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Preface
Formal specifications have at some point acquired a bad reputation as being heavy-weight

and hardly cost effective. However, new generations of constraint solving and verification tools

emerging in recent years are rapidly changing this view. This thesis provides an outlook into

the near future where developers will no longer question the usefulness of specifications in

software validation. This is not merely a matter of educating programmers, but comes through

fundamental improvements to the usability of tools. First of all, the specifications considered

here are not in a notation foreign to programmers, but are written in a programming language

itself, making it easy for developers to write. Like in model checking for finite-state systems,

the tool gives concrete counterexamples in cases of wrong code or wrong specifications. As a

result, the specifications and code are guided by each other and help the developer navigate

the space of reasonable programs much more effectively. Unlike heuristic bug-finding tools,

these approaches can also establish rigorous proofs of correctness, using symbolic reasoning

to replace an infinite number of test cases. In particular, a roadblock to reasoning about

software correctness is induction. This thesis shows that seemingly inductive properties do

not always require explicit induction with heuristically chosen inductive steps to be solved,

but can be tackled using systematic approaches of decision procedures.

Rarely do we find results that are non-obvious, but end up having very elegant solutions that

work well in practice. Such results can be discovered by opportunistically pursuing natural

problems that we do not understand yet and building tools that validate the algorithmic and

theoretical ideas. What sets this thesis apart is a remarkable interplay between motivation

from concrete programming tasks, theoretical ideas that apply broadly, and experimental

validation that shows the algorithms and theory make a real difference in practice.

Once we accept that specifications and programs are merely different pieces in describing the

same object —the intended functionality, the desirability of executing and compiling specifica-

tions becomes a natural goal. The thesis makes exciting steps into this direction, first showing

what expressive constraint programming becomes in the age of modern SMT (satisfiability

modulo theory) solvers integrated into high-productivity languages like Scala. The work on

the constraint programming system, Kaplan, establishes a bar in what we should expect today :

a language that does not compromise on types, higher-order features, interoperability, and a

constraint solving technology that leverages advances such as conflict-driven clause learning

and domain-specific reasoning in e.g. integer linear programming and reasoning about finitely

generated data structures.
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Preface

As a way to point to the future, one can consider bridging the gap between the formal require-

ments and efficient code by compiling input/output relations into computable functions that

realize them, through the process termed complete functional synthesis. The gap between

specifications and efficient code will perhaps never be fully automated, but each aspect of its

automation can bring huge savings in software development efforts.

The agenda of going from specifications to executable code is as relevant as ever before, and

the tools at our disposal to solve it are starting to be up to the task. This dissertation shows the

results that make this feasible.

Lausanne, November 2012 Viktor Kuncak
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Abstract
This thesis explores the use of specifications for the construction of correct programs. We go

beyond their standard use as run-time assertions, and present algorithms, techniques and

implementations for the tasks of 1) program verification, 2) declarative programming and

3) software synthesis. These results are made possible by our advances in the domains of

decision procedure design and implementation.

In the first part of this thesis, we present a decidability result for a class of logics that support

user-defined recursive function definitions. Constraints in this class can encode expressive

properties of recursive data structures, such as sortedness of a list, or balancing of a search

tree. As a result, complex verification conditions can be stated concisely and solved entirely

automatically. We also present a new decision procedure for a logic to reason about sets and

constraints over their cardinalities. The key insight lies in a technique to decompose con-

straints according to mutual dependencies. Compared to previous techniques, our algorithm

brings significant improvements in running times, and for the first time integrates reasoning

about cardinalities within the popular DPLL(T ) setting. We integrated our algorithmic ad-

vances into Leon, a static analyzer for functional programs. Leon can reason about constraints

involving arbitrary recursive function definitions, and has the desirable theoretical property

that it will always find counter-examples to assertions that do not hold. We illustrate the

flexibility and efficiency of Leon through experimental evaluation, where we used it to prove

detailed correctness properties of data structure implementations.

We then illustrate how program specifications can be used as a high-level programming

construct ; we present Kaplan, an extension of Scala with first-class logical constraints. Kaplan

allows programmers to create, manipulate and combine constraints as they would any other

data structure. Our implementation of Kaplan illustrates how declarative programming can

be incorporated into an existing mainstream programming language. Moreover, we examine

techniques to transform, at compile-time, program specifications into efficient executable

code. This approach of software synthesis combines the correctness benefits of declarative

programming with the efficiency of imperative or functional programming.

Keywords : constraint solving, decision procedures, software verification, declarative pro-

gramming, software synthesis, synthesis procedures.
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Résumé
La présente thèse est consacrée à la construction de programmes corrects. Nous allons au-delà

de l’utilisation standard de spécifications en tant qu’assertions, et présentons des techniques,

des algorithmes et leurs implémentations pour les questions de 1) la vérification de pro-

grammes, 2) la programmation déclarative et 3) la synthèse de programmes. Ces résultats sont

rendus possibles par nos avancées dans la conception et l’implémentation de procédures de

décision.

Dans la première partie de cette thèse, nous présentons un résultat de décidabilité pour

une classe de logiques paramétrisées par des fonctions récursives. Grâce à cette classe, nous

pouvons représenter par des contraintes des propriétés expressives liées à des structures de

données récursives, comme le fait qu’une liste soit triée, ou qu’un arbre binaire soit équilibré.

Ainsi, des conditions de vérification complexes peuvent être exprimées de manière concise

et traitées de manière entièrement automatisée. Nous présentons également une nouvelle

procédure de décision pour une logique qui permet de raisonner sur les ensembles finis et leur

cardinalité. L’élément essentiel de notre approche est une technique de décomposition des

contraintes d’après leurs dépendances mutuelles. Par rapport aux algorithmes existants, notre

algorithme est remarquablement plus performant. Il intègre également pour la première fois

le raisonnement sur les tailles d’ensembles dans le modèle DPLL(T ). Nous avons implémenté

nos algorithmes dans Leon, un analyseur statique pour programmes fonctionnels. Leon

peut résoudre des contraintes impliquant des fonctions récursives arbitraires, et possède la

propriété théorique appréciable qu’il reporte systématiquement des contre-exemples s’il en

existe. Nous illustrons la flexibilité et l’efficacité de Leon par une évaluation pratique, où nous

prouvons des propriétés détaillées pour diverses implémentations de structures de données.

Nous illustrons ensuite l’utilisation des spécifications comme construction intégrée à un

langage de programmation ; nous présentons Kaplan, une extension du langage de program-

mation Scala où les contraintes sont des objets de première classe. Kaplan permet à ses

utilisateurs de créer, manipuler et combiner les contraintes comme n’importe quelle autre

valeur. Notre implémentation de Kaplan illustre comment la programmation déclarative

peut se greffer à des langages existants. Finalement, nous examinons des techniques pour

transformer des spécifications en code exécutable. Cette dernière approche, la synthèse de

programmes, permet de combiner la fiabilité de la programmation déclarative avec la vitesse

d’exécution des paradigmes impératifs ou fonctionnels.

Mots-clés : résolution de contraintes, procédures de décision, vérification logicielle, program-

mation déclarative, synthèse logicielle, procédures de synthèse.
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1 Introduction

Programming is hard. Anyone who ever faced the task of solving a programming task will

recognize that fact. The reasons for this difficulty lie in what programming essentially is:

a transformation of a set of requirements into an executable implementation. This trans-

formation can be difficult and error-prone, making the construction of correct programs a

challenging task. Responses to this challenge can be broadly divided into two categories: the a

priori and a posteriori approaches to correct software developement.

The a priori approach strives to produce software that is correct by construction. One way to

achieve this goal is to use programming languages that raise the level of abstraction closer to

the language of requirements. This narrows the translation gap between the requirements and

the implementation, thus reducing the opportunities for introducing errors [KK71, CKC81,

JL87, AH10]. Another way to achieve a priori correctness is to start from the requirements and

derive an implementation through successive, provably sound, refinement steps. This process

can be manual [Dij75, Mor94, BvW99] or automated [MW80, KMPS10b, GJTV11].

In the a posteriori approach on the other hand, the goal is to supplement the executable

implementation with a proof of its correctness. Techniques to derive such proofs automatically

exist [CC77, BHJM07] but are in practice limited to low-level specifications such as memory

safety. Higher-level specifications typically require that the programmer produces part of the

proof [ZKR08, ZKR09, CDH+09, BFL+11].

Each comes with its advantages and drawbacks: the a priori approach leads to software that is

easier to construct and reason about but is harder to execute efficiently, while the a posteriori

approach leads to efficient programs whose meaning can sometimes be obscured. We thus

believe it to be necessary to examine both, and to develop systems that allow for programmers

to alternate between the two.

1



Chapter 1. Introduction

1.1 Specifications and Implementations

A program implementation, in the standard imperative or functional settings, is of an explicit

nature: the computation steps are spelled out by the programmer, who must understand the

execution model. The implementation dictates how the computation should be performed. A

natural mathematical abstraction for a program implementation is therefore a function.

Program specifications, on the other hand, are of an implicit nature: they describe the re-

lationship that should hold between the inputs and the outputs of the program. In other

words, specifications describe what should hold. The natural mathematical abstraction for a

specification is a relation.

There are several appealing ways in which combining implementations and specifications can

help us produce correct programs. Consider a program P consuming inputs ā and producing

outputs x̄, such that P (ā) = x̄, and a specification φ(ā, x̄) relating the inputs and outputs.

– The simplest use of specifications is to perform run-time checking: for a specific input ā

and computed output x̄ = P (ā), check whether φ(ā, x̄) holds. As long as φ is expressed in a

form that can be evaluated, this is straightforward to do and it does not require reasoning

about P . Due to their simplicity, run-time checks (or assertions) are commonly used. They

provide little guarantees of correctness, though: because assertions are only evaluated on

observed executions, the absence or errors offers no assurance about the general case.

– We can ask whether it is the case that ∀ā : φ(ā,P (ā)). This is the problem of program

verification: given a specification and an implementation, check that the implementation

fulfills the specification. Dually, we can ask whether ∃ā : ¬φ(ā,P (ā)). This is the problem of

counter-example generation: find values for inputs such that the implementation does not

meet the specification. Verification is appealing in that it can prove that a program always

meets a specification, even for executions that have not been observed.

– For a specific input ā, we can also solve for ȳ such that φ(ā, ȳ) holds: if φ is strong enough

to encode all the desired properties, ȳ can effectively replace the computed value x̄ = P (ā).

We refer to this as a constraint solving approach. Constraint solving can be a useful tool to

produce values that meet a given specification.

– We can in some cases raise constraint solving to a higher-level, and solve for a function

rather than a single value. In effect, we ask the question ∃F : ∀ā : φ(ā,F (ā)): does there

exist a function that fulfills the specification? While this question is commonly for the

programmer to solve, the goal of software synthesis is to use symbolic reasoning to achieve

the same automatically.

We note that synthesis is to constraint solving what verification is to run-time checking: a

generalization from a problem for a fixed input to the problem for any input. Thus, whereas

run-time checking and constraint solving take place at execution time, verification and syn-

thesis are by necessity compile-time activities.

This dissertation presents algorithms, techniques and implementations for the activities of
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verification, constraint solving and synthesis, which all arise in software development. We

briefly introduce each of these domains through examples.

1.2 Specifications for Verification

Consider this simple programming task:

Given a total number of seconds, find the corresponding decompositions into hours,

minutes and remaining seconds.

The resulting program should be a function of one argument that returns three values. One

possible implementation, in functional programming style, is to use a loop to subtract from

the total and accumulate first whole hours, then whole minutes. In functional style, this loop

can be expressed as a recursive function:

def secondsToTime(total : Int) : (Int, Int, Int) = {

def rec(s : Int, h : Int, m : Int) : (Int, Int, Int) = {

if(s ≥ 3600) {

rec(s − 3600, h + 1, m)

} else if(s ≥ 60) {

rec(s − 60, h, m + 1)

} else {

(h, m, s)

}

}

rec(total, 0, 0)

}

To decide whether this implementation is correct, one first needs to formally state what correct

means. From the original statement, written in English, we can derive a requirement for the

computation: the result should be such that when we add the components and multiply each

of them by the appropriate factor, we get back the original value. Because the specification

refers to the return value of the function (as opposed to for instance intermediate steps of the

computation), we can write it as a postcondition:

ensuring { case (h, m, s) ⇒ h * 3600 + m * 60 + s == total }

This specification does not encode all requirements of the original problem, though. Indeed,

another program that meets it is given by:

def secondsToTime(total : Int) : (Int, Int, Int) = (0, 0, total)

In other words, returning the number of seconds and performing no decomposition satis-

fies the post-condition. To fully encode the desired requirements, we can strengthen our

specification into:

ensuring {
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case (h, m, s) ⇒ h * 3600 + m * 60 + s == total && m ≥ 0 && m < 60 && s ≥ 0 && s < 60

}

This illustrates an important fact: deriving a full specification from a set of requirements is in

itself difficult.

Now that we have a candidate implementation and specification, it remains to show that

the former satisfies the later. Applying Leon, our verification system, results in the following

output

Error: Counter-example found:

total -> -1

This illustrates counter-example generation: our implementation of secondsToTime violates

the specification when given a negative input. We can choose to handle only positive inputs

by writing a precondition:

require(total ≥ 0)

This new annotation is not sufficient to prove our program correct, though. Indeed, because it

involves a recursive function that manipulates values in a non-obvious way, we need to provide

additional invariants. A version of the program completed with appropriate annotations and

proved correct by Leon is given by:

def partial(t: Int, h: Int, m: Int, s: Int) : Boolean = h * 3600 + m * 60 + s == t

def full(t: Int, h: Int, m: Int, s: Int) : Boolean =

partial(t, h, m, s) && m ≥ 0 && m < 60 && s ≥ 0 && s < 60

def secondsToTime(total : Int) : (Int, Int, Int) = {

def rec(s : Int, h : Int, m : Int) : (Int, Int, Int) = {

require(s ≥ 0 && h ≥ 0 && m ≥ 0 && m < 60 &&

partial(total, h, m, s) &&

(m == 0 || s + m * 60 < 3600))

if(s ≥ 3600) {

rec(s − 3600, h + 1, m)

} else if(s ≥ 60) {

rec(s − 60, h, m + 1)

} else {

(h, m, s)

}

} ensuring { case (h,m,s) ⇒ full(total, h, m, s) }

rec(total, 0, 0)

}
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(Note that the functions partial and full encode the partial and full correctness conditions

presented before.) Intuitively, the extra annotations encode the fact that the values h, m and s

are not arbitrary but rather together maintain an invariant.

Strikingly, the amount of annotations required for the proof to succeed exceeds the size of

the implementation itself. Proving programs correct is difficult. The efforts are well rewarded,

though: the implementation is guaranteed to match the specification for any output. Addi-

tionally, because the program was crafted manually, it can be executed efficiently.

1.3 Executing Specifications

Our example in the previous section illustrated an important phenomenon; specifications

that are precise enough to capture the desired functional properties can approach the size

or complexity of the implementation itself. Additionally, proving that an implementation

meets them can result in additional work involving the derivation of intermediate, partial

specifications. An appealing approach then, is to execute specifications; at run-time upon

reaching a specification, invoke a constraint solver to compute possible solutions for the result

variables.

With such a mechanism available, solving the time decomposition programming task be-

comes a matter of executing the post-condition. Using Kaplan, our system for declarative

programming, a user can state this as:

def secondsToTime(total : Int) = ((h : Int, m : Int, s : Int) ⇒
h * 3600 + m * 60 + s == total && m ≥ 0 && m < 60 && s ≥ 0 && s < 60).solve

)

The first benefit of this form of constraint solving is obvious: the programmer needs to provide

only one of the implementation or the specification. Another advantage is that, as long as we

are willing to trust our constraint solver, we can consider the code to be correct by construction.

The most appealing aspect of executing declarative specifications, though, is that of code

reuse. Consider for example a set implemented as a binary search tree, built with the algebraic

data type

sealed abstract class Tree
case class Leaf() extends Tree
case class Node(left : Tree, value : Int, right : Tree) extends Tree

and the recursive function computing the set of values in a tree:

def content(tree : Tree) : Set[Int] = tree match {

case Leaf() ⇒ Set.empty

case Node(l, v, r) ⇒ content(l) ++ Set(v) ++ content(r)

}
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Let us also assume a function that checks whether the sorting and balancing properties of a

search tree are fulfilled:

def isValid(tree : Tree) : Boolean = . . .

Using these functions, we can define for instance insertion:

def insert(tree : Tree, value : Int) : Tree =
((t : Tree) ⇒ isValid(t) && content(t) == content(tree) ++ Set(value)).solve

and defining removal declaratively is a trivial matter of using a different set operation:

def insert(tree : Tree, value : Int) : Tree =
((t : Tree) ⇒ isValid(t) && content(t) == content(tree) -- Set(value)).solve

One can of course not hope that the execution of these declarative specifications will match

the execution of carefully written explicit code. Indeed, a programmer can possess insight

on efficient methods to achieve a particular subgoal – in our last example, for instance, the

knowledge that indices are sorted. A constraint solver, because it needs to be general, will not

be tuned for any particular task.

The possibility of programming with just specifications remains appealing, however, for

tasks such as rapid prototyping, test-case generation, or cases where no obvious algorithm is

available.

1.4 Compiling Specifications

The natural next step after executing specifications is to ask oneself in which circumstances

one can compile them. As we pointed out, a specification is naturally viewed as a relation,

and executable code as a function. The problem of synthesis from a specification is then the

problem of automatically transforming a relation into a function. Coming back to our original

programming task and its expression as the execution of the specification

def secondsToTime(total : Int) = ((h : Int, m : Int, s : Int) ⇒
h * 3600 + m * 60 + s == total && m ≥ 0 && m < 60 && s ≥ 0 && s < 60).solve

)

we wish to automatically derive a program that, given an input, produces a decomposition

that satisfies the full specification. Finding such a program is by nature harder than finding

a single value, as in the case of executing specifications. As we show in this thesis, the task

remains possible however when the specification falls into a well-defined class. In this case, it

is expressed in linear integer arithmetic, a logic that our tool Comfusy supports. Given this

input, Comfusy produces the program:

def secondsToTime(total : Int) = {

val loc1 = total / 3600
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val num2 = total + ((−3600) * loc1)

val loc2 = min(num2 / 60, 59)

val loc3 = total + ((−3600) * loc1) + (−60 * loc2)

(loc1, loc2, loc3)

}

Whenever, as here, synthesis is possible, we obtain the combined benefits of program verifica-

tion and executable specifications. On the one hand and similarly to executable specifications,

the programming task is solved simply by stating the requirements to satisfy, and the results

can be trusted to be correct. On the other hand, as in the verification approach, the code that

is eventually executed is written in an imperative or functional style, and can therefore be

executed efficiently.

1.5 A Common Language

We have so far deliberately avoided the question of what exactly we consider as a specification

language. Throughout this thesis, we embrace a functional language both as the implemen-

tation language and as the specification language. More precisely, we choose to work with a

subset of the Scala programming language [OSV11].

Working with a functional language has the advantage that programs are mostly expressions,

and these expressions can be very naturally mapped into logical formulas amenable to sym-

bolic reasoning. While techniques have been developed to encode imperative programs into

formulas [Hoa72, DL05, Bla12], we choose to side-step that step entirely and focus on a func-

tional language.

Using the same same language for implementations and specifications presents several advan-

tages. Conceptually, it is line with our general claim that specifications should be an integral

part of programs. More pragmatically, developers never have to leave the familiar world of

Scala; they do not need to learn a new notation for properties, and can use the existing libraries

for dynamically checking executable contracts [Ode10] to describe the desired properties. As

a result, run-time contract violations can be found through testing, using popular approaches

such as QuickCheck [CH00] and bounded-exhaustive testing [BKM02, GGJ+10]. This would

be difficult if there was a significant gap between annotation and implementation language

[ZKTR07].

Working with executable specifications also allows us to search for counter-examples by simu-

lating executions. This possibility plays a fundamental part in our algorithms for satisfiability,

which ensure completeness by systematically exploring executions with iterative deepening.

One last advantage of working with a subset of an existing language is that it provides us with

very concrete opportunities for reuse: our systems Leon, Kaplan and Comfusy all rely on parts

of the Scala compiler, relieving us from duties such as parsing or type-checking, and ensuring
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that our tools can be used within a rich and well-maintained ecosystem.

1.6 Contributions and Outline

This thesis focuses on techniques for the construction of correct software.

– We develop algorithms that extend the reach of automated symbolic reasoning. They allow

us to verify complex pieces of software against full functional specifications.

– We design programming language extensions that allow for correct-by-construction soft-

ware development.

– We illustrate how these extensions can be seamlessly integrated into mainstream program-

ming languages, thus bringing their reliability benefits to the greater number.

The following chapters are organized as follows:

Chapter 2 presents a decidability result for a theory of term algebras augmented with recur-

sive abstraction functions (homomorphisms). These functions are particularly useful in

the context of writing specifications, as they can naturally encode high-level attributes

of data structures. Among such attributes are, for instance: the elements contained in

a data structure, whether a list is sorted, or whether a tree is balanced. By using such

abstraction functions, the contracts for operations on data structure can often be stated

as simple algebraic laws. Our decidability result ensures that these contracts can be

handled using automated tools.

Chapter 3 presents a general technique to reason about formulas with user-defined recursive

functions. In particular, it can act as an implementation for the family of decision

procedures described in Chapter 2. We implemented this technique as part of Leon, a

verification system for a functional subset of the Scala programming language. We show

that Leon has the important property that it always finds contract violations whenever

they exist. We used our system to prove detailed correctness properties about functional

data structures. Our experimental results show that Leon is fast, both to prove valid

properties and to produce counter-example to invalid ones.

Chapter 4 describes a new decision procedure for constraints over sets and their cardinalities.

Sets with cardinalities provide a relevant abstraction for container data structures, and

are therefore a natural candidate co-domain for the abstraction functions described in

Chapter 2. The key component of our decision procedure is a technique to automati-

cally decompose conjunctions of constraints according to their co-dependencies. We

show that, compared to previous techniques, these decompositions lead to significant

improvements in solving times.

Chapter 5 marks the departure from using specification as a safety mechanism into using

them as the program itself. We present Kaplan, an extension of Scala with declarative

programming features. Kaplan allows programmers to manipulate constraints as first-

class values. Whenever a constraint needs to be solved, it invokes Leon to produce a

valid model. Our implementation of Kaplan shows that, using existing tools, we can
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integrate declarative programming constructs into a standard imperative or functional

language. The execution of programs that do not use a declarative style is left unchanged,

thus allowing programmers to mix paradigms and reap the benefits of each in a single

environment.

Chapter 6 builds on the ideas of using specifications as a programming construct, and exam-

ines situations in which they can be turned, at compile time, into executable code. We

present a generic framework to reason about sound relational derivations, and show

how to apply it to develop synthesis procedures. Synthesis procedures are algorithms

that are guaranteed to succeed in transforming a relation from a given class into a func-

tion that implements it. As a programming language extension, our algorithms combine

the benefits of the expressive power of declarative specifications with the efficiency of

imperative code.
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2 Reasoning with Abstraction Functions

This chapter introduces a family of decision procedures that extend the decision procedure

for quantifier-free constraints on recursive algebraic data types (term algebras) to support

recursive abstraction functions. Our abstraction functions are catamorphisms (term algebra

homomorphisms) mapping algebraic data type values into values in other decidable theories

(e.g. sets, multisets, lists, integers, booleans). Each instance of our decision procedure family

is sound. Additionally, we identify a widely applicable many-to-one condition on abstraction

functions that implies the completeness. Complete instances of our decision procedure in-

clude the following correctness statements: 1) a functional data structure implementation

satisfies a recursively specified invariant, 2) such data structure conforms to a contract given

in terms of sets, multisets, lists, sizes, or heights, 3) a transformation of a formula (or lambda

term) abstract syntax tree changes the set of free variables in the specified way.

2.1 Introduction

While much recent work on automation was invested into imperative languages, it is inter-

esting (50 years after [McC60]) to consider the reach of decision procedures when applied

to functional programming languages, which were designed with the ease of reasoning as

one of the explicit goals. Researchers have explored the uses of advanced type systems to

check expressive properties [DP04, Xi03], and have recently also applied satisfiability modulo

theory solvers to localized type system constraints [RKJ08, KRJ09]. Among the recognized

benefits of theorem provers is efficient support for propositional operators and arithmetic.

This chapter revives another direction where theorem provers can play a prominent role:

complete reasoning about certain families of functions operating on algebraic data types.

Purely functional implementations of data structures [Oka98] present a well-defined and

interesting benchmark for automated reasoning about functional programs. Data structures

come with well-understood specifications: they typically implement ordered or unordered

collections of objects, or maps between objects. To express the desired properties of data

structures, we often need a rich set of data types to write specifications. In particular, it is
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desirable to have in the language not only algebraic data types, but also finite sets and multisets.

These data types can be used to concisely specify the observable behavior of data structures

with the desired level of under-specification [KLZR06, LKR05, ZX05, Dun07]. For example, if

neither the order nor the repetitions of elements in the tree matter, an appropriate abstract

value is a set. An abstract description of an add operation that inserts into a data structure is

then

α(add(e, t )) = {e}∪α(t ) (2.1)

Here α denotes an abstraction function mapping a tree into the set of elements stored in the

tree. Other variants of the specification can use multisets or lists instead of sets.

An important design choice is how to specify such mappings α between the concrete and

abstract data structure values. A popular approach [CDH+09, ZKR08] does not explicitly

define a mapping α but instead introduces a fresh ghost variable to represent the values

α(t). It then uses invariants to relate the ghost variable to the concrete value of the data

structure. Because developers explicitly specify values of ghost variables, such technique yields

simple verification conditions. However, it can impose additional annotation overhead—for

the tree example above it would require supplying a set as an additional argument to each

algebraic data type constructor. To eliminate this overhead and to decouple the specification

from the implementation, we use recursively defined abstraction functions that compute the

abstract value for each concrete data structure. As a result, our verification conditions contain

user-defined function definitions that manipulate rich data types, along with equations and

disequations involving such functions. This chapter introduces decision procedures that can

reason about interesting fragments of such a language.

We present decision procedures for reasoning about algebraic data types with user-defined

abstraction functions expressed as a fold, or catamorphisms [MFP91], over algebraic data

types. These decision procedures subsume approaches for reasoning about algebraic data

types [Opp78] and add the ability to express constraints on the abstract view of the data

structure. When using sets as the abstract view, our decision procedure can naturally be

combined with decision procedures for reasoning about sets of elements in the presence of

cardinality bounds [KR07]. (Chapter 4 develops new techniques for this particular target logic.)

Our decision procedures are not limited to using sets as an abstract view of data structures.

The most important condition for applicability is that the notion of a collection has a decidable

theory in which the fold can be expressed. This includes in particular arrays [BM07, dMB09],

multisets with cardinality bounds [PK08a], and even option types over integer elements. Each

abstract value provides different possibilities for defining the fold function.

We believe that we have identified an interesting region in the space of automated reasoning

approaches, because the technique turned out to be applicable more widely than we had

expected. We intended to use the technique to verify the abstraction of values of functional

data structures using sets. It turned out that the approach works not only for sets but also for
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object BSTSet {
sealed abstract class Tree
case class Leaf() extends Tree
case class Node(left: Tree, value: Int, right: Tree) extends Tree

// abstraction function
def content(t: Tree): C = t match {
case Leaf() ⇒ Set.empty
case Node(l,e,r) ⇒ content(l) ++ Set(e) ++ content(r)

}

// returns an empty set
def empty: Tree = Leaf() ensuring (res ⇒ content(res) == Set.empty)

// adds an element to a set
def add(e: Int, t: Tree): Tree = (t match {
case Leaf() ⇒ Node(Leaf(), e, Leaf())
case Node(l,v,r) ⇒
if (e < v) Node(add(e, l), v, r)
else if (e == v) t
else Node(l, v, add(e, r))

}) ensuring (res ⇒ content(res) == content(t) ++ Set(e))

// user−de�ned equality on abstract data type (congruence)
def equals(t1 : Tree, t2 : Tree) : Boolean = (content(t1) == content(t2))

}

Figure 2.1 – Partial binary search tree implementation of a set.

lists and multisets, and even for abstractions that encode the truth-values of data structure

invariants. Beyond data structures used to implement sets and maps, we have found that

computing bound variables, a common operation on the representations of lambda terms

and formulas, is also amenable to our approach. We thus expect that our decision procedure

can help increase the automation of reasoning about operational semantics and type systems

of programming languages.

2.2 Example

Figure 2.1 shows code for a partial implementation of a set of integers using a binary search

tree. As this chapter is concerned only with a fixed form of recursive functions, we postpone

the presentation of our programming language until 3.3, and focus here on the relevant parts.

The class hierarchy

sealed abstract class Tree
private case class Leaf() extends Tree
private case class Node(left:Tree, value:Int, right:Tree) extends Tree
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describes an algebraic data type Tree with the alternatives Node and Leaf. The module BSTSet

provides its clients with functions to create empty sets and to insert elements into existing

sets. Because the client is not supposed to have information on the type Tree, they use the

abstraction function content to view these trees as sets. The abstraction function is declared

like any other function and is executable, but we assume that it obeys a syntactic restriction to

make it a tree fold, as described in the next section.

Functions empty and add are annotated with postconditions on which the client can rely,

without knowing anything about their concrete implementation. These postconditions do not

give any information about the inner structure of binary search trees—such information would

be useless to a user who has no access to the internal structure. Instead, the postconditions

express properties on their result in terms of the abstraction function. The advantages of

such an abstraction mechanism are well-known. By separating the specification (functions

signatures and contracts) from the implementation, developers obtain better opportunities

for code reuse, manual proofs become simpler [Hoa72], and automated analysis of clients

becomes more tractable [KLZR06].

The type Set[Int] used in the abstraction function and the specifications, refers to the Scala

library class for immutable sets. The operator ++ computes a set consisting of the union of two

sets, and the constructor Set(e) constructs the singleton set {e} (containing only the element e).

We assume the implementation of the container library to be correct, and map the container

operations (e.g. ++) to the corresponding ones in the mathematical theory of finite sets (e.g. ∪)

when we reason about the programs.

