of materials.

At high occupied volume fraction (concentration), the colloids become crowded leaving pores

with sizes typically smaller than a colloidal diameter, and a glassy dynamics establishes: the

system behaves as an attractive glass [Donth (2001); Sciortino (2002)]. At higher temperature,

instead, it is (U /kB T )−1 À 1 and the inter-particle attraction does not affects significantly the

dynamics: the system behaves as a repulsive glass. In glasses, particles are trapped into cages

made of neighboring particles and the dynamics is characterized by two times: the first one is

the typical time of diffusion inside the cage, whereas the second one is the typical time for the

cage to break and for particles to diffuse outside it.

At low volume fraction and high strength of attraction, instead, the system behaves as a gel.

The nature of bonds generally determines a subdivision of gels in two categories: strong (chem-

ical) gels and weak (physical) gels. Chemical gels, that can be produced by a rapid quench

or by light irradiation, are obtained when covalent bonds form. These bonds cannot break

anymore and gel phase remains stable against a raise in temperature. In physical gels, weak

bonds form (like for example hydrogen bonds, or due to effective interactions, as the depletion

attraction) which are reversible: the sol phase can be recovered by increasing the temperature.

The physical gels behave like liquids on sufficiently long time-scales. The fluctuations due to

thermal energy can act, in this case, by continuously forming and breaking such bonds, so

that - as opposed to chemical gels - no real transitions are observed from the viscous regime

to the elastic one. See Par. 2.3 for more details. According to this terminology, the gels we are

mostly going to deal with are weak gels, as we will consider reversible bonding. Nonetheless,

for quenches inducing strong inter-particle attraction, the bonds may be considered as per-

manent compared to observation time-scales.

For colloidal suspensions at low volume fractions and strong attraction between particles, the

kinetics of the gelation process may be characterized by diffusion and aggregation: particles in

solution diffuse until they touch and react getting bonded [Witten and Sander (1981); Jullien

and Kolb (1984); Brown and Ball (1985)]. As particles stick together to become clusters, the

clusters themselves continue to diffuse, collide and aggregate. This diffusion and aggregation

kinetics may be different passing from a system to another. Nevertheless two limiting regimes

of kinetics have been identified: rapid, diffusion-limited cluster aggregation (DLCA) and slow,

reaction-limited aggregation (RLCA). Each regime exhibits distinct behaviors, characterized

by a different morphology of the clusters, different cluster mass distribution, and different

kinetics of aggregation. Some basic features of the DLCA model are illustrated in Par. 2.2.1.

It is worth to notice that this behavior does not depend on the detailed nature of the colloid,

provided that the essential physical interactions are the same (as, for instance, inter-particle

attraction within a finite range).

2.1.1 Gelation as non-equilibrium process

The phase transition that brings to crystallization has been a long studied problem. The

nucleation and growth mechanism is predicted from the classic theory to occur when for

a large enough radius the (favorable) volume term starts to dominate on the (unfavorable)
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surface term in the free energy expression

∆G = ρV∆µ+γS . (2.1)

Here V and S are the volume and the surface, respectively, of a nucleus forming in bulk liquid

with density ρ, with surface free energy γ and with a chemical potential difference∆µ between

the solid and the liquid. But differently from a purely hard-sphere system, where only crystal

and fluid phases are present (Fig. 2.2a, top), the introduction of attractions determines a three-

phase equilibria picture (Fig. 2.2b, top). When the attractions are short-ranged, the gas-liquid

(or fluid-fluid) equilibrium becomes metastable (Fig. 2.2c, top), as in protein systems.

Transitions involving three-phase equilibria, or metastable states, can be produced in colloidal

systems with the addition of polymers in solution (see later for the “depletion interaction”), in

order to widen the region where phase separation is expected. Such systems may show a frus-

trating behavior: depending on the initial conditions (as, for example, polymers concentration

and colloid volume fraction), colloidal systems can form gel-like phases instead of crystals.

Under aggregation, in fact, spherical colloidal particles develop mesoscopic structures on

length-scales ranging from few to tens of diameters, and the aggregation proceeds to the

formation of a space-spanning network (a gel). This state of ramified space-filling gel, whether

experimental or simulated, is not that of equilibrium: gelation is a form of non-equilibrium

behavior. An example of the metastable phase diagram’s region for a colloidal suspension is

shown in Fig. 2.2 (bottom). Here a gas-liquid binodal (or coexistence) curve and spinodal lines

are indicated, which define the aggregation in such a region.

Under quench, the mechanism of arrested phase separation can have place. The binodal

denotes the condition at which two distinct phases may coexist, i.e. state points of minimum-

energy equilibrium states of the system. Entering the spinodal curve (unstable region), fluctua-

tions in density lead to instability of the solution, which phase separates and decomposes into

multiple phases3. If the system is taken into the metastable region between the binodal and

spinodal lines4, the free energy change upon formation of a small concentration fluctuation

is only negative once the concentration fluctuations have formed a nucleus with a critical

size. Below this size, incipient droplets will re-dissolve. Above this size they will grow and a

phase-separated morphology will emerge with formation of compact clusters, via the mecha-

nism of nucleation and growth. The formation of separate regions is favored by the negative

change in free energy (due to concentration fluctuations) into the spinodal region: this phe-

nomenon is called spinodal decomposition, that brings to open, stringy structures [Butler and

Heppenstall-Butler (2003)]. The different mechanisms result then in different morphologies,

as shown in Fig. 2.2 (bottom).

3The occurrence or lack of the spinodal decomposition could depend, in principle, on the particular way the
spinodal curve is crossed entering the metastability region (as, for instance, different quenching rapidity). However,
it has been confirmed both by simulations and experiments that, apart for a change in the period of latency before
the settling of fluctuations becomes noticeable, the mechanism of spinodal decomposition always takes place
once the spinodal line is trespassed.

4If an extreme in temperature is present, known as the critical point, then it coincides for the binodal and the
spinodal curves.
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2.2. From colloid-polymer mixtures to the square-well model.

Figure 2.2: (Top) Different schematic phase diagrams (from [Anderson and Lekkerkerker
(2002)]) for pure hard-spheres system (a), with only fluid (F) and crystal (C) phases; hard-
spheres with long-range attractions (b), where also a gas (G) phase is present, and the case with
short-range attractions (c), where L-L transition becomes metastable. (Bottom) Schematic
of the L-L region for colloidal dispersion (adapted from [Rouw et al. (1989)]). The line that
separates the coexistence region from the phase-separated region is the binodal. This is further
sub-divided by the spinodal line (unstable region): the system spontaneously favors spin-
odal decomposition. Indicated are possible quenches. Two images, obtained from confocal
laser scanning microscopy on gelatin mixtures show the different phase-separated morpholo-
gies [Butler and Heppenstall-Butler (2003)]: random, polydisperse droplets (nucleation and
growth mechanism) and a bicontinuous morphology (spinodal decomposition).

2.2 From colloid-polymer mixtures to the square-well model.

DEPLETION INTERACTION. In the instability scenario of spinodal decomposition, local density

fluctuations set in, and this compromises the heterogeneity of the system. By arresting the

fluctuations, an amorphous structure emerges as a result of a coarsening process5. By now, we

are dealing only with local differences (fluctuations) in density which arrest because of the

slowing down of the dynamics. This mechanism, responsible for the aggregation towards a gel

structure, will be explained and expanded in Par. 3.2.1. In the next chapter we will use and

5It is discussed if such a mechanism could also provide a gelation-like description for materials typically formed
at higher density. In particular, it is debated whether dynamical heterogeneities, occurring in glass and jamming
transitions, may play the same role as the critical fluctuations in ordinary spinodal decomposition [Coniglio et al.
(2008)].
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generalize the idea of arresting such fluctuations.

Different phenomena can make the system enter the spinodal region, with consequent decom-

position and structuration: examples are the cooling (temperature driven), the sedimentation

(density change), the screening of Coulomb repulsion (van der Waals attraction produces

G-L separation [Schroeder (1999)]), or the addition of non-adsorbing depletants (change of

colloidal attraction) [Allain et al. (1995); Wu et al. (2003); Carpineti and Giglio (1992); Bibette

et al. (1992)]. We briefly review here this latter example, whose major interest depends on

the controllable attraction that can be induced among the colloidal particles by the addition

of a non-adsorbing polymer [Asakura and Oosawa (1954); Vrij (1976); Poon (1998); Verhaegh

et al. (1999)]. Adding non-adsorbing polymers to a hard-sphere colloidal suspension results

in an attractive force which produces a similar gas/liquid phase transition6: colloid-polymer

mixtures can in fact phase separate into coexisting colloid-rich and colloid-poor phases [Ilett

et al. (1995)]. The colloid-rich phase is either crystalline or fluid in nature [de Hoog et al.

(2001)], depending on the depth and range of the attractive potential, while the colloid-poor

domain is always fluid7. Lubricating oils and paint are common examples of colloid-polymer

mixtures in which phase stability is desired.

The non-adsorbing polymer molecules are expelled from the region between two colloidal par-

ticles when their surface separation becomes smaller than the size of the polymer chains [Asakura

and Oosawa (1954); Vrij (1976)]. In Fig. 1.2 (right) the colloid-polymer mixture is represented.

The exclusion of polymers from the space between the colloidal particles, leads to an un-

balanced osmotic pressure difference, which pushes the colloidal particles together. This

results in an effective attraction between the two colloidal particles: the depletion attraction.

In a mixture of colloids and non-adsorbing polymers, then, the depletion effect between

the colloidal particles can be expressed in terms of an effective potential U (r ) [Likos (2001)],

that is essential for modeling real materials. It corresponds to the work required to bring

two colloidal particles from infinity to a distance r in a given polymer solution [Asakura and

Oosawa (1954); Vrij (1976)]. If the attraction is large enough, phase separation can occur in

the colloid-polymer mixture [Gast et al. (1983); Lekkerkerker et al. (1992)]. In the absence of

polymers (U = 0), instead a dilute suspension of hard-sphere particles does not aggregate

(colloidal fluid). When the U is increased (for example, to approximately 5 kB T in the case of

PMMA colloidal suspensions) by the addition of polymer, the particles aggregate and form the

weak solid, random structure of a gel.

The depletion potential can be controlled by means of both the size and concentration of

6A clear distinction exists between polymers adsorbed on the colloidal surfaces and those free in solution.
The two situations lead to qualitatively different effects. In the adsorption case, the polymer chains, in a good
solvent, resist the approach of other surfaces through a loss of conformational entropy. Colloidal surfaces are then
maintained at separations large enough to damp any attractive (London-van der Waals) force and the colloidal
suspension results stabilized [Napper (1983); Carvalho et al. (1993)].

7Structural studies of transient colloid-polymer gels reveal gravitational settling for moderate colloid volume
fractions φ. By increasing polymer concentration, these gels exhibit periods of latency before settling becomes
noticeable [Pusey et al. (1993); Grant and Russel (1993); Verhaegh et al. (1999)]. At the cessation of this rapid settling,
the sediment retains a slightly ramified structure. Then sediment slowly compactifies approaching random close
packing (or partially crystallizing) to φ& 0.6: the transient gel results to be a long-lived metastable state en route to
thermal equilibrium. The latency period sharply increases with both polymer concentration and φ.

18



2.2. From colloid-polymer mixtures to the square-well model.

polymers. The spatial range of attraction in fact is approximately twice the polymer’s typical

size, i.e. the radius of gyration rg . This interaction develops an attractive well Udep which

acts between colloids in a range ∆= 2rg . For the simple case of colloidal hard spheres with

diameter D = 2R, the potential between two particles is given by:

U

kB T
=


+∞ if r < D

Udep =−ΠpVoverlap if D < r < D +∆
0 if r > D +∆

. (2.2)

Πp is the osmotic pressure of the polymers and Voverlap is the volume of the overlapping

depletion zones8 between two particles at center-to-center separation r . A schematic of the

depletion potential and of the resulting phase diagram are shown in Fig. 2.3. As approaching

makes the “excluded volumes” overlap, the total volume available to the polymers increases,

thus increasing their entropy (at the expense of some colloidal entropy). Partition is predict by

statistical mechanics into colloid-rich and polymer rich phases. The topology of the phase

diagram strongly reflects the dependence on the relative range ξ=∆/2R of the inter-particle

attraction range ∆ over the inter-particle hard-core repulsion ≤ 2R (panels (b) and (c) of

Fig. 2.3). For small polymer to colloid ratios, ξ. 0.1, the addition of enough polymers (i.e.

high enough chemical potential µp ) causes the phase separation into coexisting colloidal

fluid and crystal [Poon et al. (1993); Ilett et al. (1995)]. At higher polymer concentrations,

crystallization can be avoided and, instead, a variety of non-equilibrium behavior is observed.

Clear experimental evidences for the effect of the range on the equilibrium phase behavior

have been provided by works on colloid-polymer mixtures [Bibette et al. (1992); Poon et al.

(1994); Ilett et al. (1995)]. Nonetheless, a reduction in the depletion attraction at even higher

polymer concentrations was also observed, as arisen from the increased polymer-polymer

interactions [Ye et al. (1996)].

SHORT-RANGE ATTRACTION. In Asakura-Oosawa-Vrij model, geometrical arguments show

that for sizes ratios ξ = ∆/D ≤ 0.07735 there are no higher-order many-body interactions

beyond the effective pair potential, while multiple overlaps of the depletion zones can occur

for larger ξ. Theoretical studies on depletion-driven aggregation have mainly focused on the

limit where polymers are small as compared to the colloidal size, as a feature shared by most

of the systems is the presence of a short-range attraction between the aggregating particles9.

8Explicitly, it is Voverlap =
{

1− 3r
2D(1+ξ) + 1

2

[
r

D(1+ξ)

]3
}
× π

6 D3 (1+ξ)3, where ξ= ∆
D is the relative range of the

attractive part of the potential in Fig. 2.3(a).
9Recently, however, theories are being developed that cover a wider colloid-polymer size ratio range [Moncho-

Jordá et al. (2003)]. In practical systems, also size polydispersity, surface charges or different depletant schemes
play a role in polymer-colloid mixtures [Tuinier et al. (2003); Fiocco et al. (2010)]. Particles with a longer-range
attraction typically have many (∼ 10) neighbors, while those with a shorter-range attraction typically have only
three to five neighbors. The internal structure of transitional clusters reveals a further difference: clusters of
particles with long-range interactions have a volume fraction of φ∼ 0.46 (the hard-sphere freezing point being
higher, at φ ∼ 0.49), while those of particles with short-range interactions do not have a well defined volume
fraction, due to their fractal nature [Prasad et al. (2007)].
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Chapter 2. Colloidal aggregation and gelation.

Figure 2.3: Generic depletion potential for colloid-polymer mixture (a) and the schematic
phase diagrams (b) and (c), adapted from [Anderson and Lekkerkerker (2002)]. The hard-core
repulsion has range equal to the colloidal diameter, the excluded volume of size D, while
the inter-particle attraction has range ∆. Phase diagrams are similar to those in Fig. 2.2, but
polymer concentration has a role of inverse temperature. The polymers can partition into
different coexisting phases, whose indicative lines are not necessarily horizontal. The ratio
ξ=∆/D controls, together with the potential’s depth, the topology of the resultant equilibrium
phase diagram: the different phase diagrams are shown for large polymer chains (i.e. ξ) in (b)
and for small ξ in (c).

In this thesis we focus on the case of sufficiently small ξ, for which theory predicts [Gast et al.

(1983); Lekkerkerker et al. (1992)] that inter-particle attraction has the effect of expanding the

fluid-crystal coexistence region and to make the gas-liquid (liquid-liquid) equilibrium become

metastable.

How “small” is sufficient for ξ generally depends on the precise form of the attractive part of the

inter-particle potential10. In the limit of an infinitely-short range attraction of depth À kB T ,

the simplest available model is that of diffusion-limited cluster aggregation (DLCA). This com-

putational model, early variants of which were studied as far back as the late ‘60s [Sutherland

(1967); Finegold (1976)], was first considered in the context of fractal growth in independent

works by [Meakin (1983)] and [Kolb et al. (1983)]. See next Par. 2.2.1 for further details. What is

essential in the DLCA model are the “infinitely short range” plus the “infinitely deep well” of

the attractive potential among particles. This particular class of potential naturally represents

the limiting case of particles that, under aggregation, form a strong gel. Note that a well-

defined infinitely short range limit exists, the Baxter sticky hard sphere (SHS) system [Baxter

(1968)], where the inter-particle potential takes the form:

USHS

kB T
= lim
δ→0


+∞ if r < D

ln

[
12τδ

D +δ
]

if D < r < D +δ

0 if r > D +δ

, (2.3)

10For depletion attraction, it is needed ξ∼ 0.25 if in good, near-theta solvents [Ilett et al. (1995)].
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2.2. From colloid-polymer mixtures to the square-well model.

where τ represents the “stickiness” parameter. Thus, an infinitely deep well would correspond

to an infinite stickiness. The SHS potential is defined such that while USHS →−∞ in the limit

δ→ 0, the second virial coefficient remains finite, and is given by

B SHS
2

kB T
= 2π

∫ ∞

0

(
1−e−USHS/kB T

)
r 2dr = 2

3
πD3

(
1− 1

4τ

) [
HSlimit :

2

3
πD3

]
. (2.4)

Phase separation and dynamical arrest for particles interacting with “mixed” potentials have

been shown to have spinodal decomposition, governed by the integral features of the interac-

tion potential described by the normalized second virial coefficient [Gibaud et al. (2011)]. In

particular, the arrest line is mainly determined by the attractive well depth or bond strength.

The Baxter limit of SHS model, fundamental in the analytical solution of the (Ornstein-Zernike

equation) for hard sphere fluids [Baxter (1968); Barboy and Tenne (1979); Gazzillo and Gia-

cometti (2004)], can be and has been frequently used to interpret the behavior of experimental

systems with short-range inter-particle attractions, especially in scattering experiments, by

matching second virial coefficients. The second virial coefficient B2 is experimentally measur-

able, e.g. by light scattering [Brunetti et al. (1983); Rosenbaum et al. (1996)].

The equilibrium behavior of the SHS system has been a matter of debate [Stell (1991); Marr

and Gast (1993)], also for what matters the generic form of the SHS phase diagram shown in

Fig. 2.2(c, top) and the fluid-crystal coexistence at low enough values of τ. The theoretical B2

correspondence was in fact expected to be valid only for systems with stickiness τ& 1 [Stell

(1991)]. Noro and Frenkel have entered the debate on how to link experiments and theory

for systems with short-ranged inter-particle attraction [Noro and Frenkel (2000); Foffi and

Sciortino (2006)]. They have shown that the different short-ranged systems at equal density,

effectively share the same thermodynamic properties if they are characterized by the same

reduced virial coefficient

B∗
2 = (3/D3)

∫ (
1−e−U /kB T

)
r 2dr . (2.5)

They also provided a mapping of such a behavior by using the square well (SW) form for the

attractive part of the potential. The Noro-Frenkel scaling holds when the range of the potential

is less then about 5% of the particle hard core diameter [Foffi and Sciortino (2006); Malijevsky

et al. (2006)]. In particular, short-range attractive colloidal spheres are in equilibrium fluid

phase for B∗
2 &B∗c

2 , where B∗c
2 is the (scaled) second virial coefficient that signals the presence

of a critical point of gas-liquid phase separation. The value of B∗c
2 has been computed by

computer simulations and is approximately equal to −1.2 [Miller and Frenkel (2003); Largo

et al. (2008)]. If the attractive range is short enough, then the NF-scaling states that all the

potentials give the same thermodynamics and a short-range SW can model the interaction, in

the form

USW =


∞ r ≤ D

−ε D < r ≤λD

0 r >λD

(2.6)
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Chapter 2. Colloidal aggregation and gelation.

Here λ= 1+∆ and ε> 0 are respectively the potential range and its attractive depth. In the

case of Eq. (2.6) with ∆¿ 1, it results B∗
2 = 1−1/4τ, where τ−1 = 4(λ3 −1)[exp(ε/kB T )−1] is

the explicit expression for the Baxter stickiness parameter. The condition for the existence of

a homogeneous SW fluid is given in terms of τ as τ& τc . The value of the critical stickiness

parameter has been eventually found to be τc ∼ 0.11 [Miller and Frenkel (2003); Largo et al.

(2008)].

The above description is able to capture the correlation of B2 with the equilibrium solubility of

a wide variety of globular protein and colloidal suspensions [Rosenbaum and Zukoski (1996);

Rosenbaum et al. (1996)] so indicating quite accurately the ability of the SW model to describe,

for instance, protein solution thermodynamics [Ramakrishnan and Zukoski (2000)]. By ac-

counting for a finite probability for clustered colloids to dissociate back into the suspension,

the same model has proved essential for studies aimed to capture the correct location of the

metastable spinodal and, also, to understand the competition between crystallization and

gelation [Dixit and Zukoski (2003); Kulkarni et al. (2003)].

2.2.1 Computer models.

A SUCCESSFUL STORY. The effectiveness of using non-adsorbing polymers, in the control of

magnitude and range of inter-particle interaction, has been confirmed mainly by experimen-

tal11 studies [Ye et al. (1996); Verhaegh et al. (1999); Eckert and Bartsch (2002)] and especially

focusing on phase behavior [Vincent et al. (1980); De Hek and Vrij (1981); Russel et al. (1992)].

What is more, the simplicity of the depletion attraction well describing the effective interaction

potential U (r ) between the colloids has given the possibility not only of mapping it with even

simpler potentials, but also allowed fundamental contributions from numerical simulations.

In fact, the simulation of system constituted by ensembles of model particles has enabled the

numerical study of liquids by means of computing machines. For example, the interactions

among PMMA spheres in suspension are well approximated by a hard-sphere potential [Pusey

and van Megen (1986); Poon et al. (1993)] that was, along with its two-dimensional counter-

part (hard disks), one of the first systems ever studied using numerical simulation techniques.

The target was of understanding the thermodynamics of the liquid and solid phases, and

their corresponding phase transition [Rosenbluth and Rosenbluth (1954); Wood and Jacobson

(1957); Alder and Wainwright (1957)]. In particular, in 1957 Alder and Wainwright studied12

the dynamics of a system of hard, two-dimensional discs [Alder and Wainwright (1957)].

With the nowadays computing power, numerical simulation techniques are common tools in

11Neutron-scattering measurements, performed by means of the partial structure factor, were conduced after
matching between the scattering length density of the solvent with that of the polymer. Confocal Scanning Laser
Microscopy, or other direct imaging techniques, also started to be used in conjunction with the introduction of
colloidal silica particles containing a fluorescent coating.

12Much of this work was firstly undertaken at the Los Alamos Scientific Laboratory on the world’s first Electronic
Numerical Integrator And Computer (ENIAC) [Leszczynski (2012)]. Later, Rahman and Stillinger used a more
realistic Lennard-Jones interaction potential to study motion in water [Rahman and Stillinger (1971)]. In the
70s and 80s there was a flourishing literature mostly focused on polymers and proteins, were the paper on BPTI
(bovine pancreatic trypsin inhibitor) dynamics may be regarded as the first MD modeling of a protein [Rahman
and Stillinger (1971)].
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2.2. From colloid-polymer mixtures to the square-well model.

the investigations of the transport phenomena and structural properties of colloidal gelation13.

Also, a better understanding of the experimental observations of gelation is offered by using

colloidal models. By careful tuning of particle concentrations, dense or tenuous gels or glasses

phases can be formed14. Moderate concentrations of polymer cause the suspensions to sep-

arate into coexisting colloidal fluid and colloidal crystalline phases, whereas more polymer

leads to “gel” states in which crystallization is suppressed. Studies of the intensity of scattered

light at low angles and dynamic light scattering at larger angles suggest the following picture

of the gels (techniques of light scattering are introduced in Par. 2.3.2). Initial rapid diffusion-

limited aggregation (DLA) of the particles via the depletion attraction produces a close-packed

assembly of clusters. Subsequent slower consolidation of the clusters weakens them to the

point where they no longer support their weight and gravitational settling occurs [Pusey et al.

(1993)]. Indeed, the DLA is one of the first models used in numerical simulations to give

fruitful results in the context of gelation.

Figure 2.4: Schematic of gelation due to fractal growth, adapted from [Poon and Haw (1997)].
Because of the DLA mechanism, the clusters begin to contact each other across the macro-
scopic system: a system-spanning cluster, or gel, is formed. If regions of different sizes are
considered where the unaggregated particles are originally contained, the same mechanism
bring to cluster substantially smaller than the region (a), when this is little, while a larger
aggregate forms in larger regions (b). The radius of the aggregate grows quicker than the radius
of the original region, up to a value where they have same size (c).

SIMPLE MODELS. One of the key ideas that launched the modern study of particle aggregation

is that of fractals [Mandelbrot (1983)]. Stimulated by the observations of aggregating iron nano-

metric particles [Forrest and Witten (1979)], an initial breakthrough was made by proposing

the diffusion-limited aggregation model [Witten and Sander (1981)], later used to interpret the

structure of real particle aggregates, in their case aggregated colloidal gold [Weitz and Oliveria

13Despite the short history of the field, at the beginning of 2012 the query “colloid simulation” results in nearly
1,800 papers from the PubMed biographical database. Importantly, this area is growing fast: its rise is bound to
increase, in view of the deep implications into the strong field of colloidal gels (about 16,500 results for “colloid
gel”) and because of the continuous boost provided by computational techniques and industrial interests.

14The glass transition is typically achieved by increasing the packing fraction of colloids. Addition of polymer
causes the system to re-enter the glassy state, although the arrest in dynamics is caused by particle bonding
(attractive glass), rather than a cage effect of neighbors (repulsive glass). There are no significant differences in
either structure or local density fluctuations between any repulsive or attractive glass.
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Chapter 2. Colloidal aggregation and gelation.

(1984)]. This extreme case, where the evolution on the aggregation is limited by the time taken

for the particles (or clusters) to diffuse and encounter one another, is called diffusion-limited

cluster aggregation (DLCA), which generalizes the DLA mechanism by allowing the clusters of

particles to diffuse and encounter. In this model, two colliding particles immediately bind

permanently. An example is shown in Fig. 2.4. Alternatively, when particles are considered

that may not stick immediately because of an energy barrier, then the aggregation is said to be

reaction-limited (RLCA). In this case, the binding probability is less than unity; models with

unit binding probability, but a finite probability for subsequent unbinding have also been

studied [Shih et al. (1991)].

In RLCA the sticking probability can be low enough that two approaching clusters can,

on statistical basis, sample all possible mutual configurations before they finally stick to-

gether [Sorensen and Roberts (1997)]. Thus the smallest clusters in the distribution have a

high probability of interpenetrating the large ones. This effect leads to less tenuous clusters

respect to DLCA. As a consequence the fractal dimension in RLCA results higher than the one

of DLCA [Lin et al. (1990)].

Irreversible aggregation is strongly related, in the case of compact clusters, to the phase sepa-

ration problem. Indeed, irreversible aggregation can be seen as a phase separation process in

the deep-quench limit (from infinite to zero temperature), when separation proceeds only by

decreasing total energy, making the breaking of clusters very rare15.

The structural aspects of DLCA were first considered almost solely from the point of view of

the structure of individual clusters. DLCA clusters are fractals, i.e. the mass of a cluster (m,

proportional to the number of particles in a cluster, n) scales with its radius of gyration rg as

n ∼ m ∼ r
d f
g (2.7)

where d f , the fractal dimension, is less than the corresponding spatial dimension D . Unlike

cluster structure (fractal dimension), the kinetics of DLCA (e.g. the evolution of the mass

distribution) is found to depend quite strongly on the diffusive dynamics of the growing

clusters. The average mass is a good candidate for the description of the aggregation process

only when the cluster size distribution is quasi-monodisperse16. This condition is not fulfilled

in the reaction-limited regime, in the DLCA regime at very high initial monomer concentration,

nor in the initial stage of DLCA aggregation when the memory of the initial monodisperse

distribution is not yet lost.

Still, successfully explored by means of computer simulations, DLCA has been one the first

successful non-trivial colloidal gelation models. An example is in Fig. 2.5. Clusters are clearly

surrounded by empty spaces, appearing during the aggregation: the sequence of full and

empty spaces introduces a characteristic length17. The clusters have roughly the same size

15In such conditions, mechanisms like the evaporation condensation are less effective than diffusion and
coalescence of the entire clusters.

16This is also connected to the experimental issue of the percolation framework. See Par. 2.3.1.
17Colloid-polymer gels reveal large differences in the local structure within a single system [Verhaegh et al.

24
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Figure 2.5: (Top row) Three different snapshots of a two-dimensional system of 32000 particles
undergoing diffusion-limited cluster aggregation. Adapted from [Sciortino et al. (1995)]. The
occupied volume fraction is φ = 0.013. (Bottom row) The same data on a ten times bigger
scale.

(in agreement with the bell-shaped form of the cluster size distribution); on increasing the

time, the size of the cluster increases but the structure of the alternating regions with different

density is preserved.

Gelation in this context is considered a direct consequence of the growth of fractal structures:

growing fractal clusters must eventually fill space [Kolb et al. (1983); Herrmann and Kolb

(1986)]. Since d f < d , the size rg of the growing aggregate increases faster than the size R of

the region originally containing its constituent particles, as n grows, a point will be reached

when rg ∼ R. At the gel point rg = R ≡ Rg el , the fractal clusters contact each other across the

macroscopic system: the system is filled by the gel. In this simple picture, the gel is then an

assembly of fractal clusters whose size Rg el strongly depend on the total volume fraction φ0 as

Rg el ∝φ
1/(d f −d)
0 . (2.8)

Equation 2.8 clearly implies that the fractal clusters forming the gel become smaller with

increasing initial concentration. This behavior has been shown to work reasonably well for

systems at initial particle volume fraction up to φ0 ≈ 0.1 [Bibette et al. (1992); González and

Ramírez-Santiago (1995)]. This argument stays also at the base of the possibility to quantify

the fractality through scattering techniques (Par 2.3.2).

(1999)]: at a given time there are regions where the gel structure consists of alternating patterns of colloid-rich and
colloid-poor regions with a characteristic length scale. See also Par. 2.3.2 for their characterization.
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FURTHER MODELING AND OBSERVATIONS. Nevertheless, this simple picture is not completely

satisfactory. It says nothing about how the particles and clusters aggregate, it neither includes

nor provides any information as to the particle and cluster dynamics or structure; the fractal

dimension d f is simply assumed.