The advantages of using an abstraction function in specifications are numerous, but they

also require verification systems that can reason about these user-defined functions—these

functions appear in contracts and therefore in verification conditions. For example, consider

the function add in Figure 2.1 and apply the standard technique to replace recursive function

call with the function contract. The result is a set of verification conditions including (among

others) the condition:

∀t1, t2, t3, t4 : Tree, e1,e2 : Int

t1 =Node(t2,e1, t3) =⇒
content(t4)= content(t2)∪ {e2} =⇒
content(Node(t4,e1, t3))= content(t1)∪ {e2}

(2.2)

This formula is graphically represented in Figure 2.2. It combines constraints over algebraic

data types and over finite sets, as well as a non-trivial connection given by the recursively

defined abstraction function content. It is therefore beyond the reach of currently known

decision procedures. In the following sections, we present a new decision procedure which

can handle such formulas.
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Figure 2.2 – Illustration of (2.2), where edges labeled by α denote applications of the content

abstraction function.

2.3 Recursive Abstraction Functions

Decision procedures for reasoning about algebraic data types [Opp78, BST07] are concerned

with proving and disproving quantifier-free formulas that involve constructors and selectors

of an algebraic data type, such as the immutable version of heterogeneous lists in LISP. They

generalize the unification algorithms used in theorem proving [Rob65] and Hindley-Milner

type inference. Using the terminology of model theory, this problem can be described as the

satisfiability of quantifier-free first-order formulas in the theory of term algebras [Hod97].

A term algebra structure has as a domain of interpretation ground terms over some set of

function symbols, called constructors. The language of term algebras includes application

of constructors to build larger terms from smaller ones, and the only atomic formulas are

comparing terms for equality.

In this chapter, we extend the decision procedure for such algebraic data types with the ability

to specify an abstract value of the data type. The abstract value can be, for example, a set,

relation, multiset (bag), or a list. A number of decision procedures are known for theories of

such abstract values [KR07, PK08a, Mai09, Jaf90] (see also Chapter 4). Such values purposely

ignore issues such as tree shape, ordering, or even the exact number of times an element ap-

pears in the data structure. In return, they come with powerful algebraic laws and decidability

properties that are often not available for algebraic data types themselves, and they often pro-

vide the desired amount of under-specification for interfaces of data structures. The decision

procedures we describe enable proving formulas that relate data structures implemented as

algebraic data types to their abstract values that specify the observable behavior of these data

types. They can thus increase the automation when verifying correctness of functional data

structures.
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2.3.1 Instances of our Decision Procedure

Our decision procedures for different fold functions follow the same pattern, so we talk about

them as instances of one generic decision procedure. The choice of the type of data stored in

the tree in each decision procedure instance is largely unconstrained; the procedures work for

any infinitely countable parameterized data type, which we will denote by E in our discussion

(it could be extended to finite data types using techniques from [KGGT07]). The decision

procedure is parameterized by:

1. an element type E ,

2. a collection type C , and

3. an abstraction function α

The abstraction function generalizes the content function in Figure 2.1. We require it to be a

catamorphism (generalized fold) [MFP91]. In the presentation, we focus on the case of binary

trees, so we require an abstraction function of the form

def α(t: Tree): C = t match {

case Leaf() ⇒ empty

case Node(l,e,r) ⇒ combine(α(l ), e, α(r ))

}

for some functions

empty : C combine : (C ,E ,C )→C

The generalization to recursive types other than trees is straightforward. The abstraction

function α is given by: for each constant in the term algebra ci , a function emptyi : C , and

for each constructor C( . . .)i , a function combine(α(. . .),α(. . .), . . .)i →C . A natural way to think

about catamorphisms is indeed to see their action as transforming their argument by rewriting

the constructor applications into function applications.

Figure 2.6 on page 20 summarizes some of the instances of our decision procedure. It shows

the type of the abstract value C , the definition of the functions empty and combine that define

the catamorphism, some of the operations available on the logic LC of C values, and points to

one of the references that can be used to show the decidability of LC . (The decision procedure

for LC is invoked as the last step of our decision procedure.) Figure 2.6 shows that our decision

procedure covers a wide range of collection abstractions of interest, as well as some other

relevant functions definable as folds. We describe some of these cases in more detail.

Set abstractions. The content function in Figure 2.1 is an example of a fold used as an

abstraction function. In this case, empty = ; and combine(t1,e, t2) = c1 ∪ {e}∪ c2. We found

this example to be particularly useful and well-behaved, so we refer to it as the canonical set

abstraction.
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object Lambda {
sealed abstract class Term
case class Var(id: ID) extends Term
case class App(fun: Term, arg: Term) extends Term
case class Abs(bound: ID, body: Term) extends Term

def free(t: Term): Set[ID] = t match {
case Var(id) ⇒ Set(id)
case App(fun, arg) ⇒ free(fun) ++ free(arg)
case Abs(bound, body) ⇒ free(body) -- Set(bound)

}
}

Figure 2.3 – Computing the set of free variables in a λ-calculus term.

The canonical set abstraction is not the only interesting abstraction function whose result is

a set. Figure 2.3 shows another example, where the fold free computes a set by adding and

removing elements as the tree traversal goes. Such abstraction function can then be used to

prove that, e.g., a rewriting step on a λ-calculus term does not increase the set of free variables

in the term.

Abstractions using multisets and lists. A set abstracts both the order and the multiplicity

(the number of occurrences) of elements in the data structure. A more precise abstraction is a

multiset (bag) (Figure 2.6), which preserves the multiplicity. Moreover, the decision procedure

for multisets [PK08a, PK08b] supports an abstraction function that abstracts a multiset into

the underlying set, which enables simultaneous use of trees, multisets and sets in the same

specification, giving a decision procedure for an interesting fragment of the tree-list-bag-set

hierarchy [HB94]. Even more precise abstractions of trees use lists, supporting any chosen

traversal order; they reduce to the decision procedure for the theory of lists (words) with

concatenation [Pla04].

Minimal element. Some useful abstractions map trees into a quantity rather than into a

collection. �ndMin in Figure 2.4 for instance is naturally expressed as a fold, and can be used to

prove properties of data structures which maintain invariants about the position of certain

particular elements (e.g. priority queues).

Sortedness of binary search trees. Fold functions can also compute properties about tree

structures which apply to the complete set of nodes and go beyond the expression of a con-

tainer in terms of another. Figure 2.5 shows the abstraction function sorted which, when

applied to a binary tree, returns a triple containing a lower and upper bound on the set of

elements, and a boolean indicating whether the tree is sorted. Although alternative specifica-

tions of sortedness are possible, this one directly conforms to the form of a fold function; at

17



Chapter 2. Reasoning with Abstraction Functions

object MinElement {
sealed abstract class Tree
case class Node(left: Tree, value: Int, right: Tree) extends Tree
case class Leaf() extends Tree

def �ndMin(t: Tree): Option[Int] = t match {
case Leaf() ⇒ None
case Node(l,v,r) ⇒ (�ndMin(l),�ndMin(r)) match {
case (None,None) ⇒ Some(v)
case (Some(vl),None) ⇒ Some(min(v, vl))
case (None,Some(vr)) ⇒ Some(min(v, vr))
case (Some(vl),Some(vr)) ⇒ Some(min(v, vl, vr))

}
}

}

Figure 2.4 – Using the minimal element as an abstraction.

object SortedSet {
sealed abstract class Tree
case class Leaf() extends Tree
case class Node(left: Tree, value: Int, right: Tree) extends Tree

def sorted(t: Tree): (Option[Int],Option[Int],Boolean) = t match {
case Leaf() ⇒ (None, None, true)
case Node(l, v, r) ⇒ (sorted(l),sorted(r)) match {
case ((_,_,false),_) ⇒ (None, None, false)
case (_,(_,_,false)) ⇒ (None, None, false)
case ((None,None,_),(None,None,_)) ⇒ (Some(v), Some(v), true)
case ((Some(minL),Some(maxL),_),(None,None,_))
if (maxL ≤ v) ⇒ (Some(minL),Some(v),true)

case ((None,None,_),(Some(minR),Some(maxR),_))
if (minR > v) ⇒
(Some(v), Some(maxR), true)

case ((Some(minL),Some(maxL),_), (Some(minR),Some(maxR),_))
if (maxL ≤ v && minR > v) ⇒ (Some(minL),Some(maxR),true)

case _ ⇒ (None,None,false)
}

}
}

Figure 2.5 – A fold that checks that a tree is sorted.

18



2.3. Recursive Abstraction Functions

the same time it is efficiently executable.

The code in Figure 2.5 allows for trees with repeated elements. By replacing the occurrences

of ≤ by the stricter < we obtain the definition of sorted trees with distinct elements, which

can also be handled by our decision procedure (the strict inequality turns out to be a more

complicated instance of the decision procedure, see Section 2.5.3).

This example also illustrates fold functions that return n-tuples, which is a useful strategy to

represent multiple mutually recursive functions. We will therefore assume that we work with a

single fold function in our decision procedure.
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C empty combine(c1,e,c2) abstract operations
(apart from ∧,¬,=)

complexity follows from

Set ; c1 ∪ {e}∪ c2 ∪,∩,\,cardinality NP [KR07]
Multiset ; c1 ] {e}] c2 ∩,∪,\,],setof,cardinality NP [PK08a, PK08b]
N 0 c1 +1+ c2 (size) +,≤ NP [Pap81]
Z 0 1+max(c1,c2) (height) +,≤ NP [Pap81]
List List() a) c1++ List(e)++ c2 (in-order) ++(concat),List(_)(singleton) PSPACE [Pla04]

List() b) List(e)++c1++ c2 (pre-order)
List() c) c1++ c2++ List(e) (post-order)

Tree Leaf Node(c2,e,c1) (mirror) Node,Leaf NP [Opp78]
Option None a) Some(e) Some,None NP [NO80]

None b) (computing minimum) see Figure 2.4 Some,None,+,≤, if NP [NO79, NO80, Pap81]
(Option,

Option,

Boolean)

(None,

None,

true)

c) (checking sortedness) see Figure 2.5

Figure 2.6 – Example instances of our decision procedure for different catamorphisms.
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2.4. The Decision Procedure

2.4 The Decision Procedure

To simplify the presentation, we describe our decision procedure for the specific algebraic data

type of binary trees, corresponding to the case classes in Figure 2.1. The procedure naturally

extends to data types with more constructors.

If t1 and t2 denote values of type Tree, by t1 = t2 we denote that t1 and t2 are structurally equal

that is, either they are both leaves, or they are both nodes with equal values and equal subtrees.

As far as soundness is concerned, we can leave the collection type C and the language LC of

decidable constraints on C largely unconstrained. As explained in Section 2.5, the conditions

for completeness are relatively easy to satisfy when the image are sets; they become somewhat

more involved for e.g. multisets and lists.

In our exposition, we use the notation

distinct(x1
1 , x1

2 , . . . , x1
I (1); . . . ; xn

1 , . . . , xn
I (n))

as a syntactic shorthand for the following conjunction of disequalities

n∧
i=1

n∧
j=i+1

I (i )∧
k=1

I ( j )∧
l=1

xi
k 6= x j

l

For example, distinct(x, y ; z) means x 6= z ∧ y 6= z, whereas distinct(x1; . . . ; xn) means that all xi

are different.

2.4.1 Overview of the Decision Procedure

We first give a high-level description of the decision procedure. For a conjunction φ of literals

over the theory of trees parametrized by LC and α:

1. apply purification to separate φ into φT ∧φB ∧φC where:

– φT contains only literals over tree terms

– φC contains only literals over terms from LC

– φB contains only literals of the form c =α(t ) where c is a variable from LC and t is a

tree variable

2. flatten all terms and eliminate the selectors left and right

3. apply unification on the tree terms, detecting possible unsatisfiability within the term

algebra theory

4. if unification did not fail, project the constraints on tree terms obtained from unification

to the formula φC in the collection theory, yielding a new formula φ′
C

5. establish the satisfiability of φ with a decision procedure for LC applied to φ′
C

As should be clear from this summary, the overall strategy is to reduce a formula over trees

and their abstract LC -values to a LC formula, for which a decision procedure is assumed
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Chapter 2. Reasoning with Abstraction Functions

T ::= t |Leaf |Node(T,E ,T ) | left(T ) | right(T ) Tree terms
C ::= c |α(t ) |TC C -terms

FT ::= T = T |T 6= T Equations over trees
FC ::= C =C |FC Formulas of LC

E ::= variables of type E

φ ::= ∧
FT ∧∧

FC Conjunctions
ψ ::= φ |¬φ |φ∨φ |φ∧φ |φ =⇒ φ |φ ⇐⇒ φ Formulas

TC and FC represent terms and formulas of LC respectively. Formulas are assumed to be
closed under negation.

Figure 2.7 – Syntax of the parametric logic.

�Node(T1,e,T2)� = Node(�T1�,�e�C ,�T2�)
�Leaf� = Leaf

�left(Node(T1,e,T2))� = �T1�
�right(Node(T1,e,T2))� = �T2�

�α(t )� given by the catamorphism
�T1 = T2� = �T1� = �T2�
�T1 6= T2� = �T1� 6= �T2�
�C1 =C2� = �C1�C = �C2�C

�FC � = �FC �C
�¬φ� = ¬�φ�

�φ1?φ2� = �φ1�? �φ2�
where ? ∈ {∨,∧, =⇒ , ⇐⇒ }

Figure 2.8 – Semantics of the parametric logic.

to be available. We next define our decision problem more precisely, then present the core

steps and show their soundness. Section 2.5 provides remaining subtle steps of the decision

procedure and proves its completeness for a certain class of abstraction functions.

2.4.2 Syntax and Semantics of our Logic

Figure 2.7 shows the syntax of our logic. Figure 2.8 describes its semantics. The description

refers to the catamorphism α, as well as the semantics � �C of the parameter theory LC .

2.4.3 Key Steps of the Decision Procedure

We describe a decision procedure for conjunctions of literals in our parametric theory. To lift

the decision procedure to formulas of arbitrary boolean structure, we can apply the DPLL(T )

approach [GHN+04].
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2.4. The Decision Procedure

Purification. In the first step of our decision procedure, we separate the conjuncts of our

formula into literals over tree terms on one side, literals of LC on the other side, and finally

the literals containing the catamorphism to connect the two sides. By the syntax of formulas, a

literal in the formula can only combine tree terms with terms of LC when the tree terms occur

as arguments of the abstraction functionα. It therefore suffices to replace all such applications

by fresh variables of LC and add the appropriate binding equalities to the formula:

FC ; tF = T ∧ cF =α(tF)∧FC [α(T ) 7→ cF]

In the rewrite rule above, T denotes any tree term, cF and tF are fresh in the new formula.

Flattening of tree terms. We then flatten tree terms in a straightforward way. If t and tF

denote tree variables, T1 and T2 non-variable tree terms and T an arbitrary tree term, we

repeatedly apply the following five rewrite rules until none applies (
.= denotes one of {=, 6=}):

T
.=Node(T1,E ,T2) ; tF = T1 ∧T

.=Node(tF,E ,T2)

T
.=Node(t ,E ,T2) ; tF = T2 ∧T

.=Node(t ,E , tF)

T
.= left(T1) ; tF = T1 ∧T

.= left(tF)

T
.= right(T1) ; tF = T1 ∧T

.= right(tF)

T1
.= t ; t

.= T1

t 6= T1 ; tF = T1 ∧ t 6= tF

where tF is always a fresh variable. It is straightforward to see that this rewriting always

terminates.

Elimination of selectors. The next step is to eliminate terms of the form left(t) and right(t).

We do this by applying the following rewrite rules:

t = left(t1) ; t1 =Node(tL,e, tR)∧ t = tL

t = right(t1) ; t1 =Node(tL,e, tR)∧ t = tR

Here we use an assumption that the original formula was well-typed, which ensures that

selectors are not applied to Leaf nodes. Again, e, tL and tR denote fresh variables of the proper

types.

These first three steps yield a normalized conjunctive formula where all literals are in exactly

one of following three categories:

– literals over tree terms, which are of one of the following forms:

t1 = t2, t =Node(t1,E , t2), t1 6= t2

(Note that disequalities are always between variables.)
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Chapter 2. Reasoning with Abstraction Functions

– binding literals, which are of the form:

c =α(t )

– literals over terms of LC , which do not contain tree variables or applications of α, and

whose specific form depends on the parameter theory LC .

Case splitting. For simplicity of the presentation, we describe our procedure non-determini-

stically by splitting the decision problem into a collection of problems of simpler structure (this

is a non-deterministic polynomial process). Consider the set {t1, . . . , tn ,Leaf} of tree variables

appearing in the normalized formula, augmented with the constant term Leaf. We solve the

decision problem for each possible partitioning of this set into equivalence classes. Let ∼
denote an equivalence corresponding to such a partitioning. We generate our subproblem by

adding to the original problem, for each pair of terms (Ti ,T j ) in the set, the constraint Ti = T j if

Ti ∼ T j , and Ti 6= T j otherwise. Consider now the set {e1, . . . ,em} of variables denoting elements

of type E . We again decompose our subproblem according to all possible partitionings over this

set, adding equalities and disequalities for all pairs (ei ,e j ) in the same way as for tree variables.

The original problem is satisfiable if and only if any of these subproblems is satisfiable. The

remaining steps of the decision procedure are applied to each subproblem separately.

Unification. At this point, we apply unification on the positive tree literals. Following [BS01],

we describe the process using inference rules consisting of transformations on systems. A

system is the pair, denoted P ;S, of a set P of equations to unify, and a set S of solution

equations. Equations range over tree variables and element variables. The special system ⊥
represents failure. The set of equations S has the property that it is of the form {t1 = T1, . . . , tn =
Tn ,e1 = ei , . . . ,em = e j }, where each tree variable ti and each element variable ei on the left-

hand side of an equality does not appear anywhere else in S. Such a set is said to be in

solved form, and we associate to it a substitution function σS . Over tree terms, it is defined by

σS = {t 7→ T | (t = T ) ∈ S}. The definition over element variables is similar. The inference rules

are the usual rules for unification adapted to our particular case, and are shown in Figure 2.9.

Any algorithm implementing the described inference system has the property that on a set

of equations to unify, it will either fail, or terminate with no more equations to unify and a

system ;;S describing a solution and its associate function σS .

If for any disequality ti 6= t j or ei 6= e j , we have that respectively σS(ti ) = σS(t j ) or σS(ei ) =
σS(e j ), then our (sub)problem is unsatisfiable. Otherwise, the tree constraints are satisfiable

and we move on to the constraints on the collection type C .

Normal form after unification. After applying unification, we can represent the original

formula as a disjunction of formulas in a normal form. Let σS be the substitution function
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TRIVIAL
T

?=T ∪P ′;S

P ′;S
SYMBOL CLASH

Leaf
?=Node( . . . )∪P ′;S

⊥

ORIENT
{T1

?= t }∪P ′;S T1 is not a variable

{t
?=T1}∪P ′;S

OCCURS CHECK
{t

?=T }∪P ′;S t appears in T but t 6= T

⊥

TERM VARIABLE ELIMINATION
{t

?=T }∪P ′;S t does not appear in T

P ′[t 7→ T ];S[t 7→ T ]∪ {t = T }

ELEMENT VARIABLE ELIMINATION
{e1

?=e2}∪P ′;S

P ′[e1 7→ e2];S[e1 7→ e2]∪ {e1 = e2}

DECOMPOSITION
{Node(T1,e,T2)

?=Node(T ′
1,e ′,T ′

2)}∪P ′;S

{T1
?=T ′

1,T2
?=T ′

2,e
?=e ′}∪P ′;S

Figure 2.9 – Unification Rules.
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obtained from unification. Let t̄ be the vector of n variables ti for which σS(ti ) = ti ; we call

such variables parameter variables. Let ū denote the vector of the remaining m tree variables;

for these variable σS(u j ) is an expression built from t̄ variables using Node and Leaf, they

are thus uniquely given as a function of parameter variables. By the symbol vi we denote a

term variable that is either a parameter variable ti or a non-parameter variable ui . Using this

notation, we can represent (a disjunct of) the original formula in the form:

ū = T̄ (t̄ )∧N (ū, t̄ )∧M(ū, t̄ , c̄)∧FE ∧FC (2.3)

where

1. T̄ are vectors of expressions in the language of algebraic data types, expressing non-

parameter term variables ū in terms of the parameter variables t̄ ;

2. N (ū, t̄) denotes a conjunction of disequalities of term variables ui , ti that, along with

T̄ , completely characterize the equalities and disequalities between the term variables.

Specifically, N contains:

(a) a disequality ti 6= t j for every pair of distinct parameter variables;

(b) a disequality ti 6= u j for every pair of a parameter variable and a non-parameter

variable for which the term T j (t̄ ) is not identical to ti

(c) a disequality ti 6= Leaf for each parameter variable ti .

Note that for the remaining pairs of variables ui and u j , either the equality holds and

Ti (t̄) = T j (t̄) or the disequality holds and follows from the other disequalities and the

fact that Ti 6= T j . Note that, if ū = u1, . . . ,um and t̄ = t1, . . . , tn , then the constraint N (ū, t̄ )

can be denoted by distinct(u1, . . . ,um ; t1; . . . ; tn ;Leaf);

3. M(ū, t̄ , c̄) denotes a conjunction of formulas ci =α(vi ) where vi is a term variable and

ci is a collection variable;

4. FE is a conjunction of literals of the form ei = e j and ei 6= e j for some element variables

ei ,e j ;

5. FC is a formula of the logic of collections (Figure 2.7).

Partial evaluation of the catamorphism. We next partially evaluate the catamorphism α

with respect to the substitution σS obtained from unification. More precisely, we repeatedly

apply the following rewriting on terms to terms contained in the subformula M(ū, t̄ , c̄):

α(u) ; α(σS(u))

α(Node(t1,e, t2)) ; combine(α(t1),e,α(t2))

α(Leaf) ; empty

After this transformation, α applies only to parameter variables. We introduce a variable ci of

LC to ensure that for each parameter ti we have an equality of the form ci =α(ti ), unless such

conjunct is already present. After adding conjuncts ci =α(ti ) we can replace all occurrences

26



2.4. The Decision Procedure

of α(ti ) with ci . We can thus replace, without changing the satisfiability of the formula (2.3),

the subformula M(ū, t̄ , c̄) with

M 1(t̄ , c̄)∧F 1
C

where M 1 contains only conjunctions of the form ci =α(ti ) and F 1
C is a formula in LC .

Example. This is a crucial step of our decision procedure, and we illustrate it with a simple

example. If ū = T̄ (t̄ ) is simply the formula u =Node(t1,e, t2), then a possible formula N is

distinct(t1; t2;u;Leaf)

A possible formula M is c =α(u)∧ c1 =α(t1). After the partial evaluation of the catamorphism

and introducing variable c2 for α(t2), we can replace M with

c1 =α(t1)∧ c2 =α(t2)∧ c = combine(c1,e,c2)

where we denote the first two conjuncts by M 1(c1,c2) and the third conjunct by F 1
C . (Here,

combine is an expression in LC defining the catamorphism.)

Normal form after evaluating catamorphism. We next replace ū by T̄ (t̄ ) in (2.3) and obtain

formula of the form

D ∧E (2.4)

where

1. D ≡ N (T̄ (t̄ ), t̄ )∧M 1(t̄ , c̄)

2. E ≡ FE ∧FC ∧F 1
C

Expressing existence of distinct terms. Note that E already belongs to the logic of collection

LC . To reduce (2.4) to a formula in LC , it therefore suffices to have a mapping from D to some

LC -formula DM . Observe that by using true as DM we obtain a sound procedure for proving

unsatisfiability. While useful, such procedure is not complete. To ensure completeness, we

require that D and DM are equisatisfiable. The appropriate mapping from D to DM depends on

LC , and the properties of α. In Section 2.5 we give such mappings that ensure completeness

for a number of logics LC and catamorphisms α.

Invoking decision procedure for collections. Having reduced the problem to a formula in

LC we invoke a decision procedure for LC .
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2.4.4 Soundness of the Decision Procedure

We show that each of our reasoning steps results in a logically sound conclusion. The sound-

ness of the purification and flattening steps is straightforward: each time a fresh variable is

introduced, it is constrained by an equality, so any model of the original formula will naturally

extend to a model for the rewritten formula which contains additional fresh variables. Con-

versely, the restriction of any model for the rewritten formula to the initial set of variables will

be a model for the original formula.

Our decision procedure relies on two case splittings. We will give an argument for the splitting

on the partitioning of tree variables. The argument for the splitting on the partitioning of

content variables is then essentially the same. Let us call φ the formula before case splitting.

Observe that for each partitioning, the resulting subproblem contains a strict superset of

the constraints of the original problem, that is, each subproblem is expressible as a formula

φ∧ψ, where ψ does not contain variables not appearing in φ. Therefore, if, for any of the

subproblems, there exists a model M such that M |= φ∧ψ, then M |= φ and M is also a

model for the original problem. For the converse, assume the existence of a model M for the

original problem. Construct the relation ∼ over the tree variables t1, . . . , tn of φ as follows:

ti ∼ t j ⇐⇒ M |= ti = t j

Clearly, ∼ is an equivalence relation and thus there is a subproblem for which the equality

over the tree variables is determined by ∼. It is not hard to see that M is a model for that

subproblem. It is therefore sound to reduce the satisfiability of the main problem to the

satisfiability of at least one of the subproblems.

Our unification procedure is a straightforward adaptation from a textbook exposition of the

algorithm and the soundness arguments can be lifted from there [BS01, Page 451].

The soundness of the evaluation of α follows from its definition in terms of empty and combine.

Introducing fresh variables ci in the form of equalities ci =α(ti ) is again sound, following the

same argument as for the introduction of tree variables during flattening. The subsequent

replacement of terms of the form α(ti ) by their representative variable ci is sound: any model

for the formula without the terms α(ti ) can be trivially extended to include a valuation for

them. Finally, the replacement of the tree variables ū by the terms T̄ (t̄) is sound, because

unification enforces that any model for the formula before the substitution must have the

same valuation for ui and the corresponding term Ti . Therefore, there is a direct mapping

between models for the formula before and after the substitution.

2.4.5 Complexity of the Reduction

Our decision procedure reduces formulas to normal form in non-deterministic polynomial

time because it performs guesses of equivalence relations on polynomially many variables,

runs the unification algorithm, and does partial evaluation of the catamorphism at most once
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for each appropriate term in the formula. The reduction is therefore in the same complexity

class as the pure theory of algebraic data types [BST07]. In addition to the reduction, the overall

complexity of the decision problem also depends on the formula DM , and on the complexity

of solving the resulting constraints in the collection theory.

2.5 Completeness

We next describe the strategy for computing the formula DM from Section 2.4 for a broad class

of catamorphisms. We prove that a computation following our strategy results in a sound and

complete overall decision procedure.

2.5.1 Canonical Set Abstraction

We first give a complete procedure for the canonical set abstraction, where C is the structure

of all finite sets with standard set algebra operations, and α is given by

empty=;
combine(c1,e,c2) = c1 ∪ {e}∪ c2

Observations aboutα. Note that, for each term t 6= Leaf,α(t ) 6= ;. Let e ∈ E and consider the

set S =α−1({e}) of terms that map to {e}. Then S is the set of all non-leaf trees that have e as

the only stored element, that, is, S is the least set such that

1. Node(Leaf,e,Leaf) ∈ S, and

2. t1, t2 ∈ S =⇒ Node(t1,e, t2) ∈ S.

Thus, α−1({e}) is infinite. More generally, α−1(c) is infinite for every c 6= ;, because each tree

that maps into a one-element subset of c extends into some tree that maps into c.

Expressing existence of distinct terms using sets. We can now specify the formula DM that

is equisatisfiable with the formula D in (2.4).

Definition 2.1. If c1, . . . ,cn are the free set variables in D, then (for theory C and α given above)

define DM as

n∧
i=1

ci 6= ;

To argue why this simple choice of DM gives a complete decision procedure, we prove the

following.

Lemma 2.2. Let D0 be a conjunction of n disequalities of terms built from tree variables

t1, . . . , tm and symbols Node,Leaf. Suppose that D0 does not contain a trivial disequality T 6= T
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for any term T . If A1, . . . , Am are sets of trees such that |A j | > n for all 1 ≤ j ≤ m, then D0 has a

satisfying assignment such that for each j , the value t j belongs to A j .

Proof. We first show that we can reduce the problem to a simpler one where the disequalities

all have the form ta 6= Tb , then show how we can construct a satisfying assignment for a

conjunction of such disequalities.

We start by rewriting each disequality Ti 6= Ti
′ in the form:

¬

 . . .

∧ ta =Ca(ta1, . . . , taka )

∧ . . .


where the conjunction of equalities is obtained by unifying the terms Ti and Ti

′. The con-

junction is non-empty because the statement of the lemma assumes that Ti and Ti
′ are not

syntactically identical. Here, the expressions of the form Ca(ta1, . . . , taka ) denote terms built

using Node, Leaf and the variables ta1, . . . , taka , where each of the variables appears at least

once in the term. After applying this rewriting to all disequalities and converting the resulting

formula to disjunctive normal form, we obtain a problem of the form∨
s

Ls1 ∧ . . .∧Lsn

Note that in each conjunction, there is exactly one conjunct of the form ta 6=Ca(ta1, . . . , taka )

for each of the n disequalities Ti 6= Ti
′ of the original problem. Notice as well that each variable

ta can be on the left-hand side of several disequalities in the same conjunction. From the form

of the equations obtained using unification, we know that the set of variables {ta1, . . . , taka }

never contains ta . This formula is logically equivalent to the original one from the statement

of the lemma. To show that it is satisfiable, we pick an arbitrary disjunct and show that it is

satisfiable.

We construct a satisfying assignment for such a conjunction as follows. For the first step,

we start by collecting in a set P1 all disequalities of the form t1 6= T , where T is a ground

term. (Note that P1 may be empty.) We pick for t1 a value T1 in A1 different from all such T s.

This is always possible because there are n disequalities in the conjunction and |A1| > n. We

substitute in the entire formula T1 instead of t1. Because t1 cannot appear on both left and

right-hand side of an equation, in the resulting formula, all ground disequalities result from

the grounding of the disequalities in P1 and reduce to true. We eliminate the disequalities of

P1 from the set of disequalities.