In general, the next step for the implementation of less crude computer models implies the

introduction of more parameters. Indeed, the model of square-well (SW) particles presented

in Eq. 2.6 is closely related to the DLCA, which in fact represents the SW limiting case with

infinitely short range and infinitely deep well. One of the first differences with DLCA, even

for very short ranges of attraction, is that more compact arms are observed to form the gels

obtained with the SW model, thus better mimicking the experimental findings. If particles

are considered to be bonded when their center-to-center separation falls below a cutoff

value rc = 2(R + rg ), the colloidal radius plus the depletion range18, then an average particle’s

bond number nb can be defined. This is the number of bonds that the particle form with

its neighbors. By determining the distributions of nb and by looking at all particles within

the clusters of a given mass, it is possible to account for the observation that the mean bond

number increases slightly with the cluster mass because a smaller fraction of particles resides

at the cluster’s surface. Approximately 40% of the particles in the gel have four bonds or

more, suggesting that there might be nodes, or blobs, distributed throughout the structure.

Moreover, we will see in Par. 3.1.1 that in the case of short-range attractions, nb ∝Utot/N ,

i.e. it is proportional to the total potential energy averaged over the particles, an important

indicator of the local structure.

The Molecular Dynamics of the SW model is at the core of this thesis, and in the next Chapt. 3

both the simulation technique and the model with its parameters will be specified. The SW is

the main colloid model we use to simulate gel aggregation under quench, i.e. suddenly driven

towards a non-equilibrium state where the gel structures emerge with their typical space-

spanning branches (Par. 3.1.1). The different ways a colloidal suspension can be brought out of

equilibrium depend in general on the specific system, but the power of the SW model for short-

ranged inter-particle attractions relies on both its mapping capability and its simplicity19.

In fact, at a given volume fraction φ = Vocc/V occupied by the colloids (Vocc is the volume

occupied by the colloids, V the total volume), as soon as the stickiness becomes τ& τc the

system enters the non-equilibrium region and then only the four parameters ξ (attraction

range), ε (attraction strength), T (temperature) and φ are sufficient for a complete description

of the state-point. We use a temperature-quench and we will show how the dynamical arrest

acts. A particular focus will be put on the parameters involved in the control of the dynamics:

in particular, the introduction of a new (selectivity) parameter in the definition of the SW

potential will enable the definition of different colloidal species. This will be shown to allow a

tuning in both the dynamics of the aggregation process and of the final (arrested) gel structures.

18This cutoff can be effectively defined also as the location of the first minimum of the pair distribution function.
19For example, recall that in the coarse-grained numerical approach we use, there is complete lack of hydrody-

namical effects.
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2.3 Observing aggregation.

2.3.1 Percolation.

The way the aggregation proceeds after the quench, unfortunately, cannot be stated looking at

the state point on the phase diagram. To this aim, different observables are usually studied, by

devising techniques that have been adopted both in experiments and numerical simulations.

As the gel phase sets in, the emergence of an amorphous ramified macromolecule that spans

all the system is observed. This allows to tackle the issue of gelation under the light of theories

of emerging critical phenomenon, and in particular under the point of view of percolation.

In fact, when a sol to gel transition happens, a connectivity transformation have taken place,

whose similarity with other connectivity processes, i.e. in communication networks, epi-

demiology, electrical power grids, microfuidics, forest fires, etc., grants a fruitful theoretical

background. At first used for describing the slow passage of a liquid through a filtering medium,

the concept of percolation has in fact attracted great interest in the last decade and is now a

consolidated mathematical branch used for studying critical phenomena.

A burst of research activity on gels in the 80s, with particular emphasis on polymeric materials,

aimed to describe the gelation in terms of percolation models [Whitney and Burchard (1980);

Schmidt and Burchard (1981); Martin et al. (1987)]. For example it was observed that collagen

proteins, the gelatin, may form a reversible (physical) gel when temperature is sufficiently low.

Exceeding the denaturation temperature, instead, gelatin chains behave as linear polymers

in solution and, in turn, can form a permanent (chemical) gel when agents able to cross-link

the molecules are added to the solution. This results in gelatin proteins connected to form an

elastic network that extends macroscopically20.

The gelation regarded as a transition, due to the formation of a macroscopic network which

makes the system able to bear stress, would transform a viscous liquid into an elastic disor-

dered solid. Such a description is often employed on simplified lattice models where each

site (node) of the lattice represents a monomer (or a colloid) and where only bonds among

first-neighbors are allowed. The concept of percolation involves the possibility of connecting

together extrema by providing a viable path between them. In the case of interacting particles,

this concept translates into the presence of a non-interrupted chain of bonds that connect

macroscopically distant portions of the system. Despite such a simplification, they can ac-

count for important macroscopic quantities regarding the gel formation. This is principally

due to the universality classes of the critical phenomenon, the percolation transition.

Percolation transition is a purely geometrical transition and as a consequence the percolation

theory focuses on geometrical properties of formed structures, defined from the positions

of the monomers/colloids considered in certain (fixed) spatial configurations. The gelation

transition is then a connectivity transition. The so-called polymerization degree (or extent), p,

20A reverse gelation transition, called “gel-sol” transition, may also occur when enzymes able to degrade the
(chemical) bonds are introduced. Such a transition is particularly important in biology, as the process of dissemi-
nation of tumors in human body involves the degradation of the extracellular matrix (ECM), a gel made of various
proteins, including gelatin. In this case the degradation process can solubilize the gel and bring the ECM to a
liquid state, where cells are no longer confined and can freely diffuse.
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which corresponds to the ratio between the actual number of formed bonds to the maximum

number of formable bonds, is used as a control parameter, with the implicit assumption that

other parameters, like temperature T , density φ, or time parameters, are proportional to it.

See Fig. 2.6 as an example of composite where metallic particles are segregated, at different

densities, displaying a gel-like structure at density higher than a threshold: the critical value at

the transition, pc .

Figure 2.6: Structure of a segregated composite PVC-Ni (nickel immersed in polyvinylchloride
matrix) by optical microscopy, adapted from [Mamunya et al. (2002)]. The filler content
have packing fractions (a) φ < φc , (b) φ ≈ φc , (c) φ > φc , where φc = 0.041 is the calculated
percolation threshold in terms of occupied space, for such composite.

FEATURES AND MODELING. In the thermodynamic limit where an infinite system is considered,

for a particular critical value pc of p an infinite cluster appears. The sol phase corresponds

to a solution of disconnected (finite) clusters with p < pc , while at p ≥ pc the gel phase is

characterized by the presence of a percolating (infinite) cluster that spans the whole sys-

tem [Kirkpatrick (1973); Stauffer (1981); Stauffer et al. (1982); Herrmann et al. (1983)]. In the

theoretical framework of critical phenomena, the quantity (p −pc ) represents the distance

from the transition. Near the transition, the macroscopic quantities describing the system

behave as power laws (p −pc )a .

From an experimental point of view, the sol phase can be characterized by finite viscosity,

whereas the gel phase exhibits elastic behavior, due to the presence of a macroscopic inter-

connected stress-bearing molecule21. The gelation threshold can be measured by rheology

experiments as the point that marks the passage from a dominant viscous regime to an elastic

one22. In this context, the viscosity would diverge as (p −pc )−k below the transition, and stays

infinite above it, while the elastic modulus is zero below the transition and grows above it as

(p −pc ) f . Near the transition, various classes of percolation exist, for example the random or

21The intersection point of the loss modulus G ′(ω), related to the viscosity coefficient η, and the storage modulus
G ′′(ω), related to the elastic response, with ω is frequency of the applied stress, is customary associated to the
gelation threshold [Bland (1960)].

22The presence of the percolating cluster does not necessarily produce a sharp change in the viscoelastic
properties of the system, and weak gels may result similar to highly viscous liquid: the presence of the percolating
cluster strongly influences the properties of the system if bonds can be regarded as permanent.
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the “pacman” percolation classes [Stauffer and Aharony (1994); Abete (2006)], with different

critical exponents23.

The experimental determination of both the density of the percolating cluster and the weight

average mass can be performed by weighting the macromolecule: in order to perform such

a measurement, the gel phase must be separated from the sol phase (for example by cen-

trifugation, but computational analysis techniques also exist, which rely on data retrieved by

microscopy imaging). Such separation of the sol and gel phases is very difficult to achieve

experimentally24, and the clusters in this process tend to break [Stauffer et al. (1982)].

De Gennes proposed [De Gennes (1976)] an analogy between the macroscopic elastic constant

of a spring network and the macroscopic conductivity of a resistor network, as both are due to

the percolating cluster. Since the earliest works of [Gurland (1966)], it has been customary to

associate the insulator-to-conductor transition with the formation of a cluster of electrically

connected filler particles which extends through the whole sample. See Fig. 2.7. The transport

properties of such cluster is defined by the conductances of the contacts (bonds) between the

particles, a natural step to map this system onto an equivalent resistor network.

Such models usually involve 2D square (or 3D cubic) lattices whose sites, representing the con-

ductive particles, are randomly occupied and nearest neighbors considered interconnected

(site percolation model) or, similarly, where nearest neighbors are randomly interconnected

by bonds of given conductance (bond percolation model). The resulting system is called a

random resistor network25. Pushing further the analogies proposed by de Gennes, the ex-

ponents f of the elastic modulus and k of the viscosity have been put in direct relation to,

respectively, the critical exponents t and s of the conductivity in random resistor and random

super-conducting networks [De Gennes (1976, 1978)]. He considered a network in which

bonds are substituted with a super-conducting junction (couples of stably bonded particles),

whereas absent bonds are substituted with resistors of finite conductance. The percolating

cluster of energetically bonded particles would produce a macroscopic infinite viscosity.

However, such connectivity-based description of the insulator transition manifests some

fundamental incompatibilities for those cases without any sharp cutoff of the connectivity.

Indeed, the percolation formulation requires the connections between the filler particles to

be of the “on-off” binary sort: this is in contrast, on one hand, with inter-particle potentials

where the bonded (on) state cannot be unambiguously distinct from the unbound (off) state,

and, on the other hand, with a more refined conductivity description which accounts for

23These exponents are universal, i.e. they do not depend on the microscopic details of the system, but only on
global characteristics like the dimensionality of the system, or whether or not there are long range correlations
between particles and bonds. Systems with the same values of such exponents are said to belong to the same
universality class [Stanley (1987)].

24The gel extraction may be achieved only incompletely, as finite clusters may be trapped into the gel phase.
Moreover, the cluster radius may increase by dissolution of the sample.

25The conductivity of an (infinite) random resistor network at p & pc will behave as a power law of the form
σ = σ0(p −pc )t , where σ0 is a pre-factor and t is the direct current transport critical exponent. Note that the
so-called transport non-universality is also found experimentally and several works have been devoted to it [Johner
(2009)].
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Figure 2.7: Silver-bakelite conductive composites, adapted from [Gurland (1966)]. (Left)
Resistivity (inverse of conductivity) as a function of the filler volume fraction φ (expressed in
percent). (Right) Micrographs of the composites. (a) φ= 0.1, (b) φ= 0.4. For the scale, the real
length of the micrograph side is ∼ 1.45 mm.

non-finite cutoffs26. Moreover, dangling ends that contribute to the mass do not contribute to

the conductivity, so that above the transition threshold the macroscopic conductivity does not

necessarily follow the same growth as, for instance, the mass of the percolating cluster.

OPERATIONAL DEFINITION IN PBC SIMULATIONS. In the resistor-network approach, the sys-

tem is often defined as percolating once two extrema (conducting plates or poles) are con-

nected together by a pattern of bonds formed among the nodes. This percolation definition is

not unique. In fact, especially when treating the configurations of particles (nodes) extracted

from a numerical simulation, the periodic boundary conditions (PBC) have to be taken into

account. The PBC are used to minimize the finite size effects which often affect simulations:

the bulk condition is fairly well approximated by using simulation boxes, let’s say of size L,

where no walls are present and where continuity of the system is attained in every direction

26The tunneling is the microscopically justified electron inter-particle conduction mechanism, whose conduc-
tance decays exponentially over the distance with a characteristic decay length in the order of a few nanometers
and only for macroscopic fillers an abrupt cutoff description of inter-particle connectivity may still be suitable. This
ceases to be valid for nanometric fillers, which have one or more characteristic dimensions that are comparable
with the distances of tunneling.
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(x, y and z in the 3D case) by implementing crossing rules [Hansen and McDonald (2006)].

As a result, the assessment whether percolation is achieved or not, has to rely on a different

evaluation by respect to the 2-plates case.

Provided that the bonding rule is well established for the particles (or nodes) in a fix position

in the box volume V , where for instance V = L3 if a cube is considered, bonds can exist at

the crossing of the the volume border, at least in one of the euclidean directions. The most

simple way of treating this case, is to proceed as follows: in a first step, all the clusters must be

individuated, using the PBC rules for the possible crossing bonds; next, the system is replicated

around the original one, and once again all the clusters must be individuated, where now

the PBC is also present but on an increased, 3-fold scale. See Fig. 2.8 as an example for a 2D

model structure. In this peculiar example, it is clear that a cluster in the vertical direction is

percolating in the plates direction, but without any space spanning cluster: in fact, the only

cluster which crosses the borders and bounds to itself creates, once replicated, 3 clusters.

The percolation in the thesis work is defined as having at least one cluster that, in periodic

boundary conditions, touches itself in such a way that it creates one unique cluster, crossing

along all the directions. This is sometimes called a wrapping percolation.

Figure 2.8: (Left) A schematic 2D gel structure with periodic boundary conditions. Clusters
are identified and differently colored, with a line embedding the different clusters drawn to
simplify the visualization. (Right) The same system, replicated in the two Euclidean directions.
This example highlights also the aliasing feature due to the introduction of a length-scale L for
the replicated system.

Off-lattice or continuum models have also been introduced [Feng et al. (1987)] and, in random

resistor networks, a certain correspondence exists between the bond occupation probability p

and the occupied volume fraction φ. When dealing with such systems, a problem associated

with the concept of contact becomes more evident. For example, for a system of equally-sized
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hard spheres randomly dispersed in the continuum, if no potential is defined for the bonding,

would originate contacts and global connectivity only at the close packing limit, at a volume

fraction of φ≈ 0.64 [Donev (2006)], way higher than the filling fractions at which the insulator-

to-conductor transition is experimentally observed.

If a cutoff on the minimal distance between two spheres is introduced (below which these are

considered connected and beyond which these are considered disconnected) the resulting

formulation is called cherry-pit model [Zweifel et al. (1998-04-01); Johner et al. (2008)]. Also

for these continuum systems, if we associate to every connected particle couple a bond of a

certain conductance, near the critical concentration, the bulk conductivity will again follow a

power law of the same form, but in terms of the volume fraction:

σ=σ0(φ−φc )t .

Moreover, if t is (under isotropic conditions) universal, the percolation critical concentration

φc is system-dependent and will vary for different morphologies.

The concept of studying the conductivity rests however untouched: it uniquely relies on

the fact that a structure formed by conductive particles results globally conductive when the

minimum inter-particle distances is short enough. The conductivity of a system under gelation,

can be thus studied for extracting information on the global structure of the aggregating

particles.

This constitutes a side-project of the thesis: we studied monodisperse colloidal gelation

under the tunneling conductivity paradigm. With the correct approach where one takes into

account the non-finite electron transport distance, one can in principle detect changes in

the fluid structure under gelation, even far from the critical point. We have worked in such

a direction for monodisperse systems of SW colloidal particle, and results can be found in

the Appendix A. We show how the natural branching structuration due to gelation brings to

enhance the conductivity of systems otherwise bound (in the fluid, isotropic regime) to poor

conductivity. As this is not the topic proposed for the thesis, indeed such a description is

relegated in Appendix A.

2.3.2 Characteristic length.

Usual approaches to determine percolating quantities (as the weight average mass - i.e. the

mean cluster size,- or the average cluster diameter - i.e. the connectedness length) light

scattering measurements may be performed. In such measurements, the sample needs to

be dissolved in a known quantity of solvent in such a way that each cluster is separated from

the others. Therefore, light scattering experiments must be performed in dilute solutions, but

since the size of the clusters may increase during the dissolution due to swelling, it is possible

that the measurement of the mean size (or gyration radius) may be corrupted. What is more,

even if providing a certain characterization, the theory of critical phenomena cannot be used

to describe the dynamical evolution of gels and the changes in mechanical response due to

the formation of the spanning macromolecule. In fact it describes a purely static transition
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corresponding to topological changes of the system. Other measurements are thus more often

used to this end, and in what follows, after a closer view on the percolation description, we

will introduce the most used method: the study of the structure factor.

In general, there are two ways of probing structures with radiation: by direct imaging, e.g. with

a microscope, or by interpreting the scattered, or diffracted, radiation (usually in the far field).

The two methods are complementary. Imaging in real space, effectively “seeing”, provides

direct information on the basic structure of the “scattering units”, usually in a small region of

the sample. In Appendix B the confocal microscopy is presented: this experimental technique,

that gives access to direct imaging of colloids and their gel structures, is used for the study

concerned by the thesis. Here, however, we shortly review the important concepts connected

with imaging, whose validity goes beyond the used technique.

STRUCTURE FACTOR. A fundamental object that is used in the study of the dynamical behavior

of liquids is the time-dependent generalization of the equilibrium pair distribution function,

the so called van Hove function [Van Hove (1954)]. For a system composed by N particles

(considered as δ-scatterers) in a volume V , in which the position of the α-th particle at time t

is~rα(t ), the local density in space and in time ρ(~r , t ) can be defined, and the van Hove function

corresponds to its autocorrelation:

G(~r , t ) = 1

ρ

〈
ρ(~r , t )ρ(0,0)

〉= V

N

〈
δ3(~rα(0))δ3(~r −~rβ(t ))

〉
. (2.9)

This describes the probability of finding a particle around~r at time t , given that there is a

particle in the origin at time t = 0. It separates into two terms, usually called the self part

Gs(~r , t) and the distinct part Gd (~r , t), given respectively by the sum over the diagonal terms

α = β, and by the sum over the off-diagonal terms α 6= β. They describe respectively the

probability that the particle in (~r , t ) is the same that was in (0,0), or a different one. For t = 0

one has Gs(~r ,0) = δ3(~r ) and Gd (~r ,0) = ρg (~r ), where g (~r ) is the static pair correlation function.

The space Fourier transform of ρ(~r , t ) is the density fluctuation of wavenumber~k,

ρ~k (t ) =
∫

d~r e−i~k~rρ(~r , t ) ,

whose mean square value is called static structure factor,

S(~k) = 1

N

〈∣∣ρ~k ∣∣2
〉
=

∫
d~r e−i~k~r G(~r ,0) = 1+ρ

∫
d~r e−i~k~r g (~r ) . (2.10)

In a more convenient way, when isotropy is considered for the scatterers (particles), it can be

rewritten as

S(q) = 1+ N

V

∫ ∞

0
4πr 2 (

g (r )−1
) sin(qr )

qr
dr , (2.11)

where the q notation is often found for the wavenumber. The corresponding transform of

G(~r , t) gives the autocorrelation function of density fluctuations, also called intermediate
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scattering function or coherent scattering function,

F (~k, t ) =
〈
ρ~k (t )ρ−~k (0)

〉〈∣∣ρ~k ∣∣2
〉 = 1

S(~k)

∫
d~r e−i~k~r G(~r , t ) .

By considering only the self part of the van Hove function, we obtain the self intermediate

scattering function or incoherent scattering function. Finally, Fourier transforming over time,

we obtain the coherent dynamical structure factor

S(~k,ω) = S(~k)

π
F (~k,ω) = S(~k)

2π

∫ ∞

−∞
e iωt F (~k, t )

∫
d~r e−i~k~r G(~r , t )

that, for classical systems, is a even function of both~k and ω. In investigating the properties of

liquids, there are some differences in the case of scattering of light by respect to the case of

slow neutrons. First, the light scattering is completely coherent, so that no information can be

gained on self part of S(~k,ω). Second, the wavelength of light (of the order of 4000−8000 Å)

has to be used within the “hydrodynamic region” (k ' 10−3Å−1), that is often bigger than the

inter-particle distances.

It is worth to notice that over sufficiently large length-scales the behavior of the S(~k) is due

to the contribution of different relaxation processes characterized by different relaxation

times. Close to the sol-gel transition, the relaxation process is controlled by the growth of the

connectivity inside the system, as the mean molecule size critically grows. In the cases when

the static structure factor S(~k) is experimentally measured using energies much greater than

kB T for the wavelengths of interest (like, for instance, by means of X-rays, electrons of fast

neutrons), the scattering can be treated, to a very good approximation, as being elastic. If it is

case, then the so-called elastic sum rule holds, stating that the cross-section is proportional to∫ ∞

−∞
dωS(~k,ω) = S(~k) .

The position of the small-angle peak in the structure factor, km , indicates a characteristic

length scale, ξm ∼ 2π/km . This length have to some extent describe an evolving “characteristic”

length scale as aggregation proceeds. Each growing cluster can be seen as surrounded by a

“depletion zone”, where the density of particles is lower than the system average [Dubois and

Cabane (1989)]. The small-angle peak is the signature of this developing density modulation.

Thus the characteristic length scale represented by the small-angle peak is given by the radius of

the typical cluster plus its depletion zone. Care must always be taken when interpreting g (r ),

however: in fact it is usually averaged by taking every particle at the “origin” in turn; then the

pair correlation function measures an average “environment” seen by all particles, not just

those near the centers of the clusters.

The low-k behavior can be masked by the presence of trivial thermal fluctuations, that are also

found in the non-aggregated system (i.e., at t = 0). The signal from the thermal fluctuations

becomes negligible only when the aggregation process has gone so far to produce a large (À 1)

average mass.
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OBSERVING GELATION. Some of the first important results on the ongoing gelation phe-

nomenon, as explored by the study of structure factor, concern the salt-induced aggregation of

monodisperse, charged polystyrene spheres dispersed in water [Carpineti and Giglio (1992)],

and the temperature-induced aggregation of monodisperse surfactant-stabilized oil-in-water

emulsion droplets [Bibette et al. (1992)]. The technique of small-angle light scattering (SALS)

was used in both cases27. It was showed that, as aggregation proceeds, spontaneous ordering

occurs on a mesoscopic length scale & 10 particle diameters. They observed that the meso-

scopic structure persists as aggregation proceeds towards the point where a single, internally

non-compact cluster spans space. This is the occurrence of gelation, whose key signature is

the presence of a brightening and collapsing “ring” in the SALS pattern. Consensus emerged

that the peak in the small-angle scattering is associated with some kind of “depletion re-

gion” [Gunton J.D. and Sahni (1983); Langer (1992); Bailey et al. (2007)] surrounding each

growing cluster, where the peak’s collapse and brightening are strongly reminiscent of the

spinodal decomposition. When the system arrives at the gel point, the peak observed via

scattering techniques “freezes”, indicating the arisen structural arrest28. This can be seen in

Fig. 2.9 (left).

Figure 2.9: (Left) Plots of scattered intensity distributions of various times during the aggre-
gation, from [Carpineti and Giglio (1992)]. A solution of polystyrene spheres (0.0190µm in
diameter, volume fractionφ= 2.96×10−4) in a water-heavy-water mixture aggregates by MgCl2

salt addition. The curves grow and shift up to saturation, and cover a time range from t = 722
to 60753 s (from bottom to top). Starting from the wavelength indicated by an arrow, the
large-q asymptotic behavior is considered and shown on a log-log plot in inset. (Right) The
scaled structure factor, Eq. 2.12, at later stages of the aggregation process (times are indicated
in seconds).

27Depending on the particle size, the incident radiation wavelength has to be decided. Colloidal particles can be
studied by means of both light or neutrons scattering.

28Note that the depletion zone in g (r ) persists in the final system-spanning gel, just as the “frozen peak” persists
in the structure factor S(k) at the gel point.
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The fractal dimension of the macromolecule formed by diffusion aggregation processes may

be measured by light scattering experiments, investigating the behavior of the static structure

factor S(q) as a function of the wavenumber q [Carpineti et al. (1990); Carpineti and Giglio

(1992)]. Carpineti and Giglio experimentally showed that scattered intensity in diffusion-

limited cluster aggregation does display a peak29, which grows and shifts in k-space during

the aggregation kinetics [Carpineti and Giglio (1992)]. They found that after an initial regime,

the scattered intensity seems to scale as predicted for late-stage decomposition theories, if

one substitutes the fractal dimension of the clusters d f to the space dimension d in the scaling

plot. The growth of the scattered intensity stops when the less and less dense fractal clusters

completely span the available space, leaving in the frozen scattered intensity state a memory of

the growth process. Such observations have been confirmed by computer simulations [Pusey

et al. (1993); Haw et al. (1994); Sciortino et al. (1994-08-01); González and Ramírez-Santiago

(1995)]. Even in the two-dimensional case, a growing and moving peak in the scattered inten-

sity is observed. It was conjectured that the peak was a manifestation in Fourier space of the

depletion region, which develops around the growing clusters.

At higher concentrations the dynamics is very fast, the mass growth is not a simple power

law, and the size distribution is not characterized by just one single size, as it happens instead

for the DLCA case. There is a peak in the scattered intensity at all concentrations. At high

concentration, the amplitude of the peak is rather small, consistent with the fact that just

before gelation, the average cluster size is small. At φ> 0.25 the kinetics of aggregation never

enters the regime of self-similarity. The aggregation process is so fast that there is no time

to forget the initial monodisperse distribution state and crossover to the universal law for

the cluster size distribution. At lower densities, instead, the kinetics is much slower. In the

late-stage decomposition and in the deep-quench limit, when a sample is quickly transferred

from the high temperature one-phase region deep into the coexistence region, the cluster

structure is compact and the leading aggregation mechanism is diffusion and coalescence of

clusters [Sciortino et al. (1995)].

After an initial period during which droplets of the minority phase are formed, the separation

process proceeds via diffusion and clustering of droplets. Under deep quench, separation

proceeds only along a path of decreasing total energy and cluster breaking is very rare. The

growing cluster acts as a trap for the near clusters, decreasing the probability of finding clusters

nearby its sticky boundaries30.

SCALING FUNCTIONS. It emerges from observations in scattering studies of aggregating col-

loids, as well as in simulated systems, that over a range of scattering vectors around the

small-angle peak, the time-dependent structure factor S(k, t ) shows a dynamic scaling prop-

29When gel formation is due to DLCA or RLCA processes, the gelation process corresponds to the formation of
an interconnected network which evolves dynamically, but the same approach as the chemical gelation holds
within the appropriate observation time scale.

30The gel structures have scatter profiles very close to those of dense liquids. It was found, especially for gels
with occupied volume fractions (φ& 0.1), that the overall shape of pair correlation function is typical of those seen
in dense liquid structures [Varadan and Solomon (2002)].
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erty. Carpineti and Giglio [Carpineti and Giglio (1992)] found that at intermediate times the

scaled structure factor

S̃(k/km) = kγmS(k, t ) (2.12)

takes an invariant form, with γ∼ 1.90±0.02, i.e. γ≈ d f the (single cluster) fractal dimension

(Fig. 2.9). For the scaled scattering curves to collapse to a single function in the fractal regime,

i.e. at large k where S(k) ∼ k−d f , Eq. 2.12 requires γ= d f . This does not explain though why

a scaling exponent γ= d f also seems to lead to data collapse at and below the peak in S(k),

where S(k) ∼ k−d f clearly does not hold. The scattered intensity shows a well defined peak

that moves in time. The kinetic process is separated in three regions: an initial region where

no scaling in kd f S(k/km) is observed, an intermediate region where scaling is observed, and a

saturation region where no further change in the dynamical structure factor is observed.

For dynamic scaling to hold, there must be a single length scale which characterizes the

aggregating system, all other lengths in the problem being proportional to this length and thus

having the same time-dependence. Instead, two length scales can be identified in principle

(also from the form of the pair correlation function g (r )): the “cluster size”, rc , (i.e. the point at

which g (r ) first decreases below unity), and the outer radius of the depletion zone, rk ≈ ξm

(where g (r ) recovers to unity). Over the intermediate time regime when dynamic scaling holds,

therefore, we must have rk /rc = constant.

One advantage of simulations is that the various length scales may be directly calculated. On

the other hand, experimentally the average separation 〈x〉 and the average (median) radius of

gyration of clusters
〈

rg
〉

are measured. It is not clear, however, how 〈x〉 and rc or rk should be

related, and experimental results do show inconsistencies [Earnshaw and Robinson (1995)]

with the simulated constant rk /rc [Haw et al. (1995)].

Moreover, the scaling exponent γ in Eq. 2.12 seems to depend on the volume fraction. At

high volume fraction an unexpectedly low estimate of γ is obtained. If we identify γ with the

fractal dimension of clusters d f , this seems the reverse of the often-stated expected increase

in the fractal dimension of clusters with increasing system concentration [Kolb and Herrmann

(1985)]. Thus it is not clear that γ may always be simply associated with d f .

It has been argued by [Sciortino et al. (1995); Sciortino and Tartaglia (1995)] that the observed

scaling in fractal aggregation is only “apparent” rather than theoretically meaningful; their

argument is related to the simple picture of gelation where the size of the fractal clusters must

grow faster than the size of the “depletion regions” surrounding the clusters. This means there

are at least two length scales in the fractal aggregation system which evolve differently in

time: scaling by a single characteristic length is violated. Moreover, it has been noted that a

scaling function for the structure factor cannot be universal, strongly depending on the initial

conditions (principally the occupied volume fraction) and coarsening process [Sciortino et al.

(1995)].
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Figure 2.10: Scattering intensity for Al-Zn system with Mg for the stabilization of the quenched
vacancy, adapted from [Furukawa (1985)]. (a) Bare scattering functions for various times. (b)
The scaled scattering function constructed by the same data as (a). The solid curve indicates
Eq. 2.23 with γ= 4 = d +1.

ANALYTICAL APPROXIMATION. Small-angle scattering (SAS) is measured in order to study

the droplets growth near the critical point for fluid mixtures. The detection of correlations

between different interfaces, and in particular, between remote surface segments of one and

the same particle, has opened the way to theoretical approaches, most of which have tried to

view under a unifying picture the decomposition process. In particular, it was observed (by

X-ray or neutron SAS) that the appearance of a k−4 behavior of the structure factor reflects the

appearance of a well-developed droplet interface. Such a decay, named after Porod and Debye,

is known as Porod’s law [Porod (1951, 1952); Debye et al. (1957); Sinha et al. (1988); Glatter

(1991)]. In a system composed of distinct mesoscopic particles, all small-angle scattering can

be understood as arising from surfaces or interfaces. In the range of validity of the Porod’s

law, however, is relatively small on the usual scale of SAS: in this regime, correlations between

remote surface segments and inter-particle correlations are so random that they average out.

Therefore one can distinguish the local interface roughness.