For all indices j ∈ {2, . . . ,m} do the following. Collect the set P j of all disequalities of the

form t j 6= T and T 6= C (t j ) (in the second form, C (t j ) denotes a term built with Leaf, Node,

at least one occurrence of t j , and no other variable). There are clearly no more than n such

disequalities in P j . For each of these disequality literals Lk , there is at most one value v j
k for

t j which contradicts it: it is either the ground term T or its subterm. Because |A j | > n, there
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exists a term T j ∈ A j \ {v j
k }k . Substitute T j instead of t j in the entire conjunction. This ensures

that all disequalities in P j hold. Remove the disequalities in P j from the conjunction. We then

proceed with t j+1. The procedure terminates in m steps with an assignment mapping t j to T j

for 1 ≤ j ≤ m. Moreover, at this point there are no ground equations left and no variables left,

so all conjuncts have been eliminated and satisfied.

Remark. Lemma 2.2 above is a strengthening of the Independence of Disequations Lemma

[CD94, Page 178], [Mal71]. Namely, the statement in [CD94, Page 178] requires the sets A j to

be infinite, whereas we showed above (using a new, more complex proof) that it suffices for A j

to have more elements than there are disequalities. While the original weaker version suffices

for Lemma 2.3, we need our stronger statement in Section 2.5.3.

Lemma 2.3. For C denoting the structure of finite sets andα given as above, ∃t̄ : D is equivalent

to DM .

Proof. Let t̄ be t1, . . . , tn . Fix values c1, . . . ,cn . We first show ∃t̄ : D implies DM . Pick values

t1, . . . , tn for which D holds. Then ti 6= Leaf holds because this conjunct is in D. Therefore,

α(ti ) 6= ; by the above observations aboutα. Because ci =α(ti ) is a conjunct in D , we conclude

ci 6= ;. Therefore, DM holds as well.

Conversely, suppose DM holds. This means that ci 6= ; for 1 ≤ i ≤ n. Let Ai = α−1(ci ) for

1 ≤ i ≤ n. Then the sets Ai are all infinite by the above observations about α. By Lemma 2.2

there are values ti ∈ Ai for 1 ≤ i ≤ n such that the disequalities in N (T̄ (t̄ ), t̄ ) hold. By definition

of Ai , M 1(t̄ , c̄) is also true. Therefore, D is true in this assignment.

Complexity for the canonical set abstraction. We have observed earlier that the reduction

to LC is an NP process. There are several decision procedures that support reasoning about

sets of elements and support standard set operations. One of the most direct approaches

to obtain such a decision procedure [KR05] is to use an encoding into first-order logic, and

observe that the resulting formulas belong to the Bernays-Schönfinkel-Ramsey class of first-

order logic with a single universal quantifier. Checking satisfiability of such formulas is NP-

complete [BGG97]. It is also possible to extend this logic to allow stating that two sets have

the same cardinality, and the resulting logic is still within NP [KR07]. Because the reduction,

the generation of DM and the decision problem for LC are all in NP, we conclude that the

decision problem for algebraic data types with the canonical set abstraction belongs to NP.

2.5.2 Infinitely Surjective Abstractions

The canonical set abstraction is a special case of what we call infinitely surjective abstractions,

for which we can compute the formula DM .
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Definition 2.4 (Infinitely Surjective Abstraction). If S is a set of trees, we call a domain C and

a catamorphism α an infinitely surjective S-abstraction if and only if

– α−1(α(t )) is finite for t ∈ S,

– α−1(α(t )) is infinite for t ∉ S,

– there exists a formula M in the collection theory such that M(c) iff α−1(c) is infinite.

The canonical set abstraction is an infinitely surjective {Leaf}-abstraction, with M ≡ c 6= ;.

Other infinitely surjective {Leaf}-abstractions are the tree size abstraction, which for a given

tree computes its size as the number of internal nodes, the tree height abstraction, and the

sortedness abstraction of Figure 2.5.

An example of infinitely surjective ;-abstractions is the function vars(t ) that computes the set

of free variables in an abstract syntax tree t representing a lambda expression or a formula.

Indeed, for each finite set s of variables (including s =;), there exist infinitely many terms t

such that vars(t ) = s.

We can compute DM for an infinitely surjective S-abstraction whenever S is finite. The general

idea is to add the elements T1, . . . ,Tm of S into the unification algorithm and guess arrange-

ments over them. This will ensure that, in the resulting formula, the terms containing variables

are distinct from all Ti . The formula DM then states the condition
∧

t∈S ci 6=α(t ). For any term

T that is guessed not be equal to any element of S, we add the atom M(α(T )) to the formula.

We omit the details, as we will later present a more general construction, but we note that the

above algorithm for {Leaf}-abstractions also works for ;-abstractions.

2.5.3 Sufficiently Surjective Abstractions

We next present a more general completeness result, which requires collections to be classified

either as being an image of sufficiently many terms, or as having one of finitely many shapes.

Definition 2.5 (Tree Shape and Size). Let SLeaf be a new constant symbol and SNode(t1, t2) a

new constructor symbol. The shape of a tree t , denoted ²(t ), is a ground term built from SLeaf

and SNode(_,_) as follows:

²(Leaf) = SLeaf

²(Node(T1,e,T2)) = SNode(²(T1),²(T2))

We define the size of a shape as:

size(SLeaf) = 0

size(SNode(s1, s2)) = 1+ size(s1)+ size(s2)

By extension, we define the size of a tree t to be the size of its shape.

Definition 2.6 (Shape Instantiation). The instantiation of the shape of a tree t produces a copy
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of t where the values stored in the nodes are replaced by fresh variables:

inst(t , i ) = inst′(t , i ,1)

inst′(SNode(s1, s2), i , j ) = Node(inst′(s1, i ,1+ j ), v i
j , inst′(s2, i ,1+ j + size(s1)))

inst′(SLeaf, i , j ) = Leaf

In the instantiation function, i determines the names of the fresh variables: the variables

introduced by the instantiation inst(s, i ) range from v i
1 to v i

size(s). Consequently, if i 6= j , then

the terms inst(t , i ) and inst(t , j ) have no common variables. Note that for an abstraction

function α and a tree shape s, the term α(inst(s, i )) contains no tree variables, so it can be

rewritten (by completely evaluating α) into a term in the collection theory with the free

variables v i
1, . . . , v i

size(s). Note finally that for every tree term T , the formula inst(²(T ), i ) = T is

satisfiable.

Definition 2.7 (Sufficient Surjectivity). We call an abstraction function sufficiently surjective

if and only if, for each natural number p > 0 there exist, computable as a function of p,

– a finite set of shapes Sp

– a closed formula Mp in the collection theory such that Mp (c) implies |α−1(c)| > p

such that, for every term t, Mp (α(t )) or ²(t ) ∈ Sp .

Note that Mp can introduce fresh variables as long as it is existentially closed and the decision

procedure for the collection theory can handle positive occurrences of existential quantifiers.

The definition above implies:

lim
p→∞ inf

²(t )∉Sp

|α−1(α(t ))| =∞

We now show how we can build a formula DM equisatisfiable with the formula D of (2.4)

provided the aforementioned assumptions hold. We keep the notational convention that the

parameter variables t̄ range from t1 to tn and that the terms T̄ (t̄) built around them range

from T1(t̄ ) to Tm(t̄ ). We also assume that for all variables ti , the conjunct ci =α(ti ) is present

in D. This is consistent with the normal form we presented earlier, up to renaming of the

variables.

In the following we take p = (n
2

)+n ·m, where n is the dimension of the vector of term variables

in t̄ in D, and m is the dimension of the vector T̄ (t̄) for derived terms in D. Consider the

formula:

P ≡
n∧

i=1

(
Mp (ci )∨ ∨

s∈Sp

inst(s, i ) = ti

)

∧
m∧

j=1

(
Mp (α(T j (t̄ )))∨ ∨

s∈Sp

inst(s, j +n) = T j (t̄ )

)
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Note that α(T j (t̄)) can be rewritten as a term in the collection theory using the variables c̄.

Note that existentially quantifying P over the variables introduced by inst gives a formula that

is always true, by the assumptions on Mp and Sp . Let P ′ be the disjunctive normal form of P .

For every disjunct P d of P ′, observe that for each ti , either Mp (α(ti )) is a conjunct of P d , or

inst(s, i ) = ti is a conjunct for exactly one s in Sp . The same observation holds for the terms

T j (t̄ ).

We proceed as follows for each disjunct P d of P ′. We run unification over the equalities

between terms. This can either result in a clash (because the shape assigned to a term T j (t̄)

is in contradiction with the shapes assigned to the variables of t̄ ), or produce new equalities

between the freshly introduced element variables v . If there was a clash, we simply replace

P d by false and eliminate it from the formula. Otherwise, we add to P d the new equalities

produced by unification, yielding a disjunct P d
U .

We next add additional conjuncts to P d
U to obtain a formula Dd equisatisfiable with D ∧P d

U , as

follows. Recall that D contains conjuncts of the forms:

• ti 6= t j as part of N (T̄ (t̄ ), t̄ ),

• ti 6= T j (t̄ ) as part of N (T̄ (t̄ ), t̄ ), and

• ci =α(ti ) as part of M 1(t̄ , c̄).

Initially, we set Dd to be the formula P d
U . Then, for each disequality T 6= T ′ in D (where T and

T ′ can represent either variables or constructed terms), if in P d
U we have inst(s, i ) = T and

inst(s, j ) = T ′ for the same shape s, we add as a conjunct to Dd the disjunction
∨

1≤k≤size(s) v i
k 6=

v j
k . Finally, we replace in Dd all the equalities of the form inst(s, i ) = T by α(inst(s, i )) =α(T ).

As we already observed, α(inst(s, i )) can always be rewritten to a term in the collection theory

by evaluating α. In the case where T is a variable ti , α(T ) is simply ci . If it is a term T j (t̄ ), α(T )

can be rewritten in terms of c̄ by partially evaluating α.

The resulting formula DM is
∨

d Dd . We claim that DM is equisatisfiable with D .

Proof. (Preliminary transformations) Conjoining P to D does not change the satisfiability

of the formula, and neither does the transformation to disjunctive normal form, so D is

equisatisfiable with D ∧∨
p P d . The unification procedure is equivalence preserving, so the

formula after unification is still equisatisfiable. It therefore suffices to show that D ∧P d
U is

equisatisfiable with Dd .

(From trees to collections) First, observe that Dd is a consequence of D ∧P d
U . Indeed,

∨
v i

k 6= v j
k

follows from T 6= T ′, inst(s, i ) = T , and inst(s, j ) = T ′. Also, α(inst(s, i )) = α(T ) follows from

inst(s, i ) = T , and partial evaluation of α is equivalence preserving. Therefore, if D ∧P d
U has

a model, then Dd as a consequence holds in this model. Thus Dd has a model. It remains to

show the converse.

(From collections to trees) Assume M is a model for Dd , which specifies the values for element
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and collection variables. We construct an extension of M with values for tree variables t̄ such

that D ∧P d
U holds.

For those terms T for which P d
U contains a conjunct inst(s, i ) = T , we assign T to be the value

of inst(s, i ) in M (indeed, M specifies the values of all free variables v i
j in inst(s, i )). In this

assignment, the literals in P d
U of the form α(T ) = ci are true for such terms T . Furthermore, all

disequalities between such terms hold. Indeed, terms of different shape are distinct, and for

terms of equal shape the formula Dd contains a disjunct
∨

v i
k 6= v j

k ensuring that the terms

differ in at least one element.

It remains to define values for the trees T for which P d
U does not contain a conjunct of the form

inst(s, i ) = T in such a way that the literals containing these trees are true. These are disequality

literals, as well as literals of the form α(T ) = ci , when T is a variable ti . For each such tree T ,

the formula P d
U contains the conjunct Mp (α(T )), by construction of the disjunctive normal

form. From the assumptions on Mp , from Mp (α(T )) we conclude |α−1(α(T ))| > p. Therefore,

there are at least p +1 trees Tk such that α(Tk ) = α(T ). The number of disequalities in D is

at most
(n

2

)+n ·m. Because p = (n
2

)+n ·m, we can apply Lemma 2.2 to choose values for (at

most) n trees satisfying (at most) p disequations from sets of size at least p +1. This choice of

trees completes the assignment for the remaining tree variables such that all conjuncts of Dd

hold.

Model construction. Lemma 2.2 is constructive, so the proof above also gives model con-

struction whenever 1) the underlying decision procedure for the collection provides model

construction, and 2) there is an algorithm to compute, for each c where Mp (c), a finite set of

containing p elements t such that α(t ) = c.

Worst-case complexity of the decision problem. The reduction from the starting formula

to the theory of collections is a non-deterministic polynomial-time algorithm that invokes

the computation of the set Sp and the formula Mp . When Sp and Mp can be computed in

polynomial time, then each of the disjuncts considered is of polynomial size. Our decision

procedure is this case an NP reduction. This case applies to the three examples below. When

the satisfiability for the collection theory is in NP (e.g. for multisets and sortedness), the overall

satisfiability problem is also in NP.

2.5.4 Application to Multisets, Lists, and Sortedness

We now show that the list and multiset abstraction are sufficiently surjective abstractions, as

is the sortedness abstraction for trees with distinct elements. (The set of these examples is

not meant to be exhaustive.) In the following, let Cn denote the number of binary trees with

n elements, and let Km denote a its inverse, that is, the smallest natural number n such that

Cn > m. The functions Cn and Km are monotonic and computable.
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Lists. Consider the catamorphism for infix traversal of the tree, for which we have empty=
List() and combine(c1,e,c2) = c1++List(e)++c2. (Catamorphisms for pre-order and post-order

traversal can be handled analogously.) We can use the following definitions for Sp and Mp :

– Sp = {s | size(s) < Kp }

– Mp (c) ≡∃e1, . . . ,eKp : ∃c ′ : c = List(e1, . . . ,eKp ) ++ c ′

Sp is the set of shapes with less than Kp nodes, while Mp (c) expresses that the list c has at least

Kp elements, so clearly for any tree t , either its shape ²(t ) in is Sp , or it has more than Kp nodes

and therefore Mp (α(t )) holds. Finally, observe that for a list c of n elements, α maps exactly

Cn distinct trees to c. Therefore, for any c such that Mp (c) holds, we have |α−1(c)| =CKp , and

CKp > p by construction. Therefore, the infix traversal abstraction is sufficiently surjective and

our completeness argument applies.

Multisets. Consider the multiplicity-preserving multiset abstraction, which is given by

empty=; and combine(c1,e,c2) = c1 ] {e}] c2. We then take

– Sp = {s | size(s) < Kp }

– Mp (c) ≡∃e1, . . . ,eKp : ∃c ′ : c = {e1, . . . ,eKp }] c ′

For a multiset c with n elements (counting repetitions), there are at least Cn trees mapped by

α to c, so the same argumentation as for lists applies.

Sortedness. Finally, consider the abstraction function described in Section 2.3.1 that checks

the sortedness of trees. We mentioned in Section 2.5.2 that the version which allowed repeated

elements is infinitely surjective. In contrast, in the case where the elements of the trees have

to be distinct, it is not infinitely surjective. The reason is that the catamorphism also com-

putes the minimal and maximal elements of the tree, and there are only finitely many sorted

trees with distinct elements between a given minimum and maximum. The catamorphism is

nevertheless sufficiently surjective. Indeed, we can take

– Sp = {s | size(s) < Kp }

– Mp ((a,b,ς)) ≡ 1+b −a ≥ Kp

where (a,b,ς) is the triple of the minimum, the maximum, and the sortedness of the tree, as

computed by the catamorphism. Here, Mp essentially says that the range of values in the tree

is sufficiently wide, so that enough distinct trees mapping to (a,b,ς) can be constructed.

In conclusion, the catamorphisms that map trees into lists, multisets, or sortedness property

are also instances for which our decision procedure is complete.

2.5.5 A Note on Surjectivity

We should note that, despite their names, definitions 2.4 and 2.7 do not actually imply that α

is a surjective function.

As an example, let α be the height abstraction, mapping trees into integers (Z). From our
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definitions, height is an infinitely surjective {Leaf}-abstraction, with M ≡ c ≥ 0. Just like any

infinitely surjective abstraction, height is also sufficiently surjective. We can take, for any p,

Sp ≡ SLeaf and Mp ≡ M . However, height is not surjective with respect to Z, as there exist

integers outside of the image of α. Indeed, no tree is mapped by α into a negative number.

The decidability result presented in this chapter is valid independently of the actual surjectivity

of α. Intuitively, by introducing Mp , the decision procedure essentially limits the search for

models to collection elements that are within the image of α.

2.6 Related Work

The results in this chapter were first described in [SDK10].

We have presented a non-deterministic description of our decision procedure. Our own imple-

mentation of the procedure does not follow the exact steps described in sections 2.4 and 2.5,

although the completeness arguments are important to understand why the implementation

is a valid (see Chapter 3). The group of Michael Whalen at the University of Minnesota have

independently implemented a version of our procedure as an extension of the OpenSMT

solver [HSWP12, BPST10], and used it to prove properties about network guards, applications

that filter messages based on declarative rules.

One reason why we find our result useful is that it can leverage a number of existing decidability

results. In [BST07], the authors present an abstract approach that can be used to obtain

efficient strategies for reasoning about algebraic data types (without abstraction functions).

For reasoning about sets and multisets one expressive approach is the use of the decidable

array fragment [BM07]. Optimal complexity bounds for reasoning about sets and multisets

in the presence of cardinality constraints have been established in [KR07, PK08b]. Building

on these results, extensions to certain operations on vectors has been presented in [Mai09].

Reasoning about lists with concatenation can be done using Makanin’s algorithm [Mak77]

and its improvements [Pla04]. A different class of constraints uses rich string operations but

imposes bounds on string length [BTV09]. Researchers have identified a number of laws in the

area of manual program derivation, including laws that relate trees, lists, bags, and sets [HB94].

Our work can be viewed as a step towards automating some of these laws. Another example

in this direction is the combinatory array logic [dMB09], which supports map operations on

arrays but does not support the cardinality operator.

Our parameterized decision procedure is an example of an approach to combine logics (e.g.

the logic of algebraic data types and a logic of collections). Standard results in this field are

Nelson-Oppen combination [NO79]. Nelson-Oppen combination is not sufficient to encode

catamorphisms because the disjointness conditions are not satisfied, but is very useful in

obtaining interesting decidable theories to which the catamorphism can map an algebraic

data type; such compound domains are especially of interest when using catamorphisms to

encode invariants. There are combination results that lift the stable infiniteness restriction of
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the Nelson-Oppen approach [TZ03, KGGT07, Fon07] as well as disjointness condition subject

to a local finiteness condition [Ghi04]. An approach that allows theories to share set algebra

with cardinalities is presented in [WPK09]. None of these results by itself handles the problem

of reasoning about a catamorphism from the theory of algebraic data types. That said, our

canonical set abstraction of algebraic data types is a new BAPA-reducible theory that fits into

the framework [WPK09].

A technique for connecting two theories through homomorphic functions has been explored

in [BG05]. We were not able to derive our decision procedure from [BG05], because the com-

bination technique in [BG05] requires the homomorphism to hold between two copies of

some shared theoryΩ0 that is locally finite, but our homomorphisms (i.e. catamorphisms) are

defined on term algebras, which are not locally finite.

Related to our partial evaluation of the catamorphism is the phenomenon of local theory

extensions [IJSS08], where axioms are instantiated only to terms that already exist syntactically

in the formula. In our case of tree data types, the decision procedure must apply the axioms

also to some consequences of the formula, obtained using unification, so the extented version

of the local theory framework is needed. Concurrently with our result, the machinery of local

theory extensions has been extended to certain homomorphisms in term algebras [SS09],

although without considering homomorphisms that compute sets, multisets, or lists. We

plan to investigate unifying the results in [SS09] with our notion of sufficiently surjective

abstraction.

The proof decidability for term powers [KR03] introduces homomorphic functions that map

a term into 1) a simplified “shape” term that ignores the stored elements and 2) the set of

elements stored in the term. However, this language was meant to address reasoning about

structural subtyping and not transformation of algebraic data types. Therefore, it does not

support the comparison of the set of elements stored in distinct terms, and it would not be

applicable to the verification conditions we consider in this thesis. Furthermore, it does not

apply to multisets or lists.

In [ZSM06] researchers describe a decision procedure for algebraic data types with size con-

straints and in [MSZ07] a decision procedure for trees with numeric constraints that model

invariants of red-black trees. Our decision procedure supports reasoning about not only size,

but also the content of the data structure. We remark that [ZSM06] covers also the case of a

finite number of atoms, whereas we have chosen to focus on the case of infinite set of elements

E . Term algebras have an extensively developed theory, and enjoy many desirable properties,

including quantifier elimination [Mal71, Hod93]; quantifier elimination also carries over to

many extensions of term algebras [CD94, KR03, RV01, ZSM06, ZSM05]. Note that in examples

such as multisets with cardinality, we cannot expect quantifier elimination to hold because

the quantified theory is undecidable [PK08a, Section 6].

Some aspects of our decision procedure are similar to folding and unfolding performed when

using types to reason about data structures [RKJ08, KRJ09, WM00, NDQC07, Xi03]. One of
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our goals was to understand the completeness or possible sources of incompleteness of such

techniques. We do not aim to replace the high-level guidance available in such successful

systems, but expect that our results can be used to further improve such techniques.

Several decision procedures are suitable for data structures in imperative programs [LQ06,

LQ08, MN05, WKL+06, MS01]. These logics alone fail to describe algebraic data types because

they cannot express extensional equality and disequality of entire tree data structure instances,

or the construction of new data structures from smaller ones. Even verification systems

reason about imperative programs [BFL+11, BHS07, Kun07, ZKR08] typically use declarative

constructs and data types within specification annotations. Our decision procedure extends

the expressive power of imperative specifications that can be handled in a predictable way.

The SMT-LIB standard [BdMR+10] for SMT provers currently does not support algebraic data

types, even though several provers support it in their native input languages [BT07, dMB08b].

By providing new opportunities to use decision procedures based on algebraic data types, our

results present a case in favor of incorporating such data types into standard formats. Our

new decidability results also support the idea of using rich specification languages that admit

certain recursively defined functions.

2.7 Conclusions

This chapter introduced a decision procedure that extends the well-known decision procedure

for algebraic data types. The extension enables reasoning about the relationship between the

values of the data structure and the values of a recursive function (catamorphism) applied to

the data structure. The presence of catamorphisms gives great expressive power and provides

connections to other decidable theories, such as sets, multisets, lists. It also enables the

computation of certain recursive invariants. Our decision procedure has several phases: the

first phase performs unification and solves the recursive data structure parts, the second

applies the recursive function to the structure generated by unification. The final phase is

more subtle, is optional from the perspective of soundness, but ensures completeness of the

decision procedure.

Automated decision procedures are widely used for reasoning about imperative programs.

Functional programs are claimed to be more amenable to automated reasoning—this was

among the original design goals of functional programming, and has been supported by

experience from type systems and interactive proof assistants. Our decision procedure further

supports this claim, by showing a wide range of properties that can be predictably proved

about functional data structures.
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3 Satisfiability Modulo Recursive Func-
tions

This chapter introduces a semi-decision procedure for checking satisfiability of expressive

correctness properties of recursive first-order functional programs. Our procedure is sound for

counterexamples and for proofs of terminating functions. It is terminating and thus complete

for many important classes of specifications, including all satisfiable formulas and all formulas

where recursive functions are surjective and satisfy the criteria described in Chapter 2. We

implemented our procedure and integrated it with the Z3 SMT solver and the Scala compiler.

Using our system, Leon, we verified detailed correctness properties of functional data structure

implementations, as well as syntax tree manipulations. We have found Leon to be fast both

for finding counterexamples and for finding correctness proofs. The algorithm presented in

this chapter is also at the core of Kaplan, our declarative programming language described in

Chapter 5.

3.1 Introduction

This chapter explores the problem of reasoning about functional programs. We reduce this

problem to solving constraints representing precisely program semantics.

Our technique extends SMT solvers with recursive function definitions, so it can be used

for all tasks where SMT solvers are used, including verification of functional and imperative

programs, synthesis, and test generation. In this chapter we introduce this technique and its

concrete implementation as a verifier, named Leon, for a functional subset of Scala [OSV11].

Leon enables the developer to state the properties as pure Scala functions and compile them

using the standard Scala compiler.

Leon generates verification conditions that enforce:

1. that the functions meet their contracts,

2. that the preconditions at all function invocations are met, and that

3. the pattern-matching is complete for given preconditions.

Note that, to define an external property of a set of functions, the developer can write a
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boolean-valued test function that invokes the functions of interest, and state a contract that

the function always returns true. This approach is similar to, for instance, the one taken in the

ACL2 system [KMM00, CDMV11]. Leon searches in parallel for proofs and counterexamples

for all generated verification conditions.

The technical core of this chapter is an algorithm for combined proof and counterexample

search, as well as a theoretical and experimental analysis of its effectiveness. We establish that

our satisfiability procedure is:

1. sound for models: every model it returns makes the formula true,

2. terminating for all formulas that are satisfiable,

3. sound for proofs: if it reports UNSAT, then there are no models,

4. terminating for sufficiently surjective abstractions, whenever they are actually surjective,

or when their co-domain can be described effectively,

5. satisfying the above properties if the declared functions are always terminating; more

generally, UNSAT implies no “terminating models”, moreover, each returned model

leads to true.

In addition to the presentation of our satisfiability procedure, we describe the implementation

of our system, called Leon, as a plugin for the Scala compiler. The system integrates with the

SMT solver Z3 [dMB08b]. We present our results in verifying over 60 functions manipulating

integers, sets, and algebraic data types, with detailed invariants of complex data structures

such as red-black trees and amortized heap, and user code such as syntax tree manipulation.

Leon verified detailed correctness properties about the content of data as well as completeness

of pattern-matching expressions.

We have found that Leon is fast for finding both counterexamples and proofs for verification

conditions. We thus believe that the algorithm holds great promise for practical verification

of complex properties of computer systems. Leon and all benchmarks are available from

http://lara.epfl.ch. An additional testament to the applicability of Leon is its use as part of

Kaplan, described in Chapter 5: our experiences with Kaplan directly rely on the efficiency of

Leon.

3.2 Examples

We now illustrate how Leon can be used to prove interesting properties about functional

programs. Consider the following recursive datatype that represents formulas of propositional

logic:

sealed abstract class Formula
case class And(lhs: Formula, rhs: Formula) extends Formula
case class Or(lhs: Formula, rhs: Formula) extends Formula
case class Implies(lhs: Formula, rhs: Formula) extends Formula
case class Not(f: Formula) extends Formula
case class PropVar(id: Int) extends Formula
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We can write a recursive function that simplifies a formula by rewriting implications into

disjunctions as follows:

def simplify(f: Formula): Formula = (f match {

case And(lhs, rhs) ⇒ And(simplify(lhs), simplify(rhs))

case Or(lhs, rhs) ⇒ Or(simplify(lhs), simplify(rhs))

case Implies(lhs, rhs) ⇒ Or(Not(simplify(lhs)), simplify(rhs)) // note the replacement

case Not(f) ⇒ Not(simplify(f))

case PropVar(_) ⇒ f

}) ensuring(isSimpli�ed(_))

Here, isSimpli�ed is a function that checks whether a given formula contains an implication as a

subformula, and use it in a contract. The ensuring statement in the example is a postcondition

written in Scala notation, stating that the function isSimpli�ed evaluates to true on the result.

We define isSimpli�ed recursively as follows:

def isSimpli�ed(f: Formula): Boolean = f match {

case And(lhs, rhs) ⇒ isSimpli�ed(lhs) && isSimpli�ed(rhs)

case Or(lhs, rhs) ⇒ isSimpli�ed(lhs) && isSimpli�ed(rhs)

case Implies(_,_) ⇒ false
case Not(f) ⇒ isSimpli�ed(f)

case PropVar(_) ⇒ true
}

Note that one would also typically write such an executable specification function for testing

purposes. Using our procedure for satisfiability modulo computable functions, Leon can prove

that the postcondition of simplify is satisfied for every input formula f.

Such subsets of values denoted by algebraic data types are known as refinement types [FP91].

Refinement types that are defined using functions such as isSimpli�ed are sufficiently surjective

abstractions, as we have seen in Chapter 2, and our satisfiability procedure acts as a decision

procedure for such constraints (see Section 3.4.1).

Suppose now that we wish to prove that simplifying a simplified formula does not change

it further. In other words, we want to prove that the property simplify(simplify(f))==simplify(f)

holds for all formulas f. Because our programming and specification languages are identical,

we can write such universally quantified statements as functions that return a boolean and

whose postcondition is that they always return true. In this case, we would write:

def simplifyIsStable(f: Formula) : Boolean = {simplify(simplify(f)) == simplify(f)} holds

Because such specifications are common, we use the notation holds instead of the more

verbose postcondition stating that the returned result should be an identity function with

boolean argument ensuring(res⇒res). Our verification system proves this property instantly.

Another application for our technique is verifying that pattern-matching expressions are

defined for all cases. Pattern-matching is a very powerful construct commonly found in
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functional programming languages. Typically, evaluating a pattern-matching expression on a

value not covered by any case raises a runtime error. Because checking that a match expression

never fails is difficult in non-trivial cases (for instance, in the presence of guards), compilers in

general cannot statically enforce this property. For instance, consider the following function

that computes the set of variables in a propositional logic formula, assuming that the formula

has been simplified:

def vars(f: Formula): Set[Int] = {

require(isSimpli�ed(f))
f match {

case And(lhs, rhs) ⇒ vars(lhs) ++ vars(rhs)

case Or(lhs, rhs) ⇒ vars(lhs) ++ vars(rhs)

case Not(f) ⇒ vars(f)

case PropVar(i) ⇒ Set[Int](i)

}

}

Although it is implied by the precondition that all cases are covered, the Scala compiler on this

example will issue the warning:

Logic.scala: warning: match is not exhaustive!

missing combination Implies

Previously, researchers have developed specialized analyses for checking such exhaustiveness

properties [DSK08, Fer10]. Our system generates verification conditions for checking the

exhaustiveness of all pattern-matching expressions, and then uses the same procedure to

prove or disprove them as for the other verification conditions. It quickly proves that this

particular example is exhaustive by unrolling the definition of isSimpli�ed sufficiently many

times to conclude that t can never be an Implies term. Note that Leon will also prove that all

recursive calls to vars satisfy its precondition; it performs sound assume-guarantee reasoning.