We now introduce a semi-empirical formulation for the structure factor that brings to an

analytical formulation. Importantly, such a treatment has been primarily suggested and

used for the description of late stages of the phase separation process where a bicontinuous

structure emerges. In the case of gelation, where the spinodal decomposition is arrested,

such a treatment is also expected to hold in aggregation stages distant from the early thermal

fluctuations due to the quench. But in the gelation process of colloidal particles, the definition

of bicontinuous structures is not obvious: we will come back later to this in Chap. 4, where

results will be shown regarding double, inter-penetrating gel structures.
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The scaling form of the Structure Factor 2.12 is often found written as

S̃ (kR(t )) = [R(t )]−d Sk (t ) , (2.13)

where R is the length-scale of the sub-systems where phase separation occurs independently

until percolation arises. The transformed density ρ~k (t ) assumes the role of order parameter,

which is assumed to be a conserved quantity as the material cannot move over the distance

much larger than R. Used at the small wavenumber limit, this means that

lim
k→0

〈∣∣ρk (t )
∣∣2

〉
= lim

k→0

〈∣∣ρk (0)
∣∣2

〉
= lim

k→0
Sk (0) , (2.14)

i.e., the large length-scale structure factor S0 does not change in time31. By assuming the

initial value may be neglected [Furukawa (1984, 1985, 1989)], the scaling function 2.13 does

not contain constants. This argument holds its validity for liquids where no important struc-

turation emerges before quenching.

While the thermal fluctuations drive the early stages of the phase separation process, they are

not dominant in the late stages, where instead surface tension becomes important. It has been

shown [Furukawa (1989)] that for the order parameter it can be used a kinetic equation like

d

d t
ρk (t ) = Mk (t )kβµk (t ) , (2.15)

where Mk (t) is the mobility and µk (t) is the (transformed) chemical potential32. Thus, for

small-k, a behavior

Sk (t ) ∝ k2β (2.16)

is expected. With the usual the kinetic equation for which β= 2, the k4 behavior (and related

scaling) is recovered [Katano and Iizumi (1984); Hoffer and Sinha (1986); Wiltzius et al. (1988)].

During phase separation, the chemical potential µ is not a conserved quantity and it gives

lim
r→∞

〈
µ(~r )µ(0)

〉−〈
µ(0)

〉2 ∝ r ν , ν> 0 . (2.17)

Passing to the Fourier transform, this implies that
〈∣∣µk

∣∣2
〉
∝ kν−d , where d is the Euclidean

dimensionality. A minimum for ν exists that is independent on β. In fact from Eq. 2.15, for the

structure factor Sk (t ) =
〈∣∣ρk (t )

∣∣2
〉

results the equation of motion

d

d t
Sk (t ) = 2Mk (t )kβ

〈
µk (t )ρ−k (t )

〉
(2.18)

31The long range (small wavelength) limit of the structure factor gives the (isothermal) compressibility of a

fluid κT = − 1
V

∂V
∂p

∣∣∣
T
= 1

ρ
∂ρ
∂p

∣∣∣
T

, where ρ = N /V is the number density. The relation with the structure factor

reads S(0) = kB T
∂ρ
∂p

∣∣∣
T
= kB TρκT and captures the fluid’s resistance to uniform compression. It provides also the

thermodynamic link for analytical approaches relying on the Ornstein-Zernike equation.
32This is in the same spirit as for the Cahn-Hilliard-Cook equation d

d t ρk (t ) = Mk (t )k2µk (t )+ fk (t ), where the

fluctuating force has the dissipative property
〈

fk (t ) f−k (t ′)
〉= 2Mk (t )k2δ(t − t ′).
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and this in turn gives

〈
µk (t )ρ−k (t )

〉≤ 〈∣∣µk (t )
∣∣ ∣∣ρk (t )

∣∣〉∝ k(ν−d)/2 〈∣∣ρk (t )
∣∣〉≤ k(ν−d)/2

[〈∣∣ρk (t )
∣∣2

〉]1/2 ∝ k(ν−d)/2S1/2
k .

(2.19)

Then, using the results 2.16 and 2.18, we have

d

d t
Sk (t ) ∼ 1

t
Sk (t ) ∝ k2β ≤ kβk(ν−d)/2kβ ⇒ ν≥ d . (2.20)

For the other extreme of the scaling function at large length-scales, the fractal argument holds.

However, in its early formulations the k relation simple relied on the Euclidean dimensionality.

For sake of simplicity, Furukawa argued [Furukawa (1989)] that the tail of the scaling structure

factor S̃(x) shall be approximated to a simple power-law x−γ. Here γmay be equal to d +1, but

generalizations to fractal behaviors can give different values (e.g. γ= d f +1). The tail should

depend on the surface condition of the droplets.

The scaling structure factor should than have the following asymptotic forms:

S̃ (x) ∝
{

xδ for small x

x−γ for large x
. (2.21)

where δ = 2β and where k/km is the ratio over the peak position km . As explained before,

no constants are expected and, thus, we can assume that the asymptotic behavior gives a

sufficient description. This means that we can assume

1/S̃ (x) = ax−δ+bx−γ , (2.22)

where the constants a and b can be fixed imposing the function to have a maximum in x = 1

and that the value in the maximum is S̃ (1) = 1. A function which satisfies these properties is

given by

S̃(x) =
(
1+ γ

δ

) xδ

γ
δ +xδ+γ

. (2.23)

Although this is only one of many possible equations satisfying all the above conditions, its

good agreement was found for numerical simulations [Furukawa (1984); Thakre et al. (2008)] as

well as for experimental results [Poon et al. (1995); Dhont (1996b); Gibaud and Schurtenberger

(2009)]. The scaling property is sometimes used by collapsing the functions in accordance

with the obtained parameters, in the form

S(x) = S(x, t )

Sm(t )
, x = k/km(t ) . (2.24)

Example of scaling are shown Fig.s 2.10 (right) and 2.11, used to account for experimental

and simulation data, respectively. Thanks to the possibility offered by this phenomenological,
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2.3. Observing aggregation.

analytical approximation, the characteristic lengths of the domains can be extracted from the

peak positions of the fitted functions by R(t) = 2π/km(t). It is believed that this route to the

average domain size provides a worthwhile alternative to the more common approaches based

on the first or second moment of S(k), especially when the structure factors are compounded

with noise.

Recently there have been some discussion on the kinetics of demixing in colloid-polymer

and Lenard-Jones mixtures [Aarts and Lekkerkerker (2004); Thakre et al. (2008)]. By keeping

track of the evolution of the low-q region of the structure factor, it is possible to keep track

of the typical demixing domain size and its evolution. This approach fits perfectly in the

context of the thesis, where a mixture of different species has to be treated. The structure

factor, defined as S(k, t ) = 〈ρkρ−k〉, where ρk are the Fourier transform of the density variable

(see also Eq. 2.10), can be computationally achieved in this case of 2-component mixture by

using [Thakre et al. (2008)]

ρk =
N∑

i=0
bi exp(i k · ri (t )) (2.25)

where bi takes the values ±1 depending of which species (or component) is considered, and

N is the number of particles. In this case only 2 species are considered to form the mixture, as

it is the main case the thesis aim to study. As pointed out by [Thakre et al. (2008)], Furukawa’s

function is consistent with the dynamical scaling hypothesis, which is expected to hold for

the evolving phase separated domains. An offset in the wave number, introduced as a third fit

parameter to improve the quality of fit, would spoil this scaling invariance and is therefore not

recommendable. As a particular case of Eq. 2.23, Furukawa proposed a form for the demixing

fluid where δ= 2 and γ= 4 [Furukawa (1984)]:

S̃k (t ) = Sm(t )
3(k/km(t ))2

2+ (k/km(t ))6 , (2.26)

that we will use, together with its generalized version, for characterizing some of the results of

the thesis in Par. 5.1.
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Chapter 2. Colloidal aggregation and gelation.

Figure 2.11: Spherically averaged structure factors S(q, t ), adapted from [Thakre et al. (2008)],
for four times (time t is in unities of τ =

p
mD2/ε, D is the diameter), after quenching a

homogeneous Lennard-Jones fluid. In this case, the spinodal decomposition takes place. In
order to improve the signal-to-noise ratio, the data shown are averages over four independent
MD simulations. Thick smooth lines represent fits with the Furukawa function, see Eq. 2.26.
As time advances, the position qm of the peak shifts to lower wave numbers, and the height of
the peak increases, indicating that the domains are growing.
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3 Demixing: simulations, theory and
experiments.

OUTLOOK. The square well (SW) model for colloidal particles, introduced in the previous

chapter, is here adopted in the context of numerical simulations. This model plays a funda-

mental role in the colloidal gelation. Not only it can well represent both the DLCA and the

RLCA kinds of aggregations, but is also prototypical for the study of more dense amorphous

systems, like glasses [Dawson et al. (2001); Foffi et al. (2002); Zaccarelli et al. (2005); Krekelberg

et al. (2007)], and outlines the dynamics underlying processes like crystallization or gelation.

In Par. 3.1 we describe how molecular dynamics (MD) is used for SW particles.

In particular, the typical dynamics of colloidal gels is shown to be followed by the SW particles.

Its simple implementation for MD simulations also makes the SW apt to fundamental and yet

simple modifications, able to account for different phenomena. The possibilities offered by

having different species of colloids are discussed in Par. 3.1.2: we introduce mixtures of more

than one species, where the distinction and tuning of inter- and intra-species interactions may

have a major role in modeling new complex composites as well as in studying their physics.

In Par. 3.2, the spinodal decomposition mechanism (see Chap. 2) is used in the present chapter

for a SW model adapted for multi-component mixtures. In particular, for 2-components

mixtures (2CM) the two main phase separation mechanisms, condensation and demixing, are

explained in Par. 3.2.1 as unified under the common framework of spinodal decomposition. To

this end, the Thermodynamic Perturbation Theory (TPT) is shortly introduced. The spinodal

decomposition region of the 2CM will be shown, providing a basic proof for a possible tuning

of this competition.

In conclusion of this chapter, in Par. 3.2.2 we will introduce a measure for the topology and

porosity. This is a novel method that we implemented, which relies on the construction of

surfaces embedding the gel branches and, consequently, on their analysis. Such a method will

be used, in the next chapter, in order characterize the arrested structures.

3.1 Model and Simulation Protocol

Routes that exploit spontaneous self-assembly in thermal equilibrium are important, but

non-equilibrium processes offer more control - because assembly is then governed not just by
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Chapter 3. Demixing: simulations, theory and experiments.

thermodynamic conditions but by the process history. Among the most promising precursors

for assembling, new classes of non-equilibrium materials are colloidal particles with specific

interactions. For both the experimental realizability and the theoretical approach they allow,

particular importance have materials with tunable properties made up of constituents with

simple geometry1. Thus, we focus on the square well (SW) potential: it is a potential of

mean force, since the solvent is modeled implicitly, that well approximates the short-ranged

interactions responsible for the formation of amorphous structures typical of a vast number

of materials. We make use of large-scale computer simulations to explore the gelation of a

mixture of SW particles.

In particular, binary mixtures of SW colloidal particles will be introduced, whose potential

is the simplest implementation apt to retain the underlying physics we try to capture. The

selectivity among species, as defined by means of the interaction potential itself, will play

a major role. We will present the particular case of two species - hence the binary - but the

definitions and methods we use are general and easily scalable to systems made of more

components. For the 2-component mixtures (2CM), we explore the kinetic arrest that leads to

the creation of amorphous soft-solid materials with a specific focus on the resulting binary,

inter-penetrating gels. In what follows, we describe the simulation methods and its passage

from the monodisperse system (one-component mixture, 1CM) to the system of interest made

of two (or possibly more) components.

3.1.1 Molecular Dynamics

FEATURES OF SW MODEL. The molecular dynamics (MD) is a deterministic simulation tech-

nique, where initial particle positions and momenta determine their trajectories2. MD simula-

tions can be applied to study systems following probability distributions of microcanonical

ensemble (constant NVE) and the canonical ensemble (constant NVT), among others [Frenkel

and Smit (2002); Hansen and McDonald (2006); Rapaport (2009)].

The numerical implementation of a model enters the description of the physics, as it is sup-

posed to possibly retain the behavior, in our case, of a complex fluid under quench, within a

coarse-grained approach. As already discussed in Par. 2.2, the SW model offers the possibility

of a satisfying description, in dynamical and structural terms, of a wide range of systems with

short-range attraction. The SW model in Eq. 2.6, is here re-written:

USW =


∞ r ≤ D

−ε D < r ≤λD

0 r >λD

(3.1)

1The demand for structures of increasing complexity with novel properties has triggered exploration of the
self-assembly of anisotropically interacting particles [Glotzer (2004); Jackson et al. (2004); Glotzer and Solomon
(2007); Blaak et al. (2007); Walther and Muller (2008); Goyal et al. (2010)].

2Unlike MD, the Monte Carlo (MC) simulation technique differs in that relies on probabilities. One of the
advantages of MD over the MC is that the complete trajectories are available for analysis, and then dynamic
properties of a system can be computed.
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3.1. Model and Simulation Protocol

While the square well potential have an unphysical shape, it has been widely used to success-

fully model colloids with short range attractions [Foffi et al. (2005b); Lu et al. (2008); Gibaud

et al. (2012)], since the relevant physical properties depend only weakly on the shape of the

potential [Noro and Frenkel (2000)].

We fixed the diameter to D = 1 and the attractive range to λ= 1.03, a value often used in MD

simulations of square-well fluids, gels and glasses [Zaccarelli et al. (2001, 2005); Krekelberg

et al. (2007)]. We recall that the chosen short-range λ allows to work in the theoretical frame-

work where the Baxter stickiness parameter3 τ, defined as τ−1 = 4(λ3 −1)[exp(ε/kB T )−1], is

related to the second virial coefficient by B∗
2 = 1−1/4τ (see Par. 2.2). We set kB = 1, so that

the temperature is measured in the unity of the well depth ε. With the present choice, T = 1

corresponds to a thermal energy kB T equal to the attractive well depth. Time is measured in

units of D
p

m/|ε|. In our reduced units, we fix the Boltzmann constant kB = 1 and the mass of

the particles to unity, mn = m = 1.

SIMULATION TECHNIQUE. The intermolecular force is the gradient of the potential with re-

spect to particle displacements. Along with the simplicity of implementation, the numerical

simulations of SW particles have to be performed with techniques that can differ from the ones

used for systems of atomic-like particles4 with continuous potentials. In fact, in the extremely

coarse-grained approaches of potentials with infinite derivatives, as for the SW or the even

simpler hard-sphere (HS) potentials, some of the molecular dynamics schemes cannot work.

Event-driven (ED) algorithms constitute a powerful and efficient MD simulation method that

can be used to numerically simulate particle systems with discontinuous potentials [Rapa-

port (1997, 2009)]. They are often used in the study of particulate systems, such as granular

materials or powders. The ED protocol only considers analytically calculable points in time,

where physically relevant events occur. During a simulation, collisions are tracked in the form

of events. A collision at a certain time triggers an event after a certain delay ∆t . Events form a

calendar sorted by the time when they will occur, and when all events for a particular time

have been handled, the simulated time is advanced to that of the next scheduled event. After a

collision, only few events will change priority, or are erased, with possible new events entering

the calendar. With this scheme it is possible to circumvent the lack of finite derivatives for the

SW potentials [Leegwater et al. (1989); Rapaport (2009); De Michele (2011)] and, thus, we use

the ED protocol for running our simulations5.

Some labor-saving techniques exist in MD simulation for atomic like particles, which are fully

applicable to the SW model. For a system of N particles, the most time-consuming part of the

3Baxter [Baxter (1968)] solved the Percus-Yevick approximation for hard spheres with a zero-range attraction,
λ→ 0, and an infinite reduced well depth ε/kB T →∞. The SW model enters such an approximation if λ. 5%
of the diameter. A universal phase diagram for colloids with short-range attraction had been constructed that
suggested that the gelation line coincides with the phase separation boundary in the Baxter model [Lu et al. (2008)].

4Atomic-like particles are simply defined by a vector indicating their center, plus a radial potential.
5Note that the event-driven technique allows “Newtonian” molecular dynamics simulations, whereas other

techniques need to be used if other effects have to be accounted, like for example the Brownian simulations.
However, within our coarse-grained approach, we don’t need to explicitly treat the solvent or its effects [Foffi et al.
(2005b)].
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simulation is represented by the calculation required to evaluate which of the N (N −1)/2 pair

distances interact. The Verlet (or neighbour) list and the cell (or linked) list techniques are

applied to speed up the force calculation [Frenkel and Smit (2002); Hansen and McDonald

(2006)]. The Verlet list method works by keeping a periodically updated list of the neighbors of

each particle, while the cell list works reducing the calculus of distances to portions of space

considered as independent. In the particular case of ED MD, some optimizations for these

algorithmic strategies have been recently introduced [De Michele (2011)].

SIMULATING THE QUENCH. In the context of numerical simulations, thermostats are used to

provide the correct ensemble behavior, as in the NTV ensemble case of our simulations. The

thermostats can be used to tune the temperature, as well as for keeping it fixed. Mimicking the

effect of a quench is thus feasible, in simulations, by using a thermostat protocol to lower the

temperature. In simulating an annealing dynamics, the simplest form of reducing the kinetic

energy is by periodically multiplying the particles velocities by a scaling factor λT , defined as

λT =
√

(T /Ti ) . (3.2)

Particle velocities are rescaled from an instantaneous temperature Ti (measured immediately

after a velocity update of the MD) to the desired temperature T , so that the resulting total

kinetic energy is

K = 3

2
N kB T = 1

2

N∑
n

mv2
n , (3.3)

where the sum is over all the N particles of mass mn = m. The scheme of velocity scaling used

to maintain constant K is called an isokinetic thermostat. Of course, the same scheme can

be used for modifying K at will. The velocity scaling scheme can be performed at every step,

or only every a few steps, and is relatively easy to implement. It does not strictly follow the

canonical ensemble, though in practice the amount it deviates from the correct NVT ensemble

is quite small6 (by comparison of the velocity distribution with a Gaussian).

For our simulations, we use a different, popular velocity scaling thermostat. It is that of

Berendsen [Berendsen et al. (1984)]: here the scale factor is modified as

λT =
[

1+ ∆t

τT

(
T

Ti
−1

)] 1
2

, (3.4)

where∆t is the MD time-step and τT is a constant called the “rise time” of the thermostat. The

latter describes the strength of the coupling of the system to a hypothetical heat bath. Larger

τT correspond to weaker couplings, i.e., the larger τT the longer it takes to achieve a given

Ti ′ after an instantaneous change from some previous Ti . The time at which T is reached

decreases by the same decrease factor of τT .

6Moreover, the velocity scaling suffers the drawback of not being time-reversible, but this property becomes
important only in some advanced MD techniques and behind our necessities.
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PROTOCOL FOR GELATION. The gelation process is induced by quenching SW model colloids.

Once a configuration of particles is provided, it is relaxed for a fixed amount of time to a high,

equilibrium temperature T = 100 (in unities of the well depth), in order to ensure both the

randomness of initial configuration and its thermodynamical correct behavior. At such a

temperature, the system behaves as a hard-spheres fluid. At this point, we set the desired

final temperature to T = 0.05 and start the quench simulation. Note that T = 0.05 is well

below Tc ' 0.3, the temperature associated to the critical point of the phase diagram for such

1CM systems of SW. See Par. 2.1.1. As it will be discussed in Par. 4.2.1, a similar protocol is

applied in experiments, where the temperature of a colloidal suspension, firstly heated to

an equilibrium temperature where colloids bonding is irrelevant, is lowered in such a way to

ensure the rapid formation of bonds. As it happens for the experimental quenches, then, it is

important to start from an equilibrium configuration, because the ageing of the aggregation

process under quench would otherwise keep trace of the initial structure. The simulations are

performed at very fast rate of cooling, provided by the inverse of the parameter τT of Eq. 3.4,

so that crystallization is avoided [Yip and Rubia (2009); Royall and Malins (2012)] and, instead,

gelation can take place.

The ageing physics related to the aggregation process imposes a demanding computational

effort in order to obtain a significant description of the observables. By working with out-of-

equilibrium systems, in fact, it becomes incorrect to perform temporal averages during a run,

as the measurements now strictly depend on the history of the specific sample. This brings to

two main consequences:

1. averages must be performed on independent runs for the same state-point of the system

(density, quench temperature, etc.);

2. dealing with a deterministic protocol, each run must start from an independent config-

uration of particles centers and momenta;

3. the simulations must stop only once the arrest of the dynamics has been attained.

Thus, various simulations must be performed for each choice of the parameters and all the

NTV simulations have been performed for a total of N = 104 particles in a fixed volume with

periodic boundary conditions, and for every set of parameters we simulated 10 independent

realizations.

We solved the 1st issue by providing random, independent initial configurations of particles.

This required a suitable method for obtaining many starting configurations, different and

independent among each other (2nd issue). The efficiency must not affect the wanted in-

dependence among the starting configurations, and some techniques exist which provide

the desired amount of uncorrelated configurations. One of these consists in running one (or

few) MD simulation of an initial given starting configuration at high temperature and, at time

intervals where the system decorrelates completely, the relative configurations are extracted.
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In turn, these will serve as starting points for the quenches. But a drawback exists for this

method, especially for dense colloidal systems, where the decorrelation time increases and, as

a consequence, the original single run would result too time consuming.

Instead of dealing with this sequential method, other important approaches exist in order

to obtain independent stating configurations, usable in parallel. Their use results more con-

venient than the sequential approach, in that one can obtain independent configurations

in parallel and without the analysis required to ensure the decorrelation. A popular way of

generating random configurations consists in a random sequential adsorption (RSA) method

of the particles into the voids [Swendsen (1981); Aste and Weaire (2008)]. Many RSA algorithms

have been developed but, in particular for HS particles, they still encounter slowness problems

due to high density. An alternative method consists in “growing” the system of particles of the

desired diameters, randomly distributed inside a box. During the thesis, a new, fast algorithm

has been developed that generates initial configurations with the “growing” approach. It

generates random configurations of hard spheres by growing them starting from randomly

placed points in the box7. Details of the algorithm are in Appendix C. This procedure ensures

both a rapid growth of a HS system with the desired density and, starting from randomly

placed points, it also ensures a complete independence between the resulting configurations.

As explained in Appendix C, it does not provide exactly equilibrated configurations, so that

(short) simulations at high temperatures still need to be performed, as previously described.

The 3rd issue listed before, regarding the way of assuring the reached arrested phase, requires

a large simulative effort, because long times for each simulated quench must be provided.

This is also connected to a fundamental point in the definition of colloidal gel. Apart from

the presence of a percolating cluster, the experimental feature of gels is that an arrest can be

observed in its dynamics, by structure factor or other analysis8.

ARREST OF 1CM GELS. In Fig. 3.1(left) the total potential energy U , divided by the number N

of particles, is shown for runs of simulated SW 1CM systems at various densities. Each curve

is the average made over the 10 independent runs. In particular, as we consider short-range

attractions, this ratio has the property of being proportional to the the average number of

bonds that each particles shares with its neighbors, i.e. nb = 2 |U /N |. For some representative

densities, nb is shown in Fig. 3.1(right). In the specific case of Eq. 3.1, a pair of particles is

considered as bound when entering the attractive range, i.e. where their relative distance is

r <λD . Under the simulative point of view, two colloids modeled with SW potential will rest

bound, and cannot escape the attractive range, only when their kinetic energy is insufficient.

Using Eq. 3.1, we can thus see that statistically a dependence is introduced on temperature T ,

with the term exp(ε/kB T )−1 representing the escape (unbounding) probability.

7The growth method (in every Euclidean dimension) is different by respect to the usual “cherrypit”
method [Lubachevsky and Stillinger (1990); Lubachevsky et al. (1991); Kansal et al. (2002)]. It assigns to each
particle a temporary interaction potential, whose range has a cutoff shorter than the desired radius, < D/2. At
each step of the growing procedure, all the particles with overlapping potentials dynamically move, depending
only on the overlapping neighbor particles, and are inflated accordingly.

8In Par 4.1.1, we will also use the Mean Square Displacement (MSD), another measurement commonly used -
especially in simulation context - to check the occurrence of the arrest of dynamics.
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Dealing with numerical simulations, we obtain from the measure of the total energy, or from

the evaluation of nb , a precious indicator of the dynamics. The fact that these two measure-

ments reach a plateau represents a fingerprint of the occurred arrest of the dynamics. This is

a first, important signature of gelation mechanism for a system of colloidal particles under

quench. Another feature of gelation that we have already discussed, and that is experimentally

found, is the growth and arrest of the peak value of the structure factor. This feature can be

observed for the SW particles under quench, as shown in Fig. 3.2, confirming the dynamical

arrest taking place for the model we use. The static structure factor is calculated using the

definition (see Eq. 2.10)

S(q) = 1

N
〈ρqρ−q〉 ,

where the density ρq =∑N
n exp(i~rn ·~q) is defined on all particles. Averages of S(q) are calculated

on up to 300 independent directions of the scattering vector~q . In the inset of Fig. 3.1(right), the

final S(q) curves for some densities are also reported. Here we note the typical dependence

on density: while at local length-scales (qD & 4) is similar for all the densities, the peak

relative to the long length-scales shifts towards higher q values. Similarly to what happens

in experiments, and as discussed in Par. 2.3.2, this displacement leaves a shorter q-window

where the fractal interpretation takes place.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

t

0

1

2

3

4

5

6

7

n b

φ=0.03125
φ=0.0625
φ=0.1250
φ=0.2500
φ=0.3125

0.1 1 10
qD

10
-1

10
0

10
1

10
2

10
3

S
(q

)

Figure 3.1: (Left) Curves of average energy per particle U /N , for SW systems at various packing
fractions. Each curve is the average over 10 independent runs. For some of these, we shown
(reft) the average bonding value nb : for short-ranged attraction, this is directly proportional
to the total potential energy of the system, nb = 2|U |/N . For the final, arrested configurations,
we show in inset the corresponding structure factors S(q) (again, each curve comes from an
average on configurations from independent runs). While the local length-scales (qD & 4) is
similar for all the densities, the peak relative to the long length-scales shifts towards higher q
values and leaves a shorter q-window where the fractal interpretation takes place.

Gelation here is defined to occur when the dynamics of the colloidal fluid arrests. This defini-

tion of gelation is more strict than the one that takes into account only the percolation property,
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Chapter 3. Demixing: simulations, theory and experiments.

Figure 3.2: Evolution of the structure factor for the 1CM system, at densities φ= 0.0625 (top
left), 0.125 (top right) and 0.25 (bottom). The shift (towards smaller q) and rise (up to a
stable height) of the peak relative to long length-scales (low q) is present at each density and
agrees with the experimental observations for the gelation process. This is represented, as an
example, with a dashed arrow for the φ= 0.0625 case.

i.e. the stage where a network of bound particles forms a percolating cluster that spans the

simulation box [Goyal et al. (2010)]. In fact, percolation may occur even at equilibrium as a

transient configuration and represents, then, a necessary but not sufficient argument. On the

contrary, the gelation qualified by means of arrested dynamics indicates whether the final

out-of-equilibrium structure has been attained in order to match the chemical (strong) gel

analogy. By definition, it is a sufficient condition that has to be guaranteed in addition to

the percolation property. Operatively, a structure is considered to percolate when at least

one cluster spans the whole simulation box and, replicating the box, such cluster bounds

to all its replicated images9. In the framework of numerical simulations, the box has finite

volume and contains a finite number of particles, thus percolation can be reached only at

sufficient colloidal volume fractions. Apart when very low densities are expressly considered,

this finite-size effect is typically unimportant in experiments, where the aggregation behaves

more closely to the thermodynamic limit.

9See Par. 2.3.1 for details on percolation features and definition.
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3.1.2 One to more components.

We pointed out already that distinguishing among the different species, a possibility offered

by the simple and yet particular nature of a selective potential interaction, brings as a conse-

quence to deal with “complex fluids”. The addition of a new parameter, namely the composition

parameter c = NR /Ntot, i.e. the fraction of component of a reference species R, makes the

2-component mixture (2CM) become a prototype of complex fluid, even if the model at its

basis is as simple as the SW. Labeling the 2 species as R and G, and their respective numbers

NR and NG , we have Ntot = NR +NG . The total packing fraction is

φtot = π

6
D3 Ntot

V
. (3.5)

We are assuming a colloidal mixture made up of 2 components (or species), but this repre-

sentation and its relative discussion can be easily enlarged considering more species into the

mixture. As explained in Par. 1.1, we aim to answer the question whether it is possible to arrest

fluctuations of composition, e.g. to obtain demixing, in the same manner or similarly to the

arrest of density fluctuations for the 1-component case (1CM), e.g. condensation. If the arrest

mechanism is the same, but with a competition between the local differences (fluctuations) δc

or δφ driving the aggregation, then for 2 (or more) components the consequent aggregation

could form separate gels, made up of distinct species of colloids, sharing the same space and

thus forming a double, interpenetrating gel.

THE 2CM MODEL. In the following we introduce a square-well (SW) model with selectivity

interaction, where we can tune the inter-species interaction trying to enhance the demixing.

A similar approach has been adopted in the study of eye-lens cold cataract, where the com-

petition between condensation and demixing has been found to arise from the tuning of the

interaction of the α-crystalline and the γ-crystalline proteins (giving different transparency

regimes). See Fig. 3.3.

The model we adopt uses isotropic pair-interactions, where the particles of different species in-

teract via a hard-sphere potential coated with a short-range attractive part10. The full potential

is given by:

Ui j (ri j ) =


+∞ if ri j < D

−εi j if D < ri j <λD

0 if ri j >λD

. (3.6)

10Another model has been recently proposed [de las Heras et al. (2012)], which forms bicontinuous structures.
This system adopts HS particles coated with specific patchy sites instead of a shell-shaped well. Despite its great
tunability, unfortunately the used patchy model do not specify interaction selectivity solely based on the species,
but rather different patches with different selectivities have been proposed. Thus, our SW model can better suite
the purpose of explaining, with a minimum increase in number of parameters, how to form gel structures where
demix is enhanced.
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Figure 3.3: Examples of condensed (left), stable (center) and demixed (right) phases, adapted
from [Dorsaz et al. (2008)]. Binary mixture of α (blue, big spheres) and γ-crystalline proteins
(red, little spheres) are simulated for different inter-species attraction strenghts. The aggrega-
tion under quench bring to different aggregation behaviors: for similar intra- and inter-species
attraction (left), the condensation mechanism prevails, while at the opposite, demixing be-
comes dominant when intra-species attractions are stronger than the inter-species attraction
(right). For a certain region of parameters, a stability among the two can be reached (center),
in the sense explained in Par. 3.2.1. For details on this particular example, refer to [Dorsaz et al.
(2008)].

From now on, we use as notation for the two species the labels R and G , i.e. i , j = R,G . As

in Eq. 3.1, describing the 1-component mixture (1CM) inter-particle potential, here the di-

ameters of the species are chosen to be the same and equal to unity, as well as the masses

mR = mG = m, and the attractive range has been fixed to the same value λ = 1.03. The key

parameters are now the interaction depths εi j . The intra-species attraction (i.e. between

like-particles) is chosen of unit depth, εRR = εGG = 1, while the inter-species attraction εRG

acts as a tuning parameter: we have chosen to make it range from the unit depth, where it

recovers the 1CM system, down to the pure HS repulsion, i.e. εRG = 0. With this choice of

parameters, the tendency to demix due to composition fluctuations is strongly enhanced.