Consider now the following function, that supposedly computes a variation of the negation

normal form of a formula f:

def nnf(formula: Formula): Formula = formula match {

case And(lhs, rhs) ⇒ And(nnf(lhs), nnf(rhs))

case Or(lhs, rhs) ⇒ Or(nnf(lhs), nnf(rhs))

case Implies(lhs, rhs) ⇒ Implies(nnf(lhs), nnf(rhs)) // problematic

case Not(And(lhs, rhs)) ⇒ Or(nnf(Not(lhs)), nnf(Not(rhs)))

case Not(Or(lhs, rhs)) ⇒ And(nnf(Not(lhs)), nnf(Not(rhs)))

case Not(Implies(lhs, rhs)) ⇒ And(nnf(lhs), nnf(Not(rhs)))

case Not(Not(f)) ⇒ nnf(f)

case Not(PropVar(_)) ⇒ formula

case PropVar(_) ⇒ formula

}
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From the supposed roles of the functions simplify and nnf, one could conjecture that the

operations are commutative. Because of the treatment of implications in the above definition

of nnf, though, this is not the case. We can disprove this property by finding a counterexample

to

def wrongCommutative(f: Formula) : Boolean = { nnf(simplify(f)) == simplify(nnf(f)) } holds

On this input, Leon reports

Error: Counter-example found:

f -> Implies(Not(And(PropVar(48), PropVar(47))),

And(PropVar(46), PropVar(45)))

A consequence of our algorithm is that Leon never reports false positives (see Section 3.4.1).

In this particular case, the counterexample clearly shows that there is a problem with the

treatment of implications whose left-hand side contains a negation. Counterexamples such as

this one are typically short and Leon finds them quickly.

As a final example of the expressive power of our system, we consider the question of show-

ing that an implementation of a collection implements the proper interface. Consider the

implementation of a set as red-black trees defined as follows:

sealed abstract class Color
case class Red() extends Color
case class Black() extends Color

sealed abstract class Tree
case class Empty() extends Tree
case class Node(color: Color, left: Tree, value: Int, right: Tree) extends Tree

To specify the operation on the trees in terms of the set interface that they are supposed to

implement, we define an abstraction function in the style of those introduced in Chapter 2

that computes from a tree the set it represents:

def content(t : Tree) : Set[Int] = t match {

case Empty() ⇒ Set.empty

case Node(_, l, v, r) ⇒ content(l) ++ Set(v) ++ content(r)

}

Note that this is again a function one would write for testing purposes. The specification of

insertion using this abstraction becomes very natural, despite the relative complexity of the

operations:

def ins(x: Int, t: Tree): Tree = (t match {

case Empty() ⇒ Node(Red(),Empty(),x,Empty())

case Node(c,a,y,b) if x SLT y ⇒ balance(c, ins(x, a), y, b)
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case Node(c,a,y,b) if x EQ y ⇒ Node(c,a,y,b)

case Node(c,a,y,b) if x SGT y ⇒ balance(c, a, y, ins(x, b))

}) ensuring (res⇒ content(res) == content(t) ++ Set(x))

where balance is defined as:

def balance(c: Color, a: Tree, x: Int, b: Tree): Tree = ((c,a,x,b) match {

case (Black(),Node(Red(),Node(Red(),a,xV,b),yV,c),zV,d) ⇒
Node(Red(),Node(Black(),a,xV,b),yV,Node(Black(),c,zV,d))

case (Black(),Node(Red(),a,xV,Node(Red(),b,yV,c)),zV,d) ⇒
Node(Red(),Node(Black(),a,xV,b),yV,Node(Black(),c,zV,d))

case (Black(),a,xV,Node(Red(),Node(Red(),b,yV,c),zV,d)) ⇒
Node(Red(),Node(Black(),a,xV,b),yV,Node(Black(),c,zV,d))

case (Black(),a,xV,Node(Red(),b,yV,Node(Red(),c,zV,d))) ⇒
Node(Red(),Node(Black(),a,xV,b),yV,Node(Black(),c,zV,d))

case (c,a,xV,b) ⇒ Node(c,a,xV,b)

}) ensuring (res ⇒ content(res) == content(Node(c,a,x,b)))

For full-functional correctness, we can also write functions that check whether a tree is bal-

anced and whether it satisfies the coloring properties. We used these checks to specify insertion

and balancing operations. Leon proves all these properties of red-black tree operations. We

present more such results in Section 3.6.

3.3 PureScala

We briefly describe the language that Leon supports for writing implementations and specifi-

cations. The language is a strict, purely functional, subset of Scala, and as such is executable

and deterministic. We call it PureScala.

Data Types. We give an inductive definition of the set of data types T supported in PureScala:

Int ∈T Boolean ∈T
T ∈T

Set[T ] ∈T

T1 ∈T T2 ∈T

Map[T1,T2] ∈T

T1 ∈T T2 ∈T

T1 ⇒ T2 ∈T

sealed abstract class C

C ∈T

case class C (n̄ : D̄) extends E D̄ ∈T E ∈T

C ∈T

The types Set and Map correspond to the standard Scala implementations of finite sets and

maps respectively, as defined in the package scala.collection.immutable. An important

feature is the ability to define (recursive) algebraic data types. In Scala, these types are defined

using a hierarchy of special case classes. Algebraic data types are typically manipulated with

pattern-matching, as shown in many examples throughout this thesis. A current limitation

is that these user-defined types cannot take type parameters. The Map type represents finite,

46



3.4. A Satisfiability Procedure Modulo Recursive Functions

immutable maps, which can thus be viewed as partial functions. The operations available

on maps in PureScala are isDe�nedAt, updated, which returns a new map with an additional

key/pair value, and (. . .) (apply), which returns the value associated to a given key. The function

type ⇒ should be viewed, in the context of PureScala, as a type of infinite map.

Because it supports unbounded data types and arbitrary recursive functions, PureScala is itself

Turing-complete. This can be viewed both as an advantage and an inconvenient: on one hand,

this expressive power guarantees that just about any constraint is expressible, but on the other

hand, standard incompleteness theorems predict that some constraints cannot be shown to

have no solutions. In practice, we have found that constraints that come up in programming

tasks such as the ones presented in this chapter and in Chapter 5 (as opposed to theoretically

hard ones) are handled well.

Expressions and function definitions. PureScala expressions can contain all standard arith-

metic operators, map applications and updates, set operators and membership tests, function

applications (of user-defined or anonymous functions), and constructor and selectors from

user-defined data types. Expression can also contain vals to factor out common subexpres-

sions. Indeed, a Scala block

{ val x1 = e2

. . .

val xn = en

e }

is to be understood as let x1 = e2 in. . .in let xn = en in e. Expressions can contain pattern-

matching on user-defined data types. Any sub-pattern can be bound to a variable and used

accordingly on the right-hand side of patterns. Furthermore, patterns can contain arbitrary

guards.

A PureScala function body is defined by a single expression whose free variables are the

arguments of the function. Functions can optionally be annotated with a pre- and post-

conditions. We note that all examples in Scala encountered so far in this thesis are valid

PureScala functions.

3.4 A Satisfiability Procedure Modulo Recursive Functions

In this section, we describe our algorithm for checking the satisfiability of formulas modulo

recursive functions. We start with a description of the supported class of formulas. Let L be a

base theory (logic) with the following properties:

– L is closed under propositional combination and supports boolean variables

– L supports uninterpreted function symbols

– there exists a complete decision procedure for L

Note that the logics supported by DPLL(T ) SMT solvers naturally have these properties.
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def solve(φ, Π) {
(φ, B) = unrollStep(φ, Π, ;)
while(true) {
decide(φ∧∧

b∈B b) match {
case "SAT" ⇒ return "SAT"
case "UNSAT" ⇒ decide(φ) match {
case "UNSAT" ⇒ return "UNSAT"
case "SAT" ⇒ (φ, B) = unrollStep(φ, Π, B) }}}}

Figure 3.1 – Pseudo-code of the solving algorithm. The decision procedure for the base theory
is invoked through the calls to decide.

size(lst) = lst match {
case Nil ⇒ 0
case Cons(_, xs) ⇒ 1 + size(xs)

}

ψ≡ size(lst) = tf
∧ bf ⇐⇒ lst = Nil
∧ bf =⇒ tf = 0
∧ ¬bf =⇒ tf = 1 + size(lst.tail)

Figure 3.2 – Function definition and its translation into clauses with control literals.

Let L Π be the extension of L with interpreted function symbols defined in a program Π. The

interpretation is given by an expression in L Π (the implementation). To facilitate proofs and

the description of program invariants, functions inΠ can also be annotated with a pre- and

postconditions. We denote the implementation, pre- and postcondition of a function f in Π by

implΠf , precΠf and postΠf respectively. The free variables of these expressions are the arguments

of f denoted argsΠf , as well as, for the postcondition, a special variable ρ that denotes the result

of the computation.

Figure 3.1 shows the pseudo-code of our algorithm. It is defined in terms of two subroutines,

decide, which invokes the decision procedure for L , and unrollStep, whose description follows.

Note that the algorithm maintains, along with a formula φ, a set B of boolean literals. We call

these control literals and their role is described below.

At a high-level, the role of unrollStep is to give a partial interpretation to function invocations,

which are treated as uninterpreted in L . This is achieved in two steps:

1. introduce definitions for one unfolding of the (uninterpreted) function invocations in φ,

2. generate an assignment of control literals to guard introduced function invocations

As an example, consider a formulaφ that contains the term size(lst), where lst is a list and size is

the usual recursive definition of its length. Figure 3.2 shows on the left the definition of size(lst)

and on the right its encoding into clauses with fresh variables.

This encoding into clauses is obtained by recursively introducing, for each if-then-else term, a

boolean variable representing the truth value of the branching condition, and another variable

representing the value of the if-then-else term.
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In addition to conjoiningψ toφ, unrollStep would produce the set of literals {bf }. The set should

be understood as follows: the decision procedure for the base theory L , which treats size as

an uninterpreted function symbol, if it reports SAT, can only be trusted when bf is set to true.

Indeed, if bf is false, the value used for tf and hence for the term size(lst) may depend on

size(lst.tail), which is undefined (because its definition has not yet been introduced). A subse-

quent call to unrollStep on φ∧ψ would introduce the definition of size(lst.tail). When unrolled

functions have a precondition, the definitions introduced for their body and postcondition

are guarded by the precondition. This is done to prevent an inconsistent function definition

with a precondition equivalent to false from making the formula unsatisfiable.

Let us denote by φΠ The formula in L without the control literals can be seen as an over-

approximation of the formula with the semantics of the program defining L Π, in that it accepts

all the same models plus some models in which the interpretation of some invocations is

incorrect. The formula with the control literals is an under-approximation, in the sense that it

accepts only the models that do not rely on the guarded invocations. This explains why the

UNSAT answer can be trusted in the first case and the SAT case in the latter.

To come back to our example, if we reason in terms of models, we have the following chain of

implications:

(∃M1 : M1 |=φ∧ψ∧bf ) =⇒ (∃M : M |=Π φ) =⇒ (∃M2 : M2 |=φ∧ψ)

where |=Π denotes the interpretation with respect to the full program semantics. The first

implication follows from the fact that, given that M1 |= bf , the uninterpreted invocation of size

does not participate in the satisfying assignment. The second implication follows from the

fact that, from a true model with the full semantics, one can always construct a partial model

for the uninterpreted functions defined only for the arguments that occur in the evaluation.

Fairness in unrollings. In Figure 3.1, the third argument of calls to unrollStep denotes the

set of control literals introduced at previous steps. An invocation of unrollStep will insert

definitions for all or only some function terms that are guarded by such control literals, and the

returned set will contain all literals that were not released as well as the newly introduced ones.

From an abstract point of view, when a new control literal is created, it is inserted in a global

priority queue with all the function invocations that it guards. An important requirement

is that the dequeuing must be fair: any control literal that is enqueued must eventually be

dequeued. This fairness condition guarantees that our algorithm is complete for satisfiable

formulas (see Section 3.4.1). Using a first-in first-out policy, for instance, is enough to guarantee

fairness and thus completeness. Finally, note that unrollStep not only adds definitions for the

implementation of the function calls, but also for their postcondition when it exists. We discuss

the issue of reliably using these facts in Section 3.4.1.

49



Chapter 3. Satisfiability Modulo Recursive Functions

Implementation notes. While the description of solve suggests that we need to query the

solver twice in each loop iteration, we can in practice use the solver’s capability to output

unsat cores to detect with a single query whether the conjunction of control literals
∧

b∈B b

played any role in the unsatisfiability. Similarly, when adding the new constraints obtained

from unrollStep, we can use the solver’s incremental reasoning and push the new constraints

directly, rather than building a new formula and issuing a new query. SMT solvers can thus

exploit at any time facts learned in previous iterations.

Finally, although we noted that we cannot in general trust the underlying solver when it reports

SAT for the formula φ without control literals, it could still be that the assignment the solver

guessed for the uninterpreted function symbols is valid. Because testing an assignment is fast

(it amounts to executing the specification), we can therefore sometimes report SAT early and

save iterations.

3.4.1 Properties of the Procedure

The properties of our procedure rely on the following two assumptions.

Termination: All precondition computations terminate for all values. Each function in the

programΠ terminates on each input for which the precondition holds, and similarly for each

postcondition. Tools such as [GTSKF04, AAG+07] or techniques developed for ACL2 [MT09]

could be used to establish this property.

Base theory solver soundness: The underlying solver is complete and sound for the (quan-

tifier-free) formulas in the base theory. The completeness means that each model that the

solver reports should be a model for the conjunction of all constraints passed to the solver.

Similarly, soundness means that whenever the solver reports unsatisfiability, false can be

logically concluded modulo the solver’s theories from these constraints.

We rely on the above assumptions throughout this section. Note, however, that even without

the termination assumption, a counterexample reported by Leon is never a counterexample

that generates a terminating execution of the property resulting in the value true, so it is a

counterexample worth inspecting.

Soundness for proofs. Our algorithm reports unsatisfiability if and only if the underlying

solver could prove unsatisfiable the problem given to it without the control literals. Because

the control literals are not present, some function applications are left uninterpreted, and

the conclusion that the problem is unsatisfiable therefore applies to any interpretation of the

remaining function application terms, and in particular to the one conforming to the correct

semantics.
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From the assumption that the underlying solver only produces sound proofs, it suffices to

show that all the axioms communicated to the solver as a result of the unrollStep invocations

are obtained from sound derivations. These are correct by definition: they are logical conse-

quences obtained by the definition of functions, and these definitions are conservative when

the functions are terminating.

An important consideration when discussing soundness of the post axioms is that any proof

obtained with our procedure can be considered valid only when the following properties about

the functions ofΠ have been proved: 1

1. for each function f ofΠ, the following formula must hold:

precΠf =⇒ postΠf

[
implΠf /ρ

]
2. for each call in f to a function f2 (possibly f itself), the precondition precΠf2

must be

implied by the path condition

3. for each pattern-matching expression, the patterns must be shown to cover all possible

inputs under the path condition.

The above conditions guarantee the absence of runtime errors, and they also allow us to prove

the overall correctness by induction on the call stack, as is standard in assume-guarantee

reasoning for sequential procedures without side effects [Gri81, Chapter 12].

The first condition shows that all postconditions are logical implications of the function

implementations under the assumption that the preconditions hold. The second condition

shows that all functions are called with arguments satisfying the preconditions. Because all

functions terminate, it follows that we can safely assume that postconditions always hold for

all function calls. This justifies the soundness of axioms post in the presence of φ andΠ.

Soundness for models. Our algorithm reports satisfiability when the solver reports that the

unrolled problem augmented with the control literals is satisfiable. By construction of the set

of control literals, it follows that the solver can only have used values for function invocations

whose definition it knows. As a consequence, every model reported by the solver for the

problem augmented with the control literals is always a true model of the original formula.

We mentioned in Section 3.4 that we can also check other satisfying assignments produced by

the solver. In this second case, we use an evaluator that complies with the semantics of the

program, and therefore the validated models are true models as well.

Termination for satisfiable formulas. Our procedure has the property that it finds a model

whenever the model for a formula exists.

1. When proving or disproving a formula φ modulo the functions of Π, it is in fact sufficient that the three
properties hold only for all functions in φ and those that can be called (transitively) from them or from their
contracts.
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We define a model as an assignment to the free variables of the formula such that evaluating it

under that assignment terminates with the value true. An assignment that leads to a diverging

evaluation is not considered to be a proper model.

To understand why our procedure always finds models when they exist, consider a counterex-

ample for the specification. This counterexample is an assignment of integers and algebraic

data types to variables of a function f (x̄) being proved. This evaluation specifies concrete in-

puts ā for f such that evaluating f (ā) yields a value for which the postcondition of f evaluates

to false (the case of preconditions or pattern-matching is analogous). Consider the computa-

tion tree arising from (call-by-value) evaluation of f and its postcondition. This computation

tree is finite. Consequently, the tree contains finitely many unrollings of function invocations.

Let us call K the maximum depth of that tree. Consider now the execution of the algorithm in

Figure 3.1; because we assume that any function invocation that is guarded by a control literal

is eventually accessible, we can safely conclude that every function application in the original

formula will eventually be unrolled. By applying this reasoning inductively, we conclude that

eventually, all function applications up to nesting level K +1 will be unrolled.

This means that the computation tree corresponding to f (ā) has also been explored. By the

completeness of the solver for the base theory and the consistency of a satisfying specification,

it means that the solver reports a counterexample (either ā itself or another counterexample).

Termination for sufficiently surjective abstractions. Our procedure always terminates and

is therefore a decision procedure in the case of a recursive function that is a sufficiently surjec-

tive catamoprhism, as defined in Section 2.5.3, provided that the function is annotated with a

postcondition describing its co-domain (or, as a special case, that it is actually surjective). In

fact, it also serves as the first implementation of our decision procedure. Leon thus shows that

the procedure can be made fast in practice for an important subclass of problems. Moreover,

by interleaving unrolling and satisfiability checking, it addresses in practice the problem of

determining the maximal amount of unrolling needed for a user-defined function.

We have already established termination in the case of satisfiable instances. We therefore focus

here on the case of an unsatisfiable formula. To simplify the presentation, we assume, as in

Chapter 2, that the catamorphism is defined over a binary tree data type.

Recall that the general form for such catamorphisms is:

def α(t: Tree): C = t match {

case Leaf() ⇒ empty

case Node(l,e,r) ⇒ combine(α(l ), e, α(r ))

}

for some functions empty : C and combine : (C ,E ,C )→C .

A key observation is that for such functions, unrolling the definition α is exactly equivalent to
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inspecting trees of greater and greater height. Indeed, consider a formula containing a term

α(t ). Unrolling the definition of α once produce the clauses:

α(t) = t0

∧b0 ⇐⇒ t = Leaf()

∧b0 =⇒ t0 = empty

∧¬b0 =⇒ t0 = combine(α(t.left),t.e,α(t.right))

Further unrolling the definition of e.g. t.left produces clauses of the similar structure: the

formula is identical, with the following rewritings

t; t.left b0 ; b1 t0 ; t1

Similarly, for t.right, with the rewritings

t; t.right b0 ; b2 t0 ; t2

(Meaning that the terms t.left.left, t.left.right, etc. appear in these clauses.) From the fair un-

rolling property, we thus know that our satisfiability procedure will examine all trees in order

of increasing size. Another observation is that, under the assumption that the underlying deci-

sion procedure for data types is complete, the chains of selectors introduced by the unrolling

correspond exactly to the fresh variables introduced through shape instantiation.

Let us now consider an unsatisfiable formula φ, in which α is the only recursive function.

From the two observations above, it follows that, using the terminology of Definition 2.7, our

satisfiability procedure eventually considers, for each tree term argument of α, each shape of

the set Sp . (Note also that a complete solver will automatically apply unification and partial

evaluation as the context requires.)

It remains to show that, upon concluding that none of the shapes in Sp can serve as the basis

for a satisfying assignment, the procedure successfully concludes (without control literals)

that φ admits no model. Equivalently, we show that if the unrolled formula without control

literals admits a model, then it is a true model.

Call φp the formula obtained by applying the procedure until, for each argument of α in φ,

all shapes in Sp have been considered. Observe that at any point in the procedure, the SMT

solver maintains for each invocation α(t ) an equality of the form:

α(t ) =C (s1, . . . , si ,α(si+1), . . . ,α(sn)) (3.1)

where the s variables denote chained selector applications on t , and C denotes the term

obtained by nesting applications of combine and empty. Note in particular that in this term, the

variables appearing as arguments of α appear nowhere else.
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Assume now that α is actually surjective. That is

∀c : ∃t : α(t ) = c

Then, any model Mp forφp can be lifted to a model forφ. The reconstruction works as follows:

for each application α(s j ) uninterpreted in φp , pick for s j a value such that α(s j ) =α(s j )Mp

and such that all disequalities between terms in φ are satisfied. That this is always possible is

guaranteed by the surjectivity of α, and the assumptions that 1) α is sufficiently surjective and

2) the tree terms are not described by Sp .

We conclude by considering the case where α is not surjective, but otherwise matches the

requirements of Definition 2.7. In such situations, if we can characterize the co-domain of

α by a unary predicate P (c) in the collection theory, we can add P (c) as a postcondition of

α and retrieve completeness. To see why this works, observe that the procedure will inline

this postcondition for each invocation of α in (3.1). This in turn will guarantee that in any

given model Mp , the valuations for uninterpreted instances of α will be invertible, as in the

surjective case.

Concrete examples of such functions are given by catamorphisms that map into natural

numbers, such as size or height, because SMT solvers typically make no distinction between

naturals and integers. By annotating them with a postcondition ensuring { res⇒res > 0} we

achieve completeness nevertheless.

Non-terminating functions. We conclude this section with some remarks on the behavior

of our procedure in the presence of functions that do not terminate on all their inputs. We are

interested in showing that if for an input formula the procedure returns UNSAT, then there are

indeed no models whose evaluation terminates with true. (The property that all models are

true models is not affected by non-terminating functions.) Note that it may still be the case

that the procedure returns UNSAT when there is an input for which the evaluation doesn’t

terminate.

To see why the property doesn’t immediately follow from the all-terminating case, consider

the definition:

def f(x : Int) = f(x) + 1

Unrolling this function introduces a mathematical contradiction f(x)= f(x)+ 1 and makes the

formula immediately unsatisfiable, thus potentially masking a true satisfying assignment.

However, because all introduced definitions are guarded by a control literal, the contradiction

will only prevent those literals from being true that correspond to executions leading to a

diverging execution.
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3.5 The Leon Verification System

We now present some of the characteristics of the implementation of Leon, our verification

system that has at its core an implementation of the procedure presented in the previous

sections. Leon takes as an input a program written in PureScala and produces verification

conditions for all specified postconditions, calls to functions with preconditions, and match

expressions in the program.

Front-end. We wrote a plugin for the official Scala compiler to use as the front-end of Leon.

The immediate advantage of this approach is that all programs are parsed and type-checked

before they are passed to Leon. This also allows users to write expressive programs concisely,

thanks to type-inference and the flexible syntax of Scala. As mentioned in Section 3.3, the

subset we support allows for definitions of recursive data types as well as arbitrarily complex

pattern-matching expressions over such types. The other admitted types are integers and sets

and maps, which we found to be particularly useful for specifying properties with respect to

an abstract interface.

Conversion of pattern-matching. We transform all pattern-matching expressions into equiv-

alent expressions built with if-then-else terms. For this purpose, we use predicates that test

whether their argument is of a given subtype (this is equivalent to the method .isInstanceOf[T]

in Scala). The translation is relatively straightforward, and preserves the semantics of pattern-

matching. In particular, it preserves the property that cases are tested in their definition order.

To encode the error that can be triggered if no case matches the value, we return for the default

case a fresh, uninterpreted value. This value is therefore guarded by the conjunction of the

negation of all matching predicates. Recall that we separately prove that all match expressions

are exhaustive. When these proofs succeed, we effectively rule out the possibility that the

unconstrained error value affects the semantics of the expression. (It remains to be seen

whether more sophisticated encodings of pattern-matching [Wad87, Mar08] can positively

impact the solving times of the resulting formulas.)

Proofs by induction. To simplify the statement and proof of some inductive properties, we

defined an annotation @induct, that indicates to Leon that it should attempt to prove a property

by induction on the arguments. This works only when proving a property over a variable that

is of a recursive type; in these cases, we decompose the proof that the postcondition is always

satisfied into subproofs for the alternatives of the datatype. For instance, when proving by

induction that a property holds for all binary trees, we generate a verification condition for the

case where the tree is a leaf, then for the case where it is a node, assuming that the property

holds for both subtrees.
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Communicating with the solver. Leon uses Z3 version 3.2 [dMB08b] as the SMT solver

at the core of our solving procedure. As described in Section 3.4, we use Z3’s support for

incremental reasoning to avoid solving a new problem at each iteration of our top-level loop.

Interpretation of selectors as total functions. We should note that the interpretation of

selector functions in Z3 is different than in Scala, since they are considered to be total, but

uninterpreted when applied to values of the wrong type. For instance, the formula Nil.head = 5

is considered in Z3 to be satisfiable, while taking the head of an empty list has no meaning in

Scala (if not a runtime error). This discrepancy does not affect the correctness of Leon, though,

as the type-checking algorithm run by the Scala compiler succeeds only when it can guarantee

that the selectors are applied only to properly typed terms.

Online demonstration version. While the default way to interact with Leon is via the com-

mand line, we also developed a web front-end. At the webpage http://lara.epfl.ch/leon/, users

can type in Leon benchmarks and verify them or find counter-examples. Figure 3.3 shows the

interface as it was in September 2012.

3.6 Experimental Evaluation

We here report results of Leon on proving correctness properties for a number of functional

programs, and discovering counterexamples when functions did not meet their specification.

A summary of our evaluation can be seen in Figure 3.4 on page 61.

In this figure, LOC denotes the number of lines of code, #p. denotes the number of verification

conditions for function invocations with preconditions, #m. denotes the number of conditions

for showing exhaustiveness of pattern-matchings, V/I denotes whether the verification condi-

tions were valid or invalid, U denotes the maximum depth for unrolling function definitions,

and T denotes the total running time in seconds to verify all conditions for a function. The

benchmarks were run on a computer equipped with two Intel Core 2 processors running at

2.66 GHz and 3.2 GB of RAM, using Z3 version 3.2. We verified over 60 functions, with over 600

lines of compactly written code and properties that often relate multiple function invocations.

This includes a red-black tree set implementation including the height invariant (which most

reported benchmarks for automated systems omit); amortized queue data structures, and

examples with syntax tree refinement that show Leon to be useful for checking user code, and

not only for data structures. 2

The ListOperations benchmark contains a number of common operations on lists. Leon proves,

e.g., that a tail-recursive version of size is functionally equivalent to a simpler version. For

append, reverse and concat, we prove that the content is as expected after the operations. We

2. All benchmarks and the sources of Leon are available from http://lara.epfl.ch.
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3.6. Experimental Evaluation

Figure 3.3 – Online interface to the Leon verification system.
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(inductively) show that append is associative by expressing the property using the function

appendAssoc:

@induct

def appendAssoc(xs : List, ys : List, zs : List) : Boolean = {

append(append(xs, ys), zs) == append(xs, append(ys, zs))

} holds

In a similar fashion, the function sizeAppend proves that the result of appending two lists has

size equal to the sum of the sizes of input lists. As a final example for list functions, we consider

zip, which requires that the two input lists l1 and l2 have equal size, and never attempts to

match l2 as an empty list if l1 is matched as nonempty. It is defined as follows:

def zip(l1: List, l2: List) : IntPairList = {

require(size(l1) == size(l2))

l1 match {

case Nil() ⇒ IPNil()

case Cons(x, xs) ⇒ l2 match {

case Cons(y, ys) ⇒ IPCons(IP(x, y), zip(xs, ys))

}

}

} ensuring(iplSize(_) == size(l1))

Our system is able to prove that the pattern matching expression in this example is complete.

For associative lists, Leon proves that updating a list l1 with all mappings from another list l2

yields a new associative list whose domain is the union of the domains of l1 and l2. It proves

the read-over-write property, which states that looking up the value associated with a key gives

the most recently updated value. We express this property simply as:

def readOverWrite(l : List, e : Pair, k : Int) : Boolean = (e match {

case Pair(key, value) ⇒
�nd(updateElem(l, e), k) == (if (k == key) Some(value) else �nd(l, k))

}) holds

Leon proves properties of insertion sort such as the fact that the output of the function sort is

sorted, and that it has the same size and content as the input list. The function buggySortedIns

is similar to sortedIns, and is responsible for inserting an element into an already sorted list,

except that the precondition that the list should be sorted is missing.

On the RedBlackTrees benchmark, Leon proves that the tree implements a set interface and

that balancing preserves the “red nodes have no black children” and “every simple path from

the root to a leaf has the same number of black nodes” properties as well as the contents of the

tree. In addition to proving correctness, we also seeded two bugs (forgetting to paint a node

black and missing a case in balancing); Leon found a concise counterexample in each case.

The PropositionalLogic benchmark contains functions manipulating abstract syntax trees of
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boolean formulas. Leon proves that, e.g., applying a negation normal form transformation

twice is equivalent to applying it once.

Further benchmarks are taken from the Verified Software Competition [VSC10]: For example,

in the AmortizedQueue benchmark Leon proves that operations on an amortized queue imple-

mented as two lists maintains the invariant that the size of the “front” list is always larger than

or equal to the size of the “rear” list, and that the function front implements an abstract queue

interface given as a sequence.

We also point out that, apart from the parameterless @induct hint for certain functions, there

are no other hint mechanisms used in Leon: the programmer simply writes the code, and

boolean-valued functions that describe the desired properties (as they would do for testing

purposes). We thus believe that Leon is easy and simple to use, even for programmers that are

not verification experts.

3.7 Related Work

Leon and our associated procedure for satisfiability modulo recursive functions were originally

presented in [SKK11]. We conclude this chapter by comparing our approach to the most closely

related techniques.