Apart from the density φtot, the 2CM are further characterized by the composition parameter

c = NR /Ntot, that corresponds to a composition 1− c = NG /Ntot for the second species. For

several 2-components and 1-component mixtures (2CM and 1CM), at different compositions

c and densities φtot, we have performed MD simulations with the event driven protocol. As

for the 1CM case, all simulations were performed for Ntot = 104 particles contained within

a volume V and under periodic boundary conditions. The initial configurations for both

the 1CM and the 2CM systems are prepared with the same protocol as for the 1CM case,

by equilibrating independent starting configurations at high temperature T = 100. In this

regime the attractive part of the interaction is negligible and the system reduces to a simple

monodisperse hard-spheres fluid. Again, for every set of the chosen parameters c and φtot we

simulated 10 independent realizations.

In Fig. 3.4 the evolution of energy is shown, upon quench, for 2CM with symmetric composi-

tion c = 0.5. We note similar features to the 1CM case in Fig. 3.1 (left), but also a noticeable
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difference emerges: here the arrest occurs with a final energy value that depends monotoni-

cally on the total density. Instead, in the 1CM a peak value is found around the critical value

φ= 0.25. This is one of the first differences that we point out with the classical, simple gelation

case for the one-component system.

Figure 3.4: The average energy per particle is shown, as a function of time, for symmetric
(c = 0.5) 2CM at various packing fractions. In these cases, the two species equally contribute
to the total density φtot. Here φtot ranges from 0.025 to 0.3. As for the 1CM case in Fig. 3.1 (left),
three phases can be distinguished. After the temperature is lowered to the quench value, a
certain delay exists before the aggregation sets in: this delay is bigger for lower φtot. During
the aggregation phase, the energy drops until it reaches a plateau. Unlike the 1CM, here we
note that the plateau value increases monotonically with φtot (where instead is has a peak
around the critical density for the 1CM case). For specific comparison, see further in Fig. 4.3
and relative discussion.

INTERPENETRATING DOUBLE GELS. Under this protocol, the 1CM system is known to be

unable to reach equilibrium, undergoing a gas-liquid transition11 that eventually brings

to gelation [Foffi et al. (2004)]. In the next paragraph, we will use this model within the

Thermodynamic Perturbation Theory and show that the pure inter-species repulsion enhances

the demixing. Before passing to the thermodynamic perturbation theory (TPT) and later to

the experiments, we show here by means of simulations how the demixing actually occurs for

the model we used.

Our simulations clearly show that the gelation is equally reached by the 2CM system under

study. In Fig. 3.5 some configurations of a simulated 2CM system under quench are shown,

at different times during the gelation process. In this example (φtot,c) = (0.125,0.5). We note

that the demixing takes place for these binary systems at all the simulated state points (φtot,c).

Each one of the two species (but the same discussion applies for more components) forms a

sub-gel, whose structure is arrested in a similar fashion to the 1CM case (where gelation is

driven only by density fluctuations).

11Several routes to the gel state have been examined in literature, with a special emphasis on the differences and
analogies with glass formations. Under this point of view, the gel state would reflect an arrested phase separation
occurring when the phase-separation dynamics generate regions of local density sufficiently large to undergo an
attractive glass transition [Foffi et al. (2005b); Manley et al. (2005)].

53



Chapter 3. Demixing: simulations, theory and experiments.

Figure 3.5: 3D renderings of configurations during the quench for a symmetric (i.e. composi-
tion c = 0.5) 2CM of SW model colloids. The total packing fraction (density) isφtot = 0.125. The
average bonding evolution for this state point is shown - as green curve - in Fig. 3.4. During a
run, the configurations ti are sampled in logarithmic times as t = 0.01×1.3ti . Here we show
ta = 20, tb = 30, tc = 35, td = 40, te = 50 and tf = 60. For t < ta the time-sampling is too fine to
notice structural changes, as can be noted also from the corresponding behavior in energy at
the early stage. Afterwards, the aggregation takes place and the local differences (fluctuations)
in composition and density compete (ta . t . td). Only undulations of the arms take place on
long time-scales, for t > td, without disrupting the structure. The configuration stabilizes in
a gel-like configuration with interpenetrating arms belonging to the two sub-gels, each one
made up solely by one species.

3.2 TPT and topology

3.2.1 Condensation vs. Demixing.

MODIFYING THE PHASE DIAGRAM. Moving from one component fluid to binary mixtures con-

siderably enhances the complexity of the phase behavior. In addition to the gas-liquid phase

separation observed in one component systems, such binary mixtures can also undergo a

demixing transition12.

Thus, even in the case of a 2 component mixtures (2CM), a fundamental increase in complex-

ity is expected. Despite the practical and conceptual differences, however, a mechanism of

dynamics arrest similar to that of the 1CM scenario can be envisaged for 2CMs, and in general

12In recent years, the study of demixing and its properties have revealed their importance in physical systems
belonging to domains distant from soft matter, as disparate as for example in giant magnetoresistivity, Bose-
Einstein condensates, microfluidics and cold trapped atoms [Menyhard et al. (2000); Trofimov et al. (2002); Hellweg
et al. (2003); Akdeniz et al. (2006-06-01)].
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for mixtures made by components of different species. The composition c = NR /Ntot must in

fact be specified in addition to the overall packing fraction φ. As stated by the Gibbs’ phase

rule, the phase diagram of binary mixtures can present several coexisting phases, critical

lines and higher order critical points. The system’s free energy being also a function of c,

the thermodynamic instabilities are consequently driven by both density and composition

fluctuations. In the 2CM, two coexisting phases can have different compositions and densities.

We recall that the phase separation is called condensation or demixing, depending on whether

the two phases differ more in density or composition, respectively. We will show that it is

possible to arrest composition fluctuations, within the same theoretical framework, similarly

to density fluctuations to obtain gelation.

The phase diagram is determined by the competition between gas-liquid and mixing-demixing

phase separation [Pini et al. (2003)]. The presence of an additional degree of freedom, the

relative composition of the two species, considerably widens the spectrum of critical behaviors.

The phase diagram topology is very sensitive to the precise combination of the parameters

that characterize the interactions between the components. For mixtures of particles with

short-ranged attractions belonging to different species (R and G in the 2CM case) a quantita-

tive investigation of the phase diagram is still lacking. We used thermodynamic perturbation

theory (TPT) to conduce the stability study for the 2CM of Eq. 3.6.

Note that the set of parameters would be enriched even further by considering mixtures with

more than two components. For the binary mixture with equal attraction range λ but tun-

able strengths, in fact, it is possible to tune intra-species interactions (εRR and εGG ) and the

inter-species interaction (εRG ) for a total of three possible interaction parameters. However,

increasing the number of components n, the number of tunable parameters would rapidly

grow as n · (n +1)/2, offering a large palette of interaction patterns to explore. However, our

2CM system with εRR = εGG and εRG /εRR = 0 is already expected to produce the desired shift in

aggregation mechanism, introducing the competition of demixing and condensation. In this

sense, this colloidal fluid represents the essential particle model, although defining a complex

fluid, able to show such a behavior13.

Our attempt relies on reducing drastically the parameter space, considering equal sizes, equal

intra-species interaction ranges, equal interaction strengths between like particles (εRR = εGG ),

and a ratio of the interaction strengths between unlike species set to εRG /εRR = 0 is introduced.

THERMODYNAMIC PERTURBATION THEORY. The TPT for monodisperse short-range fluids was

proved able to describe the phase diagram of colloidal particles interacting by depletion in-

teractions [Gast et al. (1983)] and this theory was used to understand the interplay between

phase coexistence and the glass line [Foffi et al. (2002)]. More recently, TPT has been used in

the study of protein aggregation linked to the cold cataract formation in eye-lenses [Dorsaz

13It has been suggested that purely entropic effects can have a major role in driving demixing [Dijkstra and
Frenkel (1994)] (for a system of coarse-grained hard-core repulsing particles that differ in size). For sake of
completeness, then, we used the same simulation protocol also for 2CMs made up of a SW component and a HS
component, i.e. εGG = 1, εRR = 0, εRG = 0. We will name this further system as SW+HS and present this system as
a term of paragon, for reasons that will be clear in the next chapter.
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(2009)]. Even if the perturbative approach is known to give quantitatively imprecise results

near phase boundaries and near criticality14, in principle the method is applicable to general

mixtures for which the convergence of integral equation based methods is still out of reach.

The TPT allows the determination of the instability surface (the spinodal) and also gives im-

portant insights into the coexistence boundaries (the binodal). This preliminary theoretical

study will open the way to study the gelation process based on the connection between the

fluctuation driving the aggregation and the final, arrested structures for which they are respon-

sible (this connection will be more explicitly treated in Par. 4.1.2). The spinodals of the 2CMs

are computed using a thermodynamic perturbative approach [Hansen and McDonald (1986);

Barker and Henderson (1967)] in the TPT framework.

The traditional descriptions of liquids or colloidal systems uses the fact that the intermolecular

pair potential can be split into two parts: a steep, short range repulsion and a smoothly varying

longer range attraction. It is now well accepted that the way in which the molecular hard

cores pack determines the structure of most simple liquids, at least at high density, while

the attractive interactions give rise to a uniform background potential which provides the

cohesive energy of the liquid, but has little effect on its structure [Hansen and McDonald

(1986)]. A further simplification consists in modeling the steep repulsion present when the

distance between the particles is small by effective HS interactions and the attractive part of

the interaction is treated as a perturbation of the reference system.

We assume that the interactions between particles are pair-wise additive and that the system

is homogeneous. The TPT consists in computing the effect of the perturbation on the thermo-

dynamics and the pair distribution function of the reference system via an expansion in power

of the inverse temperature [Hansen and McDonald (1986)]. The general stability picture of the

2CM case is expected to be independent of the approximations used (approximations for the

second and higher order terms have also been proposed) and a first order approximation is

certainly sufficient for the purpose of the present study.

The idea of TPT consists in deriving the equation of state of the interacting system by treating

the attractive potential ui j (r ) (where the indexes i and j may refer to the two species R or G)

as a perturbation of the hard-sphere (HS) potential u0
i j (r ). This leads to an expression for the

Helmholtz free energy, which can then be analyzed to find the instability boundary and the

phase diagram.

The equation of state of the interacting system is derived by treating the attractive potential

εi j (r ) as a perturbation of the hard-sphere potential. For the first order case, the Helmholtz

free energy F reads

F −F0

N kbT
=

1

2
ρβ

2∑
i , j=1

ci c j

∫
εi j (r)g 0

i j (r)dr+O(β2)
(3.7)

14Within perturbation theory it is possible to reproduce the main phase diagram topologies obtained from
Hierarchical Reference Theory (HRT), Mean Spherical Approximation (MSA) or Grand Canonical Monte Carlo
(GCMC) approaches [Pini et al. (2003); Kofinger et al. (2006); Wilding et al. (1998)].
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where F0 and g 0
i j (R) are the free energy and the partial radial distribution function of the

unperturbed system. The overall number density is defined by ρ = (NR +NG )/V = 6φtot/(πD3)

and the relative composition of the two species by ci = Ni /Ntot. Details of the TPT calculation

of the 2CM can be found in [Dorsaz et al. (2008); Dorsaz (2009)].

The Helmholtz free energy per particle, f , is used to express two alternative conditions of

thermodynamic stability for a binary mixture in terms of its partial derivatives [Tisza (1977)]:
fcc > 0

and

fv v − f 2
vc

fcc
> 0

or


fv v > 0

and

fcc − f 2
vc

fv v
> 0

(3.8)

where fµν ≡ 1
2

(
∂2 f
∂µ∂ν

)
T

, fµµ ≡ 1
2

(
∂2 f
∂µ2

)
T,ν

(µ,ν = v,c), and v = ρ−1 is the volume per particle.

We used the Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) equation of state for the

free energy of the binary hard-sphere reference mixture F0 [Carnahan and Starling (1969);

Boublik (1970); Mansoori et al. (1971)] and the partial radial distribution g 0
i j (r ) functions

were computed solving the Ornstein-Zernike equations with the partial direct correlation

functions ci j (r ) of the binary mixture obtained by Lebowitz within the Percus- Yevick (PY)

approximation [Lebowitz (1964)]. In order to correct the shortcomings of the PY hard sphere

distribution functions (the values at contact g 0
i j (di j ) and the slopes g 0

i j ’(di j ) are both too

small in magnitude) we used a generalization procedure for mixtures [Verlet and Weis (1972);

Henderson and Grundke (1975)]. (Refer to Smith et al. (2008) for the computational approach

to the radial pair distribution function, using the Verlet-Weiss procedure, for hard spheres.)

In order to determine if the instability is mainly driven by mechanical or material fluctuations

(i.e. density ρ or composition c fluctuations) one can diagonalize the stiffness or stability

matrix [ f ] (i.e. the matrix of the partial derivatives of f ) through an orthogonal change of

basis [Tisza (1977); Chen and Forstmann (1992)].

In one-component systems, the inverse of the isothermal compressibility χ−1
T ≡ (∂2 f /∂v2)T is

a primary stability indicator and vanishes as the instability - called mechanical instability - is

reached. It occurs when density fluctuations become infinite and, for 1CM, it is responsible for

the usual gas-liquid phase transition. In binary mixtures, the system might become mechani-

cally unstable without the inverse of the corresponding compressibility χ−1
T,c ≡ (∂2 f /∂v2)T,c

vanishing, i.e., this stability indicator is no longer a unique quantity in binary mixtures. Besides

mechanical instability, strong composition fluctuations can lead to demixing, i.e. a separation

of the system into phases of different composition. In this case (∂2 f /∂c2)T,v is a material

stability indicator that diverges as the instability boundary is reached (and the corresponding

primary stability indicator is provided by (∂2 f ′/∂c2)T,P ). Except in special cases, both mechan-

ical and material instabilities will in general appear simultaneously.

We consider a non-orthogonal transformation which allows to relate the eigenvalues of the

quadratic form to physically meaningful quantities [Tisza (1977); Ursenbach and Patey (1994)].
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The normalized eigenvectors can be written as

~z± =
(

x±
y±

)

and have correspondent eigenvalues λ±. See Fig. 3.6.

Figure 3.6: Schematic view of the orthonormal vectors~z± and the stability indicator α. The
instability will be predominantly of demixing type when α is close to 0 and of condensation
type when α is close to ±π/2. The abscissas represent fluctuations of the volume per particle,
v = ρ−1 (thus related to fluctuations in density φ), while the ordinates represent fluctuations
in composition c = NR /N of the reference species R.

The nature of the instability is then characterized by the angle

α = arctan

(
− fvc

fv v −λ−

)
(3.9)

where λ− is the smallest eigenvalue of the stability matrix (λ+ being the largest). At an insta-

bility boundary, the determinant det [ f ] ≡ λ−λ+ vanishes, i.e. the stability matrix becomes

singular. The border of a stability region is thus indicated by the smallest eigenvalue λ− going

to zero. The above relation holds for [ f ] non diagonal ( fvc 6= 0). The angle α between the

eigenvector corresponding to λ− and the axis representing fluctuations of composition, acts

as a stability parameter: it indicates whether composition or density fluctuations dominate

(from α = 0 to α = ±π/2 respectively). This formalism was first introduced by Chen and

Forstmann [Chen and Forstmann (1992)] to characterize the instability of binary mixtures as

an alternative to the Bhatia-Thornton partial structure factors [Bhatia and Thornton (1970)],

the latter being less suited when fluctuations in both density and composition are taking

place at the same time. This can be visually rendered with a color gradient, whose palette

58



3.2. TPT and topology

goes from the extreme of dominating demixing, α= 0, to the opposite extreme of dominating

condensation, |α| =π/2 (see Fig. 3.7).

DRIVING THE SPINODAL DECOMPOSITION. The results for a binary mixture of SW colloidal

particles with different inter-species attraction strengths are shown in Fig. 3.7. The spinodal

surfaces, evaluated as a function of temperature T , density φ and composition c, indicate

boundaries between the stability and instability regions of the phase diagram. Moreover, the

calculation indicates whether the system is more prone to condensation (density fluctuations)

or demixing (composition fluctuations). This information is encoded by means of a color

gradient in Fig. 3.7. For identical inter-species and intra-species attractions the result is trivial

(Fig. 3.7,top) and corresponds to 1CM. In this case, the diagram is invariant with respect to a

change of c and only φ fluctuations are predicted to drive the spinodal separation. As soon

as the inter-species attraction is reduced, however, a demixing region emerges around the

symmetry line c = 0.5 (Fig. 3.7, center). When the mutual attraction is completely eliminated,

(Fig. 3.7, bottom), a pronounced demixing region takes over most of the spinodal surface.

The 1st order TPT calculation is shown in Fig. 3.7 for the spinodal separation for the SW

binary model introduced in Par. 3.1.2. The stability parameter α, indicating which kind

of fluctuations are driving the phase separation, is encoded with colors: it is blue when c-

fluctuations dominate (demixing), while it is red when the instability is driven by the density

fluctuations (L-V transition).

The behavior in Fig. 3.7 is general as it takes place whenever a selective interaction between

species exists: if the particles of one specie aggregate prevalently with them of the same

specie, we could then build up a system when the demixing is enhanced. Later we will

present an experimental setup for obtaining colloids with such a selectivity and we will

subsequently use a model which retains the main physics. The structures obtained with

molecular dynamics simulations will be analyzed, focusing on the characterization of the 2CM

structures in comparison with the 1CM fluid.

3.2.2 Porosity.

ARREST OF PHASE BOUNDARIES. Large colloids, such as emulsion droplets, can also be used

to mimic granular systems, and eventually some of the techniques applied in this field can be

fruitfully used in the study of the arrested phase separation underlying the gel formation.

Fluid-fluid phase separation occurs in emulsions, rapidly followed by slow coarsening of the

two phases. While the initial phase separation is too rapid to be observed by confocal mi-

croscopy, the subsequent coarsening process follows a three-stage process: interfacial-tension

driven coarsening, gravity driven flow and finally interface formation [Aarts et al. (2005)]. The

shape of the meniscus formed by the interface gives an estimate of the interfacial tension γ

between the two fluid phases [Aarts (2005)] that is extremely low (γ∼ 0.2µN m−1), especially

when compared to fluid-fluid interfaces of molecular liquids (the air-water interfacial tension
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Figure 3.7: Thermodynamic perturbation theory (TPT) calculation of the instability region
boundary (spinodal surface) for 3 cases: a single-component mixture (εi 6= j = εi i , 1CM) and
two binary mixtures, 2CM, with residual inter-species attraction (εi 6= j = 0.5) and without inter-
species attraction (εi 6= j = 0). The colors represent the fluctuation angleα (see text) and express
whether the gas-liquid phase separation is driven more by the density (red) or composition
(blue) fluctuations.

is of order γ∼ 50mN m−1). The consequence of such low interfacial tension is that thermal

fluctuations can create undulations, or roughness, at an interface15 of order ∼√
kB T /γ.

Studies on bicountinuous mixtures have triggered new methods and techniques, especially

related to the problem of characterizing the medium under the point of view of the porosity.

In Fig. 3.8 a schematic representation is depicted of a microscopic structure of the system

during the gel life time, whose arms are embedded in a surface, so to mimic bicountinuous

fluids. First of all the bicontinuous network resulting from spinodal decomposition exhibits

quasi-ordered concentration fluctuations, characterized by a wavelength ξm which accounts

for the maximum at qm in I (q) (or S(q)). It is not straightforward to relate the geometry of the

surface to its topology and, at last, to a quantification of the porosity.

The bicontinuous network also explains the regular distribution of bright and dark regions

15A density mismatch between the solvent and colloid can also create thermal capillary waves at the interface.
The characteristic capillary length ξ∼√

γ/g∆ρ, which is in the µm regime, and the time scale associated with
the decay of interfacial fluctuations τ∼ ξ/γ is of the order of seconds for colloidal systems. Hence, these thermal
capillary waves can be observed by confocal microscopy, as was done by [Aarts et al. (2004); Aarts (2007)].
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visible in optical micrography [Verhaegh et al. (1997)]. The Porod tail q−4 of I (q), typically

observed from scatterers with smooth surfaces [Glatter (1991)], also typical of spinodal decom-

position, is due to the interfaces between colloid-rich domains and the colloid-poor domains.

Note that the Porod law is observed at q-vectors smaller than those expected for the scattering

from the particle surfaces. Indeed, non-fractal colloidal aggregates exhibiting Porod behavior

have already been reported in reversible aggregation condition [Broide et al. (1993)]. The

model of spinodal decomposition driven gelation also accounts for the turbidity behavior

since this depends on the optical contrast between the two phases16.

Figure 3.8: Schematic representation of a bicontinuous network, endowed with a characteristic
length scale ξm (wavelength of concentration fluctuations, which is inversely proportional to
qm). Colloid-rich and colloid-poor domains are separated by sharp interfaces, explaining the
Porod decay in the scattering intensity at high wave vector. The colloid-rich domains consist
of a percolated colloidal structure. Adapted from [Verhaegh et al. (1997)].

SURFACE RECONSTRUCTION AND ANALYSIS. Different methods have been devised for the study

16The turbidity increases during the gel formation because the amplitude of the concentration fluctuation, and
thus the optical contrast grows (Fig. 6 of [Verhaegh et al. (1997)]). Accordingly, when the gel is formed, it attains a
plateau value. Furthermore, when the system is macroscopically phase separated the turbidity in both phases is
lower than in the initial stages of the process.
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first, and the analysis later, of interfaces. In the case of colloidal particles under aggregation,

however, and particularly for simulations where no explicit solvent is accounted for, there is

not an obvious, identifiable surface. Thus a new method has been enhanced and implemented

during the thesis, that relies on the construction of a fictitious surface that is built so to tightly

embed the arms of the gel structure. From the analysis of this surface, non-trivial information

on both the overall structure (for example porosity) and the local features (for example arm’s

thickness) can be extracted.

The basic technique has been used in the investigation of boundaries in surfactant phases. The

calculations are based on a single scalarΦ(~r ) which describes the local oil-water concentration

difference [Belushkin and Gompper (2009)]. The geometrical properties of the boundaries

are evaluated on the isosurface Φ(~r ) ≡ 0, which thus defines the position of the surfactant

amphiphilic (mono)layer. The elastic properties of such layer can be described by the Canham-

Helfrich Hamiltonian [Canham (1970); Helfrich (1973)]

H =
∫

d A
[
τ+2κ(H − c0)2 + κ̄K

]
,

where τ is the surface tension, κ is the bending rigidity, κ̄ is the saddle-splay modulus, c0 is the

spontaneous curvature, and H and K are the mean and the Gaussian curvatures, respectively.

The integration extends over all the layer surface. For each point~r on a surface A, the main

curvatures are defined as C1(~r ) = 1/R1 and C2(~r ) = 1/R2, where R1 and R2 are the minimum

and maximum radial measures, respectively, of how the surface bends in different directions

at the~r point. See Fig.3.9. The mean and the Gaussian curvatures are defined as

H(~r ) = C1 +C2

2
, K (~r ) =C1C2 . (3.10)

Because of the unmatched unities, a direct comparison with the Gaussian curvature can be

carried out by considering the mean squared curvature:

H 2(~r ) =
(

C1 +C2

2

)2

. (3.11)

Due to the oil-water symmetry in balanced microemulsions, the spontaneous curvature c0

vanishes. The surfactant monolayer corresponding to the isosurface Φ ≡ 0 is extracted as

a triangulated surface using the GNU Triangulated Surface Library [Popinet (2000–2010)].

The distributions of the mean square curvature, H 2, and of the Gaussian curvature, K , are

calculated for the isosurface.

The surfactant monolayer is very well described by a minimal surface. Therefore the H 2d A

term vanishes and the Canham-Helfrich Hamiltonian is extended by including higher-order

terms in K [Bruinsma (1992)], so that

H1 =
∫

d A
[
κ̄K + ¯̄κK 2] ,
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Figure 3.9: (Left) Surface enveloping the underneath arm portion of a model gel. (Right) The
surface reconstruction enables the study of its local features through the principal curvatures
C1(~r ) = 1/R1 and C2(~r ) = 1/R2, generally defined for every point on the surface. In our case of a
discretized surface, the curvatures can be defined for every discrete face δA by differentiating
the neighbor normal directions δn̂ (see text).

where the surface tension term τd A has been neglected by considering the isosurfaceΦ≡ 0 as

a liquid membrane. For minimal surfaces the Gaussian curvature K ≤ 0 on the whole surface.

The requirement that minimal surfaces of non-planar configuration be stable leads to κ̄> 0

such that the second term is negative. In order for the Hamiltonian to be stable with respect to

the creation of infinitely narrow necks (K →−∞) the last term has to be positive, thus ¯̄κ> 0.

For a fixed value of κ̄, the value of ¯̄κ is determined by the length scale of the unit cell such that

the cubic phases are local minima of H .

Approaches based on the Canham-Helfrich Hamiltonian have been shown to be related to

the Ginzburg-Landau free-energy functional approach, and the elastic constants κ and κ̄

of the curvature energy have been calculated in terms of the parameters of the Ginzburg-

Landau theory [Gompper and Zschocke (1991, 1992)]. In this case, the negative value for the

surface tension value, τ < 0, sets the normalization of the Hamiltonian H . Moreover, the

elastic constant κ̄ can be set in such a way that it takes into account the minimization of the

Hamiltonian for ¯̄κ= 0, and finally this results in

H2 =
∫

d A
[
τ+ κ̄K + ¯̄κK 2] ,

where now τ< 0, κ̄< 0 and ¯̄κ> 0.

THE EULER CHARACTERISTIC. In the specific case in which spherical particles are considered

to bond together if within a certain range d ≤ (1+∆)D, the construction of the surfaces

embedding the aggregate particles has to be devised in such a way that a unique surface links

bonded colloids. Only after this construction process, every analysis is possible.
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Chapter 3. Demixing: simulations, theory and experiments.

Figure 3.10: (Top row) The construction of the enveloping surface (of the gel arms) is made
by 1) putting a cylinder among every couple of colloids at distance lower than a specified
bonding value, 2) defining a scalar fieldΦ(~r ) that is positive inside the cylinders and spheres
and negative outside, 3) calculating the isosurface S|Φ(~r )≡0 of the field. Finally, 4) a space
griding is used to discretize the surface. (Central row) Surface reconstruction of a single
sphere at various griding refinements. (Bottom) Surface reconstruction of a cylinder starting
from two close enough (bonded) spheres.

For the surface reconstruction, we adopt the following space-filling procedure: each unbound

colloid is represented by a sphere, and each pair of bound colloids is assumed to be connected

by a cylinder. Next, we define a distance functionΦ(~d) which is a scalar field representing the

shortest distance from any point in space ~d to the structure, namely the center of a colloid for

unbound colloids or the axis of a cylinder for bound colloids. The scalar field Φ(~d) linearly

decreases, from a positive value, equating 0 at distance R , i.e. the colloidal radius. The distance

function results positive inside and negative outside the constitutive elements (spheres or

cylinders). Then, the enveloping surface is computed at the isosurfaceΦ(~d) ≡ 0 of the scalar

field. Once it has been calculated for all the cylinders and all the remaining spherical caps, plus

the complete spheres associated to non-aggregated particles, then the surface triangulation

is performed starting from a 3D grid of the space. On the top of the triangulation, faces

rest defined, whose average area strictly depends on how refined is the space griding. Some

examples are shown in Fig. 3.10.

Once the triangulated surface is defined, it is possible to calculate the principal curvatures C1

and C2 at any point on the surface by finite differences (implemented in the Gnu Triangulated

Surface library, GTS). In turn, this allows the calculation of mean squared and the Gaussian

curvatures, H 2 and K respectively.

A peculiar way of characterizing porosity can be introduced that uses such quantities. In fact,

an important topological invariant is known to be evaluable based on them. It is the Euler

Characteristic (EC), χ, a quantity which provides a connection between the geometry and the

topology of surfaces:

2πχ=
∫

K dA+
∫

kg dl , (3.12)
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3.2. TPT and topology

where the left integral is made on the overall surface A, and the right one is made on its contour

l = ∂A, i.e., on the possible line that defines the boundary of A if it is not closed. The kg factor

is called the geodesic curvature. In particular, the EC measure is sensible to the presence

of voids and saddles of the surfaces, that are strictly related to pores and branching points,

respectively, belonging to the gel structure. This measure can be directly related to the porosity

in the case of amorphous structures, like gels, as already pointed out for dipolar colloidal

gels [Miller et al. (2010)]. Moreover, the fact that EC is a topological invariant means that its

value remains the same for a configuration under shear or other topological transformations,

provided that no breaks are caused to the structure.

As we do not apply periodic boundary conditions to the surface reconstruction procedure,

but instead, we assume that the colloidal structure is embedded in empty space, the opened

surfaces that introduce boundary lines are suppressed. As a result, the contribution to the

Euler characteristic from the boundary can be omitted. Only closed surfaces remain and thus

χ is evaluated using the Gauss-Bonnet theorem as the integral of only the Gaussian curvature

over the closed surface:

χ= 1

2π

∫
K dS . (3.13)

Note that this method is not limited to the gel structures. On the contrary, it is a general

approach particularly suitable for every system where surfaces can be explicitly defined.

Restraining ourself to the field of colloidal aggregation, the unique limit to the use of such

technique is the request for the positions and sizes (and possibly a bonding distance) of the

colloids, so that imaging procedures like the confocal microscopy result particularly important

(see Appendix B). This allows to univocally estimate the porosity of the structure and, as a

side-product, the distribution of K can also be used to evaluate what are the main features of

the embedding surface. More examples, from the calculations on the gels obtained by MD,

will be discussed and showed in the Par. 4.1.3.
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4 Results: BiGels from arrested demix-
ing.

OUTLOOK. In this chapter the main results of the thesis are presented, for both the simulations

and the experiments, and with particular emphasis on the former. We will show that it is

actually possible to arrest fluctuations of composition (demixing) in the same fashion to the

arrest of density fluctuations for the 1CMs (condensation). Refer to Par. 3.1.2 for the relative

discussion. Also, we will quantify the differences arising when arrested demixing prevails on

condensation. Most of the analysis methods used here have been previously introduced in

Chapt. 2.

In Par 4.1.1 the Mean Squared Displacement will be used for the description of the arrest as

well as the average bonding. The 1CM-2CM comparison is reported both for the dynamics

and for the final, arrested structures. The analysis are focused on the differences with the

1CM gelation. The comparisons will highlight aspects of the physics of the gelation process. A

particular focus is reserved to the symmetric 2CM, i.e. with composition parameter c = 0.5.

In fact, the equimolar binary mixture with both (selectively) attractive species represents the

system where demixing is maximized for all the volume fractions (see for example Fig. 3.7 and

relative discussion). The arrested structure formed by the symmetric 2-component mixture is

what we call a BiGel.

We will use the Structure Factor (introduced in Par. 2.3.2) and another, nodal observable,

concerning the arrested gel structures, will be used too: the Euler Characteristic is quantified

in order to characterize the porosity of the 1CM gels and 2CM BiGels. In order to unveil the

role of steric effects on aggregation, we will also compare a SW+HS system, that enriches the

picture concerning the aggregation in presence of a second component.

Finally, the experimental setup of colloidal spheres coated with specific DNA strands will be

revised, in Par. 4.2. By enabling the desired selective interactions, they constitute the first,

reliable system for testing the aggregation of the multi-component SW model. The binary

mixtures of DNA-coated colloids, experimentally investigated, will be shown to actually form

BiGels, the proof of concept for the arrested demixing.

67



Chapter 4. Results: BiGels from arrested demixing.

4.1 BiGel: numerical simulations.

We study the kinetic and structural characteristics of 2CM aggregates and discern the main

differences or similarities with gels made of only 1 component (1CM). We address this study by

means of extensive computer simulations. Quenches of 2-component mixtures (2CM) of SW

particles with selective attraction are performed at temperature T = 0.05. Details on the model

and relative parameters are in Par. 3.1.1. Various state-points after the quench, performed for

different densities φtot and relative compositions c, are analyzed in what follows.

Although demixing is observed at all densities, we clearly distinguish two regimes. In the

vicinity of the single-component regime, c ≈ 0 or c ≈ 1, the majority species percolates and

forms a gel structure, while the other one forms isolated clusters. Several spatial configurations

of the arrested 2CM structures obtained from simulations are shown in Fig. 4.1 for different

compositions and Fig. 4.7 also for different densities. In particular, in the left panel of Fig. 4.1

the passage from the monodisperse 1CM arrested system to a symmetric (c = 0.5) 2CM system

is also schematized (for a total packing fraction φtot = 0.15).

Close to the symmetric composition, c ≈ 0.5, interpenetrating branching is observed, and

each species forms an independent gel. Composition fluctuations act on relatively short time

scales compared to the arrest, thus each of these sub-gels contains only one species. We

name this novel material composed of two arrested interpenetrating gels a BiGel. In the the

right panel of Fig. 4.7, a BiGel realization (with φtot = 0.125) is shown. We will show that the

arrested demixing, understood as a result of arrested phase separation, is responsible for

the BiGel formation, and we will describe the sub-gels structuration in comparison with the

monodisperse case.

As for a simple gel, the structure is more open at lower densities and becomes compact at

higher densities. At the highest density investigated here, φtot = 0.5, there are no more density

inhomogeneities, in agreement with the behavior observed in gels [Foffi et al. (2005a)]. Bigels,

however, significantly differ from gels because the two species are always completely demixed.

Figure 4.1: (Left) Some sketches of final structures, after quench, of 2-component mixtures
ranging from the 1CM (c = 0) to the symmetric 2CM (c = 0.5). The total packing fractionis
φtot = 0.15. In all the cases, εRR = εGG = 1 and εRG = εGR = 0. (Right) We call a BiGel the final,
arrested structure obtained with the symmetric 2CM. In this case φtot = 0.125.
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4.1. BiGel: numerical simulations.

4.1.1 Dynamics and arrest.

For the purpose of sorting out similarities and differences between aggregates of 1CM and

2CM, we simulated 1CM systems at packing fractionφ and 2CM systems at the double packing

fraction, φtot = 2φ. We focus on the symmetric 2CM, with relative composition c = 0.5 of the

two species. In this paragraph we will also focus on the description of three representative

densities: φtot = 0.125, 0.25 and 0.5 (corresponding to φ= 0.0625, 0.125 and 0.25, respectively),

i.e. the same already used for Fig. 4.5.

MSD AND AVERAGE BONDING. The slowing down of the kinetics, due to quench, is often

investigated by means of a dynamic quantity that allows the actual description of the arrest:

the mean squared displacement (MSD). This is calculated1 as

MSD = 〈|~r (t )−~r (0)|2〉N , (4.1)

where the brackets indicate the average over the N particles and~r (t ) is the position of a particle

at time t after the quench (supposed to occur at t = 0), i.e. for times after which the energy

has stopped to decay. For a 1CM system it is N = Ntot, while it is N = Ntot/2 when the single

species of a c = 0.5 2CM are considered. Thus, the kinetic of the process that - after the quench

- makes the system undergo a phase separation and subsequent arrest, is briefly presented in

Fig. 4.2. Here, the comparison of the arrest for single components of the symmetric 2CM is

shown, together with the MSD for the relative 1CM systems at half packing fractionφ=φtot/2.

Figure 4.2: The Mean Squared Displacement (MSD), during the quench, for the reference total
densities φtot = 0.125, 0.25 and 0.5. The MSDs of monodisperse 1CM at densities φ=φtot/2
are compared with the MSD of the single species of the relative symmetric 2CMs.

1This quantity is one of the most important observables of dynamics. For fluids, it is related to the self-diffusion
coefficient D0 through the Einstein equation D0 = limt→∞

〈|~r (t )−~r (0)|2〉
/6t . Moreover, its derivative is linked to

the velocity auto-correlation function 〈|~v(t )−~v(0)|〉 by the Green-Kubo relation MSD = 2
∫ t

0 dτ(t−τ)〈|~v(t )−~v(0)|〉.
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Chapter 4. Results: BiGels from arrested demixing.

Each curve results from averaging over independent runs. Moreover, for the symmetric model

(with interaction wells εRR = εGG = 1 and εRG = εGR = 0) we can distinguish among the two

species R and G , and the average is performed in this case also over the two components.

We can clearly see from the MSD that the single components (blue curves) of the binary

system arrest in the same fashion as the monodisperse system (red curves). This comparison

also highlights some slight differences. For example, a clean separation exists, in the case

of high density φ = 0.25, and such a separation shrinks for lower densities; a small drift

can be also observed for the lowest densities, affecting the 1CM more than the 2CM also at

φ= 0.125. In general, the 2CM systems present a quench dynamics that arrests faster than

the correspondent 1CM: this is also observed in Fig 4.5 and is due - as increasing densities are

considered - to the presence of a second species. The aggregation of a sub-gel from 2CM at

densityφtot is similar to that of the gel obtained from the 1CM at half densityφ, but similarities

decrease as a result of the reduced available space and to the HS interaction with the other

sub-gel.

The slowing down of the dynamics, testified by means of the MSD , shows that the particles

move only at very short times, exploring the space of bonds. For longer times, the plateau

indicates that the formed structure is arrested and can only explore a limited space. The

height of the plateau similarly decreases with φ. In a similar fashion, the energy starts to level

out after a first drop, and the system is extremely slowed down. Differences in aggregation

can be then observed also by means of the average bonding per particle nb , linked to the

energy of the system, previously introduced in Par. 3.1.1 (in Fig. 3.1 for the 1CM). For the three

representing densities, this is shown in Fig. 4.3. Here, apart from the plateau emerging and its

bigger separation for higher density, the difference in aggregation characteristic time is also

evident by comparing the sub-gels (of symmetric 2CM) and the relative 1CM gel.

A BiGel corresponds to the structure obtained from the arrest of the symmetric (c = 0.5) 2-

component mixture. As a consequence of the different aggregation mechanism, demixing

in competition with condensation respectively, the arrest into gel-like structures shows then

peculiar features affecting not only the local length-scales (which affect nb) but also the

percolation.

70



4.1. BiGel: numerical simulations.

Figure 4.3: The evolution of the aggregation is easily readable from the average number of
bonds, nb = 2|U |/N , for 1CM (continuous line) and 2CM (broken line) at the same densities
as in Fig. 4.2. This quantity is directly proportional to the potential energy per particle. The
curves for the 2CMs, for total packing fraction φtot, are clearly different from both the related
1CMs at φ=φtot/2 and the 1CM with overall density equal to the 2CM’s, φ=φtot. This result,
together with the monotonicity of the final energy value for the 2CMs (see Par. 3.1.1 and
Fig. 3.1), represents a difference with 1CM systems and with its aggregation process.
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Chapter 4. Results: BiGels from arrested demixing.

4.1.2 Percolation as fingerprint.

In Par. 2.3.1 we described the way (wrapping) percolation is analyzed in the context of numeri-

cal simulations. Here the results are shown for its application to the 2CM configurations. An

average over 10 independent runs for various compositions c, but fixed total packing fraction

φtot = 0.15, highlights in Fig. 4.4 how the aggregation differs for different compositions. In this

figure the values of the size of maximum cluster, normalized by the population Ni associated

to the species2 (dependent on c, where i = R or G), are reported as a function of time during

the quench. The maximum of cluster sizes is a possible indicator of gelation [Wessel and

Ball (1992); Manley et al. (2004); Laurati et al. (2009)]. The value N max
cluster,i /Ni quantifies the

number of particles of the species i forming the maximum cluster, divided by the number

of particles belonging to that species. In this cases, the green lines correspond to the most

relatively populated species (increasing in thickness as c goes from 0.5 to 0.85), while the red

lines represent the second species of the mixture (correspondingly, decreasing in thickness as

1− c goes from 0.5 to 0.15).

Figure 4.4: Evolution of the biggest cluster present in the system during the quench. The 2
distinct species of 2CM systems are presented, all at total density φtot = 0.15 but with different
compositions. The green curves refer to the dominant species, c, while the red to the other
species, 1−c . They reveal a distinct time-scale for aggregation: the dominant species aggregate
faster at increasing c (thicker lines); instead the 1− c species pass from a regime where it ends
up forming a percolating structure (1−c . 0.4) to a regime where isolated agglomerates are
formed into the matrix formed by the dominant species (1− c & 0.45). The change in regime
strongly depends on the overall density, as later depicted in Figs. 4.6 and 4.7.

Note that some of the red curves interrupt at a value N max
cluster,R /NR < 1, indicating that the

2The total population, sum of the two species, is Ntot = 104.
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particles of the corresponding species do not form a unique cluster: as illustrated by Fig. 4.1

(left), the red species can end up in isolated clusters, trapped in the matrix formed by the

most populated species. This depends also on differences in the aggregation time for the two

species: the most populated species (G in this examples) reach a steady, unique cluster made

up by all the G particles in times shorter by 1−2 orders of magnitude compared to the R, less

populated species. Thus, the fast structuration of the G aggregate results in a slowing down in

the aggregation of the R particles3.

A differentiation in aggregation time is obtained also for fixed composition c and varying pack-

ing fractions φtot. In particular, we show in Fig. 4.5 the comparison between the 1-component

mixture (c = 0 or c = 1) and the symmetric 2CM case (c = 0.5), for three representative total

packing fractions. We consider φtot = 0.125, 0.25 and 0.5 for the 2CM symmetric systems (blue

curves), and φ=φtot/2 for the corresponding 1CM systems (red curves). The thickness of the

curves in Fig. 4.5 is increased at increasing density.

Figure 4.5: (Top) Evolution of the number of clusters present during the aggregation, for
the same systems and representative densities φtot = 0.125, 0.25 and 0.5 (corresponding to
φ=φtot/2 for the 1CM). Thicker lines represent denser systems. The 1CM and symmetric 2CM
systems reveals a different time-scale of aggregation: the single species of the 2CM aggregate
faster than the corresponding monodisperse counterparts. This can be easily addressed to the
presence of the second species, that constraints through steric effect (HS repulsion) the other
species. (Bottom) The same kind of evolution is revealed by following the size of the biggest
cluster present in the system.

As expected, shorter aggregation times correspond to higher packing fractions. In particular,

3From the interrupted red lines, however, it is not clear whether the less populated species would eventually be
able to form a unique cluster for longer times, but the morphology indicates that it is unlikely that the isolated
clusters could touch, at least for the total density considered here (in any case, the low quenching temperature
prevents these clusters from spontaneously disrupt).
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Chapter 4. Results: BiGels from arrested demixing.

we show in the bottom of the figure the evolution of N max
cluster /Ntot during the quench, where

now N max
cl uster is the maximum size of clusters of the system and Ntot the total population. In

the top of the figure, instead, we measure the ratio of number of clusters over Ntot: when close

to 1, this ratio indicates that mostly monomers (unbound particles) are found, while the value

1/Ntot (that would have 0 value in the thermodynamic limit) represents the existence of a

unique cluster.

Note that the binding is defined by means of the attraction potential: for the 2-component

case this means that a cluster can belong to one species or the other, but no clusters can

contain both. From the curves resulting from the representative packing fractions, the differ-

ent structural evolution clearly arises for the binary case and its monodisperse counterpart,

manifesting a much shorter aggregation time for the 2CM system. This is essentially due to the

presence of a second species, meaning a higher occupation of space and, given the selective

attraction, in turn this brings to a more rapid encounter of particles of the same species4.

Orders of magnitude in time difference, finally, can be obtained in the aggregation as packing

fraction is increased, for both the 1CM and the symmetric 2CM cases.

We previously defined a BiGel the arrested structure formed by a symmetric (c = 0.5) 2-

component mixture. To further characterize and distinguish the BiGels, we investigate the

percolation properties of the arrested structure as a function of c and φ. The possibility of

identifying the two species gives access to further information. In particular, here we study

the occurrence of percolation in the final, arrested state after the quench. If just one of the

clusters spans the simulation box, we consider the system as percolating, but we can make a

distinction: if only one out of the two species percolates (red or green), then we have single

percolation; instead, when both species form percolating clusters (red and green), then we

speak of double percolation. As discussed before, in the former case of single percolation, the

non-percolating species forms isolated clusters that are trapped within the cavities of the gel

formed by the other component.

This analysis reveals three different types of arrested structures. Below roughly 5% in density,

most of the final configurations are made of disconnected clusters and no gel is observed, in

agreement with previous observations from simulations in 1CM systems [Foffi et al. (2005a)].

Experimentally this finite size effect is absent. At higher densities, single percolation is always

observed. Symmetrically respect to the c = 0.5 composition (BiGel), double percolation

emerges in the high density region. This behavior is depicted in Fig. 4.6. Here the bars give the

information of the statistical occurrence of percolation: for each state-point (c,φ), 10 runs are

performed and thus the heigth of the bars reflect whether all the samples at a given state-point

give percolation (max height) or just a fraction of them (smaller heigth). We also used the

symmetry around c = 0.5 to have better statistics, as the systems are symmetric in nature by

exchange of the labels R and G .

4This mechanism differs for the asymmetric 2CM, where c 6= 0.5, as explained before (the dominant species
aggregate faster and the other is fragmented and trapped in its cavities).

74



4.1. BiGel: numerical simulations.

Figure 4.6: The percolation probability of 2-component mixtures (2CM) after quenching. Each
circle represents the simulated parameters (c,φtot). (Left) The probability is calculated for one
of the two species to percolate. The maximum height of the bar, for example at high density,
corresponds to having 100% of percolation probability of at least one species: single species
percolation. (Center) Bars are also used to visualize the percolation probability of both the
species at the same time: double percolation. (Right) The first two diagrams for single and
double percolation is schematically resumed in three principal regions. We note that while at
low densities, φ. 0.05, there is no percolation (probably due to finite effects), at intermediate
densities the single species percolation is favored in systems with unbalanced populations of
the two species (see alos Fig. 4.4). At high densities at least one of the two species has formed
a percolative structure. The double percolation results favored when the two populations are
numerically in balance, close to the symmetric composition c = 0.5.

From these results it is clear that the BiGels correspond to 2CM arrested cases where it is

more likely to find double percolation. These different, emerging regimes of percolation can

be related to the spinodal surface of Fig. 3.7 (bottom), whose top view is redrawn in Fig. 4.7.

In fact, the nature of the percolation at the simulated state-points closely reflects the TPT

calculations. The interplay between the fluctuations in composition and in density gives rise to

the different regimes: when the c-fluctuations prevail (demixing), both the components tend

to percolate, whereas only one component percolates when density fluctuations dominate

(condensation). This indicates how the underlying thermodynamic instabilities influence the

final arrested structure. From Fig. 4.7 it is evident that the role of composition fluctuations is

predominant at c = 0.5 (BiGel). Several snapshots of such simulated systems are also shown

in Fig. 4.7 (left) for different densities. We also indicate with a white star the state-point

correspondent to the experimental realization studied before (Par. 4.2): compatibly with the

experimentally constraints due to the imaging techniques, it is chosen to stay in the region

of maximal demixing (symmetric composition) that is also accessed by means of simulation

without the drawback of strong finite size effects (which affects the evaluation of percolation

for smaller packing fractions).

Since we are interested in the scenario where demixing can be enhanced and maximized, that
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Chapter 4. Results: BiGels from arrested demixing.

corresponds to the double percolation region around c = 0.5, in the remainder of the chapter

we will focus on this symmetric case.

Figure 4.7: Percolation properties of the 2-component mixtures with potential wells εRR =
εGG = 1 and εRG = εGR = 0 after quenching: each point represents the simulated parameters
(c,φtot). Blue diamonds indicate percolation of both species, red circles indicate percolation
of only one species, squares indicate no percolation. The white star indicates the experimental
value. The (c,φtot) phase diagram obtained with thermodynamic perturbation theory (same
as in Fig. 3.7) is shown for comparison: a top view of it is used in the (c,φtot) plane obtained
from simulations. Their correspondence indicates that both the species percolate when
composition fluctuations drive the arrested phase separation. Snapshots of BiGels are shown
for various compositions (φtot = 0.15, bottom) and densities (c = 0.5, left).
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4.1.3 Arrested Structure of the BiGel.

We now turn to the study of the geometry and the topology for the arrested structures of the

1CM (gel) and the symmetric 2CM (BiGel). For sake of simplicity, we use the three reference

densities as in the previous paragraph. To understand the structural analogies between a

BiGel and a 1-component gel, we will focus on BiGels at a total density φtot and compare their

two components separately (sub-gels) with gels at density φ=φtot/2. For the BiGels, we take

advantage of the c = 0.5 symmetry and evaluate the partial structure factors of the two species

separately.

We employ two methods to investigate the structural properties, which provide complemen-

tary information. First, we consider the static structure factor S(q), which gives an insight

into the mass distribution at different length scales. Then we will use our method of surface

reconstruction and we will evaluate the Euler Characteristic (see Par. 3.2.2) of the gel and single

sub-gels of the BiGels. This latter method gives information about the topology and, hence,

on the porosity of the structures. The analysis are carried out also for the attractive species

(SW) of the symmetric mixtures of SW+HS particles, in order to provide further information

on the steric effects due to the presence of a second species.

Figure 4.8: (Top row) An example of SW+HS variant of the 2CM system. The 3D rendering
shows the decomposition of the two species, where the attractive SW part forms a gel-like
structure, while the HS part remains dispersed. (Bottom row) The same decomposition for
the BiGel (symmetric 2CM), where the two species both form a connected branched space-
spanning structure. The two single components parts result from the demixing induced by
the selective potential among species.

BIGEL AND STERIC EFFECTS. The presence of a second species influences the aggregation

because of the excluded volume. It is not clear whether such a steric effect is directly due to

the aggregation of the second species, or if it can be established even in absence of a second

sub-gel. In order to test the possible effect of a second species which do not aggregate, but

77
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that only causes an excluded volume, we use a variation of the symmetric 2CM.

Along with the usual symmetric 2CM (whose arrested structure is called a BiGel), we have

simulated another symmetric (c = 0.5) 2CM where only one of the two components has intra-

species attraction (SW), while the other component interacts solely with hard-sphere (HS)

potential. This system has model parameters εGG = 1, εRR = 0 and εGR = εRG = 0 (see Par. 3.2.1)

and we call it SW+HS. An example of the arrested SW+HS system is shown in Fig. 4.8 together

with an example of arrested BiGel. The same quench protocol is used for this model, as the

one adopted for the BiGels and the 1CMs.

STRUCTURE FACTOR. This quantity can be measured in scattering experiments and it is

directly related to the Fourier transform of the radial distribution function [Hansen and

McDonald (2006)]. Structure factors have been discussed in the context of gels both for ex-

periments [Carpineti and Giglio (1992); Poulin et al. (1999); Cipelletti et al. (2000); Segré et al.

(2001); Lu et al. (2008)] and simulations [Foffi et al. (2005b); Zaccarelli et al. (2008); Del Gado

and Kob (2010); De Michele et al. (2011)]. The results for three representative densities are

shown in Fig. 4.9. In all these cases, the structure factor of the gels agrees in a semi-quantitative

fashion with the structure factor of the BiGels.

A difference in the local peak between the gels and BiGels emerges at φ= 0.25, which corre-

sponds to the critical density of the 1CM case [Miller and Frenkel (2003)]. At small inter-particle

distances (large q), the differences are minimal, while at large length-scales (small q), the dif-

ferences are more significant. This is a consequence of steric effects, as the inter-penetrating

nature of the two sub-gels reduces density fluctuations. In other words, the two sub-gels are

restraining each other and this effect is stronger at higher packing fractions.
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Figure 4.9: The structure factors S(q), after the quench, for the reference total densities φtot =
0.125, 0.25 and 0.5, whose corresponding 1CM densities are φ=φtot/2. The monodisperse gel
is compared with the single species of the relative symmetric 2CM (BiGel) and the attractive
SW species of the SW+HS systems.

78



4.1. BiGel: numerical simulations.

It is natural to ask if this behavior being similar at each density, can be simply attributed to

steric effects due to the presence of a second species and if its gel structure plays an important

role. To clarify this point, we have performed simulations of a binary mixture in which one of

the two species is purely repulsive and behaves as a simple crowding agent. We quench the

SW+HS mixture (uRR = 1, uGG = 0, uRG = 0) adopting the same protocol used for the BiGels

In order to quantify the small q differences in the structure factors, we calculate the relative

variation by respect to the 1CM gels∣∣S(q)−Sgel(q)
∣∣

Sgel(q)
. (4.2)

The results for the three representative densities are shown in Fig. 4.10. The resulting structure

factors, in Fig. 4.9, show small-q deviations in good agreement with the BiGels. We can

conclude that such differences are due to general steric effects and not to the inter-penetrating

nature of the two sub-gels. Instead, we note that the behavior of the SW+HS system is very

similar to that of 1CM gels for large-q .
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Figure 4.10: Relative variation, respect to the monodisperse Sgel(q), of the S(q) for both the
SW+HS and the BiGel. Same colors as in Fig. 4.9. The BiGel at critic density φ= 0.25 seems to
show a more pronounced peak at the local length-scale. Its relative variation respect to the
monodisperse Sgel(q) shows in fact that, the higher the density, the higher is the local-scale
variation. We also see that the variation respect to the monodisperse case is always under the
< 10% at local length-scale and at low packing fraction. For the three reference packings the
structure factor variation for sub-gels of the BiGel is compatible with the that of the SW(+HS)
case. This means that steric effects due to the mere presence of a second species is the main
factor for distinguish the arrested structures of 2CM from the 1CM ones. This also quantifies
the large length-scale difference with the 1CMs, that is visibly dominating.

As expected, we note that the differences are more pronounced for small-q , where they are of
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Chapter 4. Results: BiGels from arrested demixing.

the order of ≈ 90% for both the SW+HS and the BiGels. We can also detect the higher difference

at local length-scales for the BiGel at φtot = 0.5, corresponding to the critical density φ= 0.25

of 1-component gels. This follows the trend where an increasing difference emerges (up to an

order of ≈ 10%) at high-q for higher densities. But a better statitics is needed to give conclusive

answers. Instead, we can state that - apart from a systematic discrepancy at small-q - the

sub-gels obtained by demixing present structures remarkably similar to the ones attained by

gelation of single-component, monodisperse systems.

TOPOLOGY. Our second analysis is based on surface reconstruction, which gives access to

information about the topology and the geometry of the structures. As described in Par. 3.2.2,

we developed and used a novel technique based on surface reconstruction, which closely

follows the one successfully applied to study amphiphilic systems [Belushkin and Gompper

(2009)]. More specifically, we construct a surface enveloping the arms of the gel. As an

illustration, in Fig. 4.11 (top) we show two gel-like sub-structures that compose a BiGel at

φtot = 0.125 compared to gels at half the density, φ= 0.0625: their resulting surfaces for gels

and BiGels are shown in Fig. 4.11 (bottom).

Figure 4.11: (Top) An example of a BiGel at total density φtot = 0.125 is shown together with
its two sub-gels and a monodisperse gel at density φtot/2 = 0.0625. (Bottom) Surfaces recon-
struction corresponding to these structures.

Each point on the surface is characterized by a pair of principal curvatures C1,2 that determine

the Gaussian curvature K =C1 ·C2, which describes the local geometry [Safran (2003)]. We
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4.1. BiGel: numerical simulations.

consider an overall property of the surface - its topology - in the sense of the Euler characteristic

χ= 1

2π

∫
K dS . (4.3)

The value of χ is a topological invariant that quantifies the number of objects, handles, and

holes in a surface. In our case, it is directly related to the porosity of the gel, as already pointed

out for dipolar colloidal gels [Miller et al. (2010)]. For a single convex, closed object, it is

χ0 = 2, while negative values can be associated to non-convex surfaces. For the reconstructed

surfaces of the three representative packing fractions, we show the distributions of the Main

Squared (H 2) and Gaussian (K ) curvatures - see Eqs. 3.10 - in Fig.s 4.13 and 4.14, respectively.

The values for the corresponding normalized Euler characteristic χ̄=χ/Nχ0, obtained with

Eq. 4.3 divided by the maximum achievable χ for N convex objects, are shown in the right

panel of Fig. 4.14.

The H 2 and K distributions are in unities of 1/R2, where R is the radius of a colloid, and exhibit

several local features. For example, a spherical cap is characterized by identical principal

curvatures C1 =C2 = 1/R, that give identical H 2 = K = 1/R2 from the definition of Eqs. 3.10

and 3.11. See example in Fig. 4.12 (left). Then, we expect that a peak is observed for such

a value in both the distributions if spherical caps contribute to the enveloping surface. On

the other hand, cylindrical surfaces would contribute with H 2 = 1/4R2 and K = 0, since

the principal curvatures in this case are C1 = 0 and C2 = 1/R. Besides, the K < 0 domain

corresponds to saddle-like geometries due to branching areas, as C1 < 0 and C2 > 0 (or the

inverse); see for example Fig. 4.12 (right).

Figure 4.12: (Left) Example of gridded spherical cup surface: a prevalence of this shape
would bring a Gaussian Curvature distribution’s peak at K ∼ 1/R2. (Right) Example of gridded
saddle surface: such a shape is defined by a positive C1 > 0 and negative C2 < 0 principal
curvatures, so that it contributes to the negative region of the Gaussian Curvature distribution,
K = 1/(C1C2) < 0. Eventually a prevalence of similar saddles would then bring to a K < 0 peak.
These saddle and a convex truncated surfaces are representative of the peaks found in the K
distribution. A peak in H 2 distribution corresponding to the spherical cap also is present, but
the saddle K < 0 region is not reflected by any specific feature in the Mean Squared curvature
distribution.

The distributions of the mean squared curvature are shown in Fig. 4.13 for the reference

densities. We note that the arrested, attractive species of the SW+HS system presents the

same surface features of the 1CM gels, while the BiGels present higher peaks referred to the

81



Chapter 4. Results: BiGels from arrested demixing.

dominant structures (spherical caps and cylinders). This behavior denotes how the demixing

affects the arms of the branches composing the sub-gels. As these local length-scale features

are enhanced, the enveloping surface of the sub-gels present more bumps as a result of thinner

arms: less colloids participate, in average, to the thickness of sub-gels branches and thus more

spherical caps contribute to the surface. Moreover, the difference of BiGels with 1CM (or the

SW+HS) gels are observed to increase for increasing packing fractions, as expected.
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Figure 4.13: Distributions of the Mean Squared curvatures H 2 for the gels (red lines), the
attractive component of the SW+HS (dashed yellow lines), and the BiGels (blue lines). The
results for three representative packing fractionsφ= 0.0625, 0.125 and 0.25: hereφ=φtot is the
density of one of the two species in the 2CM cases, as well as the density of the monodisperse
gel. The H 2 distribution captures the local surface geometry: the peaks relative to a cylindrical
shape and to a spherical cap are clearly visible. Here R is the radius of the colloids and H 2 is
in unities of 1/R2. Each curve results from an average of measurements (as explained in the
text) over 10 independent configurations. The curves referred to the SW+HS systems are in
perfect agreement with those of the respective 1CM systems. Instead, differences emerge for
the BiGel: the two main peaks are more pronounced and the tail of the distribution (insets)
decreases faster. This behavior is due to the a lower thickness of the branches, that is reflected
by a major presence of bumps in the surface.

Similar information can be extracted from the distribution of the Gaussian curvature. In

Fig. 4.14 we show, together with these distributions (left panel), the respective Euler Character-
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4.1. BiGel: numerical simulations.

istics (right panel) as calculated by means of Eq. 4.3. The value K = 0 reflects the cylindrical

geometry typically found along the arms of the gel, and the K ≈ 1/R2 peak serves as a measure

of local undulations. At higher densities, both an increase of the K ≤ 0 part of the distributions

and a decrease of χ̄ are observed. This shows that both the gels and the sub-gels become more

porous. It is also evident from the distributions of Gaussian curvature that the geometrical

difference between the gels and BiGels grows, while essentially equal Euler characteristics

show that the structures remain topologically very similar. The growing deviations in the K ≈ 0

and K ≈ 1/R2 regions point towards the compaction and straightening of the individual arms

of the sub-gels. As for the H 2 distributions, we note the almost perfect superposition of the K

distributions for the SW+HS with those of the relative 1CM gels. This implies that steric effects

do not affect the features of the surfaces enveloping the structures, as they rely on the local

geometry, in agreement with the results for the structure factor (Fig. 4.9).

The increased count of saddle shapes is reflected by more negative χ̄. This indicates also the

smaller size of pores, as they grow in number but void space decreases for higher densities.

Finally, regardless of the presence of a second species, these observations allow us to conclude

that the porosity of gels and single components of BiGels are quantitatively similar.
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Chapter 4. Results: BiGels from arrested demixing.
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Figure 4.14: (Left) Distributions of the Gaussian curvatures K for the gels, the SW+HS, and
the BiGels (compared as before). The monodisperse gels at φ (red) are compared with the
sub-gels of a BiGel (blue) and the SW component of the SW+HS system (yellow), at φtot = 2φ.
The curves referred to the SW+HS systems agree with those of the 1CM systems. The insets
show the tails of the distributions in the k < 0 region, where saddles are the only kind of
structures that give a contribution. At increasing density, a difference in the peaks clearly
emerge for the BiGels: bumps on the surface give a bigger contribution. (Right) The Euler
characteristic, normalized by the number of particles and the value for an isolated colloid:
χ̄= χ/Nχ0 (χ0 = 2). Despite the possible differences in the K distributions, the normalized
Euler Characteristic χ̄ shows that the single components of the BiGels and the relative gels,
together with the attractive species of the SW+HS systems, share the same topology.
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4.2. Bigel: experiments.