Interactive verification systems. The practicality of computable functions as an executable

logic has been demonstrated through a long line of systems, notably ACL2 [KMM00] and its

predecessors. These systems have been applied to a number of industrial-scale case studies

in hardware and software verification [KMM00, Moo10]. Recent systems based on functional

programs include VeriFun [WS03] and AProVE [GTSKF04]. Moreover, computable specifica-

tions form important parts of many case studies in proof assistants Coq [BC04] and Isabelle

[NPW02]. These systems support more expressive logics, with higher-order quantification,

but provide facilities for defining executable functions and generating the corresponding

executable code in functional programming languages [HN07]. When it comes to reasoning

within these systems, they offer varying degrees of automation. What is common is the dif-

ficulty of predicting when a verification attempt will succeed. This is in part due to possible

simplification loops associated with the rewrite rules and tactics of these provers. Moreover,

for performance and user-interaction reasons, interactive proofs often fail to fully utilize

aggressive case splitting that is at the heart of modern SMT solvers.

Inductive generalizations vs. counterexamples. Existing interactive systems such as ACL2

are stronger in automating induction, whereas our approach is complete for finding coun-

terexamples. We believe that the focus on counterexamples will make our approach very

appealing to programmers that are not theorem proving experts. The HMC verifier [JMR11]

and DSolve [RKJ08, KRJ09] can automatically discover inductive invariants, so they have more
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automation, but it appears that certain properties involving multiple user-defined functions

are not expressible in these systems. Recent results also demonstrate inference techniques

for higher-order functional programs [KTU10, JMR11]. These approaches hold great promise

for the future, but the programs on which those systems were evaluated are smaller than our

benchmarks. Leon focuses on first-order programs and is particularly effective for finding

counterexamples. Our experience suggests that Leon is more scalable than the alternative

systems that can deal with this expressive properties. Counterexample generation has been

introduced into Isabelle through tools like Nitpick [BN10]. Further experimental comparisons

would be desirable, but these techniques do not use theory solvers and appear slower than

Leon on complex functional programs. Counterexample generation has been recently incor-

porated into ACL2 Sedan [CDMV11]. This techniques is tied to the sophisticated ALC2 proof

mechanism and uses proof failures to find counterexamples. Although it appears very useful,

it does not have our completeness guarantees.

Counterexample finding systems for imperative code. Researchers have explored the idea

of iterative function and loop unfolding in a number of contexts. Among well-known tools

is CBMC [CKL04]; techniques to handle procedures include [Tag04, BKW07, Sin10]. The use

of imperative languages in these systems makes their design more complex and limits the

flexibility of the counterexample search. Thanks to a direct encoding into SMT and the absence

of side-effects, Leon can prove more easily properties that would be harder to prove using

imperative semantics. As a result, we were able to automatically prove detailed functional

correctness properties as opposed to only checking for errors such as null dereferences. Both

[Tag04] and [Sin10] only find counterexampels, while we were additionally able to prove several

non-trivial properties (and still benefit from counterexample finding to debug the code and

the properties).

Satisfiability modulo theory solvers. SMT solvers behave as (complete) decision proce-

dures on certain classes of quantifier-free formulas containing theory operations and unin-

terpreted functions. However, they do not support user-defined functions, such as functions

given by recursive definitions. An attempt to introduce them using quantifiers leads to for-

mulas on which the prover behaves unpredictably for unsatisfiable instances, and is not able

to determine whether a candidate model is a real one. This is because the prover has no

way to determine whether universally quantified axioms hold for all of the infinitely many

values of the domain. Leon uses terminating executable functions, whose definitions are a

well-behaved and important class of quantified axioms, so it can check the consistency of a

candidate assignment. A high degree of automation and performance in Leon comes in part

from using state-of-the-art SMT solver Z3 [dMB08b] to reason about quantifier-free formula

modulo theories, as well as to perform case splitting along with automated lemma learning.

Other SMT solvers, such as CVC3 [BT07] or OpenSMT [BPST10] could also be used.
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Benchmark p m s U T function #p. #m. V/I U T

ListOperations (107)
size 0 1 V 1 0.12 sizeTailRecAcc 1 1 V 1 0.01
sizesAreEquiv 0 0 V 2 <0.01 sizeAndContent 0 0 V 1 <0.01
reverse 0 0 V 2 0.02 reverse0 0 1 V 2 0.04
append 0 1 V 1 0.03 nilAppend 0 0 V 1 0.03
appendAssoc 0 0 V 1 0.03 sizeAppend 0 0 V 1 0.04
concat 0 0 V 1 0.04 concat0 0 2 V 2 0.29
zip 1 2 V 2 0.09 sizeTailRec 1 0 V 1 <0.01
content 0 1 V 0 <0.01
AssociativeList (50)
update 0 1 V 1 0.03 updateElem 0 2 V 1 0.05
readOverWrite 0 1 V 1 0.10 domain 0 1 V 0 0.05
�nd 0 1 V 1 <0.01
InsertionSort (99)
size 0 1 V 1 0.06 sortedIns 1 1 V 2 0.24
buggySortedIns 1 1 I 1 0.08 sort 1 1 V 1 0.03
contents 0 1 V 0 <0.01 isSorted 0 1 V 1 <0.01
RedBlackTree (117)
ins 2 1 V 3 2.88 makeBlack 0 0 V 1 0.02
add 2 0 V 2 0.19 buggyAdd 1 0 I 3 0.26
balance 0 1 V 3 0.13 buggyBalance 0 1 I 1 0.12
content 0 1 V 0 <0.01 size 0 1 V 1 0.11
blackChld1 0 1 V 1 <0.01 blackChld2 0 1 V 0 <0.01
blackHeight 0 1 V 1 <0.01
PropositionalLogic (86)
simplify 0 1 V 2 0.84 nnf 0 1 V 1 0.37
commuteBug 0 0 I 3 0.44 simplifyBug 0 0 I 1 0.28
nnfIsStable 0 0 V 1 0.17 simplifyIsStable 0 0 V 1 0.12
isSimpli�ed 0 1 V 0 <0.01 isNNF 0 1 V 1 <0.01
vars 6 1 V 1 0.13
SumAndMax (46)
max 2 1 V 1 0.13 sum 0 1 V 0 <0.01
allPos 0 1 V 0 <0.01 size 0 1 V 1 <0.01
prop0 1 0 V 1 0.02 property 1 0 V 1 0.11
SearchLinkedList (48)
size 0 1 V 1 0.11 contains 0 1 V 0 <0.01
�rstZero 0 1 V 1 0.03 �rstZeroAtPos 0 1 V 0 <0.01
AmortizedQueue (124)
size 0 1 V 1 0.14 content 0 1 V 0 <0.01
asList 0 1 V 0 <0.01 concat 0 1 V 1 0.04
isAmortized 0 1 V 0 <0.01 isEmpty 0 1 V 0 <0.01
reverse 0 1 V 3 0.20 amortizedQueue 0 0 V 2 0.05
enqueue 0 1 V 1 <0.01 front 0 1 V 3 0.01
tail 0 1 V 3 0.15 propFront 1 1 V 3 0.07
enqueue0 1 0 V 4 0.21 enqDeqThrice 5 0 V 5 2.48

Figure 3.4 – Summary of evaluation results.
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4 Sets with Cardinality Constraints

We have seen in the previous chapter that abstraction functions mapping recursive structures

into collection types can be very useful to write precise specifications. We have also seen

how to reduce reasoning about such recursive functions to reasoning about the collection

theory. In this chapter, we focus on a specific collection theory supporting sets with cardinality

constraints, Boolean Algebra with Presburger Arithmetic (BAPA), and more precisely on its

quantifier-free fragment (QFBAPA). In contrast to many other NP-complete problems (such

as quantifier-free first-order logic or linear arithmetic), the applications of QFBAPA to a

broader set of problems has so far been hindered by the lack of an efficient implementation

that can be used alongside other efficient decision procedures.

We overcome these limitations by extending the efficient SMT solver Z3 with the ability to

reason about cardinality (QFBAPA) constraints. Our implementation uses the DPLL(T ) mech-

anism of Z3 to reason about the top-level propositional structure of a QFBAPA formula,

improving the efficiency compared to previous implementations. Moreover, we present a new

algorithm for automatically decomposing QFBAPA formulas. Our algorithm alleviates the

exponential explosion of considering all Venn regions, significantly improving the tractability

of formulas with many set variables. Because it is implemented as a theory plugin, our imple-

mentation enables Z3 to prove formulas that use QFBAPA constructs with constructs from

other theories that Z3 supports, as well as with quantifiers. We have applied our implementa-

tion to the verification of functional programs; we show it can automatically prove formulas

that no automated approach was reported to be able to prove before.

4.1 Introduction

Sets naturally arise in software that performs discrete computation, as a built-in data type

[DGL+79], as container libraries, or inside program specification constructs [LKR05, ZKR08].

An intrinsic part of reasoning about sets is reasoning about sizes of sets, with well-known

associated laws such as the inclusion-exclusion principle | A∪B | = | A |+|B |−| A∩B |. A natural

decidable logic that supports set operations (union, intersection, complement) as well as a

63



Chapter 4. Sets with Cardinality Constraints

cardinality operator is a logic we call BAPA, for Boolean Algebra with Presburger Arithmetic

[FV59, KNR06].

We here consider the quantifier-free fragment of BAPA, denoted QFBAPA. QFBAPA was

shown to be NP-complete using a particular encoding into quantifier-free Presburger arith-

metic that exploits an integer analogue of Carathéodory theorem [KR07]. We thus think of

QFBAPA as a generalization of SAT that is similar to SAT from a high-level complexity-theory

point of view. The richness of QFBAPA is reflected in the fact that, being propositionally

closed, it subsumes SAT. Moreover, unlike SAT, no encoding is needed to represent integer

linear arithmetic in BAPA. Crucially, BAPA supports set operations and cardinality, whose poly-

nomial encoding into SAT is possible but non-trivial [KR07]. Strikingly, a number of expressive

logics can be naturally reduced to QFBAPA [WPK09, KPSW10]. This enables combination

of formulas from non-disjoint theory signatures that share set operations, and goes beyond

current disjoint theory combinations.

However, although the QFBAPA satisfiability problem is NP-complete, the resulting algorithm

has proven difficult for unsatisfiable QFBAPA instances; its improvements have primarily

helped dealing with satisfiable instances[KR07]. This empirical observation is in contrast to

the situation for propositional logic, for which the community developed SAT solvers that are

effective in showing unsatisfiability for large industrial benchmarks. In this chapter we present

a QFBAPA implementation that is effective both for satisfiable and unsatisfiable instances.

Our implementation incorporates an important new algorithmic component: a decomposition

of constraints based on the hypergraphs of common set variables. This component analyzes

the variables occurring in different atomic formulas within a QFBAPA formula and uses the

structural property of the formula to avoid generating all Venn regions. Our implementation is

integrated into the state-of-the-art SMT solver Z3, whose important feature is efficient support

for linear arithmetic [dMB08a]. Efficient integration with Z3 was made possible by the recently

introduced theory plugin architecture of Z3, as well as by an incremental implementation

of our algorithm. In this integration, Z3 processes top level propositional structure of the

formula, providing QFBAPA solver with conjunctions of QFBAPA constraints. Our solver

generates lemmas in integer linear arithmetic and gives them back to Z3, which incorporates

them with other integer constraints. At the same time, Z3 takes care of equality constraints.

The net result is (1) dramatic improvement of efficiency compared to previously reported

QFBAPA implementations (2) the ability to use QFBAPA cardinality operation alongside

all other operations that Z3 supports. We illustrate the usefulness of this approach through

experimental results that prove the validity of complex verifications condition arising from

the verification of imperative as well as functional programs.

Contributions. In summary, this chapter makes the following contributions:

– decomposition theorems and algorithms for efficient handling of QFBAPA cardinality

constraints, often avoiding the need for exponentially many Venn regions as in [KNR06],
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and avoiding complex conditional sums as in [KR07];

– an incremental algorithm to analyze the structure of QFBAPA formulas and generate the

integer constraints following the decomposition theorems;

– an implementation of these algorithms as a theory plugin for the Z3 solver, with support for

detecting equalities entailed by QFBAPA constraints and therefore precise combination

with other theories supported by Z3;

– encouraging experimental results for benchmarks arising from verification of imperative

and functional programs.

4.2 Example

We next illustrate the expressive power of the SMT prover we obtained by incorporating our

QFBAPA decision procedure into Z3. Given a list datatype, consider the question of proving

that the set of elements contained in the list has a cardinality always less than or equal to

the length of the list. The set of elements contained in the list and the length of the list are

computed using catamorphisms such as the ones introduced in Chapter 2:

def content(list: List) : Set[Int] = list match {

case Nil() ⇒ ;
case Cons(x, xs) ⇒ {x} ∪ content(xs)

}

def length(list: List) : Int = list match {

case Nil() ⇒ 0

case Cons(x, xs) ⇒ 1 + length(xs)

}

As an example, consider proving the property that the size of the set returned by the content

abstraction is always less than the size computed by length (because of repeated elements).

This can be stated as proving that the following function always computes true:

def setSmallerThanLength(list : List) : Boolean = {

content(list).size ≤ length(list)

} ensuring (res ⇒ res == true)

or in mathematical notation, that the following formula holds:

∀l i st : List[Int] : |content(l i st ) | ≤ length(l i st )

In Chapter 3, we will present a general technique to handle such recursive functions. In the

present chapter, however, we will simply assume that we proceed by unfolding the recursive
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φ ::=A |φ1 ∧φ2 |φ1 ∨φ2 |¬φ
A ::=S1 = S2 |S1 ⊆ S2 |T1 = T2 |T1 ≤ T2

S ::=s |;|U |S1 ∪S2 |S1 ∩S2 |S1 \ S2 |Sc

T ::=i |K |T1 +T2 |K ·T | |S |
K ::= . . . |−2 |−1 |0 |1 |2 | . . .

Figure 4.1 – Quantifier-Free Formulas of Boolean Algebra with Presburger Arithmetic
(QFBAPA). Sc denotes the complement of the set S with respect to the universe U , that
is, U \ S.

definitions sufficiently many times to obtain the following verification condition:

l i st 6=Nil =⇒ l i st =Cons(x, xs)

∧ length(Nil) = 0∧ length(Cons(x, xs)) = 1+ length(xs)

∧ content(Nil) =;∧content(Cons(x, xs)) = {x}∪content(xs)

∧ |content(xs) | ≤ length(xs)

=⇒ |content(l i st ) | ≤ length(l i st )

Note that the formula includes reasoning about function symbols, integers, algebraic data

types, sets, and cardinalities of sets. To the best of our knowledge, the implementation we

present in this chapter is the only one that is complete for proving the validity of formulas

with such operators. The proof is found using Z3’s DPLL(T ) algorithm, which, among oth-

ers, performs cases analysis on whether l i st is empty. It relies on Z3 to support arithmetic,

congruence properties of functions, and algebraic data types. Finally, it crucially relies on

invocations of our QFBAPA plugin. In response to currently asserted QFBAPA constraints,

our plugin generates integer constraints on Venn regions that are chosen to ensure that the

relationships between sets are handled in a complete way. The entire theorem proving process

takes negligible time (see Section 4.5 for experimental results).

4.3 Decomposition in Solving BAPA Constraints

In this section, we consider formulas over finite sets of uninterpreted elements from a domain

E . We show in Section 4.4 how we combined QFBAPA with other theories to obtain a theory

of sets of interpreted elements.

Syntax. Figure 4.1 presents the syntax of QFBAPA. We use vars(φ) to denote the set of free

set variables occurring in φ.

Definition 4.1 (Venn regions). One central notion throughout the presentation of the theorems
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and the decision procedure is the notion of Venn region. A Venn region of n sets S = {S1, . . . ,Sn}

is one of the 2n set expressions described by
⋂n

i=1 Sαi

i where Sαi

i is either Si or Sc
i . By construction,

the 2n regions form a partition of U . We write venn(S) to denote the set of all Venn regions

formed with the sets in S.

Semantics. An interpretation M of a QFBAPA formula φ is a map from the set variables of

φ to finite subsets of E and from the integer variables of φ to values in Z. It is a model of φ,

denoted M |=φ if the following conditions are satisfied:

– U M is a finite subset of E and ;M is the empty set

– for each set variable S of φ, SM ⊆U M

– for each integer variable k of φ, kM ∈Z
– when =, ⊆, ;, ∪, ∩, \ and the cardinality function | · | are interpreted as expected,φ evaluates

to true in M

Definition 4.2. We define ∼V to be the equivalence relation on interpretations, parametrized

by a set of set variables V , such that:

M1∼V M2 ⇐⇒ ∀v ∈ venn(V ) : |vM1 | = |vM2 |

Definition 4.3. Let M be an interpretation and f : E → E a bijection from the interpretation

domain to itself (a permutation function). We denote by f [M ] the interpretation such that:

– U f [M ] = { f (u) | u ∈U M }

– for each set variable S interpreted in M , S f [M ] = { f (u) | u ∈ SM }

– for each integer variable k interpreted in M , k f [M ] = kM

Theorem 4.4. Let φ be a QFBAPA formula, M a model of φ and f : E → E a bijection, then

f [M ] |=φ.

Proof. Prove by induction that t f [M ] = f [tM ] for every set algebra term t . By bijectivity of f ,

| t f [M ] | = | f [tM ] |, so the values of all integer-valued terms remain invariant under f . Finally,

note that S1 ⊆ S2 reduces to |S1 \ S2 | = 0 whereas S1 = S2 reduces to |S1 \ S2 | = 0∧|S2 \ S1 | =
0.

4.3.1 A Simple Decision Procedure for QFBAPA

A simple technique for solving QFBAPA formulas is to reduce the problem to integer linear

arithmetic as follows. Introduce a fresh integer variable for each Venn region in venn(vars(φ)).

Rewrite each constraint of the form S1 = S2 as S1 ⊆ S2 ∧S2 ⊆ S1, and each constraint of the

form S1 ⊆ S2 as |S1 \ S2 | = 0. Finally, use sums over the integer variables representing the Venn

regions to rewrite the cardinality constraints.
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Figure 4.2 – Naming of the Venn regions of set variables A, B , and C using integer variables.

As an example, consider the formula

| A | > 1∧ A ⊆ B ∧|B ∩C | ≤ 2

and the naming of the Venn regions venn({A,B ,C }) shown in Figure 4.2. Rewrite the constraints

as

k1 +k4 +k5 +k7 > 1∧k1 +k5 = 0∧k7 +k6 ≤ 2∧ki ≥ 0 for i ∈ {0, . . . ,7}

A model for this integer formula is, for example,

k4 = 1,k7 = 1,ki = 0 for i ∉ {4,7}

From the model for integer variables we can build a model for the QFBAPA formula by picking

distinct elements from E for each Venn region. In this case we can construct, for example,

U = {e1,e2}, A = {e1,e2},B = {e1,e2},C = {e2}

This reduction is simple to understand and to implement, but always requires 2N integer

variables, where N is the number of elements in vars(φ). In the following, we show how to

reduce this number considerably in many cases that arise in practice.

Note that what we describe below is largely orthogonal to the NP procedure in [KR07]. Our

results should in principle apply both to the naive procedure sketched above, and to the

sparse encoding procedure in [KR07]. Note that the NP procedure from [KR07], although

theoretically optimal, has so far been shown to be practically useful only for satisfiable cases.

For unsatisfiable cases the sparse encoding generates quantifier-free Presburger arithmetic

formulas that are difficult for current SMT solver implementations.

4.3.2 Decomposing Conjunctions of QFBAPA Formulas

The decision procedure presented in Section 4.3.1 requires many integer variables because it

uses a variable for the intersection of every combination of set variables. The intuition behind
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the following result is that permutations of elements within sets that are not related by a

constraint in a formula do not affect the satisfiability of that formula.

Theorem 4.5. Let φ1 and φ2 be two QFBAPA formulas. Let V1 and V2 denote the sets of set

variables appearing in φ1 and φ2, respectively. Let VS =V1∩V2 be the set of shared variables. Let

KS represent the set of shared integer variables. The QFBAPA formula φ≡φ1 ∧φ2 is satisfiable

if and only if there exists a model M1 for φ1 and a model M2 for φ2 such that, for each integer

variable k ∈ KS , kM1 = kM2 , and such that M1∼VS M2.

Proof. We construct a model M for φ by extending M1 to the variables in V2 \VS . (The other

direction is immediate.) We show that there exists a permutation f on E such that f [vM2 ] =
vM1 for each Venn region v ∈ venn(VS). In other words, f is a bijection that projects the

interpretation in M2 of all intersections of the shared variables to their interpretation in M1.

We construct f as follows: for each Venn region v ∈ venn(VS), let fv be a bijection from vM2

to vM1 . Note that fv always exists because vM1 and vM2 have the same cardinality, by ∼VS .

Let f ? be
⋃

v∈venn(VS ) fv . Observe that f ? is a bijection from U M2 to U M1 , because venn(VS)

forms a partition of U in both models. To obtain the desired f , we can extend f ? to the

domain and range E by taking its union with any bijection from E \ U M2 to E \ U M1 . The

model M =M1 ∪ f [M2] is a model of φ1 (trivially) and of φ2 (by Theorem 4.4), therefore, it is

a model of φ.

The following result is a generalization of Theorem 4.5 for a conjunction of arbitrarily many

constraints.

Theorem 4.6. Letφ1, . . . ,φn be n QFBAPA formulas. Let Vi denote vars(φi ) for i ∈ {1, . . . ,n}. Let

VS = ⋃
1≤i< j≤n

Vi ∩V j

be the set of all variables that appear in at least two sets Vi and V j . The formula φ1 ∧ . . .∧φn is

satisfiable if and only if: 1) there exist models M1, . . . , Mn such that, for each i , Mi |=φi and 2)

there exists an interpretation M of the variables VS such that M ∼VS∩Vi Mi for each 1 ≤ i ≤ n.

(Note that the conditions imply that |U M | = |U Mi | for each i .) The proof follows the idea of

the proof of Theorem 4.5: it suffices to show that one can extend the model M to each model

Mi by finding a bijection fi . Note that fi is guaranteed to exist because M ∼VS∩Vi Mi .

Remark. It is not sufficient that for each 0 ≤ i < j ≤ n, Mi ∼(Vi∩V j ) M j , that is, that there

exists bijections between all pairs of models Mi and M j . A simple counter-example is given

69



Chapter 4. Sets with Cardinality Constraints

by the (unsatisfiable) constraints:

φ1 ≡ | A | = 1∧|B | = 1∧| A∩B | = 1

φ2 ≡ | A | = 1∧|C | = 1∧| A∩C | = 1

φ3 ≡ |B | = 1∧|C | = 1∧|B ∩C | = 0

Although any conjunctionφi ∧φ j can be shown satisfiable using Theorem 4.5, the conjunction

φ1 ∧φ2 ∧φ3 is unsatisfiable, because a common model M cannot be built from models for

each three constraints.

Lemma 4.7. Let φ1, . . . ,φn be n QFBAPA formulas, and let V1, . . . ,Vn ,VS be defined as above.

Assume there exist M ,M1, . . . ,Mn satisfying the conditions of Theorem 4.6 and the additional

condition that:

|U M | ≥ | ⋃
S∈VS

SM |+
n∑

i=1
| ⋃

S∈Vi \VS

SMi |

Then there exists a model Md such that, for any two sets Si ∈Vi \VS and S j ∈V j \VS (with i 6= j ),

if (1) ∀S ∈VS ∩Vi . Mi |= Si 6= S and (2) ∀S ∈VS ∩V j . M j |= S j 6= S, and (3) either Mi |= Si 6= ;
or M j |= S j 6= ;, then Md |= Si 6= S j .

Intuitively, Lemma 4.7 states that for two sets variables that appear in different constraints and

that are not shared, if there exists a model in which these sets are not empty and are not equal

to some shared set variable, then there exists a model in which the two sets are not equal. The

correctness follows from the fact that with U M sufficiently large, it is always possible to find

bijections fi such that for each i the non-shared sets are mapped to a different subset of U .

We omit the details of the proof in the interest of space.

Lemma 4.8. The additional conditions of Lemma 4.7 are fulfilled when E is infinite and |U | is

not constrained in any formula φi .

This result is important for the combination of QFBAPA with other theories, as explained

in Section 4.4. The proof follows from the fact that with an infinite domain E and an uncon-

strained universe U , if there exists a model, we can extend it to a model M where |U M | is

sufficiently large.

A decision procedure based on decompositions. Theorem 4.6 yields a decision procedure

for the satisfiability of conjunctions of QFBAPA constraints φ1 ∧ . . .∧φn : independently for

φ1 to φn , introduce integer variables for the regions of venn(V1), . . . , venn(Vn), respectively,

then introduce fresh variables for the regions of venn(VS), where VS is computed as in the

theorem. Finally, constrain the sums of variables representing the same regions to be equal.

(This ensures that the bijections fi can be constructed in the satisfiable case.) As an example,
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Figure 4.3 – Independent naming of the Venn regions of set variables V1 = {A,B}, VS = {B}, and
V2 = {B ,C ,D}.

consider the formula

| A \ B | > | A∩B |∧B ∩C ∩D =;∧|B \ D | > |B \C |

Let φ1 be the first conjunct and φ2 the other two. We have V1 = {A,B} and V2 = {B ,C ,D}. Using

the naming for regions shown in Figure 4.3, we obtain the integer constraints

k1 > k3 reduction of φ1

∧ k13 = 0∧k7 +k10 > k7 +k11 reduction of φ2

∧ k4 = k0 +k1 = k6 +k8 +k9 +k12 representations of |Bc |
∧ k5 = k2 +k3 = k7 +k10 +k11 +k13 representations of |B |

A possible satisfying assignment for the integer variables is k4 = 2, k0 = k1 = k2 = k5 = k8 = k9 =
k10 = 1, and k3 = k6 = k7 = k11 = k12 = k13 = 0. From these values, we can build the assignment

to set variables

U1 = {e1,e2,e3}, A = {e1},B = {e2} for φ1

U2 = {e4,e5,e6},B = {e4},C = {e4,e5},D = {e6} for φ2

Finally, to build a model for φ1 ∧φ2, we need to construct two bijections f1 and f2 such that

f1(e4) = f2(e2) and f1[{e5,e6}] = f2[{e1,e3}]. This is always possible in this decision procedure,

because we constrain the sizes of the Venn regions of shared variables to be equal. Intuitively,

the freedom in the construction for this example comes from the fact that when we merge the

models, the overlapping between C or D and A is unconstrained: we can choose to map either

e5 or e6 to the same element as e1, in which case either C or D will share an element with

A. So one possible model for φ is A = {e1},B = {e2},C = {e1,e2},D = {e3}. (Here we chose the

identity function for f1.) Note that this model also satisfies the property of models described

in Lemma 4.7, since, in this interpretation, A 6=C and A 6= D .

4.3.3 Hypertree Decompositions

In general, and as in the previous example, the constraints φi in Theorem 4.6 can contain top-

level conjunctions. It is thus in principle possible to decompose them further. In this section,
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we introduce a hypergraph representation of constraints from which it is straightforward to

apply the decision procedure presented above recursively.

Definition 4.9 (Hypertree Decomposition). Let φ be a QFBAPA formula and let V = vars(φ).

Let φ1, . . . ,φn be top-level conjuncts of φ and V1, . . . ,Vn the sets of variables appearing in them,

respectively. We assume without loss of generality that Vi 6=V j for i 6= j . (If two constraints φi

and φ j have the same set of variables, consider instead the constraint φi ∧φ j .) Let V̄ denote

{V1, . . . ,Vn}. Let H = (V̄ , Ē) be a hypergraph on the set of sets of variables V̄ (so Ē ⊆ 2V̄ ). Let

l : Ē → 2V be a labeling function that associates to each hyperedge a subset of the set variables of

φ (that subset need not be one of Vi ). We call H a hypertree decomposition ofφ, if the following

properties hold:

(H1) ∀Vi ,V j . Vi ∩V j 6= ; =⇒ ∃E ∈ Ē : Vi ∈ E ∧V j ∈ E ∧ (Vi ∩V j ) ⊆ l (E)

(H2) ∀E ∈ Ē ,∀V ∈ V̄ . V ∈ E ⇐⇒ V ∩ l (E) 6= ;
(H3) H is acyclic 1

Property (H1) states that two nodes that share at least one variable must be connected with an

hyperedge whose label contains at least their shared variables, and Property (H2) states that a

node is contained in a hyperedge if and only if the label of that hyperedge shares at least one

set variable with the node. Note that a formula φ admits in general many distinct hypertree

decompositions. For instance, the hypergraph H = (V̄ ,E) with a single hyperedge E = V̄ and

l (E ) = vars(φ) always satisfies Definition 4.9. To illustrate hypertree decompositions, consider

the (unsatisfiable) formula

| A∪B | ≤ 3∧C ⊆ B ∧| (C ∩D) \ F | = 2∧| (C ∩G) \ D | = 2∧H ⊆G (4.1)

If we number the conjuncts from 1 to 5, we have V1 = {A,B}, V2 = {B ,C }, V3 = {C ,D,F },

V4 = {C ,D,G}, V5 = {G , H }. Figure 4.4 shows a possible hypertree decomposition of (4.1). The

intuition behind hypertree decompositions is that hyperedges represent set of constraints,

and that models for these sets need to agree only on the variables they share in their common

nodes.

Reduction to integer arithmetic from hypertrees. We show now how to adapt the decision

procedure presented at the end of Section 4.3.2 to hypertree decompositions. We proceed

as follows: for each set of set variables Vi (each node in the hypertree), we introduce integer

variables for all regions venn(Vi ). Then, for each hyperedge E , we add variables for the regions

venn(l (E )). Finally, for each node Vi and each hyperedge E such that Vi ∈ l (E ), we constrain the

sums of variables describing the same Venn regions to be equal. For each v ∈ venn(Vi ∩ l (E)),

1. We define as a cycle any set of at least two hyperedges such that there exists a node reachable from itself by
traversing all hyperedges in the set. This implies in particular that no two hyperedges intersect on more that one
node. Note that this is more restrictive than the definition of a hypertree as a hypergraph that admits a tree as a
host graph.
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{A,B}
{B,C} {C,D, F}

E1

E2

E3

{C,D,G} {G,H}

Figure 4.4 – A hypertree decomposition of (4.1). The labeling is given by: l (E1) = {B}, l (E2) =
{C ,D}, l (E3) = {G}.

we generate the constraint:∑
v1 ∈ venn(Vi )

s.t.v1 ⊆ v

kVi (v1) = ∑
v2 ∈ venn(l (E))

s.t.v2 ⊆ v

kl (E)(v2)

where kVi (·) and kl (E)(·) denote the integer variable representing a Venn region in the naming

scheme for the Venn regions of Vi and l (E), respectively.

This decision procedure has the same worst-time complexity as the one presented in Sec-

tion 4.3.1; indeed, it is possible to construct a formula φ with a hypertree decomposition

that leads to a reduction that uses up to 2N+1 integer variables, where N is the number of

set variables in φ. We have found however that the reduction works well in practice (see

Section 4.5).

4.4 Integration with Z3

We implemented our new decision procedure for QFBAPA constraints based on the results of

Section 4.3 as an extension to the state-of-the-art SMT solver Z3 [dMB08b]. In this extension,

sets do not range over uninterpreted elements but over the integers. The resulting prover can

thus handle constraints such as

(S1 = {1,2,3,4}∧S2 ⊆ S1 ∧S2 6= ;) =⇒ |S2 | ∈ S1

and such as our example from the introduction. Although we are thus in effect performing

non-disjoint theory combination, we were able to implement our techniques using only the

mechanism of theory plugin extensions to interact with the prover. Because such extensions

can add arbitrary axioms (i.e. that are not restricted to theory elements) to the logical context

of Z3 at any time, this was indeed not a major limitation. We wrote our extension in Scala

and used the Java Native Interface to access the C API of Z3 [KKS11]. We did not observe any

significant overhead in the forwarding of function calls from and to the Java virtual machine.
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Reduction to the integers. We handle constraints on sets with cardinalities by reducing

them to integer linear arithmetic using the translation presented in Section 4.3.3. Assume for

now a fixed naming of Venn regions (we describe below how we maintain a hypertree and thus

a naming in the presence of incremental reasoning). For each set constraint S1 ⊆ S2 or S1 = S2,

we add an axiom constraining the integer representation of the set variables in the atom. For

instance, using the naming of Venn regions in Figure 4.3, we would add for the constraint

B ∪C ⊆ D the implication B ∪C ⊆ D =⇒ k7 +k8 +k10 = 0. Similarly, for each cardinality term

|S |, we add an axiom expressing the cardinality in terms of integer variables. Using the same

naming as above, we would for instance add for the term |C \ B | the equality |C \ B | = k8 +k12.

These axioms enforce that whichever boolean value the SMT solver assigns to the set predicate,

it will be forced to maintain for the integer variables an assignment that is consistent with the

constraints on the sizes of Venn regions.

Incremental introduction of Venn regions. Our theory extension receives messages from

the core solver whenever a constraint on sets or an application of the cardinality operator is

added to the logical context. We maintain at all times a hypertree decomposition H of the

conjunction of all constraints that are on the stack. Whenever a new constraint φi is pushed

to the stack, we apply the following steps:

1. We compute Vi = vars(φi ).

2. If there is a node in H labeled with Vi , we use the naming of Venn regions in that node

to generate the axiom expressing the reduction of φi and skip the following steps.

3. Else we introduce a new node Vi and we create fresh integer variables for each region of

venn(Vi ).

4. For each node V j in H such that Vi ∩V j 6= ;, we add a hyperedge E = {Vi ,V j } labeled

with l (E) =Vi ∩V j .

5. In the new graph, we collapse any introduced cycle as follows: let E1, . . . ,En be the

hyperedges that participate in the cycle. We introduce a new hyperedge E labeled with⋃
i∈{1,...,n} l (Ei ) and whose content is the union of the contents of E1, . . . ,En . We then

remove from the graph the edges E1 to En .

6. For each newly created edge E in the obtained, acyclic, hypergraph we introduce fresh

integer variables to denote the regions of venn(l (E)).

7. Finally, for each node in the new edge, we constrain the sums of integer variables that

denote the same Venn regions to be equal.

Note that all introduced integer variables are additionally constrained to be non-negative.

When constraints are popped from the stack:

1. We remove from H all nodes that were created for these constraints, if any.

2. For each hyperedge E that contained at least one removed variable, we check whether it

now contains only one node, in which case we delete it.
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Removing such nodes and edges provides two benefits: constraints added in a different search

branch may generate a smaller (less connected) hypertree, and Z3 has the opportunity to

remove from its clause database reduction axioms that have become useless. We efficiently

detect cycles by maintaining equivalence classes between nodes that correspond to the con-

nected components in the hypertree. We can then check, when we introduce a new hyperedge,

whether it connects nodes from different equivalence classes, which corresponds to our

definition of a cycle. We use a union-find data-structure to maintain the equivalence classes.

Interpreted elements. When considering sets in combination with other theories, it is nat-

ural to allow the use of the predicate e ∈ S denoting that a given set contains a particular

(interpreted) element, or constant sets {e1,e2}. For the simplicity of the argument, we assume

here that all sets have the same underlying element sort E . We handle interpreted elements

such as e, e1 and e2 by adding to the logic two connecting functions, singleton : E → Set and

element : Set→ E . We create for each interpreted element that appears in a predicate e ∈ S or in

a constant set a singleton set term singleton(e), and we add the axioms |singleton(e) | = 1 and

element(singleton(e)) = e. So singleton is interpreted as a constructor that builds a singleton set

from an element, and element as a function that for singleton sets computes its element, and

that is uninterpreted otherwise. We can thus rewrite e ∈ S as singleton(e) ⊆ S and constant sets

as unions of singletons. The connecting functions are used to propagate equalities: when two

elements are found to be equal in their theory, congruence closure will conclude that their

singleton sets (if they exist) need to be equal as well. The other direction is covered in the

following paragraph.

Communicating equalities. The reduction to integer linear arithmetic ensures that if two

sets must be equal, then the sizes of the Venn regions of their symmetric difference will be

constrained to be 0. However, for completeness we also need to detect that if their symmetric

difference is forced to be empty by some integer constraints, then the sets must be equal. To

enforce this, we could, for each pair of set variables (S1,S2) generate an axiom equivalent to

(|S1 \ S2 | =;∧|S2 \ S1 | =;) =⇒ S1 = S2

where the cardinality terms would be rewritten using the naming of set regions for S1 and

S2. However, because not every pair of set variable appears together in some constraint,

our hypertree decomposition does not in general define names for the intersections of any

variables S1 and S2. Our solution is to generate such axioms for all pairs of variables that

appear together in a node of the hypergraph. Additionally, for each set variable we generate

the axiom |S | = 0 ⇐⇒ S =;. We argue that, for sets that range over an infinite domain (such

as the integers), this is sufficient: Consider two set variables S1 and S2 that do not appear in

a common node. From lemmas 4.7 and 4.8, we have that as long as S1 or S2 is non-empty

or distinct from a shared set variable, there exists a model in which S1 6= S2. Both cases are

covered by the introduced axioms. Indeed, even if the two variables are equal to a different
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shared variable, by transitivity of the equality, their equality will be propagated. We thus have

the property that any two set variables that are not constrained to be equal can be set to

be distinct in a model. This is consistent with the theory combination approach taken in

Z3[dMB08a]. When we construct the hypergraph as presented above, we also make sure that

all terms representing singleton sets (that is, applications of the singleton(·) function) share

a common hyperedge, even if they don’t syntactically appear in a common constraint. This

ensures that all equalities between finite sets induced by cardinality constraints will result

in equalities between their elements through Z3’s congruence closure algorithm, and will be

communicated to the proper theory solver.

4.5 Evaluation

We evaluated our implementation using benchmarks from two verification sources. Figure 4.5

shows our experimental results. 2

Jahob benchmarks. We included all benchmarks from [KR07] in our evaluation. These

formulas express verification conditions generated with the Jahob system [ZKR08] for pro-

grams manipulating (abstractions of) pointer-based data-structures such as linked lists. In

[KR07], the benchmarks were used to compare the efficiency of the sparse encoding into linear

arithmetic with the explicit one (as in Section 4.3.1). We indicate for these benchmarks the

previously best time using either method. It is important to note that it was shown in [KR07]

that the two methods were complementary: the sparse encoding outperformed the explicit

one for sat instances and vice-versa. We do not claim that the absolute difference in time is a

significant measure of our algorithmic improvements, but rather provide these numbers to

illustrate that our new techniques can be used to efficiently handle sat and unsat instances.

Functional programs. We also included new benchmarks consisting of verification condi-

tions for Scala functions without side effects. Additionally to sets and elements, these examples

contain constraints on algebraic data types and functions symbols. Each verification condi-

tion contains at least one (recursive) function call. We first treated these function symbols as

uninterpreted. We then used universally quantified axioms to define the interpretation of the

functions and used Z3’s pattern-based instantiation mechanism to apply the axioms. Without

the axioms, all formulas were invalid (sat), and with the axioms, they were all proved valid.

While we could in principle have used our Leon verification system (presented in Chapter 3),

the option of using Z3’s quantifier instantiation mechanism presented the advantage that all

constraints are solved within a single invocations, as opposed to a succession of round-trips.

To the best of our knowledge, the only previous implementation that is complete for QFBAPA

and reports performance on benchmarks is [KR07]. We show significant improvement over

2. All benchmarks and the set of axioms we used are available from http://lara.epfl.ch/~psuter/bapaz3/.

76

http://lara.epfl.ch/~psuter/bapaz3/


4.6. Related Work

the existing benchmarks. While results in [KR07] were unable to handle unsatisfiable formulas

with 16 variables, we report success on formulas with 29 variables, which were automatically

generated from verification of functional programs.

4.6 Related Work

The algorithm presented in this chapter was first described in [SSK11]. The complexity of

QFBAPA was settled in [KR07] to be NP. The complexity of the quantified case as well as the

first quantifier elimination implementation was described in [KNR06]. The decidability of the

logic itself dates back at least to [FV59].

The work of combination of QFBAPA with other decidable theories has so far included

implementation as part of the Jahob system, which requires manual decomposition steps to

be complete [ZKR08, ZKR09]. A complete methodology for using QFBAPA as a glue logic for

non-disjoint combination was introduced in [WPK09], with additional useful cases introduced

in [SDK10, YPK10], some of which are surveyed in [KPSW10]. The combination method we

describe is simple, in that it does not require exchanging set constraints between different

theories that share sets of objects. In that sense, it corresponds to the multi-sorted combination

setup of [Zar02], which introduces a non-deterministic procedure that was, to the best of

our knowledge, not implemented. Combinations of theories that have finite domains has

been explored in [KGGT07]. In our presentation and implementation, we have focused on

combinations with integers, but we believe that our approach can be adapted to more general

cases.

Our decomposition of formulas was inspired by the algorithms for bounded (hyper)tree

width from constraint satisfaction [GGM09], although we do not directly follow any particular

decomposition algorithm from the literature. These algorithms are typically used to reduce

subclasses of NP-hard constraint satisfaction problems over finite domains to polynomial-time

algorithms. To the best of our knowledge, they have not been applied before to satisfiability of

sets with cardinality operators. Our results suggest that this approach is very promising and

we expect it to extend to richer logics containing QFBAPA, such as [YPK10].

Research in program analysis has used cardinality constraints in abstract domains [GLAS09,

PRS09], typically avoiding the need for a full-fledged QFBAPA decision procedure. Thanks

to our efficient implementation of QFBAPA, we expect that precise predicate abstraction

approaches [BHJM07] will now also be able to use QFBAPA constraints.
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Benchmark status sets cons. Venn regs. prop. prev. best our time
cade07-1 unsat 1 1 2 1.00 < 0.1 < 0.1
cade07-2 unsat 2 1 4 1.00 < 0.1 < 0.1
cade07-2a unsat 6 5 28 0.44 1.8 < 0.1
cade07-2b sat 6 5 28 0.44 < 0.1 < 0.1
cade07-3 unsat 2 1 4 1.00 < 0.1 < 0.1
cade07-3a unsat 5 4 16 0.50 0.4 < 0.1
cade07-3b sat 5 4 16 0.50 < 0.1 < 0.1
cade07-4 unsat 5 5 80 2.50 0.5 < 0.1
cade07-4b sat 5 5 76 2.38 0.1 < 0.1
cade07-5 unsat 7 5 168 1.31 13.6 < 0.1
cade07-5b sat 7 5 168 1.31 0.4 < 0.1
cade07-6 unsat 6 6 32 0.50 0.4 < 0.1
cade07-6a unsat 16 20 596 0.01 > 100 0.3
cade07-6b sat 16 22 1120 0.02 0.8 0.3
cade07-6c sat 16 20 596 0.01 0.9 0.4
listContent sat 3 4 14 1.75 < 0.1
listContent-ax unsat 4 5 16 1.00 < 0.1
listReverse sat 6 6 26 0.41 < 0.1
listReverse-ax unsat 9 11 308 0.60 0.2
setToList sat 6 8 76 1.19 < 0.1
setToList-ax unsat 7 9 114 0.89 < 0.1
listConcat sat 11 19 54 0.03 0.2
listConcat-ax unsat 28 33 268 < 0.01 0.4
treeContent sat 4 5 24 1.50 0.1
treeContent-ax unsat 6 7 28 0.44 0.1
treeMirror sat 6 6 20 0.31 < 0.1
treeMirror-ax unsat 11 11 572 0.28 0.3
treeToList sat 8 10 24 0.09 0.1
treeToList-ax unsat 29 35 2362 < 0.01 1.7

Figure 4.5 – Experimental results. The column “sets” is the number of set variables, “cons.”
is the maximal number of constraints on the stack, “Venn regs.” is the maximal number
of distinct Venn regions created from the hypertree structure, “prop.” is the proportion of
created Venn regions compared to the 2N naive naming scheme and is a measure of the
efficiency of our decomposition technique, “prev. best” indicates the previously best solving
time, and “time” is the running time with the new implementation. All times are in seconds.
The experiment was conducted using a 2.66GHz Quad-core machine, and using Z3 2.11.
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In this chapter, we move on from the use of specifications as a support for verification to

their use as a computation mechanism. We present an extension of Scala that supports

constraint programming over bounded and unbounded domains. The resulting language,

Kaplan, provides the benefits of constraint programming while preserving the existing features

of Scala. Kaplan integrates constraint and imperative programming by using constraints as an

advanced control structure; the developers use the monadic ’for’ construct to iterate over the

solutions of constraints or branch on the existence of a solution. The constructs we introduce

have simple semantics that can be understood as explicit enumeration of values, but are

implemented more efficiently using symbolic reasoning.

Kaplan programs can manipulate constraints at run-time, with the combined benefits of

type-safe syntax trees and first-class functions. The language of constraints is a functional

subset of Scala, supporting arbitrary recursive function definitions over algebraic data types,

sets, maps, and integers.

Our implementation runs on a platform combining a constraint solver with a standard virtual

machine. For constraint solving we use Leon, presented in Chapter 3. We evaluate Kaplan on

examples ranging from enumeration of data structures to execution of declarative specifica-

tions. We found Kaplan promising because it is expressive, supporting a range of problem

domains, while enabling full-speed execution of programs that do not rely on constraint

programming.

5.1 Introduction

Modern mainstream languages incorporate advances in memory safety, type systems, meta-

programming and modularity. However, the sequential control in widely used systems remains

largely unchanged compared to some of the earliest imperative and functional language de-

signs. Although this simplicity has advantages in terms of predictable compilation, it prevents

languages from approaching the abstraction level used in software design.
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The idea of Logic Programming [KK71, CKC81] is to allow programs that are non-deterministic

and specify relations (predicates) between values. The original inspiration came from a re-

stricted form of resolution as the execution mechanisms, which uses unification of logical

variables ranging over finite trees. Functional logic programming extends logic programming

with the narrowing technique and with benefits of functional programming [AH10]. Constraint

Logic Programming, CLP [JL87] and later generations of Prolog [CKC81] extend logic program-

ming with the ability to perform constraint solving not only over trees but also over numerical

domains. These paradigms hold great promise to raise the abstraction level of software. They

are related to program synthesis research [MW80, PR88, SLTB+06, KMPS10b, GJTV11], which

can be viewed as a compilation mechanism for declarative specifications.

We believe that key obstacles preventing broader use of non-deterministic declarative pro-

gramming constructs include:

– the difficulty of solving declarative constraints and

– the difficulty of incorporating these constructs into existing languages and platforms.

We next briefly outline the approach that our system uses to meet these challenges.

Efficient interoperability with existing platforms. In this chapter we present Kaplan, a

system that supports Constraint Programming on top of Scala. We address the difficulty of

incorporating into existing platforms by choosing not to modify the semantics of the core

Scala language, but instead use the flexibility of for-comprehensions in Scala. Because for-

comprehensions present a syntax for monads in Scala, this aspect of our approach is related

to using non-determinism monads in Haskell [FKcS09]. An important difference is that our

starting language is not purely functional, but can have side effects.

Our solution is therefore to identify a functional Turing-complete sublanguage for constraints,

and use it locally for declarative programming within the full Scala language (which has

features of object-oriented, imperative and functional languages). The declarative control

that we explore is based on describing iterations as a search process. The iteration ranges are

specified as the set of solutions to constraints. Our constraints are declared using first-class

functions and familiar combinators, such as &&. From a language point of view the integration

is appealing because users hardly need to learn any new notation.

One approach to implementation of non-deterministic languages is to deploy a virtual ma-

chine that supports backtracking, such as Warren’s Abstract Machine for Prolog [AK91] or

the Java Pathfinder model checker and its extensions [GGJ+10]. Unfortunately, such an ap-

proach is costly in terms of both performance and engineering effort. We propose instead to

encapsulate any need for backtracking into a for-comprehension that iterates over solution

spaces. In addition, we allow constraint programming in code outside of loops. In such cases,

logical variables and a constraint store help ensure that a program can find a solution without

backtracking over the host imperative program, keeping backtracking within a specialized

constraint solver.
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Efficient solving of declarative constraints. The first implementations of declarative para-

digms predate algorithmic advances of modern SAT solvers [MS96, ZMMM01]. The advances

in SAT led to a paradigm shift in solving combinatorial problems, where it became often

profitable to outsource constraint solving tasks to dedicated implementations, instead of

relying on a programmer to hard-code a search strategy.

Fueled by the developments of SAT solvers, a more expressive technology emerged as the field

of Satisfiability Modulo Theories (SMT), with a number of efficient implementations available

today [BT07, DdM06, dMB08b, BPST10]. SMT techniques combine SAT solvers with decision

procedures and their combination methods [DNS05, NO80, GHN+04] that were and remain

motivated by program verification tasks [Nel81, Kin71].

Our aim is to leverage the remarkable progress in dedicated constraint solvers by deploying

an SMT solver as a part of the run-time of a programming language. Whereas the developers

of Prolog were influenced by the state-of-the-art theorem proving technology of their time

(resolution for first-order logic), we aim to explore the potential of SMT. The fact that SMT

solvers were developed to model programming language constructs makes them a particularly

appropriate choice. However, the original motivation for SMT solvers was program verification,

whereas we aim to use them as an execution mechanism for declarative constraints.

Many logical theories are natively supported by modern solvers, including algebraic data types,

uninterpreted functions, linear arithmetic, and arrays. Nonetheless, we believe that constraint

solving can reach its full potential only if users can define their own classes of constraints. We

therefore choose to work with Leon, which supports a rich logic with user-defined recursive

functions and recursive data types. We thus trade performance and decidability for greater

expressive power and flexibility.

Our work as presented in this chapter makes a concrete and implemented proposal for in-

corporating constraint programming into an underlying stateful language through several

individual contributions:

– first-class constraints, which can be generated at run-time and which carry type and free-

variable information; the constraints can use unrestricted operations on booleans (including

negation), as well as built-in and user-defined recursive operations on integers, sets, maps,

and trees;

– a programming model for constraint programming based on creating and iterating over

a stream of solutions of a constraint using explicit control constructs; our programming

model (unlike most solutions with backtrackable virtual machines) has no penalty for the

code that does not use constraint solving;

– logical variables of numeric and symbolic types that postpone constraint solving steps,

often substantially reducing the size of the search space;

– the use of fair function unrolling and SMT solving technology to provide expressive power,

predictability, and efficiency of solving in many domains of interest;

– implementation of the system (Kaplan is publicly available from http://lara.epfl.ch);
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– evaluation of the system on examples from several domains, such as executing declara-

tively specified data structure operations, software testing, and counterexample-driven

construction of functions of a given template and a given specification.

The rest of this chapter is organized as follows. The next section presents features of Kaplan

through an extensive set of examples. Section 5.3 gives the semantics of key Kaplan constructs.

Section 5.4 outlines main implementation aspects of Kaplan. We present further evaluation

and illustrate use cases of Kaplan in Section 5.5. We finally review the remaining related work

and conclude.

5.2 Examples and Features

We present some of the features of Kaplan through examples. The simpler examples can be

tried out directly in a Scala shell, provided that it is launched with the Kaplan plugin.

5.2.1 First-class Constraints

val c1: Constraint2[Int,Int] = ((x: Int, y: Int) ⇒ 2*x + 3*y == 10 && x ≥ 0 && y ≥ 0)

This first command declares a constraint with two free variables. Note that the representation

of the constraint is a lambda term. The only difference between a declaration of a constraint

and an anonymous function is the type of the expression. As an alternative to explicitly

declaring the value to be of a constraint type, one can also append to the function literal a

method call .c, so the following declaration is identical to the previous one:

val c1 = ((x: Int, y: Int) ⇒ 2*x + 3*y == 10 && x ≥ 0 && y ≥ 0).c

The type of c1 is in this case determined by type inference, and this second way is generally

shorter. In Kaplan, constraints are in fact extensions (in the object-oriented sense) of functions,

and can thus be evaluated, given some values for their argument variables:

scala> c1(2,1)

result: false
scala> c1(5,0)

result: true

As is common in lambda calculus, the names given to the bound variables play no role; the

constraint ((x: Int)⇒x≥0) is equivalent to the constraint ((y: Int)⇒y≥0). One should think of

constraints being defined over (typed) De Bruijn indices rather than named variables.

Constraints can be queried for a single solution or for a stream of solutions by calling appro-

priate methods:

scala> c1.solve

result: (5,0)

scala> c1.�ndAll
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result: non−empty iterator

The solve method computes a single solution to the constraint, while �ndAll returns an iterator

over all solutions. The iterator computes and returns solutions on demand. (As a result of

displaying the iterator in the console, a search for the first solution is triggered.) When the set

of solutions is finite, one can compute it for instance as follows:

scala> c1.�ndAll.toList

result: List((5,0),(2,2))

The most general way to iterate over solutions is using a for-comprehension:

for(s ← c1.�ndAll) {

println(s)

}

Constraints are first-class members of Kaplan, and can be created and manipulated as such.

The following function, for instance, generates constraints describing an integer within

bounds; if the second argument is true, the bounds are given by [−m;m], else by [0;m].

def bounded(m: Int, neg: Boolean = true) = {

val basis: Constraint1[Int] = ((x: Int) ⇒ x ≤ m)

basis && (if(neg)
((x: Int) ⇒ x ≥ −m)

else
((x: Int) ⇒ x ≥ 0))

}

In this example, && is a call to a method defined as part of constraint classes, and which

expects as argument a constraint of the same arity and with the same types of parameters as

the receiver. This ensures that constraints can only be combined when the number and the

types of their De Bruijn indices are compatible. Note that, thanks to type inference, we need

not explicitly state that the two anonymous functions represent constraints. We can now use

the function bounded to produce constraints:

scala> bounded(3, true).�ndAll.toList
result: List(0, −1, −2, −3, 1, 2, 3)
scala> bounded(3, false).�ndAll.toList
result: List(0, 1, 2, 3)

Another convenient constraint combinator is the product method, which combines two con-

straints into a new one whose solution set is the Cartesian product of the original two:

scala> (bounded(1, true) product bounded(1,false)).�ndAll.toList
result: List((−1,0),(0,0),(1,1),(−1,1),(1,0),(0,1))
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Constructing constraints using combinators is a very concise way to solve general problems.

For instance, consider the problem of solving a CNF SAT instance defined in a way similar to

the standard DIMACS format, where the input

val p1 = Seq(Seq(1,−2,−3), Seq(2,3,4), Seq(−1,−4))

represents the problem

(x1 ∨¬x2 ∨¬x3)∧ (x2 ∨x3 ∨x4)∧ (¬x1 ∨¬x4)

The following function defines a solver for such problems:

def satSolve(problem : Seq[Seq[Int]]) : Option[Map[Int,Boolean]] =

problem.map(clause ⇒ clause.map(lit ⇒ {

val variable = scala.math.abs(lit)

val isPos = lit > 0

((m : Map[Int,Boolean]) ⇒ m(variable) == isPos).c

}).reduceLeft(_ || _)).reduceLeft(_ && _).�nd

}

Note that in this case we used the �nd method on the final constraint rather than solve. They

provide the same functionality, but �nd returns its result in an Option[_] type, where None

corresponds to an unsolvable constraint, while solve throws an exception if the constraint has

no solution. Another observation is that we use here a constraint over a single variable of Map

type to encode a constraint over an unknown number of boolean variables. We found this to

be a convenient pattern when the more rigid syntax of anonymous functions with explicit

variable naming does not apply. Because all variables are of the same type, the approach works

in our type-safe framework. We can now solve SAT problems:

scala> satSolve(p1)

result: Some(Map(2 → true, 3 → false, 1 → false, 4 → false)))
scala> satSolve(Seq(Seq(1,2), Seq(−1), Seq(−2)))
result: None

5.2.2 Ordering Solutions

As illustrated by some of the previous examples, the �ndAll method generates solutions in no

particular order. This corresponds to the intuition that it enumerates the unordered set of

solutions to a constraint. Similarly, the semantics of calls to solve or �nd are simply that if a

value is produced, then it is an element of that solution set. Two invocations of solve on the

same constraint may or may not result in the same solution.

It is sometimes desirable, though, to enumerate solutions in a defined order. To this end,

Kaplan constraints support two methods; minimizing and maximizing. These methods take as

argument an objective function. Just like constraints, objective functions are represented

using an anonymous function, in this case one that returns an integer. The minimizing and
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maximizing methods ensure that the De Bruijn indices’ types match those of the constraint.

From the user’s point of view, these functions are typed as IntTerms. 1

Consider the knapsack problem: given a maximum weight and a set of items, each with an

associated value and weight, find a subset of the items for which the sum of values is maximal

while the sum of weights is less or equal to the maximum. The following code produces and

solves an instance of the problem, where the solution is represented as a map from the item

indices to booleans indicating which should be picked.

def solveKnapsack(vals : List[Int], weights : List[Int], max : Int) = {

def conditionalSumTerm(vs : List[Int]) = {

vs.zipWithIndex.map(pair ⇒ {

val (v,i) = pair

((m : Map[Int,Boolean]) ⇒ (if(m(i)) v else 0)).i

}).reduceLeft(_ + _)

}

val valueTerm = conditionalSumTerm(vals)

val weightTerm = conditionalSumTerm(weights)

val answer = ((x : Int) ⇒ x ≤ max).compose0(weightTerm)

.maximizing(valueTerm)

.solve

}

We briefly explain the code. A solution to a knapsack instance is a map indicating a choice

of which objects should be picked. The conditionalSumTerm function builds, from a list of

integers, an integer term parameterized by a choice map and representing a sum of values.

The map defines whether each element in the list participates or not to the sum. We use

this function twice, to produce the two terms that, given a choice of items, encode the total

value and the weight respectively. Observe that we build the final constraint using a function

composition: we start the construction of the constraint as (x : Int)⇒x≤max and compose

it with the weight term to produce the constraint that the weight should not exceed the

maximum. Function composition is a general and type-safe way to build constraints from

smaller terms, as demonstrated in this example. We can now find optimal choices for instances

of the knapsack problem:

scala> val vals : List[Int] = List(4, 2, 2, 1, 10)

scala> val weights : List[Int] = List(12, 1, 2, 1, 4)

scala> val max : Int = 15

scala> solveKnapsack(vals, weights, max)

result: Map(0 → false, 1 → true, 2 → true, 3 → true, 4 → true)

1. The relationship from an implementation point of view between constraints and terms is explained in more
details in Section 5.4.
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5.2.3 User-defined Functions and Datatypes

An important feature of Kaplan is the ability to perform constraint solving in the presence

of user-defined functions and data types. Consider the following functions which compute,

for a 2× 2 matrix
[

a b
c d

]
represented as a tuple(a,b,c,d), its determinant and whether it is

unimodular, respectively:

@spec def det(a: Int, b: Int, c: Int, d: Int): Int = a*d − b*c

@spec def unimodular(a: Int, b: Int, c: Int, d: Int): Boolean = {

val dt = det(a, b, c, d)

dt == 1 || dt == −1
}

The @spec annotation indicates that the user wishes to use the functions as part of constraints,

and the Kaplan compiler enforces that such functions are written in PureScala (see Section 3.3).

We can now characterize unimodular matrices with small elements as

def boundedUnimodular(m: Int) = {

val b = bounded(m, false)
(b product b product b product b) && (unimodular _)

}

(The underscore after unimodular indicates to the Scala compiler that it should apply an η-

conversion to produce an anonymous function, and ultimately a constraint, from the defini-

tion.) We can use these new definitions to generate unimodular matrices:

scala> boundedUnimodular(2).�ndAll.take(4).toList

result: List((0,1,1,0), (0,1,1,2), (0,1,1,1), (1,1,2,1))

Perhaps more interestingly, the @spec functions can be mutually recursive. As an example,

consider the following declarative definition of prime numbers:

@spec def noneDivides(from : Int, j : Int) : Boolean = {

from == j || (j % from != 0 && noneDivides(from+1, j))

}

@spec def isPrime(i : Int) : Boolean = (i ≥ 2 && noneDivides(2, i))

val primes = ((isPrime(_:Int)) minimizing ((x:Int) ⇒ x)).�ndAll

which we can subsequently enumerate:

scala> primes.take(10).toList

result: List(2, 3, 5, 7, 11, 13, 17, 19, 23, 29)

Kaplan users can also define their own algebraic data types. The following code declares two

such types for red-black trees:

@spec sealed abstract class Color
@spec case class Black() extends Color
@spec case class Red() extends Color
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@spec sealed abstract class Tree
@spec case class Node(c : Color, l : Tree, v : Int, r : Tree) extends Tree
@spec case class Leaf() extends Tree

Algebraic data types are best manipulated using recursive functions and pattern-matching.