4.2 Bigel: experiments.

4.2.1 From model to lab.

Here we focus on the actual realization of the non-equilibrium processes that bring to the gela-

tion process resulting from fluctuations arrest of chosen, tunable quantities. This mechanism,

as suggested by TPT and previous studies (see Par. 3.1.2 and 3.2.1) unveils a universal physical

mechanism. In order to prove such universality, we make use of the DNA-mediated inter-

actions for creating colloidal systems whose components show species selectivity. Arrested

phase separation should then take place, as expected from theoretical framework previously

illustrated. This part of the thesis has been conducted in collaboration with the group of

Erika Eiser (Cavendish Laboratories, Cambridge, U.K.). The results of the experiments will be

resumed in Chapt. 4.

In the promising field of self-assembly, alternatives exist that may offer controlled and/or inex-

pensive synthesis of nano- to micro-sized structures under mild conditions, and inter-species

interactions play a fundamental role in mixtures of proteins, macromolecules and colloidal

systems5. Although the selectivity of the interactions is often a result of the complex structure

of the proteins, research on functionalized colloids unveils unprecedented possibilities of

synthesizing simple particles with tunable interactions.

To this aim, the ability of DNA to carry information - its main role in biology - can be ex-

ploited for self-assembly processes [Whitesides et al. (1991); Rothemund (2006); Feldkamp

and Niemeyer (2006); Simmel (2008)]. While most of the works focus on the direct assembly

of DNA chains in supramolecular DNA structures [Aldaye et al. (2008); Pinheiro et al. (2011)],

early observations already have reported reversible as well as highly specific binding acting

between colloidal nanoparticles, when coated with complementary strands of DNA [Mirkin

et al. (1996); Alivisatos et al. (1996)]. Research activity on colloidal suspensions has followed:

DNA’s ability to direct the patterning gives to such techniques the potential for facing many

important scientific challenges.

WHY THE DNACCS. We propose the first experiments apt to the realization, as the proof of

concept, of the enhanced demixing scenario we introduced. Binary mixtures of DNA-coated

colloids (DNACCs), functionalized with selective intra-species attraction, represent the ideal

candidate to best reproduce the theoretical and simulative results of the thesis6. In particular,

here we describe equimolar (c = 0.5) 2CMs, but the used methods can be applied to others

molarities (or compositions) or to higher number of components (but this generalization

goes beyond the scope of the thesis). In fact, DNACCs present highly tunable interactions

and a vast parameter space (e.g., particle size, ligand structure and flexibility, coating density,

5Eye-lens protein systems, for example, can pass from condensation to demixing by a single point mutation,
which is believed to alter the inter-species attraction [Dorsaz et al. (2011); Banerjee et al. (2011)].

6Research on DNACCs has until now mostly focused on the creation of three-dimensional crystalline assem-
blies [Nykypanchuk et al. (2008); Park et al. (2008)] or on the formation of particular designs of scaffolds or
patterns [Wilner et al. (2009); Lin and Yan (2009); Gu et al. (2009)].
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Chapter 4. Results: BiGels from arrested demixing.

nucleotide sequence length and hybridization strength), that make them a promising tool to

build colloids with programmable interactions [Mirkin et al. (1996); Alivisatos et al. (1996);

Biancaniello et al. (2005); Geerts and Eiser (2010)].

We address the question of what happens out-of-equilibrium7, for binary mixtures of DNACCs

covered with two different types of strands, the free ends of which are complementary and

capable of forming bridges. The different species are defined through the different coating

of the spherical colloids, in order to mimic the 2-component mixtures (2CM) with specific

interactions modeled so far.

Under experimentally relevant conditions, DNA-coated colloids interact through entropic

repulsion and hybridization-mediated attraction [Biancaniello et al. (2005); Dreyfus et al.

(2009); Leunissen and Frenkel (2011)]. The attraction is mediated by hybridization of two

complementary DNA single strands (ssDNA), which are held together by hydrogen bonds

between the complementary bases8: adenine to thymine (A-T) and cytosine to guanine (C-G).

By exploiting these pairing rules among bases, structures can aggregate depending on the

programmable sequences of DNA grafted on the particles’ surface9. The typical hybridization,

in structural DNA technology, provides the interaction through a rigid core with sticky ends:

the ssDN) acts by forming, at contact, a linked double-helical region.

When temperature is lowered below a well defined (system-dependent) value, large aggregates

form [Valignat et al. (2005); Aldaye et al. (2008); Park et al. (2008); Geerts and Eiser (2010);

Sacanna et al. (2010); Rogers and Crocker (2011)]. This behavior is now understood in terms

of the statistical mechanics of duplex formation between complementary single-stranded

DNA filaments (ssDNA) coated onto different particles. Formation of these bonds results in an

attractive interaction between colloids that is a monotonic, sharply decreasing function of

temperature [Angioletti-Uberti et al. (2012); Mognetti et al. (2012); Varilly et al. (2012)]. For low

packing fractions, 1CM of DNACCs are known to form an arrested, gel-like space-spanning

structures [Geerts et al. (2008); Geerts and Eiser (2010)].

EXPERIMENTAL SETUP. Here we briefly introduce the main experimental features: for de-

tails, see Appendix E. We used two species of polystyrene colloids with diameters of 0.5 µm.

Polystyrene hard-sphere colloids, shown as a section in Fig. 4.15, are coated with fluorescent

PEG and with DNA strands. The strands consist of a section of double-stranded DNA (dsDNA)

7The formation of a crystal implies, instead, an equilibrium process. Recently, a thermodynamic theory has
been provided for the DNACC, as viable approaches to design crystal structures a priori [Angioletti-Uberti et al.
(2012); Mognetti et al. (2012); Varilly et al. (2012)]. It uses a generalized, mean-field approach, which neglects
fluctuations of the grafting density. Discrepancies arise only when these fluctuations become relevant. The theory
results in quantitative to semi-quantitative agreement with the MC data.

8Each surface-grafted DNA strand can bind at most one partner DNA strand at a time. For this reason, the
hybridization is considered as valence-limited [Zaccarelli et al. (2006)]. But the inter-particle interaction between
DNACCs is not valence-limited, as the surface is densely coated, and in principle local fcc configurations of bonded
DNACCs can take place. Designs are also possible for strands that bind to more than one partner simultaneously,
but an entropic cost exists for bringing three or more strands together if grafted onto colloids (as opposed to the
case when they are dispersed in solution), and such designs are not often applied for DNACCs.

9This process, combined with the current ability to synthesize almost any sequence in an automated fashion,
also allows the manufacturing of new structures that are not found in nature [Seeman (2003)].
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Figure 4.15: The HS polystyrene colloids (a section is here shown in red) are coated with PEG
and dsDNA with ssDNA strands. The coating functionalization of the ssDNA enables the
specificity in the attraction effective potential among colloids coated with complementary
ssDNAs. In fact, given a coating C whose ssDNA can stick to the complementary C’ ssDNA
strands, only the resulting C-C’ bonding can take take place for this species. Beyond the
DNA-functionalization, colloids are fluorescently coated, so that is can be also used to color-
label the different species. For our experiments, we used red (R) and green (G) fluorescences.
(Details in Appendix E.)

with length of 20 nm, which is grafted to the surface of the colloids10 and terminates with a

“sticky end”, i.e. a short sequence of single-stranded DNA (ssDNA). Note that the ratio between

dsDNA length, which determines the range of the interactions, and colloidal diameter has a

value 4%, which is close to the value used in the SW model (λ= 1.03 corresponds to a value

3%) illustrated in Par. 3.1.1.

The ssDNAs enable the specificity in the inter-particle selective interactions. This is achieved

by using the four different strands, labeled A, A’, B and B’. The sticky ends of the strands A

and B are complementary to those of A’ and B’ respectively. The binding free energies of the

non-specific interactions A-B, A-B’, A’-B and A’-B’ are negligible compared to the hybridiza-

tion free energies of A-A’ and B-B’. We adopted a coating such to induce attraction effective

potential among only colloids with equal coating. Two different implementations are used

experimentally:

1. the species carry a different ssDNA coated encoding, A and B, whose relative comple-

mentary strands A’ and B’ are mixed in the solution, so forming bridges like A-A’-A and

B-B’-B;

2. each species is coated with the two complementary ssDNAs, with no strands in solution,

so defining the species A’A and B’B, and a competition among loops (on the same

colloid) and bridges (among distinct colloids of the same species) takes place.

We used the first method for a preliminary structural study. The pair distribution function

g (r ), calculated on positions data obtained by confocal microscopy11, is shown in Fig. 4.16.

10The dsDNA acts as an inert spacer and allows the sticky end to explore a larger volume around the grafting
point.

11The size of the colloidal particles allows their study by means of a wide range of optical techniques, such as
dynamic light scattering and confocal microscopy (see Par. 2.3 and Appendix B).
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Figure 4.16: Experimental pair correlation function g (r ) on BiGels on DNACCs of 1µm in size.
In this case we used a first series of experiments, with strands in solution have been used
in order to provide the bindings A-A’-A and B-B’-B, between colloids coated with only A or
B DNA sequences. Such a system is different from the AA’ and BB’ coated colloids used for
the other experiments: in this second case, the colloidal size is not sufficient for obtaining
data with small-errors on single particle positions. Clearly the RR and GG attractions are
strongly dominant respect to the RG residual attraction. There are two commonly used types
of procedures for making DNA coated colloids bind together.

GELATION PROTOCOL OF DNACC 2CM. Using the second method, instead, a second series

of experiments has been conducted: a representation of the binding scheme is illustrated

in Fig. 4.17. The species are labeled with different fluorescent dyes, red (R) and green (G),

that make them distinguishable in confocal microscopy experiments. The DNA coatings are

designed such that attraction is possible only between R and R or G and G, whereas G-R

interaction is repulsive. Given a coating A whose ssDNA can stick to the complementary A’

ssDNA strands, only the resulting A-A’ bonding can take take place for this species12. The same

happens for B-B’. A schematic of two interacting R colloids is shown in Fig. 4.17.

Slow dynamic properties are expected to arise by using DNACCs which show short-ranged

inter-particle attraction. The DNA-mediated colloidal aggregation is thermo-reversible and

melting occurs sharply at the temperature T̃m ≈ 54◦C. The value of T̃m is larger than the

melting temperature Tm of free sticky ends in solution, and it is easily tuned by changing the

DNA grafting density using inert polymers. Once sealed into the chambers, the samples are

12Binding is also possible between complementary strands grafted within a certain distance on the surface of
the same colloid, producing “loops” [Leunissen et al. (2009)]. The overall intra-species attraction results from the
competition between bridges and loops.
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heated up from room temperature (RT≈ 22◦C) to T = 60◦C> T̃m and left until a homogeneous

gas phase is formed. The samples are then quenched to RT. This quenching procedure is

parallel to that used for the simulations, where the quench follows an equilibrium phase where

the inter-particle attraction is negligible. At about 45◦C large-scale aggregation initiates and

within 5 minutes a demixed BiGel is formed (see next paragraph).

Figure 4.17: (Left) The HS polystyrene colloids are used to realize the selective inter-particle
interaction among colloids, following the model. The specific (sections is here shown in
red) are coated with PEG and dsDNA with ssDNA strands. The coating functionalization of
the ssDNA enables the specificity in the attraction effective potential among colloids with
equal coating. In fact, given a coating A whose ssDNA can stick to the complementary A’
ssDNA strands, only the resulting A-A’ bonding can take take place for this species. In our
experiments, each species is coated with the two complementary ssDNAs, with no strands in
solution, so defining the species A’A and B’B, and a competition among loops (on the same
colloid) and bridges (among distinct colloids of the same species) takes place. The PEG is
fluorescent, so that is can be also used to label the different species: we used red (R) and green
(G) fluorescences. Given the arbitrary of the system, the four combinations R-A’A and G-B’B,
or G-A’A and R-B’B can be used. (In Appendix E further details are explained.)

The parallel between computer model13 and experimental setup relies on the main physical

characteristics of both the particles (HS core, short-ranged attraction, selective potential) and

the quenching procedure (starting from a gas phase where the inter-particle attractions can

be neglected down to a temperature that makes the particles aggregate).

4.2.2 The actual BiGel.

Our prediction of the formation of a demixed phase, as supported by theory, can then be

tested with the introduced experimental system. This route is used to test the demixing

13We consider the repulsive HS repulsion among colloids of different species. With such an approximation,
we can usefully model the present coated colloidal interactions with the simple SW model, but with selective
interactions εRR, εRG = εGR and εGG.
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mechanism and its enhancement. The attractive potential, enabled by the DNA coating, acts

on like-particles (same species), while colloids of different species present only mutual hard-

sphere-like repulsion. We present in this paragraph some confocal microscopy experiments

performed on quenched14 two-component mixtures of DNACCs with such selectivity, and for

a symmetric composition c = 0.5 of the two species.

A schematic of these particles is shown in Fig. 4.17. The colloids are labeled with different

fluorescent dyes, red (R) or green (G), and the DNA coatings are designed such that only RR

and GG attractions are possible, leaving the G-R interaction repulsive. In the experiment

presented in Fig. 4.18, the surfaces with strands A and A’ are coated with G dye, while the

species with B and B’ strands are not fluorescently coated. The imaging of the resulting

aggregation show, in Fig. 4.18(left) and 4.18(center) (using bright field (BF) and fluorescence

(FL) lighting techniques, respectively), the arrested gel structure for a sample of such a system.

In Fig. 4.18(right), contour plots are made for the FL image combined with the subtracted BF

image: they show a first signature of demixing, as it is possible to separately distinguish large,

ramified structures. These structures are drawn in R and G colors. In this case the sample has

total colloidal volume fraction φtot ≈ 0.05.

Figure 4.18: (Left) After annealing. A bright field (BF) image of a DNACC aggregate
(φtot ≈ 0.05,c = 0.5) where only the G species is fluorescently coated, while the other is non-
fluorescent. (Center) A fluorescent (FL) optical microscopy image of the same region, where
the G fluorescent components result better resolved. (Right) Green and red lines are contour
plots that highlight fluorescent and non-fluorescent (obtained per subtraction) aggregates,
respectively.

When also the R dye is present, the difference in fluorescence of the colored coatings allows

more detailed imaging by means of the confocal microscopy: the sample is irradiated with laser

at R and G wavelength, in order to have a significant split in the respective light channels15.

This sample is shown in Fig. 4.19(a): a BiGel is clearly observed, with its inter-penetrating,

14The samples are heated up until a homogeneous gas phase is formed and then quenched: large-scale aggrega-
tion initiates and a demixed BiGel forms. Details on the experiments are in Appendix E.

15The surfaces of G colloids is coated with strands A and A’ in equal concentrations; analogously the surface of
R colloids is coated with B and B’. Given the arbitrariness of the system, the two color-combinations R-A’A and
G-B’B, or instead G-A’A and R-B’B can be used. To guarantee that our binary system is completely symmetric, all
the experiments have been repeated after exchanging the DNA coatings between the fluorescent species. Details
on the materials and the experimental methods are in Appendix E.
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double-percolating nature. In this case a confinement of the colloidal samples in quasi-2D

chambers, with thickness of a few microns, has enabled the systems to have volume fractions

closer to those for which we have found double percolation in simulations16. It is in fact

φtot ≈ 0.1 (c = 0.5). In Fig. 4.19(b) a detail is shown where the G and R components are

separately visualized. The confocal technique also allows to reconstruct the 3-dimensional

structure and, for this BiGel, an example of 3D reconstruction is shown in Fig. 4.20.

Figure 4.19: (a) Confocal image of the demixed BiGel showing R and G fluorescently labeled
colloids (star symbol in Fig. 4.7). The section is taken in the middle of a sample with an overall
thickness of 20 µm. The scale bar is equal to 50 µm. (b) Detail of image (a) for which we
separate R from G aggregates. Here the scale bars are equal to 25 µm.

In Fig. 4.7, the experimental state-point (c,φtot) = (0.5,0.1) is indicated within the phase

diagram obtained with thermodynamic perturbation theory (TPT) and together with expected

theoretical results for the percolation properties of 2CM systems. These results evidence

the first, actual realization of a demixed BiGel, and reveal the correctness of the generalized

theoretical framework. In fact, the AA’ and BB’ equimolar DNACCs mixture has been used

in order to maximize the demixing mechanism over the condensation. The outcome of

this maximization can be placed among the theoretical results: as described in Par. 4.1.3,

the experiments have been performed in line with the prediction for the achievement of

a double-percolating structure. Thus, the chosen experimental setup reflects the choice

of working at conditions where the theory predicts an arrested phase separation with two

inter-penetrating sub-gels, both percolating. As shown, in fact, the competition of demixing

with condensation influences the final structuration in a way that can be understood upon

analyzing the properties of percolation (refer to Par.s 2.3.1, 3.1.1 and 4.1.2).

16For the packing fractions of interest, multiple scattering highly reduces the quality of confocal image in bulk.
For this reason, we have chosen to confine the colloidal samples in quasi-2D chambers of few microns thickness.
In this way we can image systems with volume fractions close to those we simulate. Ssee Appendix E for details on
the used imaging techniques.
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Figure 4.20: The same BiGel sample of Fig. 4.19, whose the 3D composition is reconstructed
from the coplanar images from confocal microscopy experiments. This rendering (similarly
to the simulated colloidal model) highlights the existence of double-percolating structures.
Here the presence of small, not yet aggregated clusters, can be due to various effect: on one
hand, the arms of a sub-gel can act as a matrix that traps (in the quasi-2D experiment) tiny
aggregates of the other species; on the other hand, the imperfections of the coatings and
possible hydrodynamic effects could have a role in the ageing process of gelation, causing
local detachments.
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5 Ongoing developments and perspec-
tives.

OUTLOOK. In this final chapter, a series of analysis are shown, that are being performed. Such

work in progress is important as it highlights the dynamical properties of the 2-component

mixtures in the final stages of the aggregation. In particular, we use the Structure Factor and,

as long as dynamics is concerned, its analytical (Furukawa) approximation: this unambigu-

ously places the gelation through arrested demixing in the context of the arrested spinodal

decomposition. The analysis are reported for both simulated and experimental samples.

Conclusions are finally drawn regarding the generalization of the spinodal decomposition,

enlarged to account for the competition of different mechanisms: we distinguished the con-

densation and the demixing. The aspect of the augmented span of parameters is also touched,

with particular emphasis to the role played by the simple models, in a scenario where they

can be (and have been) used to realize complex structures. We finish the chapter with some

considerations where we suggest possible directions - as well as applications - for the present

research.

5.1 Dynamics close to the arrest.

The aggregation of both BiGels and SW+HS can be probed by observing the evolution (upon

quench) of the static structure factor. Refer to Par. 2.3.2 for its definition and to Par. 3.1.1

for the 1CM case. The results for these symmetric 2CM systems are shown1 in Fig. 5.1 for

the three reference total densities φtot = 0.125, 0.25 and 0.5 (see Fig. 3.2 for the 1CM system

withdensities φ=φtot/2).

A peak clearly emerges for the S(q) in correspondence to the large length-scales (small wave-

lengths q) for the single components that form the demixed sub-gels. As in the 1CM case, this

peak indicates the ongoing gelation phenomenon, strongly dependent on the spinodal de-

composition2. The peak shifts towards lower q and, after a certain time, its position and height

do not change: this arrest reflects the arrest described also with nb or MSD (see Par. 2.2.1 and

1Each curve of Fig. 5.1 is an average over 10 independent runs. The symmetry has also been used for averaging
also over the curves of the two single species, but this has not been possible for the SW+HS mixtures.

2We will see how the final curves of the partial and total S(q) recall those obtained for the experiments (Fig. 5.6).
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Par. 3.1.1).

The S(q) at short, local length-scales (wavelength q & 4) of the single species is almost exactly

coincident with the total structure factor: this reflects the demixed nature of the BiGels, in that

the single species form similar, local structures. The overlap with the total S(q) breaks down

for higher densities, because the sub-gel branches result closer and the decreased available

space makes the local correlations increase.

A small-q peak, extremely similar to the one for single species of BiGels, is observed for the

SW component of the SW+HS systems (right panel of Fig. 5.2). Also in this case, the attractive

component gives the fingerprint of the total structure factor, while the repulsive HS com-

ponent plays a background role characterized by no spontaneous local structuration. The

structuration of the HS species is observable only for higher φtot (as the HS occupy the void

space), driven by the matrix formed by the SW component arrested to form a gel.

The strong similarity of the S(q) for the BiGel and the SW+HS systems, regarding their attrac-

tive components and the total structure, are a clear indication that the presence of a second

species (both attractive of repulsive) bring to the same arrested gel-like structures. This steric

effect has been treated in the Par. 4.1.3 with a major focus on the final, arrested structures.

LATE STAGES OF DEMIXING. Recently, the spinodal decomposition occurrence has been dis-

cussed in relation to demixing in colloid-polymer and Lenard-Jones mixtures [Aarts and

Lekkerkerker (2004); Thakre et al. (2008)]. By keeping track of the evolution of the small-q

region of the structure factor, it is possible to delineate the typical demixing domain size

and its evolution. In Par. 2.3.2 an analytical approximation for the structure factor has been

introduced [Furukawa (1989)], the Furukawa’s scaling

S̃(q, t ) = Sm(t )
3
(
q/qm(t )

)2

2+ (
q/qm(t )

)6 . (5.1)

This scaling, relying on a S(q) definition that accounts for the two components, has been

proved to be particularly suitable for the description of the stages of aggregation where bicon-

tinuous structures begin to emerge [Thakre et al. (2008)].

Thus, we test the scaling hypothesis on the 2CMs that bring to BiGels, where demixing drives

the gelation process. The fits together with the structure factors are shown in Figs. 5.2, 5.3

and 5.4 for the BiGel at three reference densities. In particular, fits for the total density

φtot = 0.125 are presented in Fig. 5.2 (top), and we propose a collapse of the data and the

relative fits (as described in Par. 2.3.2) in Fig. 5.2 (bottom): the good agreement with the

approximation highlights the consistency with the dynamical scaling hypothesis, which is

expected to hold for the evolving phase when mesoscopic domains are separated.

On the other hand, the scaling is known to be a good approximation only up to packing fraction
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5.1. Dynamics close to the arrest.

Figure 5.1: Structure factor evolution for the symmetric 2CM system (each species accounts
φtot/2), at densities φtot = 0.125 (top), 0.25 (center) and 0.5 (bottom). (Left) The total S(q)
(black lines) is compared with the partial S(q) (blue lines) of the 2 distinct species. For all the
densities, and for both the total and single-species, the low-q peak shifts towards smaller q and
rises up to a stable height. For local length-scales (qD . 4) the behavior of single-species is
almost identical to the total structure, but differences emerge at highφtot. Note: the agreement
of total S(q) with the 1CM observations diminishes at high φtot. (Right) Same as on the left
panel, but for the SW+HS variant of the 2CM system. The total S(q) (black) are compared with
the partial S(q) of the attractive (SW, red) species and the repulsive (HS, green) species. As for
the BiGel formation, the shift and rise of the low-q peak is observed. Note: the SW (attractive)
component behaves as the BiGel’s single species, while the HS (repulsive) component shows a
structuration as consequence of the SW aggregation. The total S(q) results in an increasing
disagreement with the monodisperse 1CM at higher densities (see Fig. 3.2).
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Figure 5.2: (Top) The analytical approximation Eq. 5.1 is used to fit the total S(q) during the
final stages BiGel aggregation (φtot = 0.125). The configurations have a power-law sampling
t = τ ·at∗ , where τ= 10−2 is the minimum time, the constant (> 1) a = 1.3 gives the separation
increase for consecutive configurations, and t∗ = 1, 2, ..., t f i nal label the configurations.
(Bottom) The scaling S̄(x) of Eq. 2.24 is obtained, where x = q/qm and where the height is
rescaled by Sm .

∼ 0.1, and this is confirmed also in the case of BiGels. As expected, the analytical approximation

holds for the lower densities, and becomes less precise for the highest. For BiGels at higher

densities, in fact, the differences with the analytical form result more pronounced, as shown

in Fig. 5.3 and 5.4.

Note that using the Furukawa’s function as a fit, the fitting parameters Sm(t ) and qm(t ) have

an immediate meaning: they refer to the height and wavelength values of the small-q peak

(explained in Par. 2.3.2), as it grows and shifts during the gelation process. They also quantify

the emergent structuration and the mesoscopic domain sizes with characteristic length

Lm(t ) = 2π

qm
. (5.2)

The time series of parameters can be used. In Fig. 5.2, for example, the collapse of the data

on a master curve has been obtained by rescaling using the series of parameters. In Fig. 5.5,

instead, the evolution of the parameters is explicitly shown for the aggregation during the

quench for the three representative packing fractions.

The record of the fitting parameters for all the times gives a clear signature of the arrested
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5.1. Dynamics close to the arrest.

Figure 5.3: The fits with Furukawa’s approximation is reported for φtot = 0.25, together with
the scaling, as in Fig. 5.2. By comparison with the previous, less dense system, here a less
precise scaling follows.

Figure 5.4: The fits with Furukawa’s scaling function for the denser reference system, φtot = 0.5.
As expected, at this density the approximation clearly loses its validity.

dynamics that brings to gelation. In particular, we find that both the Sm(t ) and qm(t ) reflect

the slowing down and successive arrest: in particular, the growth in size of the corresponding

domains (Eq. 5.2) is plotted. The values of Lm(t) identify, once the arrest is occurred, the

main distance between the ramified structures that characterize the BiGel. Such a distance is
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sensibly shorter for higher densities, as a result of the decreased free volume. This behavior is

directly reflected by the porosity, of which we propose a measure in the next paragraph.

Figure 5.5: The fitting parameters of the low-q peak are shown, as a function of time, for
the S(q) of BiGels. Here Sm gives the peak’s intensity, qm is its position (wavelength) and
Lm = 2π/qm gives the characteristic size (Eq. 5.2).

5.1.1 Microscopy intensity measurements for BiGel.

The symmetry among the two species, in the equimolar case c = 0.5, can be investigated by

means of the scattered intensity and, in turn, the Structure Factor. Similarly to what was done

by Aarts and Lekkerkerker (2004), by Fourier transforming the direct images of the BiGel (and

by integrating the result over the scattering angle, as by definition, Par .2.3.2) we obtain the

relative structure factor. The different color channels R and G give access to the sub-gels

structures, hence we can also measure their scattering intensity separately.

In Fig. 5.6 the intensity of the scattered light I ∝ S(q), integrated on the scattering angle, is

shown for the two components - red and green points - and for the complete BiGel (blue

points). The superposition of the R and G points reflects the structural similarity of the relative

sub-gels: the symmetric composition c = 0.5 makes the resulting structures be interchange-

able, a fact that we will use in the analysis of the simulated BiGels, as it is possible in this case

to average observable quantities over both the components.

As it happens for the simulated BiGels (see later in the present chapter), the single components

present a more pronounced small-wavelength peak compared to that of the total structure.

This simply reflects the larger voids one has once considering only one species and disregard-

ing the other.

On the top of the measurements, fits are shown in Fig. 5.6 with lines. These are performed
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using the Furukawa approximation [Furukawa (1989)] introduced in Par. 2.3.2, whose shape

characterizes the final stages of gelation. As expected, a very good agreement exists, for

both the single sub-gels and for the BiGel, thus providing further evidence of the correct

spinodal-decomposition framework, driving the structuration in presence of strong demixing.

Figure 5.6: Scattering intensity for the BiGel obtained by quenching a symmetric 2CM of
DNACCs (diameter D = 0.5µm), the same as in Fig. 4.19. Red and green points are relative
to the R (BB’) and G (AA’) components, respectively. The black points result from the whole
BiGel structure. Both the continuous blue and the dashed black lines are fits made using the
Furukawa approximation of Eq. 2.23. These provide the fitting parameters: d f = γ−1 = 1.622
and δ = 0.794, for the single sub-gels, and d f = γ− 1 = 1.577 and δ = 0.006, for the BiGel.
The fractal dimension d f < 2 is compatible with the quasi-2D experiments. In the inset, the
final S(q) results are shown for the simulated BiGel at φtot = 0.125 (close to the density used
in experiments). As for the experiments, we note an enhanced small-q peak for the single
components by comparison with the whole BiGel structure factor (see Fig.s 5.1 and 4.9).

99



Chapter 5. Ongoing developments and perspectives.

5.2 Perspectives.

ARREST OF FLUCTUATIONS: TUNABILITY FROM GENERALIZATION. The spinodal decomposi-

tion mechanism, at the basis of the gelation, has been proven to occur for the case of demixing.

Under quench, colloidal particles with mutual inter-particle attraction undergo an arrested

phase separation: this is driven by local fluctuations in density φ when the particles are indis-

tinguishable. In this case condensation occurs. But when a distinction can be provided such

that colloids are identified as belonging to different species, and when the attraction acts with

selectivity rules between those species, there is competition with local fluctuations in their

relative composition. In this case, the demixing phenomenon may take place, where particles

of each species aggregate separately from them of distinct species. We enhanced this process,

in the case of two species of square-well (SW) model colloids, by providing two conditions: the

intra-species attraction overcomes the inter-species attraction, and the relative population

of the two species is symmetric, i.e. has composition c = 50%. The theoretical approach,

supported by first order perturbation calculations, has explicitly shown how the passage from

condensation (usual gelation) to demixing (due to selectivity) is affected by both density and

composition fluctuations. Extensive numerical simulations have been performed, with the

aim of testing the occurrence of gelation in the framework of selective interactions among

two species. Simulations of quenches have been performed on the SW model colloids with

selectivity encoded in the attractive wells. The variety of computed state-points (φ,c) has

provided data on dynamics and on the final arrested structures, then analyzed by means of dif-

ferent techniques. We obtained the evidence of actual demixing acting on these 2-component

mixtures (2CM), and of the arrest in gel-like formations characterized by demixed structures.

The study of percolation features of the mixtures has highlighted two main aspects: first, that

far from the symmetric c = 50% composition, isolated clusters of the minority species end

up trapped in the percolating structure made of the other, dominant species, and second,

that also a separation in the aggregation time-scales emerges when the population is not

symmetric. What’s more, the percolation analysis allowed to understand how the competition

between condensation and demixing is reflected by the final, arrested gel phase. In fact, a

strong agreement have been found regarding the regions of the (φ,c) diagram: if demixing

dominates, then both the two species form percolating structures, while only one of the two

species aggregate in a percolating structure when condensation dominates. This means that

not only the conposition parameter c influences the kinetics of the aggregation of the two

types of components, but it is also reflected in the conformation of the final arrested structures.

This also proved the maximum enhancig of demixing for the symmetric 2CM.

BIGELS: STRUCTURAL AND DYNAMICAL CHARACTERIZATIONS. We named a BiGel the arrested,

space spanning, interpenetrating structure composed by the demixed sub-gels that result

from the quench of a c = 50% mixture of colloids with selective attractions. We then focused

on the symmetric mixtures and compared the formation of their single sub-gels to the classical

1-component (1CM) gels. The Structure Factor analysis during the quench has shown how
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the gelation brings to structures that are locally very similar, but differ at large length-scales.

In particular, we have pointed out the possible effects that a second species have on the

aggregation. Such effects emerge more at high densities than at low densities, and we tested

the steric effect due to the presence of a hard-sphere (HS) second species.

We simulated and analyzed quenches of SW+HS symmetric mixtures applying the same

protocols used for the 2CM and the 1CM. Indeed, we have found that the steric effects are

responsible for the differences in the aggregation of the two (selectively) attractive species of

the 2CM by respect to the 1CM case. The study of the Structure Factor has shown something

more, regarding the late stages of BiGel formation: we have recovered the (Furukawa) scaling

that characterizes the spinodal decomposition for systems that phase separate in bicontinuous

structures. This is another evidence of the common, generalized framework of spinodal

decomposition that we proposed for the description of gelation. Nonetheless, the comparison

with the simple one-component gel has thus revealed substantial differences due to the

demixing. But the structures also present striking similarities on the large length-scales. We

quantified such similarities, as we have found that the 1CM gel and the sub-gels of a BiGel

share the same porosity (this result also applies in the SW+HS case). This evaluation has been

conducted by means of a novel analysis technique, where the reconstruction of the surface

embedding the gel structures allows the calculation of their topological properties. The results

point out that elongated and thinner branches form the sub-gels of a BiGel, if compared with

those of a gel, but that porosity does not changes in the two cases, thus justifying their global

similarity. A proof of concept for the gelation driven by demixing has also been provided

experimentally. Polystyrene colloids has been coated with specific DNA strands to acquire the

desired selective attraction and also to mimic the main SW model features. The test on a 2CM

of such DNA-coated colloids has provided the tangible evidence of the BiGel formation.

FINAL REMARKS AND PERSPECTIVES. The augmented number of parameters, due to the intro-

duction of distinguishable species, increases the possibility of tuning the gelation process,

as well as the resulting structures. We discussed in particular the properties of 2-component

mixtures. But mixtures with n > 2 components can be made, that in general give n × (n −1)/2

mutual interactions and as many parameters, in addiction to the temperature T and the

density φ. In Eq. 3.6 we defined the inter-particle interactions Ui j with relative well depths εi j

dependent on the species, and we treated the particular case of i , j ≤ n = 2 species:

I2 =
(
ε11 ε12

ε21 ε22

)
=

(
1 0

0 1

)
. (5.3)

This is a 2×2, diagonal interaction matrix. Its n ×n version can be envisaged,

In =

 ε11 . . . ε1n

. . . . . .

εn1 . . . εnn

 , (5.4)
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Figure 5.7: Adapted from [Glotzer and Solomon (2007)]. The nowadays available techniques
offer the possibility of synthesizing a reach collection of anisotropic particles. Here we repro-
duce some representative examples of such building blocks (for the complete list of references
to these pictures see [Glotzer and Solomon (2007)]). They are classified in rows by anisotropy
type and increase in size from left to right according to the approximate scale at the bottom.
From top to bottom, we show branched particles, colloids, faceted particles, rods and ellip-
soids, and patterned particles. Note how in this classification, even if the single colloids have
simple spherical shapes, small aggregates of them may exhibit anisotropic features (from left
to right: polydisperse DNA-linked gold nanocrystals, silica dumbbells, asymmetric dimers,
and fused clusters).

that would provide a generalized approach to the choice of parameters, in general, and to the

competition between condensation and demixing, in particular.

A whole new family of materials may be created, where selectively interacting particles form
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structures with controlled topology, solely relying on the relative presence of the simple

constituent particles. Other than this, supplementary parameters could still be introduced

(see example of anisotropic particles in Fig. 5.7).

In this thesis we focused on spherical particles of equal sizes and with isotropic potentials,

but other shapes, as well as size polydispersity or directional potentials are viable routes for

obtaining more sophisticated ways of controlling the aggregation. One of the main points

is that complexity emerges, even if the constituents particles are the same simple particles

that define simple liquids (recalling Chapter 1). This is due to the selective interactions, that

also define the species. The amorphous structures, formed under the demixing mechanism,

may also give rise to new properties. Just to mention a few, as the sub-gel topology of a BiGel

results the same of a normal colloidal gel, one can think of using a 2CM where one of the

two species has electrical conductive properties, so to have a material with a low content

in metal depending on the single gel topology, but the mechanical properties of a denser

inter-percolating BiGel. Other applications can use the different aggregation time-scales of

the two species in the case of an asymmetric mixture: the slowly formed, isolated clusters

are likely to present a compact crystalline structure and, thus, an gel structure with trapped

colloidal crystals could be obtained. Apart from the practical use one can think of, the essence

of gelation mechanism has been touched by this thesis, aiming to enlarge its comprehension.

The universal mechanism of arrested phase separation have been explored when driven by

fluctuations in different macroscopic parameters. This study can establish the basis for further

specific studies and, together with the availability of new analysis tools, for new applications

and technologies in soft matter.
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A Appendix: Conductivity enhancement
from colloidal gelation.

ENHANCING CONDUCTIVITY. One important class of materials is that of nanocomposites,

which consist in a large number of nanometric particles, like nanotubes or graphene sheets

(the filler), dispersed in a more or less ordered fashion in some sort of matrix, most commonly

constituted by a polymer. The reasons behind these materials (like concrete, ceramic-ceramic

composites for planes, or car parts made up of carbon fiber-epoxy) may be the achievement

of improved mechanical properties or the achievement of improved electrical properties with

respect to the insulating matrix.

We present a model of conductivity where the filler particles form a network of globally con-

nected objects via tunneling. Such a model does not need any abrupt cutoff of the tunneling

to induce the insulator-conductor transition and, importantly, we show how the conductivity

is enhanced when the particles form gel-like structures. We introduce an approximation route

and explicit formulas based on the critical path method, which allow a quick and precise

estimation of the overall system conductivity.

Percolation formulations generally require a sharp cutoff of the connectivity between the

particles of the system in order to be applicable1. Yet, there is general agreement that, at least

near the transition region, the main conduction mechanism between the conductive particles

of the composite is quantum mechanical electron tunneling, and tunneling implies no abrupt

interruption of the connectivity.

This conflicts with a percolation description. Such a formulation may cease to be valid espe-

cially for macroscopic filler composites2. Good conductivity at very low concentrations is the

rationale behind basically all the works dealing with carbon nanotubes and carbon (or metal)

nanofibers.

1The mainstream theory used to account for conductivity in function of the density φ of the fillers is percolation
theory [Kirkpatrick (1973); Stauffer and Aharony (1994)] and identifies the insulator-to-conductor transition with
the formation of a network of electrically connected conductive particles, which extends through the material.

2For conductive plastics, the most extensively used additives are carbonaceous fillers, especially carbon black
(CB). The degree of structure of the CB has profound consequences on the electrical properties of the composite.
High-structured carbon blacks (HSCB) offer good conductivities at lowφ compared to less structured ones [Donnet
(1993)]. The low-structured CBs (LSCB) are basically loose (generally spherical) CB particles. LSCBs have also
larger sizes, in the order of hundreds of nanometers.
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TUNNELING AND COLLOIDAL MODEL. The present work has been done in collaboration with

Biagio Nigro and Claudio Grimaldi (LPM, EPFL). Here we use the gelation of model colloidal

particles to show that, in spite of a potentially little presence of metal (carried by the colloids),

and even considering a simple spherical shape for the fillers, once in gel structures they can

provide an optimal strategy for reducing the average distance among particles and obtaining

good conductivities. Moreover, gels offer a rheological behavior that may introduce high

electrical conductivity in the soft-matter domain.

We use MD computer simulations to study how the tunneling conductivityσ in the arrested gel

phase depends on φ. We will show that it remains relatively high even for packing fractions3

as low as 3%.

Our simulations involve conducting colloids modeled as in Par. 3.1.1: the system mimics N

spherical particles dispersed in an continuous insulating medium. The occupied volume

fraction is φ=πρD3/6 (where D is the sphere diameter, ρ = N /L3 is the number density and

L is the box size). We assume that the conductance between any two particles i and j is

dominated by electron tunneling processes, with conductance g (δi j ), defined by:

g (δi j ) = g0 exp

(
−2δi j

ξ

)
(A.1)

where δi j ≡ ri j −D is the closest distance between particle surfaces, ri j is the center-to-center

distance between particles, ξ is the tunneling decay length, and g0 is a prefactor that we

define as our unit of conductance; the conductance between two touching colloids is therefore

defined to be g (0) ≡ 1. ξ depends on the potential barrier separating conducting and insulating

phases, and typically ranges from a fraction of a nanometer to a few nanometers [Nabok

et al. (2004)]. Consequently, ξ/D . 0.1 for particles larger than a few nanometers, for which,

consistently with Eq. A.1, charging and Coulomb interactions effects on electron transfer can

be safely neglected at room temperature.

As explained in Par. 3.1.1, for colloidal systems with short-ranged attractions, λ/D . 0.05,

thermodynamic properties at a given φ depend not on the specific shape of the potential u(r ),

but only on its integral, expressed as a reduced second virial coefficient B∗
2 = (3/D3)

∫
dr r 2[1−

e−u(r )/kB T ], where T is the temperature [Noro and Frenkel (2000); Foffi and Sciortino (2006);

Malijevsky et al. (2006); Lu et al. (2008)]. In particular, short-ranged attractive colloidal spheres

are in an equilibrium fluid phase for B∗
2 &B∗c

2 , where B∗c
2 '−1.2 [Miller and Frenkel (2003);

Largo et al. (2008)] is the critical scaled second virial coefficient. We use the short-range

square-well (SW) model in Eq. 2.6 for the colloidal interaction,

u(δi j ) =


∞ δi j ≤ 0

−u0 0 < δi j ≤λD

0 δi j >λD

(A.2)

3In the low-φ regime, we also find that σ is only moderately affected by varying ξ/D by as much as one order of
magnitude, where ξ is the characteristic tunneling decay length.
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Figure A.1: Schematic representation of the SW model potential (red line) and of the tunneling
conductance (blue line). The variable δ measures the closest distance between surfaces of
colloids. Indicated are the well depth u0 and the range λD of the potential, as well as the
contact value g0 of the conductance.

where λ¿ 1 and u0 > 0 are, respectively, the dimensionless potential range and depth. As

in Eq. A.1, δi j denotes the closest distance between surfaces of particle pairs. The scaled

virial coefficient of the potential in Eq. A.2 can be expressed as B∗
2 = 1−1/4τ, where τ−1 =

4[(1+λ)3−1][exp(u0/T )−1] is the Baxter stickiness parameter [Baxter (1968)]. Consequently, a

homogeneous SW fluid exists when τ& τc , where τc ∼ 0.11 is the critical value of the stickiness

parameter [Miller and Frenkel (2003); Largo et al. (2008)].

The inter-particle attraction enhances conductivity by drawing the particles closer together;

in particular, the population of particles with separations lower than λD increases, thereby

promoting short-length tunneling processes, which result in larger g (δi j ). Thus, SW fluids of

conducting particles can display enhanced conductivity σ relative to the hard-sphere case

as τ is decreased [Nigro et al. (2012)]. Specifically, in attractive colloidal fluids where λ→ 0,

τ= 0.2, and ξ/D = 0.01, σ is relatively large and depends only weakly on φ for φ& 0.2 [Nigro

et al. (2012)]. Short-ranged attractive colloids constitute homogeneous fluids for B∗
2 above

the value B∗c
2 (i.e., τ> τc ); below that, a phase separation region exists where they can arrest

and form spanning, arrested structures that may sustain shear stresses even at low φ [Lu

et al. (2008); Foffi et al. (2005b,a); Del Gado (2010)]. In these configurations larger tunneling

conductivities might be expected, compared to the fluid phase at a given φ, because the mean

particle separation falls below λD .

FAVORABLE STRUCTURES FROM GELATION. To explore this possibility, we generate colloidal

gel structures from molecular dynamics (MD) simulations of N = 104 identical colloids of mass

m, square well depth u0 = 1, and λ= 0.03; a critical temperature Tc ' 0.3 corresponds to these

parameters. We code Newtonian dynamics via a standard event-driven algorithm [Rapaport

(1997); Foffi et al. (2005a)]. At t = 0 we select five different packing fractions, ranging from

φ' 0.03 to φ' 0.3, and equilibrate initial configurations at T = 100 À Tc , where these systems
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Appendix A. Appendix: Conductivity enhancement from colloidal gelation.

behave as hard-sphere (HS) fluids: B∗
2 ∼ 1. We define two particles as bonded when δi j ≤λD ,

so that the average number of bonds per particle is nb = −2U /(Nu0), where U /N is the

potential energy per particle calculated from 30 independent realizations. For t > 0, we

quench the system to T = 0.05 ¿ Tc with the same protocol described in Par. 3.1.1.

To characterize the conductive properties of these structures, we analyze the time evolution

of the percolation critical distance δc , defined as the shortest δi j such that the subnetwork

defined by all bonds satisfying δi j ≤ δc forms a percolating cluster [Nigro et al. (2012)]. We

show below that δc , which characterizes the global connectivity of the system, provides a

useful approximation for the tunneling conductivity.

At short times, particles are dispersed nearly homogeneously and δi j (and therefore δc )

decreases as φ increases. See Fig. A.2(a). However, when the system is arrested at long times,

the vast majority particles forming the spanning gel structure have separations lower than λD ,

and δc becomes small (about 0.01D) and independent of φ. Nevertheless, though the final

value of δc is the same, there are significant φ-dependent differences in reaching this state.

For the three largest concentrations, δc monotonically approaches the arrested state value;

instead, forφ= 0.0613 and 0.03125, δc exhibits a pronounced maximum at intermediate times,

followed by a sudden drop towards the arrested state, which may reflect the formation and

subsequent disappearance of a fluid of particle clusters [Lu et al. (2006)]. In this intermediate

regime, where the particles are largely aggregated into nearly close-packed clusters, the mean

distance between clusters is larger at lower φ. As shown in Fig. A.2(a), percolation occurs only

for higher δc .

Figure A.2: (a) Evolution of the critical connectedness distance δc for gels simulated at different
packing fractions. (b) Time dependence (in seconds) of the critical distance extracted from the
measured spatial positions of PMMA particles in a polymer-colloid system [Lu et al. (2008)].
For times larger than about 104 s the system is in an arrested gel state.
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FROM MODEL TO LAB. To assess the applicability of these simulation predictions to physical

systems, we perform the same analysis on gels formed in an experimental attractive colloid

system [Lu et al. (2008)]. We use PHSA-coated PMMA spheres in CXB/DHN [Lu et al. (2006)],

with D ' 1120 nm and φ= 0.045, and introduce a non-adsorbing linear polymer, polystyrene

with molecular weight MW = 695,000, that forms random coils in solution with radius Rp =
33 nm, so that λ = 0.06 [Lu et al. (2008)]. We select a sample with polymer concentration

cp=3.31 mg/ml, which phase separates and arrests to form a gel [Lu et al. (2008)]. Using

confocal microscopy [Lu et al. (2007)], we locate each particle individually [Lu et al. (2006,

2007, 2008)], thereby allowing the same analysis as performed on the MD data. Strikingly,

the evolution of experimental δc is in qualitative agreement with the MD simulations at

similar φ, as shown in Fig 2(b). Although the initial low-time plateau cannot be sampled

practically in these experiments, a maximum of δc is discernible at t ≈ 300 s, followed by a

rapid drop of δc at longer times. For t & 104 s, the system reaches the arrested gel state, and

δc /D ≈ 0.1, independent of time. This transition associated with the formation of an arrested

gel, consistent with behavior observed in simulation, is illustrated by the renderings of the

measured particle positions in Fig. A.2(b).

The qualitative agreement between simulation and experimental data demonstrates the

validity of our theoretical approach, which we extend now to predictions of the tunneling

conductivity. Starting with the critical path approximation (CPA), we estimate the conductivity

by means of the CPA formula:

σcpa 'σ0 exp

(
−2δc

ξ

)
, (A.3)

where σ0 is a constant prefactor [Ambegaokar et al. (1971); Pollak (1972)]. When the δi j

distances are widely distributed on a length scale of the order of ξ, σcpa provides a robust

estimate of system conductivity for dispersions of tunneling connected particles [Nigro et al.

(2012); Ambrosetti et al. (2010)]. We combine the time evolution predictions for δc , as shown in

Fig. A.2(a), with Eq. A.3, to yield an estimate for the time evolution of the system conductivity.

We observe that a broad distribution of φ-dependent σcpa conductivities, spanning about ten

orders of magnitude, drastically narrows in the arrested gel state, where σcpa remains at a

constant high value4 for allφ, as shown for ξ= 0.1D with solid lines in Fig. A.3. Interestingly, for

the two lowestφ values, the maximum of δc due to the transitory fluid of clusters is reflected by

a huge minimum of σCPA; fluids of clusters of conducting particles appear to be substantially

worse conductors than a homogeneous fluid of the same composition.

To test the accuracy of the results obtained using the CPA approximation, shown in Fig. A.3, we

solve numerically the tunneling resistor network equations. For each simulation-generated

configuration, we assign the inter-particle conductances of Eq. A.1 to each pair of particles. For

all realizations, we calculate network conductance by combining numerical decimation with a

4In plotting the CPA conductivity results of Fig. A.3 we have fixed the prefactor appearing in Eq. A.3 to σ0 = 0.1,
which is the value found for hard-spheres fluids [Nigro et al. (2012)].
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Appendix A. Appendix: Conductivity enhancement from colloidal gelation.

Figure A.3: Time evolution of the conductivity σ for ξ/D = 0.1 during the formation of the
colloidal gel. The symbols refer to numerical solution of the tunneling resistor equations. The
solid lines represent the CPA conductivity σCPA obtained from Eq. A.3 with σ0 = 0.1.

preconditioned conjugate gradient method and extractσ from the resulting distribution [Nigro

et al. (2012)]. The σ values obtained through this network approach are in quantitative

agreement with those calculated in the CPA approximation, as shown by the agreement

between open symbols and solid lines in Fig. A.3. The slight discrepancy in φ-dispersion of

arrested states likely arises from the short- and moderately-dispersed distances between the

neighboring particles of the spanning gel structure, which make Eq. A.1 less accurate.

CONSTRAINTS AND POSSIBILITIES. The significantly higher σ in the long-time arrested gel

state relative to the initial fluid-like state, most pronounced for low φ and highlighted in

Fig. A.3, suggests the general possibility that arrested gel structures could have higher σ rela-

tive to other structures formed from tunneling particles in colloidal suspensions at the same

φ. To test this possibility, we generated equilibrium fluids at various φ of both HS and SW par-

ticles, with τ= 0.2 > τc ; we determine σ for ξ/D = 0.01, as previously described, and compare

with the long-time σ of the arrested gel state as a function of φ. In all cases, at any given φ, the

gel state has a higher σ than that of the SW fluid, which in turn is always higher than that of

the hard-sphere fluid, as shown with circles, diamonds and squares, respectively, in Fig. A.4.

The σ values for gel and SW fluid converge for high φÀ 0.3; by contrast, for φ. 0.2, σ of the

arrested state is many orders of magnitude higher than that of either fluid. Interestingly, while

σ depends heavily on φ in both fluid cases, it is relatively constant in the gel case, even for

φ' 0.03, as shown in Fig. A.4.

Finally, to explore how the conductivity varies with tunneling decay length, we calculate σ of

arrested gels with different φ and ξ/D . We observe that σ only weakly depends on ξ/D in the

gel state, due to short inter-particle distances within the gel. Indeed, the relevant length-scale

is δc /D; in the arrested state, δc ' 0.01D, and tunneling is generally unaffected so long as

2δc /ξ. 1, i.e., as long as ξ/D & 0.02. At much lower values, ξ/D suppresses inter-particle

tunneling, so that σ is small even in the arrested gel state.

Our predictions from simulation may have significant effects in relevant, real-world colloidal
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Figure A.4: Conductivity σ as a function of the packing fraction φ for the arrested gel state
(filled circles), equilibrium SW fluids (filled diamonds), and equilibrium HS fluids (squares).
For all cases ξ/D = 0.01. The conductivities for SW and HS fluids have been obtained from
Monte-Carlo simulations of systems with N = 2000 particles. Inset: φ-dependence of σ for the
arrested gel state calculated for different values of ξ/D .

systems. In general, for attractive systems, polymers mediating the depletion interaction

have radii larger than about 1-5 nm [Ramakrishnan et al. (2002)]. To have attraction range

values on the order of a few percent of the particle diameter, the conducting particles should

have sizes not smaller than about 50-100 nm. Therefore, for typical tunneling decay lengths

of a few nm, conductivities like those in Fig. A.4 may yet be achievable in the lab, at least

in principle. The conducting particles remain a major challenge, and suspensions of larger

metallic particles show significant sedimentation, that may compromise the formation of

gels. Potential solutions around this problem include using metal-coated PMMA particles,

low-structured carbon black particles, conducting polymer particles, or synthesizing gels in a

micro-gravity environment, such as that provided by the International Space Station. These

systems contrast previous work where conducting particles were embedded in pre-existing

gel networks [Fizazi et al. (1990)], by contrast, in the present system, the conducting particles

establish simultaneously both the gel network and the conducting path.

Our results demonstrate that conduction via tunneling in gels of conducting colloidal particles

can occur with realistic assumptions for the microscopic parameters, opening up the possi-

bility of creating new, lightweight conductive materials with novel mechanical and electrical

properties.

111





B Appendix: Imaging with Confocal
Microscopy.

Scattering techniques average over a large ensemble, so measurements can be fast and sta-

tistical uncertainties small. Light scattering provides then quantitative characterization of

the average structure and dynamics of suspended particles. Structural and dynamic hetero-

geneities typically cannot be detected and spatially mapped with light scattering, like in the

case of gels.

To this aim, confocal microscopy is instead used in the study of colloidal gels, glasses, and

binary fluids [Dinsmore et al. (2001); Prasad et al. (2007)]. The measurements allow to track

three-dimensional positions of colloidal particles with a precision . 10nm (which is in general

a small fraction of each particle’s size) and with a time resolution sufficient for recording the

thermal motions of several thousand particles at once. The imaging principles are schemati-

cally depicted in Fig. B.1.

Figure B.1: Schematic diagram of a conventional confocal microscope. The key to the tech-
nique is the use of a pinhole aperture that is confocal with the image point. The screen with the
pinhole lies in the back focal plane of the sample with respect to the objective, thus rejecting
most out-of-focus light. The aperture blocks light from other points in the sample and permits
the imaging of a unique, well-defined spot deep inside the sample. Rotating mirrors are often
used to scan the sample, pixel by pixel, and such a rotation (together with the images recording
rapidity) defines the rate-limiting step for obtaining an image.
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Appendix B. Appendix: Imaging with Confocal Microscopy.

A confocal microscope uses point illumination and a pinhole in an optically conjugate plane

in front of the detector to eliminate out-of-focus signal - the name “confocal” stems from this

configuration. Once the solvent matches the refractive index of the particles, it is possible

to look several tens of colloidal radii into the sample, without noticeable loss of resolution.

As only light produced by fluorescence very close to the focal plane can be detected, the

image’s optical resolution is limited principally by movement of the particles. These types of

microscopes are particularly good at 3D imaging and surface profiling of samples1. In Fig. B.2,

as an example, a single confocal image and a complete 3D rendering are shown, representing

the reconstruction of positions of PMMA spherical particles which form a gel under depletion

attraction [Lu et al. (2008)].

Figure B.2: 3D reconstruction and confocal image of a gel of spherical PMMA particles,
from [Lu et al. (2008)].

The structural information captured with this technique allows to characterize both the

structure and the dynamics of these materials in quantitatively new ways. For example, one

can quantify the topology of chains and clusters of particles as well as by measuring the spatial

correlations between particles with high mobilities. This experimental technique and related

analysis are often used as the most valid complement of light scattering studies.

The use of a confocal microscope in colloid physics, however, requires specialized samples and,

in particular, the development of powerful image-analysis algorithms. These measurements

provide qualitatively new understanding of colloidal aggregation and phase transitions. For

gels and dense binary fluids the confocal microscope permits unique insight into the structural

heterogeneities of the material.

Gels formed by depletion or temperature driven destabilization have weaker attractive forces,

1This technique has been applied, for example, to the study of colloidal glasses structures [van Blaaderen and
Wiltzius (1995); Weeks et al. (2000)].
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and thus a stable gel phase forms at higher volume fractions. The topology of these gels at

short length scales below a cluster size becomes important and confocal microscopy provides

valuable information on these dense systems.
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C Appendix: Growth of random configu-
rations of hard spheres.

We developed a novel algorithm with the aim of creating random configurations of hard

spheres (HS) enclosed in a box of size L. The algorithm works in all the Euclidean dimensions

d , so that V = Ld is the box’s volume. It generates configurations of N HS with diameter D

starting from N points randomly placed into the box. The way these points are inflated is

described in what follows. The growth method uses an approach different by respect to the

usual “cherrypit” method [Lubachevsky and Stillinger (1990); Lubachevsky et al. (1991); Kansal

et al. (2002)]. We do not use the random sequential addition (RSA) algorithm, often applied in

the context of jamming hard spheres [Talbot et al. (1991)]

In the following we introduce the basics steps of the developed algorithm. As a first step,

the relative distances between all the point are calculated. Given a distance ri j among the

centers of the particles i and j , the diameter Di = 2×min(ri j ) will be assigned to the particle

i . The diameters are given up to the desired value D : the packing fraction at each step n of the

algorithm is then φn <φ, where

φ=Cd Dd (C.1)

is the target density, and where

Cd = 2πd/2

Γ(d/2)d
=

{
1

2d
πd/2

(d/2)! for evend
1

2(d−1)/2
π(d−1)/2

d !! for oddd
.

is the curvature factor. For d = 3, Eq. C.1 gives the usual φ = NπD3/6. A neighbor list is

implemented in order to keep a low computational cost of the entire algorithm. For each

particle i , the distances~ri j are computed with the other particles j . The molecular dynamics

is such that, at each step n, a displacement ∆~ri is computed for all the i ≤ N particles as

∆~ri =
neigh.∑

j

An

2

[
fnP (ri j )

~ri j

ri j
+ (1− fn)~ri j

]
(C.2)
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where P (ri j ) = D exp[− fn(ri j /D)d ] represents a pair-wise function calculated into a cutoff

ri j < D , where fn =φn−1/φ is the fraction of density obtained at the precedent step, and where

An = An−1 exp(−dφn)[1+ fn − fn−1], with A0 = 1, is an adaptive term depending on the story1.

The simulation depends also on different circumstances. In fact, it could happen that a local

jamming among particles not yet arrived to size D may occur: in this case, a contraction of

all the particles is performed such that the density will come back to the φn−1 values and, in

order to unjam, little random displacements are made. After each step, when all the particles

that had to move have been displaced, the new minimal distances are calculated, and the

new density φn as well. The growth procedure stops when all the particles reach the desired

diameter D .

The proposed algorithm can tackle packings of high densities without any important increase

of the computation time: in its PYTHON implementation, it takes ∼ 3 walltime minutes for

packing N = 103 spheres to φ= 0.6, and it scales linearly with N . In order to analyze whether

a jamming is going to occur, the (normalized) polydispersity pn and the compressibility Zn

histories are tracked:

pn =
〈
√

〈R2
i ,n)〉−R2

i ,n〉
R

(C.3)

where the average is made on all the i particles of radius Ri ,n < R , while the Carnahan-Starling

equation for compressibility in d = 3, with the Kolafa’s correction [Carnahan and Starling

(1969); Boublik (1970)], is

Zn = 1+φn +φ2
n − 2

3 (φ3
n +φ4

n)

(1−φn)3 . (C.4)

By simply checking whether these two quantities are lowering along the last 2 steps, is a

sufficient indication for deciding to contraction plus shaking procedure. The polydispersity

and compressibility evolutions are shown, for few examples, in Fig. C.1. Note that a little

number of steps is needed to attain the final density, passing from a order of 10s to a order of

100s (the plots in figure refer to N = 3×103) for densities ranging from φ= 0.15 to φ= 0.6.

The ad-hoc molecular dynamics used for our packings will be shown to reach configurations

close to the equilibrium ones, i.e. configurations attained by HS free to move and to interact

following the simple Newtonian laws [Kirkwood (1935); Hansen and Verlet (1969); Cheng et al.

(2002)]. Even though, basic differences emerge due to the ad-hoc dynamics.

There are various theories which predict the low and medium volume fraction structure of HS

1P (ri j ) could be considered as repulsive, adaptive potential, but the lack of physical dynamics makes this
parallel incorrect.
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Figure C.1: The compressibility Zn (Eq. C.4, dashed lines), the polydispersity pn (Eq. C.3, blue
lines) and the density φn are shown as a function of algorithm steps. These curves are not
averaged over many runs, but single runs are considered for various final packing fractions
phi .

fluids2. None of these, however, is expected to work reliably3 at high φ.

A comparison for the final packing is possible4, relying on statistical physics. In Fig. C.2

there we show the comparison of the pair distribution functions g (r ) for final configurations

(obtained from single runs of the algorithm) and the relative Verlet-Weis predictions at various

densities [Smith et al. (2008)]. Note how the lack an equilibrium dynamics makes the resulting

configurations strongly depend on the random positioning of the initial growing points: the

peak relative to the initial random placements are mitigated for higher densities, where an

increase in overlaps bring to an increased number of displacements and, as a result, a loss of

2The phenomenological Carnahan-Starling approach works remarkably well for low to medium volume frac-
tions. The Ornstein-Zernike relation works for the liquid branch of the HS equation of state [Hansen and McDonald
(1986)]. For liquid states, the Percus-Yevick closure is often used, especially Verlet-Weis correction [Hansen and
McDonald (1986); Zaccone and Del Gado (2010)].

3One recent study in the spirit of these approaches has predicted the number of contacting neighbors as a
function of volume fraction [Zaccone and Del Gado (2010)].

4The densest packing for d = 3 has been proven to be attained by the FCC lattice with packing fraction
φmax =π/

p
18 ≈ 0.7404 [Hales (1992)]. With the Verlet-Weiss correction to the Percus-Yevick structure factor for

hard spheres, the simplest formulation predicts a glass transition at φg = 0.525 (which is low compared to the
known jamming transition density φ j ≈ 0.64) [Hansen and McDonald (1986); Torquato et al. (2000); Zaccone and
Del Gado (2010)].
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memory of the initial configuration.

Figure C.2: Pair distribution functions g (r ) relative to final configurations, at different densities,
from the same, single runs of Fig. C.1. The blue lines indicate the actual data obtained from
the proposed algorithm, while the black lines indicate the Veret-Weis approximations for a
hard-sphere liquid at equilibrium. For low packing fractions, the initial random placement
of growing points strongly influences the final result. For higher densities, instead, more
steps and consequently more movements for the spheres (as they are inflated) makes the first
configuration be completely changed: the analytical equilibrium approximation works better.
Close and above the ideal jamming density (φg = 0.525) the algorithm shows to form more
locally compact (crystal-like) arrangements, reflected in the pronounced peaks of the g (r ).
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D Appendix: Physical fractals of
spheres.