Kaplan supports such function definitions:

@spec def size(tree : Tree) : Int = (tree match {

case Leaf() ⇒ 0

case Node(_, l, _, r) ⇒ 1 + size(l) + size(r)

}) ensuring(result ⇒ result ≥ 0)

This function also illustrates the use of post-conditions. In this case, the post-condition

states that the result of size can never be negative. Such annotations can help the constraint

solver discard parts of the search space. Kaplan uses Leon to prove, at compile time, that the

annotations are valid, so that it can then rely on them at run-time for constraint solving. We

can similarly define recursive functions that compute whether a red-black tree contains sorted

keys or has the right coloring properties. In the interest of readability, we omit the complete

definitions.

@spec def orderedKeys(t : Tree) : Boolean = . . .

@spec def validColoring(t : Tree) : Boolean = . . .

@spec def validTree(t : Tree) = orderedKeys(t) && validColoring(t)

@spec def valsWithin(t : Tree, min : Int, max : Int) : Boolean = . . .

We expect that what these functions compute is clear from their name. With them, we can for

instance count the number of red-black trees with a given number of elements:

scala> (for(i ← (0 to 7)) yield ((t : Tree) ⇒ validTree(t) &&

valsWithin(t, 0, i) && size(t) == i ).�ndAll.size).toList

result: List(1, 1, 2, 2, 4, 8, 16, 33)

More advanced applications of data structure enumeration are presented in Section 5.5,

including testcase generation for sorted list and tree manipulations.

5.2.4 Timeouts

The language of constraints supported in Kaplan is very expressive. For that reason, one

cannot expect that any constraint will be solvable. As an example, given the definition (valid

in Kaplan)

@spec def pow(x : Int, y : Int) : Int = if(y == 0) 1 else x * pow(x, y − 1)

it would be unreasonable to expect the system to find a solution to the constraint

val fermat = ((x : Int, y : Int, z : Int, b : Int) ⇒ b > 2 && pow(x,b) + pow(y,b) == pow(z,b)).c
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As we have seen in Chapter 3, the search algorithm of Leon which forms the core of Kaplan is

a semi-decision procedure: if a solution exists, then that solution will be found eventually. If

there are no solutions, the procedure can discover this fact and stop, or loop forever. The solve,

�nd and �ndAll methods all take a parameter describing the timeout strategy. That parameter

is optional, so by default no timeout is used. Because it is also implicit, a timeout strategy can

be defined for an entire scope by a single definition that the Scala compiler then automatically

inserts at each call site:

implicit val timeoutStrategy = Timeout(1.0)

Given the above declarations, the following attempt to confirm Fermat’s last theorem results

in an exception after 1 second:

scala> fermat.�nd

result: TimeoutReachedException: No solution after 1.0 second(s)

at .solve(<console>)

at .<init>(<console>)

. . .

5.2.5 Logical Variables

All the examples so far have illustrated eager solution enumeration, where solving constraints

immediately produces concrete values. While this by itself is a convenient facility, much of

the power of constraint programming in general and of Kaplan in our case comes from the

ability to produce logical variables, which represent the promise of a solution. Logical variables

in turn can be used to control the execution flow of the program in novel ways. We start by

describing some of their basic properties. More advanced examples of programming with

logical variables follow.

In Kaplan, logical variables are always produced as the result of lazily solving a constraint. This

is done by calling lazySolve, lazyFind or lazyFindAll instead of solve, �nd or �ndAll respectively.

Consider the constraint we defined earlier:

val c1 = ((x: Int, y: Int) ⇒ 2*x + 3*y == 10 && x ≥ 0 && y ≥ 0).c

We produce logical variables representing a solution as follows:

scala> val (x,y) = c1.lazySolve; println((x,y))

result: (L(?),L(?))

Notice that the result is not a pair of integers, as in the case of solve, but a pair of objects of

type L[Int] representing the promise of integers. The question mark indicates that the value

has not yet been fixed.

Logical variables in Kaplan have singular semantics [RRH10], meaning that a given logical

variable will always represent the same concrete value, even when it is copied or passed as an

88



5.2. Examples and Features

argument to a function. The identity of a logical variable is determined by the identity of the

instance of the L[_] class. The value of a logical variable is fixed as soon as it is queried, which

can be done with the .value method:

scala> x.value

result: 5

scala> println((x,y))

result: (L(5),L(?))

(Note that even though the y can at this point only hold the value 0, the solver has not neces-

sarily detected that the solution is unique and thus still considers the value not to be fixed.)

Fixing a value needs not always be done explicitly. The Kaplan library defines two implicit

conversions between concrete and logical values:

implicit def concretize[T](l : L[T]) : T = l.value

implicit def lift[T](v : T) : L[T] = new FixedL[T](v)

The first one simply fixes the value whenever a function expects a concrete value and receives

a logical variable. The second one converts a concrete value into a specialized representation

of a logical variable. It is used to provide a common representation for concrete and logical

values: because Kaplan is built as a thin layer over Scala and most code must execute as usual,

we cannot afford to treat every value as logical. Instead, users decide which function can

handle logical values by using L[_] types in their signature. Because concrete values can be

lifted to logical status, such functions work indifferently with standard and logical variables.

Logical variables created through this lifting mechanism are treated specially and do not add

any complexity to the solving process.

5.2.6 Imperative Constraint Programming

Scala being a multi-paradigm language, users can alternate between different programming

styles depending on their preferences and on the task at hand. The same is true for Kaplan;

while eager solution enumeration is best used within functional style for-comprehensions,

logical variables can be used rather naturally in an imperative style, thanks to novel control

constructs. The Kaplan library defines the assuming-otherwise branching construct. It is simi-

lar in nature to if-then-else, except for an important difference: rather than strictly evaluating

the branching condition, assuming-otherwise blocks check whether the condition is feasible

and, if so, constrain the logical variables in the environment so that their values satisfy the

branching constraint. If the condition contains no logical variable (or only logical variables

that have already been fixed), then assuming-otherwise behaves exactly like if-then-else.

As an example, consider the classical puzzle that consists in finding distinct values for the
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letters representing digits in the following addition such that the sum is valid:

s e n d

+ m o r e

= m o n e y

We now present a solution in Kaplan written in an imperative style.

val anyInt = ((x : Int) ⇒ true).c
val letters @ Seq(s,e,n,d,m,o,r,y) = Seq.�ll(8)(anyInt.lazySolve)

This second line uses pattern-matching syntax to achieve two things at once: 1) the eight letter

variables are bound to eight independent (lazy) representations of a solution to the trivial

anyInt constraint and 2) the variable letters is bound to the sequence of all letter variables.

At this point, we have 8 unconstrained integer logical variables. We can imperatively add

constraints:

for(l ← letters) asserting(l ≥ 0 && l ≤ 9)

If this loop terminates without any error, then at the end of it, the 8 variables each represent a

number between 0 and 9. (Calling asserting(cond) is equivalent to assuming(cond){} otherwise

{ error }, just like assert(cond) is (conceptually at least) equivalent to if(cond){} else { error }.

More details are given in Section 5.4.1.) We further constrain the letters representing most-

significant digits:

asserting(s > 0 && m > 0)

We can now perform symbolic arithmetic using the existing and new logical variables. We

define a new variable for the sum of each line and constrain it to the expected value:

val fstLine = anyInt.lazySolve

asserting(fstLine == 1000*s + 100*e + 10*n + d)

val sndLine = anyInt.lazySolve

asserting(sndLine == 1000*m + 100*o + 10*r + e)

val total = anyInt.lazySolve

asserting(total == 10000*m + 1000*o + 100*n + 10*e + y)

At this point, the value of the letters is still not fixed, however Kaplan ensures that all variables

admit solutions satisfying the asserted constraints. Finally, we check for a solution to the

puzzle using one last assuming-otherwise block:

scala> assuming(
distinct(s,e,n,d,m,o,r,y) && fstLine + sndLine == total) {

println("Solution: " + letters.map(_.value))

} otherwise {

println("The puzzle has no solution.")

}

result: Solution: List(9, 5, 6, 7, 1, 0, 8, 2)
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HOST
t1 |µ1 →H t2 |µ2

t1 | 〈µ1,κ〉 → t2 | 〈µ2,κ〉

S-SAT
M |=φ

(λx̄.φ(x̄)).find | 〈µ,κ〉 → Some(M (x̄)) | 〈µ,κ〉

S-UNSAT
¬∃M : M |=φ

(λx̄.φ(x̄)).find | 〈µ,κ〉 → None | 〈µ,κ〉

L-SAT
M |= κ∧φ[x̄ 7→ l̄ f ] l̄ f fresh in κ

(λx̄.φ(x̄, l̄ )).lazyFind | 〈µ,κ〉 → Some(l̄ f ) | 〈µ,κ∧φ[x̄ 7→ l̄ f ]〉

L-UNSAT
¬∃M : M |= κ∧φ[x̄ 7→ l̄ f ] l̄ f fresh in κ

(λx̄.φ(x̄, l̄ )).lazyFind | 〈µ,κ〉 → None | 〈µ,κ〉

VALUE
M |= κ

l .value | 〈µ,κ〉 → M (l ) | 〈µ,κ∧ (l =M (l ))〉

LIFT
c is a constant l f fresh in κ

c.lift | 〈µ,κ〉 → l f | 〈µ,κ∧ (l f = c)〉

Figure 5.1 – Small-step semantics of Kaplan-specific constructs.

We mentioned that assuming-otherwise is conceptually close to if-then-else, and in fact

equivalent in the absence of logical variables. One important difference is that the construct is

asymmetrical; while

if(cond) thenExpr else elseExpr

is equivalent to

if(!cond) elseExpr else thenExpr

the same transformation cannot be applied to assuming-otherwise blocks; indeed, the se-

mantics are that the control will attempt to satisfy the branching condition, so whether the

positive or negative condition is tested has an impact on the rest of the execution. Section 5.4.1

discusses the implementation of assuming-otherwise blocks in terms of lazyFind.

5.3 Semantics

In this section, we present an overview of the semantic aspects of Kaplan through operational

semantic rules, shown in Figure 5.1. All features of Kaplan can be implemented in terms of the

two constructs �nd and lazyFind, as well as conversions between concrete values and logical
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variables (denoted by l ). Section 5.4 describes how to use the host language (Scala) to reduce

other constructs (including solve, �ndAll, lazyFindAll) to this core.

A state consists of a triple expr|〈µ,κ〉, where expr is the expression under evaluation, µ encodes

the part of the state that is proper to Scala, and κ is a constraint store. A constraint store is

conceptually a formula whose free variables correspond to all logical variables used since the

beginning of the computation.

The HOST rule captures the intuition that in the absence of invocations to the constraint

solver, Kaplan behaves exactly like Scala: we assume the existence of a transition relation →H

describing the execution of normal Scala code, and which is lifted to Kaplan through the HOST

rule. As one would expect, applying such transitions leaves the constraint store unchanged.

The rules S-SAT and S-UNSAT describe the possible results of an invocation of �nd, the simplest

form of constraint solving. We use (λx̄.φ(x̄)) to denote a constraint that ranges over the

variables x̄ and that does not refer to logical variables. By M we denote a map from variables

to constants. The condition M |=φ denotes that M is a valid model of φ, i.e., a mapping of

variables x̄ of φ to constants such that φ[x̄ 7→M (x̄)] holds. Examining the rules for �nd, S-SAT

and S-UNSAT, we note that �nd has no impact and no dependency on the constraint store,

which is consistent with its eager semantics.

The rules L-SAT and L-UNSAT for lazyFind are analogous, but with crucial differences: 1) logical

variables can be present in the constraints to solve, which we therefore denote (λx̄.φ(x̄, l̄ )),

and 2) the L-SAT rule does not produce concrete values, but rather fresh logical variables.

The LIFT rule applies whenever a constant value needs to be used in place of a logical variable.

Conceptually, it adds to the constraint store a new logical variable whose value is immediately

constrained to be the constant. Finally, the VALUE rule specifies how concrete values can be

extracted from a satisfying assignment (model) for the constraint store. Observe that when the

rule applies, the value of the logical variable is then fixed for the rest of the program execution

by the added equality to κ. This ensures singular semantics [RRH10]: in any execution trace,

all applications of the VALUE rule for a given logical variable l will produce the same value; a

different value would contradict the premise that M is a valid model for the store.

We now show that execution never gets stuck in one of the Kaplan-specific rules. Because

we are examining the behavior of our constructs taking a constraint solver as a parameter,

we deliberately ignore termination properties of the constraint solver and assume that the

outcome of the constraint solver call, denoted |=, becomes immediately available to test the

applicability of a rule.

Theorem 5.1. Suppose the constraint store is satisfiable in the initial state and that the →H

relation is total. Then the transition relation given by Figure 5.1 is also total.

Proof. The case of HOST is clear from the hypothesis that →H is total. For evaluations of �nd,

we observe that the rules S-SAT and S-UNSAT have complementary premises, and therefore
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one of them necessarily applies. Similarly for lazyFind, L-SAT and L-UNSAT are complementary,

regardless of the value of κ. LIFT has no precondition, so it remains to show that VALUE cannot

get stuck, i.e. that it cannot be the case that there is no model M for the constraint store κ.

Using the assumption that in the initial state the constraint store is satisfiable, it is sufficient

to show that no transition will make it unsatisfiable. Observe that only three rules affect the

constraint store; VALUE, LIFT, and L-SAT. The addition of the equality (l f = c) in LIFT clearly

does not affect satisfiability, because l f is fresh. Similarly, the addition of (l =M (l )) in VALUE

preserves the model M by definition. Finally, L-SAT is guarded by a satisfiability check on

precisely the next state of the store, so the model obtained in the premise is a valid model for

the next state.

The proof suggests an implementation strategy: preserve at all times, alongside the constraint

store, a satisfying assignment. When L-SAT is applied, cache the model M obtained from the

satisfiability check. When LIFT applies, augment the cached model with the appropriate value

for l f . Finally, to apply VALUE, use M from the cache.

It is not hard to see that this strategy is a valid refinement of the presented rules, and it is, in

fact, the strategy we have implemented in Kaplan, as explained in the next section.

5.4 Implementation

We implemented our extension to Scala as a combination of a run-time library and a compiler

plugin, both implemented in Scala. In this section, we present the implementation aspect of

these parts, along with the interaction with the underlying solver Leon.

5.4.1 Run-Time Library

First-class constraints. In Kaplan, first-class constraints are implemented as a hierarchy

of Term classes, as shown in Figure 5.2. The base Term class represents a lambda expression

and is parameterized by its argument types and return type. A constraint is simply a Term

instance where the return type is instantiated as boolean. We define subclasses of Term for

each arity, generating them automatically, as it is the case for the tuple and function definitions

in the Scala library. The base class defines methods common to terms of all arities, such as

the solve, �nd and �ndAll methods for querying constraints. We ensure that these methods are

only applicable when the return type is boolean by constraining it using an implicit parameter

asBool. We use the same technique to guarantee that term instances are combined in a fully

type safe way. We use the c method to trigger an implicit conversion from lambda expressions

to Term instances.

Each term subclass extends the corresponding function class in Scala, and uses the original

Scala code for the lambda expression to define function application. These classes define
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optimization methods (minimizing and maximizing) to obtain optimization constraints. The

implementation of the optimization procedures is discussed later in this section.

The creation of terms from Scala lambda expressions relies on compile-time transformations.

The transformations are implemented in a plugin for the official Scala compiler. We describe

how the compile-time transformations work in Section 5.4.2.

Logical variables. In Kaplan, logical variables are instances of the L class, which is param-

eterized by the type of the symbolic value that it encapsulates. We define LIterator classes

that extend the Iterator trait of Scala and that enumerate tuples of L values. We discuss the

implementation of logical variables in Section 5.4.3.

The assuming-otherwise construct. We can define the assuming-otherwise construct nat-

urally at the library level in Kaplan: it boils down to checking the satisfiability of a constraint

of arity 0, and can therefore be implemented in terms of lazyFind. Figure 5.3 shows the code

for this construct in Kaplan. The assuming block creates an Assuming instance. We rely on

the implicit conversion mechanism of Scala for implementing the construct: if the optional

otherwise block is not defined, the type checking phase will insert a call to assuming2value,

which will trigger a conversion from the Assuming instance to the value it encapsulates.

There exists a difference in the treatment of the optional second part of the built-in if-then-else

construct and our library extension for assuming-otherwise: without an optional else block,

an if(...){ ... } block is always type-checked as Unit. This is built in in the Scala compiler. We

cannot achieve the same effect with assuming-otherwise without making deep changes to the

compiler, so in our case, an assuming(...){ ... } block will throw an exception at run-time if the

following three conditions occur: 1) the assuming test fails, 2) no otherwise block is defined,

and 3) an expression of a type different from Unit is required.

5.4.2 Scala Compiler Plugin

The compile-time transformations of Kaplan programs include the following:

1. extracting user-defined specification functions and algebraic data types;

2. generating methods to allow conversion between values of these data types and their

representation in our solver Leon;

3. transforming implicit calls to conversion methods in order to instantiate Term instances.

These transformations are implemented as a compiler plugin that constitutes a compiler phase

that follows the type checking phase. Functions and classes that carry the @spec annotation are

expected to be in the PureScala constraint sublanguage, presented in Section 3.3. Alternatively,

developers can group these specification functions and data types in annotated Scala objects,

instead of annotating each of them. These specifications are extracted during compilation to
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abstract class Term[T,R] { self ⇒
def �nd(implicit isBool: R =:= Boolean): Option[T] = ...
def solve(implicit isBool: R =:= Boolean): T =
this.�nd.getOrElse(throw new UnsatException)

def �ndAll(implicit isBool: R =:= Boolean) : Iterator[T] = ...
def c(implicit isBool: R =:= Boolean): self.type = this
...

}

class Term0[R] extends Term[Unit,R] with Function0[R] {
...

}
class Term1[T1,R] extends Term[T1,R] with Function1[T1,R] {
...

}
class Term2[T1,T2,R] extends Term[(T1,T2),R]

with Function2[T1,T2,R] {
def ||(other: Term2[T1,T2,Boolean])
(implicit isBool: R =:= Boolean): Term2[T1,T2,Boolean] = ...

def &&(other: Term2[T1,T2,Boolean])
(implicit isBool: R =:= Boolean): Term2[T1,T2,Boolean] = ...

def unary_!(implicit isBool: R =:= Boolean):
Term2[T1,T2,Boolean] = ...

def compose0[A1](other: Term1[A1,T1]): Term2[A1,T2,R] = ...
def compose1[A1](other: Term1[A1,T2]): Term2[T1,A1,R] = ...
def compose0[A1,A2](other: Term2[A1,A2,T1]):
Term3[A1,A2,T2,R] = ...

def compose1[A1,A2](other: Term2[A1,A2,T2]):
Term3[T1,A1,A2,R] = ...

...
def product1[A1](other: Term1[A1,Boolean])
(implicit isBool: R =:= Boolean):
Term3[T1,T2,A1,Boolean] = ...

def product2[A1,A2](other: Term2[A1,A2,Boolean])
(implicit isBool: R =:= Boolean):
Term4[T1,T2,A1,A2,Boolean] = ...

def minimizing(objective: Term2[T1,T2,Int])
(implicit asBool : R =:= Boolean):
MinConstraint2[T1,T2] = ...

...
}
...
type Constraint[T] = Term[T,Boolean]
type Constraint0 = Term0[Boolean]
type Constraint1[T1] = Term1[T1,Boolean]
...

Figure 5.2 – Term class hierarchy.
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def assuming[A](cond: Constraint0)(block: ⇒ A): Assuming[A] = {
val v: Option[A] = cond.lazyFind match {
case Some(_) ⇒ Some(block)
case None ⇒ None

}
new Assuming(v)

}

�nal class Assuming[A](val thenResult: Option[A]) {
def otherwise(elseBlock: ⇒ A): A = thenResult match {
case None ⇒ elseBlock
case Some(tr) ⇒ tr

}
}

implicit def assuming2value[A](a: Assuming[A]): A = {
a.thenResult match {
case Some(tr) ⇒ tr
case None ⇒
throw new Exception("otherwise block not de�ned")

}
}

Figure 5.3 – Implementation of assuming−otherwise in terms of lazyFind.

obtain a representation that we use in solving. In addition, method definitions are generated

and inserted into the code in order to convert between these types and their representation. 2

We rely on the Scala compiler to signal to us the locations where a function literal needs

to be lifted to a constraint literal. The type checking phase, which runs before ours, does

so by surrounding such function literals by a call to an implicit function2term conversion

function. These functions are defined in the Kaplan library but have no implementation: they

simply serve as a guide to indicate to the type checker that the conversion is legal. (The effect

of compiling code written for Kaplan without the Kaplan plugin is thus that all constraint

manipulation operations result in a run-time NotImplemented exception.)

5.4.3 Implementation of the Core Solving Algorithms

Our implementation leverages the SMT solver Z3 that we use extensively through Leon. In

the following we refer simply to Z3, as the algorithms we cover in this section would remain

the same if we used Z3 alone; what we gain by using Leon is the additional expressive power

of recursive functions within constraints. We now describe the interactions with the solver

that allow us to put into practice features such as enumeration, minimization, and logical

variables.

2. We note that many of these operations could now be implemented in a simpler way using the macro language
introduced in Scala 2.10.
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Solution enumeration. �nd and lazyFind are used to implement �ndAll and lazyFindAll, re-

spectively, through the use of an iterator. The iterator maintains a constraint at all times,

starting with the original one. Each time a new solution is required, the iterator destructively

updates the constraint by adding to it the negation of the previous solution, thus ensuring that

all following solutions will be different. To make this process efficient, Kaplan relies on the

incremental reasoning capabilities of Z3 (and thus Leon) to avoid solving the entire constraint

each time. The implementation of lazyFindAll is conceptually identical, with the difference that

it returns logical variables instead of concrete values. These logical variables are constrained

in the store to be all-different. For an enumeration using lazyFindAll to terminate, Leon must

therefore prove that the constraint has finitely many solutions.

Optimization constraints. Our procedure for optimizing a constraint with respect to an

objective function can be seen as a generalization of binary search over the range of values

that the objective can take. Let us consider the case of minimization (the maximization

procedure is analogous). The pseudo-code for the algorithm can be seen in Figure 5.4. 3 It

starts by attempting to find a satisfying assignment for the constraint. It then repeatedly looks

for a model in which the objective is smaller than the last satisfying value, by exponentially

increasing the difference until a lower bound is found. It further reduces the interval until the

optimal value for the objective is found. The procedure maintains the invariants that: 1) l o

is always less than any satisfying assignment to tm ; and 2) there always exists a satisfying

assignment to tm which is less than hi .

Ordered enumeration. Having defined the solving procedure that minimizes a given term,

we can now compose it with solution enumeration to obtain ordered enumeration. We present

in Figure 5.5, a recursive algorithm that will enumerate solutions to φ, ordered by the value of

tm , which should be minimized.

In this pseudo-code, we use �ndAll to get an iterator of all values satisfying the given predicate,

and ++ to concatenate iterators.

Handling logical variables. We use a global context to keep track of the constraints associ-

ated with logical variables. Given a logical variable l and the constraint cl associated with it, we

create a guard (a boolean literal) gl , denoting the liveness of the logical variable, i.e. whether

its value has not been fixed yet. Throughout the execution, we maintain in the global context

the set of guards that are still alive. Upon creation of the variable l , we add gl to the set of alive

variables and we assert cl , guarded by the disjunction of all the guards in the set G , defined as

3. We use pseudo-code for clarity, but it is not hard to see that it can be implemented using only standard Scala
along with �nd or lazyFind.
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def solveMinimizing(φ, tm) {
solve(φ) match {
case ("SAT", m) ⇒

model = m
v = modelValue(m, tm)
pi vot = v −1
lo = null
hi = v +1
while (lo == null ∨ hi − l o > 2) {
solve(φ∧ tm ≤ pi vot) match {
case ("SAT", m) ⇒

model = m
if (lo == null) {

pi vot = pi vot ≥ 0 ? −1 : pi vot ×2
hi = pi vot + 1

} else {
lv = modelValue(m, tm)
pi vot = lv + (pi vot +1− l v)/2
hi = pi vot +1

}
case ("UNSAT", _) ⇒

pi vot = pi vot + (hi −pi vot )/2
lo = pi vot

}
}
return ("SAT", model)

case ("UNSAT", _) ⇒ return ("UNSAT", null)
}

}

Figure 5.4 – Pseudo-code of the solving algorithm with minimization. We invoke our base
satisfiability procedure via calls to solve.

def orderedEnum(φ, tm) {
solveMinimizing(φ) match {
case ("SAT", m) ⇒

vm = modelValue(m, tm)
�ndAll(φ∧ tm = vm) ++ orderedEnum(φ∧ tm > vm , tm)

case ("UNSAT", _) ⇒ return Iterator.empty
}

}

Figure 5.5 – Pseudo-code of the ordered enumeration algorithm.
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the set containing gl and the guards associated with all the logical variables that appear in cl :∨
g∈G

g ⇒ cl

The reason for considering the guards associated with the other logical variables is to ensure

the single value semantics of these. Consider the following simple example that illustrates the

situation:

for (x ← ((x: Int) ⇒ x ≥ 0 && x < 4).lazyFindAll) {

val y = ((y : Int) ⇒ y == x).lazyFind

assuming (x ≥ 2) {

... // �rst block

}

assuming (y < 2) {

... // second block

}

}

In each iteration of the outer for-comprehension, if the first block is entered, we do not want

to enter the second one, as this would violate the single value semantics for the variable x.

Since the constraint y == x will be enforced as long as either x or y has not been fixed, the

conflicting situation is correctly avoided.

In the terminology of Section 5.3, gl denotes whether the VALUE rule has been used for l (true

means it has not), cl is the constraint on which L-SAT was applied to introduce l into κ (as part

of l̄ f ) and the logical variables represented by the set of guards G are those that contributed to

the constraint (the l̄ variables in L-SAT). Note that using individual guards for logical variables

is not required by the semantics, but rather is an optimization that allows us to reduce the size

of the constraint store when some values become known. When the value vl of the variable l

is set, we remove gl from the set of alive guards, and we assert the following:

¬gl ∧ l = vl

When all of the literals guarding a constraint cl are removed from the alive set, the formula∨
g∈G g ⇒ cl that was asserted becomes trivially true, and the constraint can be discarded by

Z3. Another source of optimization is that we override the �nalize method of the L instances

such that, even if their value is never fixed, their guard is removed from the set of alive variables

when they are being considered for garbage collection by the JVM. This is again not strictly

speaking required by the semantics, but helps reducing the overhead of tracking all logical

variables.

Invocations of the solver. We summarize this section by presenting a list of all the places

where an invocation of the solver occurs:
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example time (s)
first examples 0.16
unimodular matrices 0.76
sat solving 0.05
knapsack 0.18
prime numbers 0.80
all red-black trees up to 7 nodes 27.45
send+more=money 1.17

Figure 5.6 – Evaluation results for the examples presented in Section 5.2.

– calls to �nd, as they search for a solution eagerly,

– calls to lazyFind, as they check whether a satisfying assignment exists for logical variables,

– calls to the hasNext method of the iterators returned by calls to �ndAll and lazyFindAll, which

are then translated into calls to �nd and lazyFind respectively, and

– evaluation of the constraint of assuming blocks, as they indirectly invoke the solver by

invoking lazyFind on the constraint.

Note that, as the proof in Section 5.3 suggested, calls to the value method of logical variables

do not trigger a solver invocation.

5.5 Advanced Usage Scenarios and Evaluation

In this section, we present an experimental evaluation of our constraint programming system

by considering a number of examples.

As a first overview of the performance of our implementation, we present the running times

for the examples that were introduced in Section 5.2. The results of our evaluation can be seen

in Figure 5.6. We observe that most problems are solved almost instantly, with the exception

of the red-black tree enumeration. We discuss the difficulty of enumerating data structures

satisfying an invariant in the subsequent examples.

5.5.1 Enumerating Data Structures for Testing

One use of the �ndAll construct consists in enumerating data structures that satisfy given

invariants. This is a problem that has been studied previously, and was motivated by [BKM02].

Subsequent work [GGJ+10] presents a Java-based language with non-deterministic choice

operators that can be used for enumerating linked data structures.

We describe our experience in using Kaplan to enumerate functional data structures to find

input values that violate function contracts. We consider a functional specification of red-black

trees. We enumerate solutions to function preconditions and check whether the postcondi-

tions hold. As in [BKM02, GGJ+10], we enumerate the data structures while bounding the

range of values than can be stored in nodes. A red-black tree is a binary search tree character-
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ized by the following additional properties: 1) each node is either red or black; 2) all leaves are

black; 3) both children of every red node are black; and 4) every simple path from the root to

any leaf contains the same number of black nodes.

The first method we consider is balance, which defines one of the cases erroneously to duplicate

one of the subtrees and forgetting another while rebalancing the tree. This results in violating

the post-condition of the add method as the result tree does not have the expected content.

In this case, an example violating the post-condition is found after enumerating twelve trees.

Our test harness consists of enumerating trees that satisfy the precondition of add and calling

the method in the body of the loop.

We then consider the case where the add method has a missing precondition, namely that

the tree must be black-balanced. In this case, the precondition to a method that is called

within add fails, and we find a bug-producing value using a similar harness after enumerating

four trees, in 0.187 seconds. We argue that a random test-case generation approach would be

insufficient in enumerating such data structures that satisfy complex invariants. While the

results using constraint solving is not as fast as the specialized solving in UDITA [GGJ+10], we

should keep in mind that this is an experiment in using a general-purpose constraint solving

engine. The generality of Kaplan is in contrast to previously proposed solutions for data

structure enumeration, which rely on specialized techniques for linked heap data structures,

or even techniques specialized to a particular data structure [BHR+00]. In the light of the

generality of our technique and the overall difficulty of the problem, we consider these to be

good results.

5.5.2 Executable Specifications

As another application of implicit computation, we now explore examples that consist of

the “execution” of declarative specifications instead of explicit computation. Execution of

specifications is the approach taken in Plan B [SAM10], in which specifications are used as a

fallback mechanism upon contract violations.

Consider, for instance, a function that computes the last element of a given list. We can define

this function declaratively, by stating that the input list is equal to some list concatenated with

the list that has only the element that we are looking for:

def last(list : List) : Int = {

val (elem, _) = ((e: Int, zs: List) ⇒ concat(zs, Cons(e, Nil())) == list).solve

elem

}

As a more elaborate example, consider adding an element to (or removing an element from) a

red-black tree. The explicit insertion and removal have to consider multiple cases in order to

keep the invariants that red-black trees should satisfy, and are known to be tricky to implement.