A modified version of the algorithm for the creation of packings (introduced in Appendix C) is

here presented for spheres (or circles, depending on the dimension) with high polydispersity.

The present work, conduced during the thesis, has started as a method aimed to account for

inserting and filling the void space of amorphous structures, in order to characterize their

porosity. It turned out that the pursuit of perfect space filling enters the broad span of theories

connected with self-similarity and, hence, fractals. With the help of the developed algorithm,

later introduced in its new version, we have been able to analytically introduce corrections,

due to the finite size effect, to the usual power-law distribution for fractal objects. Such cor-

rections result in a generalization of the scale-free distribution and allow a quantitative study

for finite ranges of sizes s ∈ [smin, smax], the physical fractals, and not only for the asymptotic

limit smin/smax → 0 (in what follows, s is used instead of D for the diameters). Moreover, the

new, efficient space-filling algorithm has been developed which generates osculatory random

Apollonian packings (AP) of spheres with a finite range of diameters: not only the known

AP’s fractal dimensions are recovered but an excellent agreement with the generalized law is

proved to be valid within the overall ranges of sizes.

THE PURSUIT OF PERFECT PACKING. The problem of finding the circle inscribed into the in-

terstices between mutually tangential circles and tangent to them (a so-called osculatory

packing), historically attributed to Apollonius of Perga, was solved by Descartes and inde-

pendently rediscovered various times [Soddy (1936)]. Leibniz pointed out the possibility of

obtaining a peculiar kind of packing by iterating the procedure of inserting such kissing circles,

whose size decreases as the inserting procedure goes on [Hirano (2010)]. By starting from an

initial configuration and by recursively filling the space with the osculatory packing down to

arbitrarily small diameters, the Apollonian packing (AP) is constructed. In Fig. D.1 two exam-

ples of AP are presented for Euclidean dimension d = 2. The structure of an AP is self-similar

because it is repeated on different scales of observation. In general, the self-similarity can be

exact or statistical and leads to a fractal. The main quantity characterizing a fractal structure

is the fractal dimension, d f , which is a (Lipschitz) invariant of the set descending from the
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Hausdorff-Besicovitch (HB) measure definition and possibly differs from the Euclidean di-

mension d [Mandelbrot (1983); Fröhlich and Ruelle (1983)].

The osculatory packing construction has been extended to d > 2 and the study of systems

of polydisperse spheres is made in the attempt of understanding how their fractality affects

some macroscopic observables and, by reverse, how their formation mechanism influences

their fractality. In particular, in d = 3, the AP has been proposed as a model for dense granular

systems [Anishchik and Medvedev (1995)]. It has been also used in describing stress yield-

ing properties of materials, for example in concretes [Aste and Weaire (2008)], as well as in

the study of seismic gaps or geological faults [Baram et al. (2004)]. Moreover the scale-free

properties of the AP are of particular interest in the context of complex networks [Andrade

et al. (2005); Doye and Massen (2005)]. Recently AP of non-spherical objects have also been

studied [Dodds and Weitz (2003); Delaney et al. (2008)].

While the application and the characterization of the AP has been widely studied, there is no

exact theoretical prediction for the value of d f in 2 and 3 dimensions and various techniques

have been developed to build AP and numerically evaluate their d f . For example, it has been

calculated for the plane tiled with circles obtained by the circular inversion method [Manna

and Herrmann (1991)]. In d = 3, a generalized inversion algorithm has been adopted [Borkovec

et al. (1994)].

So far we have discussed the deterministic AP but it has been proved that its fractal nature

emerges also when a random sequence of space-filling insertions is pursued. In this gen-

eralized model [Manna and Herrmann (1991); Manna (1992)], called random Apollonian

packing (RAP), the circles are inserted one at time with center positions randomly chosen;

after the insertion, the diameter is simply inflated until it touches a previously inserted circle.

Extended models make use of simultaneously inflating circles. All these models, deterministic

or not, are shown to have universal features belonging to a broader class of models called

“packing-limited growth” [Dodds and Weitz (2002)]. The RAP relies on the fact that all the

osculatory packings in a certain dimensionality must have the same fractal dimension [Boyd

(1973)]. Several routes to RAP has been devised; we suggest Refs. [Amirjanov and Sobolev

(2006); Dodds and Weitz (2002); Delaney et al. (2008)] as a short review.

Figure D.1: Apollonian packings for d = 2: a) classical example from Ref. [Kasner and Supnick
(1943)]; b) an example of random packing from the algorithm (smax/L = 1) as explained later
in the text.
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APOLLONIAN PACKINGS AND PHYSICAL FRACTALS. Both deterministic and random procedures,

when studied numerically, are affected by finite-size effects. In the context of AP (as in its

random counterpart), starting from a given configuration of equal spheres of diameter smax,

the impossibility of having packings with arbitrarily small sizes means that the asymptotic

limit

smin/smax → 0 (D.1)

(where d f is defined) will never be reached.

It would be interesting to systematically characterize the deviation from such a limit. We

propose a simple solution to this problem and we find that, taking finite size effects into

account, the fractal dimension remains well defined also for finite ranges s ∈ [smin, smax]. We

introduce the basic ideas and observables and we provide an analytic solution for the problem

of evaluating d f for a finite size range. Afterwards, we will introduce a new algorithm to

construct osculatory random AP in arbitrary dimension with the possibility of tuning the size

ratio defined in eq. (D.1). After having verified its correct asymptotic behavior, we shall finally

use this novel algorithm to test the proposed finite size correction.

In what follows, we refer to the hard spheres as the set of non-overlapping geometrical objects

(also for dimensions different from d = 3) and the size s then refers to the diameter. Given

a packing of equal hard spheres which occupy a volume fraction φ, the porosity ε ≡ 1−φ
(in d = 2 and in d = 3 there is a maximum that corresponds to the hexagonal and to the fcc

arrangement, respectively [Hales (1992)]), can be decreased by filling the free interstices with

smaller spheres; by iterating the insertion procedure of smaller spheres, the final packing

results to be a fractal as smin goes to 0, which corresponds to the limiting value φ= 1. At equal

number N of total inserted objects, the Apollonian packing (AP) is known to be the densest

of these packings [Aste and Weaire (2008)]. Despite the universality of d f for all osculatory

packings [Boyd (1973)], i.e. for all configurations in which any interstice is filled with the largest

possible hard sphere, there is not yet an analytical expression of the AP’s fractal dimension.

The fractal dimensions d f = 1.305684 and d f = 2.473946 have been numerically calculated for

the AP in d = 2 and d = 3 respectively [Manna and Herrmann (1991); Borkovec et al. (1994)].

In general the relation d −1 ≤ d f ≤ d is valid, as confirmed by numerical simulations [Kinzel

and Reents (1998)] and the AP scale-free nature is expressed by the size distribution

n(s) ∝ s−(d f +1) , (D.2)

a power-law defined for all the positive diameters s [Manna (1992)].

Fractals are implicitly understood to be scale-free structures and eq. (D.2) is a consequence

of that. However, when a finite range of sizes exists, the fractal is called a physical frac-

tal [Martínez-López et al. (2001a); Lakhtakia (1995)]. In this case, the distribution of s is

limited to an interval [smin, smax], where smin and smax are the smallest and the largest di-

ameters of the packing, respectively. Various practical methods have been introduced to

calculate the fractal dimension: box-counting, for example, is applied in the case of physical

fractals [Martínez-López et al. (2002); Williams (1997)] and to direct measurements of physical
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systems [Valle et al. (2005)].

We use two typical observables, the inverse cumulative distribution (number of spheres with

size greater or equal to smin) and the porosity, which under the asymptotic condition (D.1) are

respectively given [Manna and Herrmann (1991)] by

N (smin) = ∑
si>smin

1 ∝ s
−d f

min , (D.3a)

ε(smin) = 1− ∑
si>smin

sd
i ∝ s

d−d f

min . (D.3b)

These measures can be used to estimate the d f for packings of polydisperse hard spheres:

for different occurrences of smin, the fractal dimension can be evaluated as smaller smin are

considered in the measure of the values (D.3a) and (D.3b) [Aste and Weaire (2008)]. All the

different methods for evaluating the d f of packings rely on the fact that the fractal dimension

definition works only approaching the asymptotic condition (D.1). This means that, for finite

ranges of diameters, relevant deviations exist starting from smin/smax & 1/5, as explicitly high-

lighted in Ref. [Anishchik and Medvedev (1995)].

FINITE SIZE DEVIATION. The main idea is that the geometrical building rule itself, with its

iterativity, defines the fractal-like behavior, while the finite interval of sizes influences only the

quantity of objects used for the building. The self-similarity of a set then implies the existence

of a set of similarities in the generation of the fractal, which is beyond the mere agreement of

the value of the fractal dimension [Martínez-López et al. (2001b)].

This idea can be quantitatively rendered. For a random AP where the osculatory packing

constrain is respected at each insertion (building iterative rule) we expect that the value for

d f will remain the same. Due to the fractal nature of AP and RAP the power-law (D.2) should

hold and we make the ansatz that the finite size correction is completely accounted for the

proportionality constant of the distribution. In the finite case, we rewrite n(s) as n f (s):

n f (s) ≡ f (smin, smax)s−(d f +1) . (D.4)

The recursive fractal construction is accounted by the power-law and we calculate now the

corrections to eqs. (D.3a) and (D.3b) through the use of f (smin, smax).

The fraction of space occupied by Nsmax spheres of maximum size is by definition

φsmax = 1−εsmax = Nsmax

Cd sd
max

V
, (D.5)

where V is the total volume and the curvature factor is

Cd = 2πd/2

Γ(d/2)d
=

{
1

2d
πd/2

(d/2)! for evend
1

2(d−1)/2
π(d−1)/2

d !! for oddd
.

The total number of spheres N and volume fraction φ can be expressed using the 0−th and
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d−th moments of the distribution (D.4) as:

N ≡ Nsmax +
∫ smax

smin

n f (s′)ds′ , (D.6a)

φ≡φsmax + (Cd /V )
∫ smax

smin

n f (s′)sd ds′ . (D.6b)

A natural condition arises assuming that all the space shall be occupied as the filling procedure

continues; this means that, for any positive value of smax, it is

lim
smin→0

φ= 1 . (D.7)

Using eq. (D.4) into eq. (D.6b) with the limit (D.7), we obtain the distribution’s proportionality

constant as

f (smin, smax) = Nsmax

εsmax

φsmax

(d −d f )s
d f
max . (D.8)

It is important to notice that it does not depend on smin. Inserting this result into eqs. (D.6a)

and (D.6b) finally gives:

N

Nsmax

= 1+ (d −d f )

d f

εsmax

φsmax

[(
smin

smax

)−d f

−1

]
, (D.9a)

ε= εsmax

(
smin

smax

)d−d f

. (D.9b)

Note that eqs. (D.3a) and (D.3b) are the particular asymptotic cases of their more general

expressions (D.9a) and (D.9b), as expected. These results remain valid in the limit V →∞.

Despite the simple hypothesis made, now we have an explicit expression for the observables

which allows to evaluate the deviation from the ideal case (D.1).

THE FILLING ALGORITHM. In order to test the previous results, AP have been generated with

the help of a new numerical algorithm (which works in any Euclidean dimension d ≥ 1).

The developed algorithm has the same basic behavior as the random Apollonian packing

(RAP) mechanism, where the filling process starts with an initial population of hard-spheres

of a specified diameter (smax) and proceeds with new spheres added one at a time into the

unoccupied space; randomly fixing the center of any new sphere, its size is determined by

extending the diameter until it touches its closest sphere. But the RAP is not expected to

build osculatory packings at each insertion, as we demand in order to check the theoretical

previsions. In the algorithm we propose, random movements are additionally performed by

the inserted spheres, in order to enhance the filled space accepting only the displacements

that allow its diameter to grow (possibly up to smax).

No distribution of sizes for the spheres to insert is a priori chosen, nor any initial population.

Only the length-scales smin/smax and smax/L are the parameters to be decided, where L defines
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the total volume V ≡ Ld of an initially empty box. Periodic boundary conditions are used so

that possible interactions with walls can be ignored. In deterministic algorithms, the d +1

“appropriate” first neighbours must be identified so that the center’s coordinates of a new

sphere could be calculated (Soddy’s rule); instead this random approach only has the non-

overlapping constraint, meaning that the overall computational complexity is decreased.

A regular squared mesh with lattice constant alattice is defined into V and its nodes are used as

starting centers for the spheres to be inserted. The only requirement on the lattice constant is

to be sufficiently smaller than smin. A fixed lattice constant could be preferred in some cases

(the computational cost depends of course on the implementation); we tested alattice = smin/3

to be a good parameter, but a recursive remeshing has been preferred and used to assure the

requirement to be fulfilled.

As the first sphere is inserted at random on a starting center, it doesn’t encounter any other

spheres and its diameter can be expanded to smax. The starting centers it will cover will then

be erased. One sphere at a time is subsequently inserted, according to the following scheme:

1: it is placed at random on one of the remaining starting centers (nodes);

2: its diameter is increased up to smax or until it touches a previously inserted sphere;

3: a random displacement within a maximum length ∆r ¿ smin (average displacement

∆r /2) is accepted only if this lets the diameter to grow;

4: step 3 is iterated if the newly calculated diameter is s < smax;

5: if smax is reached or if the maximum number of displacement attempts (smax/∆r )2 is

reached, then the procedure stops.

6: once a sphere has been inserted, the starting centers it covers can be erased.

The stopping conditions 5 rely on the possible random walk a sphere would need to explore

a space of size smax. A maximum displacement length ∆r = |∆~r | ¿ smin gives an average

attempted displacement ∆r /2 and the number na of attempted displacements has been

chosen to be the constant

na =
( smax

∆r

)2

corresponding to the number of steps for a random walk to explore a region of diameter smax.

Of course a higher na could result in a higher final packing fraction, but our calculation show

poor improvement coupled with higher computational cost. During the procedure, spheres

with final s < smin are erased. The overall filling procedure ends when no other starting centers

are present. In Fig. D.2 snapshots are shown for different smin/smax in d = 2 and d = 3. For

our simulations we used the value L = 1, the others lengths being consequently defined with

respect to it. Once a value is chosen for smax/L, the ratio smin/smax is investigated.
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Figure D.2: Snapshots of packings from independent algorithm runs: for d = 2 (top) with
smin/smax = 1/5, 1/20, 1/50 for A, B and C respectively (and the same smax/L = 1/4); for
d = 3 (bottom) with smin/smax = 4/10, 2/10, 1/10 for D, E and F respectively (and the same
smax/L = 1/3).

EFFICIENT PACKING FOR RAPID FRACTAL CONVERGENCE. For the different values of smax we

have tested, we observed the same behaviour for decreasing smin; in the next paragraph we

report on the results for 370 runs performed with smax = 1/5 in d = 2 and for 170 runs with

smax = 1/3 in d = 3. These results are shown in Fig. D.3, where each symbol represents the

value averaged over 10 independent runs.

For any configuration of Nsmax non-overlapping spheres in the total volume V , there always

exist some values d f < d for which the condition (D.7) is satisfied. This does not imply the

existence of a method capable of filling volume accordingly to (D.9a) and (D.9b), but simply

implies that if such an “iterative method” exists, then it allows the space to be occupied with a

certain d f . If this method consists in recursively filling the voids, each time maximizing the

occupied space, then it should always present the same fractality as an AP. We expect that with

such a kind of filling, including the algorithm presented here, not only the correct asymptotic

power-law behaviour has to be obtained, but also that the more stringent expressions (D.9a)

and (D.9b) are fulfilled in the overall range of sizes. While power-laws (D.3a) and (D.3b) are

known to work for smin/smax smaller than 1/5, eqs. (D.9a) and (D.9b) are in fact expected to

work in the whole interval smin/smax ∈ [0,1].

We begin by testing the asymptotic behaviour of our osculatory RAP on the power law pre-

sented in eq. (D.2) with the values of d f for d = 2 and d = 3 obtained from previous calculations

on AP [Manna and Herrmann (1991); Borkovec et al. (1994)]. As can be argued from Fig. D.3,
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in both cases good agreement exists for low enough values of smin/smax, proving the correct

AP asymptotic behaviour for the data obtained by the algorithm.

The numerical results deviate from the fractal asymptotic regime above certain size ratios,

where we expect instead that our equations should still hold. To this aim we fit the data points

for d = 2 and d = 3 with eqs. (D.9a) and (D.9b) in the full range of sizes. It is important to

stress that the value Nsmax , which enters the definition of N /Nsmax and εsmax = 1−φsmax , is not a

fitting parameter. In fact it is known as the average number of spheres of diameter smax in the

obtained packings.

Results are shown in Fig. D.3; a comparison with the values known in the literature is reported

in Tab.D.1. The deviation from the asymptotic power-law is evident for N /Nsmax , while no

deviation is observed for the porosity, as the porosity holds its power law form in eq. (D.9b).
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Figure D.3: Number of inserted spheres N (over Nsmax ) as function of the scale parameter
smin/smax for d = 2 (top, smax/L = 1/5) and d = 3 (bottom, smin/L = 1/3). Each symbol rep-
resents the average over 10 independent realisations of our random AP. The dashed lines
represent eq. (D.3a), while the solid lines correspond to the fits made using (D.9a). Porosities
ε for the same systems are shown in the respective insets: the curves from eqs. (D.3b) and
(D.9b) coincide with a power law. The positions for samples A, B, C, D, E and F in Fig. D.2 are
indicated on the curves.
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dimension d f [Manna and Herrmann (1991); Borkovec et al. (1994)] d f (fit)
d = 2 1.305684 1.3045 ± 0.0006
d = 3 2.473946 2.4739 ± 0.0014

Table D.1: values for the evaluated fractal dimension (in 2 and 3 Euclidean dimensions)
compared with the known ones.

The N /Nsmax curve results to describe the data better then its asymptotic counterpart. The

fits finally allow an independent estimation of the fractal dimension d f : our fitted fractal

dimensions are in a very good agreement with the known values. Note that the possibility of

fitting in the whole s-range, plus the use of independent simulations, allows to evaluate d f by

simulating a relatively small number of spheres.

SOME REMARKS. We have studied the properties of space filling packings of spheres. In partic-

ular we have derived the finite size correction to the distribution laws that characterize the

Apollonian packing fractals. In the case of sizes limited to a finite interval, the ratio between

the smallest and the largest spheres does not go to zero and deviations are indeed expected

from the typical power laws. Two main observables have been studied, the ratio of the total

number of spheres over the number of largest spheres, i.e. N /Nsmax , and the fraction of unoc-

cupied space, i.e. the porosity ε. We provide simple analytical expressions for them, solely

based on the hypothesis that the packed spheres totally occupy the space if the minimum

diameter tends to zero.

In order to test our prediction, an efficient algorithm has been introduced to generate oscu-

latory random AP, not based on any a priori size distribution. This algorithm allows to fix,

as input parameters, the largest and smallest sizes. In the limit of vanishingly small diame-

ters, disordered Apollonian packings are recovered with the correct asymptotic behaviour,

as proved by testing the data obtained from the new packing algorithm. The laws corrected

for finite sizes have been tested by varying the interval of sizes for fractal objects (circles in

d = 2 and spheres and d = 3) and the result of the fits allows to verify the values of the fractal

dimension which came out in agreement with the values known from the literature.

It is interesting to note that the laws we derived apply to the whole range of size ratios. This

suggests that even in the case of packings with a very narrow interval of sizes, the space filling

construction preserves its fractal nature. These simple results could be applied to the broad

class of “packing-limited growth” models and physical fractals for which the general conditions

(D.4) and (D.7) are valid. We finally propose to use the rapid convergence to an osculatory

packing enhanced with the proposed algorithm, together with the possibility of using the

whole range of sizes for the evaluation of the fractal dimension, as a possible feasible test on

recent studies on Apollonian gaskets at higher dimensionality [Farr and Griffiths (2010)].
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tal setup.

The DNA is attached to the surface of the streptavidin coated colloids via biotin-streptavidin

linkage. The structure of the strands is: Biotin – 5’– TTTTT – dsDNA spacer – TTTTT– ssDNA

sticky end – 3’. The dsDNA rigid spacer is made of 60 base-pairs ( 20 nm in length) and the

sequences of 5 thymine bases are added to confer more flexibility to the construct. The four

sticky ends are A=5’–AT CCC GGC C–3’, A’=5’–GG CCG GGA T–3’, B=5’–CG CAG CAC C–3’ and

B’=5’–GG TGC TGC G–3’. The Tm of the complementary strands A-A’ and B-B’ are respectively

33.3◦C and 33.5◦C at 26 mM ionic strength whereas the nonspecific bonding probability be-

tween strands is negligible. The colloids, from Microparticles GmbH, are fluorescently coated

in red (R) and green (G). All the combinations (R-A’A, G-A’A, R-B’B, G-B’B) have been tested to

ensure the elimination of spectra overlaps (see SI for details).

The experiments are carried out in TE buffer (10 mM TRIS-HCl pH 8 + 1 mM EDTA) with the

addition of 20 mM NaCl. The density of the solution is matched to that of polystyrene (1.05

g/cm3) by adding sucrose.

Though the biotin-streptavidin bond is unlikely to break at RT a small percentage of the DNA

strands might detach upon exposure to high temperatures. Such strands might graft onto

free binding sites on colloids of the wrong species resulting in a non-specific attraction. To

avoid non-specific attraction we add free biotin to the solution. Due to high diffusivity and

concentration, biotin would bind, before free DNA strands, to any free grafting site on the

colloids surface.

The experiments are carried out in a quasi-2D environment in order to allow optical imaging

of high density solutions. The sample chambers are designed with a wedge-like structure, with

an area of 18×18 mm and thickness varying between 0 and 150 µm. This which allows us to op-

timize the imaging of each sample by choosing the region of the sample with optimal thickness.

The chambers are sealed to avoid any evaporation. For the imaging we use a Leica TCS SP5 in-

verted confocal microscope equipped with a HCX PL APO CS 100× 1.4 oil immersion objective.

We functionalize strepatavidin coated polystyrene colloids (Microparticles GmbH, Berlin, Ger-

many) with DNA strands (Integrated DNA Technologies BVBA, Leuven, Belgium), to provide
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the correct selective interactions among species. Double strand DNA (dsDNA), 20 nm in

length, acts as rigid spacer (see main text) and is prepared beforehand by hybridizing each of

the four single strands:

A: biotin–5’–TTT TTG AGG AGG AAA GAG AGA AAG AAG GAG AGG AGA AGG GAG AAA AGA GAG AGG GAA

AGA GGG AAT TTT TAT CCC GGC C–3’

A’: biotin–5’–TTT TTG AGG AGG AAA GAG AGA AAG AAG GAG AGG AGA AGG GAG AAA AGA GAG AGG GAA

AGA GGG AAT TTT TGG CCG GGA T–3’

B: biotin–5’–TTT TTG AGG AGG AAA GAG AGA AAG AAG GAG AGG AGA AGG GAG AAA AGA GAG AGG GAA

AGA GGG AAT TTT TCG CAG CAC C–3’

B’: biotin–5’–TTT TTG AGG AGG AAA GAG AGA AAG AAG GAG AGG AGA AGG GAG AAA AGA GAG AGG GAA

AGA GGG AAT TTT TGG TGC TGC G–3’

with the single strand:

C : 5’–TTC CCT CTT TCC CTC TCT CTT TTC TCC CTT CTC CTC TCC TTC TTT CTC TCT TTC CTC CTC–3’.

The hybridization is carried out in 10mM TRIS-EDTA buffer solution (TE, Sigma Aldrich) in

four different tubes. Each of the tubes is heated up to 80◦C for 2 hours and then slowly cooled

down overnight in order to avoid kinetic traps such as hairpins.

The colloids are green-fluorescent (G) and red-fluorescent (R) and have a diameter of 0.5 µm.

R and G colloidal particles are sonicated for 15 minutes, then dispersed in TE buffer solution

containing 5000 MW biotinilated poly-ethilene glycol (biotin-PEG, Laysan Bio Inc., Arab, USA)

and the functionalizing mixtures of either A-A’ or B-B’. The concentration of DNA is tuned to

obtain a 5× excess compared to the binding capacity of the colloids. The DNA/PEG concentra-

tion ratio in the solution is kept to 50/3. Since biotin-PEG is much more diffusive than the

DNA constructs, we expect the DNA/PEG ratio on the surface of the colloids to be close to

7/3. The samples are left at 45◦C for 2 hours to allow for grafting. The chosen temperature is

above the Tm of the complementary strands to avoid hybridization during the coating process.

Afterwards, each of the samples is spun for 2 minutes at 13k rpm to pellet the particles and

remove the excess solution containing unbound DNA and biotin-PEG, then the colloids are

redispersed in clean TE buffer at 45◦C. The washing procedure is repeated 3 times, then the

colloids are spun again and resuspended in density matched TE buffer with additional 20 mM

NaCl. This buffer is prepared beforehand by dissolving 4.46 g sucrose and 0.11 g NaCl to 100

ml of 10 mM TE buffer. The final concentration of the colloidal solution at this stage is ≈10%.

With the above procedure we can naturally define the species according to their DNA coating:

AA’ or BB’. We refer to them as G and R for brevity but the reader should keep in mind that

different coating can be associated to different fluorescence labels R or G without changing

the physical properties of the system (See Fig.E.3 and discussion below).

The experiments are carried out in wedge-shaped glass chambers sealed with ultraviolet curing
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Figure E.1: (a) Schematic bottom-view and (b) side view of a sample chamber.

glue (Norland Optical Adhesive, Norland Products Inc. Cranbury, USA) and two–components

epoxy glue. The chambers are made of a thick glass support (a microscope slide) to which a

microscope coverslip (18 mm × 18 mm × 150 µm) is attached using ultraviolet curing glue to

form a wedge-shaped chamber with a thickness between 0 and 150 µm. Microscope slides and

coverslips are washed beforehand in strong surfactant solution at high temperature, sonicated

and rinsed in double-distilled water and 3M NaOH solution to remove any surface impurity.

We choose to work with wedge-shaped chambers to obtain quasi-2D samples: within each

sample, this geometry allows us to find the thickest possible region that allows good quality

imaging. A schematic of the bottom view and the side view of a chamber is shown in Fig. E.1

(a) and (b) respectively.

The solutions are prepared by mixing equal quantities of R and G colloidal suspensions into

an empty tube and adding 1µl of 0.2mM biotin solution prepared by dissolving dry biotin

powder (Sigma-Aldrich) in density matched TE buffer. The chambers are plasma-cleaned

(Diener Electronic Femto) to avoid the colloids to stick to their walls, and then filled with the

colloidal solution and sealed with the two-component epoxy glue to protect the samples from

evaporation.

R and G colloids, the empty tube and the chamber are heated up to 60◦C beforehand, so to

make the sample stay in the gas phase during all the manipulations and avoid the shearing

of colloidal aggregates that could compromise the quality of the coating. After sealing the

chamber, the samples are quickly cooled down to RT. Large and inhomogeneous aggregates

form. At this stage, the samples are heated up and equilibrated at T > Tm , above the melting

temperature. Afterwards they are cooled down until the BiGel phase is formed. This proce-

dure follows rigorously the quenching protocol adopted for the simulations. The thermal

processing is performed while monitoring the samples with a Nikon Elcipse Ti-E inverted
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optical-microscope with a Nikon CFI60 Plan Fluor 40× 0.75 NA dry objective.

Once the BiGel structures are formed, the samples are moved to a Leica TCS SP5 microscope

equipped with a HCX PL APO CS 100X 1.4 oil immersion objective for confocal imaging. The

adsorption/emission wavelengths of G and R dyes are respectively 492/519 nm and 519/589

nm, respectively. Excitation at the exact frequencies of the dyes is achieved by using a white

laser with tunable emission. Imperfections of the fluorescent dyes have been noticed, with G

colloids fluorescing at the wavelength of the red emission under both red and green excitation.

The effect is shown for single colloids in Fig. E.4 (a)-(c). To distinguish the R species, thus,

we had to remove the unwanted red fluorescence of G colloids under red light. This is made

by subtracting the image obtained under green light. In Fig. E.4 we show how this canceling

method works for distinguishing the R colloids. Moreover, to make sure that the red fluores-

cence of the green aggregates is due only to unwanted red fluorescence of the G colloids, and

not to R colloids embedded in the G aggregates (i.e. an incomplete demixing) we repeated all

the experiments after exchanging DNA coatings between the two species, i.e. by testing both

the combinations G-AA’ / R-BB’ and R-AA’ / G-BB’. As shown in Fig. E.3, upon exchanging the

DNA coatings, the fluorescence contamination is not inverted, i.e. G aggregates still fluoresce

red but R aggregates do not fluoresce green. Since colloidal aggregation behavior is solely

determined by the DNA coating and not by the fluorescent dye, this demonstrates that the

only cause for the red fluorescence of G aggregates is the unwanted overlap of the spectra, and

not an incomplete demixing.
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Figure E.2: (a) A schematic of the surface coating of the colloids, highlighting the correspon-
dence between theoretical model and experimental realization of inter-particle interactions.
(b) BF / FL optical microscopy image of a sample at RT before annealing. (c) BF / FL image at
T ≈ 50◦C. (d) BF / FL, (e) FL only and (f ) BF only images of the same region of a sample at RT
after annealing. Red and green lines in panels (e) and (f) are guides for the eye highlighting
fluorescent and non-fluorescent aggregates respectively..

135



Appendix E. Appendix: Materials and experimental setup.

Figure E.3: (a) Green fluorescent, (b) original red fluorescent and (c) subtraction of (a) from (b) confocal images,
for a sample with DNA coating BB’ on red colloids and AA’ on green colloids. (d) green fluorescent, (e) original
red fluorescent and (f) subtraction of (e) from (f) confocal images, for a sample with DNA coating AA’ on red
colloids and BB’ on green colloids. By comparing panels (a),(b),(c) and panels (d),(e),(f) it is clear that with both
combinations of DNA coatings green aggregates fluoresce red but red aggregates do not fluoresce green. Scale bars
are 25 µm.
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Figure E.4: (a) Zoom of a bright field image containing 5 single colloids immobilized on a glass surface. Single
colloids are pointed by arrows. Features not pointed by arrows are colloidal doublets or small aggregates. (b)
Fluorescence of the same region under green excitation. Only 3 of the 5 single colloids fluoresce green. (c)
Fluorescence image of the same region under red excitation, all the single colloids, including green ones, fluoresce
red. (d) Image resulting from the subtraction of (d) and (c). Only red colloids (i.e. colloids not emitting under green
excitation) survive to the subtraction. The width of each image image is 5.1 µm.
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