On the other hand, these methods can be stated succinctly in a declarative manner, using
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list size 20 40 60 80 100
time (s) 0.24 0.45 0.56 0.72 0.98

Figure 5.7 – Evaluation results for declarative last method.

size list add list remove RBT add RBT remove
0 0.07 0.02 0.03 0.02
1 0.08 0.02 0.10 0.05
2 0.12 0.05 0.14 0.09
3 0.16 0.10 0.55 0.41
4 0.24 0.18 0.66 0.76
5 0.39 0.38 1.07 0.91
6 0.55 0.45 1.51 1.56
7 0.97 0.67 9.32 13.09
8 1.48 1.09 11.13 18.80
9 2.27 1.80 24.49 25.79

10 3.32 2.22 11.51 20.55

Figure 5.8 – Evaluation results for declarative add and remove, for red-black trees and for sorted
lists. “size” is the size of the structure without the element. All times are in seconds.

functions that check if a given tree is indeed a red-black tree, along with functions computing

the content of the tree as a set:

def addDeclarative(x: Int, tree: Tree) : Tree =
((t: Tree) ⇒ isRedBlackTree(t) && content(t) == content(tree) ++ Set(x)).solve

def removeDeclarative(x: Int, tree: Tree) : Tree =
((t: Tree) ⇒ isRedBlackTree(t) && content(t) == content(tree) −− Set(x)).solve

The performance of the above methods is presented in Figure 5.8. We also show the results

for the similar case of inserting into and removing from a sorted list. Note that we encounter

essentially the same running times for the problem of declaratively sorting a list, by asking for

a sorted list of the same content as a given list.

The above examples show that it is possible to replace the explicit computation for a method

by its purely declarative specification, even for sophisticated contracts such as the ones on red-

black trees. The declarative variants are notably slower than the imperative implementations,

but it is likely preferable to rely on these executable specifications instead of simply crashing

when the imperative version violates the contract.

As a final example, let us consider the implicit computation that gives the integer square root

bpic of a positive integer i . This is concisely stated as following:

def sqrt(i : Int) : Int =
((res: Int) ⇒ res > 0 && res * res ≤ i && (res + 1) * (res + 1) > i).solve

Our implementation can handle numbers as large as hundreds of thousands, performing
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under 0.3 seconds in all cases.

5.5.3 Counter-example Guided Inductive Synthesis

Counter-example guided inductive synthesis (CEGIS) is a method for effectively solving ∃∀
constraints using SMT solvers. Such constraints are particularly important for program syn-

thesis, identified as the class of ∀∃ synthesis problems in [PR88]. The counter-example guided

approach for this problem was successfully applied to software synthesis in the algorithm

for combinatorial sketching using SAT solvers [SLTB+06]. This technique was later applied

with an SMT solver as the satisfiability engine to synthesize loop-free bit-vector code frag-

ments [GJTV11].

The technique starts by choosing some initial set of values for the universally quantified

variables, then solving the constraint for the existentially quantified variables. If the values for

the existentially quantified variables work for all values of the universally quantified variables,

a solution has been found. Otherwise, there is a counterexample which is some valuation

of the universally quantified variables. This counterexample is added to the set of values for

universally quantified variables and the procedure is repeated until a solution is found.

This synthesis loop can be expressed in our system succinctly, using first-class constraints. As

an example we consider the following: Are there integers a and b such that, for every integer

x, a · (x −1) < b · x ? In Kaplan we can describe the CEGIS approach as in Figure 5.9. When

executed, the program finds correct values for a and b in two iterations of the loop. The output

of the program is:

Initial x: 0

candidate parameters a = 1, b = 0

counterexample for x: 1

candidate parameters a = 1, b = 1

proved!

The example generalizes to arbitrary constraints (which, in this example, are cnstrGivenX and

cnstrGivenParams), keeping the same simple structure. Note that we here explicitly constructed

increasingly stronger first-class constraints; we can instead use logical variables and incre-

mentally augment the constraint store.

5.5.4 Comparison to Other Systems

Providing a fair comparison of running times of Kaplan against competing systems is difficult

because Kaplan covers many areas for which specialized tools have been developed. We do not

expect to match performance of each of these specialized systems. At the same time, there is

no single system that subsumes Kaplan. This section illustrates how other tools can solve some
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var continue = true
val initialX = ((x: Int) ⇒ true).solve
def cnstrGivenX(x0: Int): Constraint2[Int,Int] =
((a: Int, b: Int) ⇒ a * (x0 − 1) < b * x0)

def cnstrGivenParams(a0: Int, b0: Int): Constraint1[Int] =
((x: Int) ⇒ a0 * (x − 1) < b0 * x)

var currentCnstr = cnstrGivenX(initialX)
while (continue) {
currentCnstr.�nd match {
case Some((a, b)) ⇒ {
println("candidate parameters a = " + a + ", b = " + b)
(! cnstrGivenParams(a, b)).�nd match {
case None ⇒
println("proved!")
continue = false

case Some(ce) ⇒
println("counterexample for x: " + ce)
currentCnstr = currentCnstr && cnstrGivenX(ce)

}
}
case None ⇒
println("cannot prove property!")
continue = false

}
}

Figure 5.9 – Counter-example guided inductive synthesis in Kaplan.

list size time in Kaplan (s) time in Curry (s)
10000 < 0.01 0.21

100000 < 0.01 2.41
1000000 < 0.01 23.88

Figure 5.10 – Evaluation results for functional last method.

of the problems we presented in this chapter and solved using Kaplan. The running times

should not be taken as a definitive statement of the relative merits of the systems, but rather

as a guide to understanding key differences of the underlying constraint solving techniques.

Last element of the list. We first compare the performance of Kaplan and Curry on comput-

ing the last element of a list, both in a declarative way as presented in Section 5.5.2, and as a

tail-recursive functional method. In Curry, the declarative version can be expressed as:

last xs | concat ys [x] =:= xs

= x where x,ys free

The performance of the Curry implementation surpasses the performance of Kaplan that

we reported in Figure 5.7, running under 0.01 seconds in lists of size up to 100. However, in
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Kaplan we also have the freedom of writing the constraint directly as a functional program.

In such style, Curry performs at about the same speed as for a constraint-based definition,

so Kaplan outperforms Curry on longer lists. Figure 5.10 shows the evaluation results for

this case. It is of course the Scala compiler and the Java Virtual Machine that take credit for

the good performance of the functional implementation; to the credit of Kaplan is simply

that it does not lose any of this underlying efficiency. This basic consequence of Kaplan

design is very important from a practical point of view. In principle, a static analysis could

be used to recognize among logical constraints special classes that do not require constraint

solving (consider, for example, mode analysis of Mercury [OSS02]). However, this approach

clearly requires significant compilation effort to merely recover the baseline performance of a

functional or imperative code, whereas in Kaplan it follows by construction.

Generating data structures with complex invariants. We now report on our experience in

comparing Kaplan with ScalaCheck [Nil12] for generating red-black trees (results were similar

for sorted lists). ScalaCheck is a tool for producing test cases using random test generation,

similar to QuickCheck [CH00] for Haskell. We implemented basic generators for lists and trees

using generator combinators in ScalaCheck. The problem with random generation is that, for

many classes of properties, the probability of a random structure satisfying it may tend to zero

as the structure size grows [BGK85], making test cases vacuous for larger structures. To see

this in practice, consider first our own performance: Figure 5.6 shows that Kaplan takes 27.45

seconds in total to generate all red-black trees of size n containing elements 1 to n, for all n

from 0 to 7. We therefore defined a basic ScalaCheck generator that, with equal probability,

generates an empty or a non-empty tree. We ran it for 29.1 seconds, generating 200’000 trees.

Although 62% of all of them were red-black, that is because 104’544 were, in fact, empty. Of

the rest, 18’191 had size one, 934 size two, and there were no red-black trees of larger size.

In this experiment, we gave both Kaplan and ScalaCheck only the constraints, without any

additional insight, which makes the comparison fair. Experienced users could write better

ScalaCheck generators, but they could similarly write better Kaplan checkers. Like UDITA

[GGJ+10], Kaplan supports a full spectrum of intermediate approaches, where one puts more

attention into either writing better generators, to increase the ratio of valid testcases, or into

manually decomposing the implicit computation to reduce the search space.

Constraint satisfaction problems. Tools for constraint solving and optimization over finite

domains have developed somewhat independently of SMT and the related technologies

[NSB+07, AW07, GJM06, Tac09]. Our anecdotal experience suggests that, for problems of

moderate size over finite domains, the two technologies yield comparable results. A full

experimental comparison between the state of the art of these two communities is beyond the

scope of our work. Note that we could incorporate into Kaplan solvers from either class, as

long as they support our domains of interest (including, for example, algebraic data types).
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5.6 Related Work

We conclude this chapter by surveying related work. Kaplan itself was first presented in

[KKS12].

Existing languages. Functional logic programming [AH10] amalgamates the functional

programming and logic programming paradigms into a single language. Functional logic lan-

guages, such as Curry, benefit from efficient demand-driven term reduction strategies proper

to functional languages, as well as non-deterministic operations of logic languages, by using

a technique called narrowing, a combination of term reduction and variable instantiation.

Instantiation of unbound logic variables occur in constructive guessing steps, only to sustain

computation when a reduction needs their values. The performance of non-deterministic

computations depends on the evaluation strategy, which are formalized using definitional

trees [Ant92]. Applications using functional logic languages include programming of graphical

and web user interfaces [HK09, Han06] as well as providing high-level APIs for accessing

and manipulating databases [BHM08]. Our work can be seen as the practical experiment of

building from existing components a system close in functionality to Curry: we proceeded by

extending an existing language while preserving its execution model, rather than starting from

scratch. As such, we lose the luxury of a total integration of paradigms; for instance, users of

Kaplan need to specify which functions can handle logical variables. On the other hand, such

a separation of features comes with benefits: we can readily use the full power of Z3 and the

Leon verification system for constraint solving, and the execution efficiency of the Java virtual

machine for regular code. Implementations of functional logic languages, on the other hand,

must typically focus on efficiently executing either the logical or the functional components

of the code.

The Oz language and the associated Mozart Programming System is another admirable com-

bination of multiple paradigms [vR99], with applications in functional, concurrent, and logic

programming. In particular, Oz supports a form of logical variables, and logic programming is

enabled through unification. One limitation is that one cannot perform arithmetic operations

with logical variables (which we have demonstrated in several of our examples), because

unification only applies to constructor terms.

Some of the earlier efforts to integrate constraint and imperative programming resulted in the

languages Kaleidoscope [LFBB94], Alma-0 [ABPS98] and Turtle [GH03]. This line of research

put emphasis on designing novel ways to define constraints, ideally to resemble imperative-

style programming. Kaleidoscope, for instance, promotes the integration of constraints with

objects; programmers can define instance constraints that relate various members of an

object, and constraints can be reassigned, just like mutable variables. Constraints are also

associated to a duration (once or always), specifying intuitively the scope in which they can

affect variables. Kaplan currently does not support constraints over mutable data types and

could benefit from the integration of such features.
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The integration of constraints as first-class members of the language is tighter in Kaplan

than in any of the languages discussed above. For example, in Curry programmers can define

constraints as functions that return the special type Success (which is not identical to Boolean

). However, such functions (or rather predicates) in Curry can only be built from equality

predicates and cannot be combined freely: while conjunction and disjunction are valid combi-

nators, negation, for instance, is not. In Kaplan, on the other hand, any predicate expressed in

PureScala can be used as a constraint, and terms of other types can also be manipulated and

composed freely.

Another distinguishing feature of Kaplan is the native support for many theories (integers,

sets, maps, data types) that comes from using Leon and Z3 as the underlying constraint solver.

Language design. Monadic constraint programming [SSW09] integrates constraint program-

ming into purely functional languages by using monads to define solvers. The authors define

monadic search trees, corresponding to a base search, that can be transformed by the use of

search transformers in a composable fashion to increase performance. Our system differs from

this work in its use of SMT solvers for search, and a more flexible way of mixing constraints

with imperative programming.

The work on uniform reduction to bit-vector arithmetic [MJ10] (URBiVA) proposes a C-like

language for specifying constraints. It uses symbolic execution to encode problems into bit-

vector arithmetic and invokes one of the underlying bit-vector and SAT solvers. The system

allows for the comparison of different solvers on examples involving solution enumeration

and functional equivalence checking. The use of symbolic values in conditional statements

and array indexing is not permitted. Because it uses native enumeration capability of solvers

such as CLASP, it can be faster than our system on some of the benchmarks. URBiVA does

not support unbounded domains; we are aware of no techniques to enumerate solutions for

unbounded domains more efficiently than in Kaplan.

SMT as a programming platform. The Dminor language [BGHL10] introduces the idea of

using an SMT solver to check subtyping relations between refinement types; in Dminor, all

types are defined as logical predicates, and subtyping thus consists of proving an implication

between two such predicates. The authors show that an impressive number of common types

(including for instance algebraic data types) can be encoded using this formalism. In this

context, generating values satisfying a predicate is framed as the type inhabitation problem,

and the authors introduce the expression elementofT to that end. It is evaluated by invoking Z3

at run-time and is thus conceptually comparable to our �nd construct but without support

for recursive function unfolding. We have previously found that recursive function unfolding

works better as a mechanism for satisfiability checking than using quantified axiomatization

of recursive functions. In general, we believe that our examples are substantially more complex

than the experiences with elementof in the context of Dminor.
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The Jeeves programming language [YYSL12] is another recent example of integration of SMT

as an executable component. Jeeves proposes to let users define privacy policies declaratively,

while enforcing them at run-time through the appropriate constraints. To this end, Jeeves

relies on symbolic variables, similar in design to the logical variables of Kaplan.

The ScalaZ3 library [KKS11] is our earlier effort to integrate invocations to Z3 into a program-

ming language. Because it is implemented purely as a library, we were then not able to integrate

user-defined recursive functions and data types into constraints, so the main application is to

provide an embedded domain-specific language to access the constraint language of Z3 (but

not to extend it).

Applications of declarative programming. One approach in using specifications for soft-

ware reliability is data structure repair [DR03, EK08], where the goal is to recover from cor-

rupted data structures by transforming states that are erroneous with respect to integrity

constraints into valid ones, performing local heuristic search. [ZK10] uses method contracts

instead of data structure integrity constraints to be able to support rich behavioral specifi-

cations. While the primary goal is to perform run-time recovery of data structures, recent

work [MSK11] extends the technique for debugging purposes, by abstracting concrete repair

actions to program statements performing the same actions. Data structure repair differs

from our system in that it can perform local search to modify existing states, while we do not

currently do so. We do not expect that a general-purpose constraint solving such as ours can

immediately compare with these dedicated techniques.

The idea to use specifications as a fall-back mechanism, as in one of our application examples,

was adopted in [SAM10]. Similarly to our setting, dynamic contract checking is applied and,

upon violations, specifications can be executed. The technique ignores the erroneous state and

computes output values for methods given concrete input values and the method contract.

The implementation uses a relational logic similar to Alloy [Jac02] for specifications, and

deploys the Kodkod model finder [TJ07]. A related tight integration between Java and the

Kodkod engine is presented in [MRYJ11]. In both cases, due to the finite bound on the search

space, a satisfying answer may not always be found, which makes the techniques incomplete.

We have shown that executing declarative specifications is possible in our setting. We expect

that a constraint solver such as the one deployed in Leon will ultimately be better suited than

an approach based on KodKod, due to the presence of unbounded or large data types such as

integers and recursive structures.

5.7 Conclusion

We presented Kaplan, an extension to the multi-paradigm Scala language that integrates

constraint programming while preserving the existing functional and object-oriented features

of the host language. The behavior and performance of Kaplan is identical to Scala in the

absence of declarative constraint solving. Kaplan integrates constraints as first-class objects
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in Scala, and logical variables for solving constraints lazily. It allows for solving optimization

problems, as well as enumerating solutions in a user-specified order. Kaplan is implemented

as a combination of a compiler plugin and a run-time library, and allows users to express

constraints in a powerful and expressive logic. Kaplan relies on Leon to solve these constraints.

We evaluated our system by considering applications such as solution enumeration, execution

of declarative specifications, test-case generation for bug-finding and counterexample guided

inductive synthesis, as well as numerous smaller, yet expressive, snippets. We observed that

our model for introducing non-determinism using for-comprehensions integrates well with

Scala.

Based on our experience with the Z3 SMT solver and the Leon verification system in constraint

programming, we found that a number of features, if natively supported by solvers, could

directly bring benefits to constraint programming. These include 1) support for enumeration

of theory models and 2) solving constraints while minimizing/maximizing a given term.

Overall, we believe there is great potential in extending standard programming languages

with constraint solving capabilities. Many interesting problems are left open, both in language

design and in constraint solving; a system such as Kaplan that integrates state-of-the-art tools

from both domains is likely to benefit from progress made in each of them.
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In the previous chapter, we showed how specifications can be used directly as a programming

construct, thus bypassing the tedious and error-prone task of translating them into imper-

ative or functional code. While we have demonstrated that some programming tasks can

thus be expressed very concisely, we have also noted that the main barrier to wider adoption

remains performance. In this chapter, we look at techniques to automatically transform, at

compile-time, specifications into executable code. This approach promises to combine the ad-

vantages of declarative specifications with the execution efficiency of standard programming

paradigms.

Our starting point are decision procedures, which we propose to systematically generalize into

synthesis procedures. Synthesis procedures are predictable, because they are guaranteed to

find code that satisfies the specification whenever such code exists. To illustrate our method,

we derive synthesis procedures by extending quantifier elimination algorithms for integer

arithmetic, term algebras, and set data structures. As a result, any relation expressed in (a

combination of) these logics can be translated into executable code. We show that an im-

plementation of such synthesis procedures can extend a compiler to support implicit value

definitions and advanced pattern matching.

6.1 Introduction

Synthesis of software from specifications [MW71, Gre69] promises to make declarative pro-

gramming more efficient. Despite substantial recent progress in techniques that generate

short instruction sequences [JNZ06] and program fragments [SLTB+06, SGF10], synthesis is

limited to small pieces of code. We expect that this will continue to be the case for some time in

the future: synthesis is algorithmically a difficult problem and requires detailed specifications,

which for large programs become difficult to write.

We therefore expect that practical applications of synthesis (and more generally declarative

programming) lie in its integration into the compilers of general-purpose programming lan-
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guages. To make this integration feasible, we aim to identify well-defined classes of expressions

and synthesis algorithms for given classes of expressions. Our starting point for such synthesis

algorithms are decision procedures.

We have already seen in Chapter 5 how to deploy decision procedures at run-time to solve

declarative tasks. Our goal in this chapter is to provide similar benefits in a more controller way:

we aim to run a decision procedure at compile time and use it to generate code. The generated

code then computes the desired values of variables at run-time. Such code is thus specific to

the desired constraint, and can be more efficient than a generic decision procedure. Another

benefit of examining specifications at compile time is that we can provide static feedback

to developers by checking the conditions under which the specifications have solutions and

whether they are unique. We can thus provide a form of static debugging for specifications.

The input to a synthesis procedure is only the desired constraint, and not necessarily any

bounds on values or on the structure of the synthesized code as in sketching [SLTB+06] and

resource-bounded synthesis [SGF10]. This makes a synthesis procedure highly automated. It

also means that its implementation cannot rely only on searching an obviously finite state

space; it must instead use insights from the underlying decision procedure. The use of decision

procedures for particular theories also differentiates our work from the earlier work based on

first-order logic [Gre69, JNZ06].

We demonstrate our approach by outlining synthesis algorithms for three unbounded domains:

linear arithmetic, term algebras, and QFBAPA. We have implemented and deployed synthesis

as a tool called Comfusy, a compiler extension for Scala. In our experience, the synthesis times

were acceptable and the running times were similar to equivalent hand-written code. Comfusy

can thus bring the combined advantages of declarative specifications as in Kaplan, with the

correctness and efficiency of manually written and verified code.

6.2 Examples

We first illustrate the use of the synthesis procedure for integer linear arithmetic as it is

implemented in Comfusy. Recall, from Chapter 1, the declarative code to decompose a number

of seconds into appropriate components:

def secondsToTime(total : Int) = ((h : Int, m : Int, s : Int) ⇒
h * 3600 + m * 60 + s == total && m ≥ 0 && m < 60 && s ≥ 0 && s < 60).solve

)

Comfusy succeeds, because the specification is written in linear arithmetic. It reports no

warning and generates the following code:

def secondsToTime(total : Int) = {

val loc1 = total div 3600

val num2 = total + ((−3600) * loc1)

val loc2 = min(num2 div 60, 59)
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val loc3 = total + ((−3600) * loc1) + (−60 * loc2)

(loc1, loc2, loc3)

}

The absence of warnings guarantees that the solution always exists and that it is unique.

Suppose that we replace in the specification the predicate s < 60 by s≤60. The synthesizer still

succeeds, however it emits the following warning:

Synthesis predicate has multiple solutions

for variable assignment: totsec = 0

Solution 1: h = 0, m = 0, s = 0

Solution 2: h = -1, m = 59, s = 60

The reason for this warning is that the bounds on s are not strict. The warning can indicate to

a programmer that the declarative code is underspecified, leading potentially to undesired

results. Playing with our example further, suppose that the developer imposes the constraint

val (hrs, mns, scs) = ((h: Int, m: Int, s: Int) ⇒
h * 3600 + m * 60 + s == totsec &&

0 ≤ h < 24 &&

0 ≤ m && m < 60 &&

0 ≤ s && s < 60).solve

Our system then emits the following warning:

Synthesis predicate is not satisfiable

for variable assignment: totsec = 86400

pointing to the fact that the constraint has no solutions when the totsec parameter is too large.

In addition to solving constraints directly, programmers can use synthesis for more flexible

pattern matching on integers. In existing deterministic programming languages, matching on

integers either tests on constant types, or, in the case of Haskell’s (n+k) patterns, on some very

special forms of patterns. Our approach supports a much richer set of patterns, as illustrated

by the following fast exponentiation code that does case analysis on whether the argument is

zero, even, or odd:

def pow(base : Int, p : Int) = {

def fp(m : Int, b : Int, i : Int) = i match {

case 0 ⇒ m

case 2*j ⇒ fp(m, b*b, j)

case 2*j+1 ⇒ fp(m*b, b*b, j)

}

fp(1,base,p)

}
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In this example, the system uses synthesis to, e.g., compute j from the constraint i = 2∗ j +1.

The correctness of the function follows from the observation that fp(m,b,i)=m ·bi , which we

can prove by induction. For the case i = 2 * j+1 we observe:

fp(m,b, i ) = fp(m,b,2 j +1) = fp(mb,b2, j )

(by induct. hypothesis) = mb(b2) j = mb2 j+1 = mbi

Note how the pattern matching on integer arithmetic expressions exposes the equations

that make the inductive proof clearer. To support this construct, our compiler extension

generates the code that selects the appropriate case and decomposes i into the appropriate

new exponent j. Moreover, it checks that the pattern matching is exhaustive. The construct

supports arbitrary expressions of linear integer arithmetic (it can prove, for example, that the

set of patterns 2*k, 3*k, 6*k−1, 6*k+1 is exhaustive). Comfusy also accepts implicit definitions,

such as

val 42 * x + 5 * y = z

The system ensures that the above definition matches every integer z (because 42 and 5 are

mutually prime), and emits the code to compute x and y from z.

In addition to integer arithmetic, other theories are amenable to synthesis and provide similar

benefits. Consider the problem of splitting a set collection in a balanced way. The following

code attempts to do that:

val (a1,a2) = ((a1:Set, a2:Set) ⇒
a1 union a2 == s && a1 intersect a2 == empty &&

a1.size == a2.size).solve

This specification is written in QFBAPA and can thus be handled by our synthesis procedure.

For the code above, Comfusy emits a warning indicating that there are cases where the con-

straint has no solutions. Indeed, there are no solutions when the set s is of odd size. If we

weaken the specification to

val (a1,a2) = ((a1:Set, a2:Set) ⇒
a1 union a2 == s && a1 intersect a2 == empty &&

a1.size − a2.size ≤ 1 &&

a2.size − a1.size ≤ 1).solve

then our synthesizer can prove that the code has a solution for all possible input sets s.

The synthesizer emits code that, for each input, computes one such solution. The nature of

constraints on sets is such that if there is one solution, then there are many solutions. Our

synthesizer resolves these choices at compile time. The resulting generated code is therefore

deterministic.
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6.3 Synthesis using Relation Transformations

We start by introducing a general framework for synthesis based on the notion of relation

transformation. We then use it to develop synthesis procedures for linear integer arithmetic,

QFBAPA, and term algebras

A synthesis problem is a triple�
ā

〈
φ

〉
x̄
�

where ā is a set of input variables, x̄ is a set of output variables and φ is a formula whose

free variables are a subset of ā ∪ x̄. A synthesis problem denotes a binary relation {(ā, x̄) |φ}

between inputs and outputs. The goal of synthesis is to transform such relations until they

become executable programs. Programs correspond to formulas of the form P ∧ (x̄ = T̄ ) where

vars(P )∪vars(T̄ ) ⊆ ā. We denote programs

〈P | T̄ 〉

We call the formula P a precondition and call the term T̄ a program term.

We use ` to denote the transformation on synthesis problems, so�
ā

〈
φ

〉
x̄
�` �

ā
〈
φ′〉 x̄

�
(6.1)

means that the problem
�

ā
〈
φ

〉
x̄
�

can be transformed into the problem
�

ā
〈
φ′〉 x̄

�
. The

variables on the right-hand side are always the same as on the left-hand side. Our goal is to

compute, given ā, one value of x̄ that satisfies φ. We therefore define the soundness of (6.1) as

a process that refines the binary relation given by φ into a smaller relation given by φ′, without

reducing its domain. Expressed in terms of formulas, the conditions become the following:

φ′ |= φ refinement

∃x̄ : φ |= ∃x̄ : φ′ domain preservation

In other words, ` denotes domain-preserving refinement of relations. Note that the dual

entailment ∃x̄ : φ′ |= ∃x̄ : φ also holds, but it follows from refinement. Note as well that ` is

transitive.

Equivalences in the theory of interest immediately yield useful transformation rules: if φ and

φ′ are equivalent, (6.1) is sound. We can express fact as the following inference rule:

|=φ1 ⇐⇒ φ2�
ā

〈
φ1

〉
x̄
�` �

ā
〈
φ2

〉
x̄
�

(6.2)
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In most cases we will consider transformations whose result is a program:�
ā

〈
φ

〉
x̄
�` 〈P | T̄ 〉

The correctness of such transformations reduces to

P |= φ[x̄ 7→ T̄ ] refinement

∃x̄ : φ |= P domain preservation

A synthesis procedure for a theory T is given by a set of inference rules and a strategy for

applying them such that every formula in the theory is transformed into a program.

6.3.1 Theory-Independent Inference Rules

We next introduce inference rules for a logic with equality. These rules are generally useful and

are not restricted to a particular theory.

EQUIVALENCE. From the transitivity of ` and (6.2), we can derive a rule for synthesizing

programs from equivalent predicates.�
ā

〈
φ1

〉
x̄
�` 〈P | T̄ 〉 |=φ1 ⇐⇒ φ2�
ā

〈
φ2

〉
x̄
�` 〈P | T̄ 〉

GROUND. In the case where no input variables are given, a synthesis problem is simply a

satisfiability problem.

M |=φ�; 〈
φ

〉
x̄
�` 〈> |M 〉

¬∃M : M |=φ�; 〈
φ

〉
x̄
�` 〈⊥ |⊥〉

(In these rules M is a model for φ and should be thought of as a tuple of ground terms.) Note

that the second rule can be generalized: even in the presence of input variables, if the synthesis

predicate φ is unsatisfiable, then the generated program must be 〈⊥ | ⊥〉.

ASSERTIONS. Parts of a formula that only refer to input variables are essentially assertions and

can be moved to the precondition.�
ā

〈
φ1

〉
x̄
�` 〈P | T̄ 〉 vars(φ2) ⊆ ā�

ā
〈
φ1 ∧φ2

〉
x̄
�` 〈φ2 ∧P | T̄ 〉

CASE SPLIT. A top-level disjunction in the formula can be handled by deriving programs for

116



6.3. Synthesis using Relation Transformations

both disjuncts and combining them with an if-then-else structure.�
ā

〈
φ1

〉
x̄
�` 〈P1 | T̄1〉

�
ā

〈
φ2

〉
x̄
�` 〈P2 | T̄2〉�

ā
〈
φ1 ∨φ2

〉
x̄
�` 〈P1 ∨P2 | if(P1) {T̄1} else {T̄2}〉

Given that the generated code executes both branches in a certain order, we can also strengthen

φ2 into φ2∧¬P1 in the second part of the premise. While this will not change the precondition

of the final program, it can trigger simplifications in φ2 ∧¬P1. Intuitively, this relieves the

second program from the burden of analyzing inputs that the first can always handle.

UNUSED INPUT. Input variables that are not used in the constraint can be discarded.�
ā

〈
φ

〉
x̄
�` 〈P | T̄ 〉 a0 ∉ vars(φ)�

a0 ; ā
〈
φ

〉
x̄
�` 〈P | T̄ 〉

UNCONSTRAINED OUTPUT. Output variables that are not constrained by φ can be assigned

any value.�
ā

〈
φ

〉
x̄
�` 〈P | T̄ 〉 x0 ∉ vars(φ)�

ā
〈
φ

〉
x0 ; x̄

�` 〈P | any ; T̄ (ā)〉

In the program, any denotes a nullary function that returns an arbitrary of the appropriate

type.

ONE-POINT. Whenever the value of an output variable is uniquely determined by an equality

atom, it can be eliminated by a simple substitution.�
ā

〈
φ[x0 7→ t ]

〉
x̄
�` 〈P | T̄ 〉 x0 ∉ vars(t )�

ā
〈

x0 = t ∧φ〉
x0 ; x̄

�` 〈P | let x̄ := T̄ in t ; x̄〉

DEFINITION. The definition rule is in a sense dual to ONE-POINT, and is convenient to give

a name to a subterm appearing in a formula. Typical applications include purification and

flattening of terms.�
ā

〈
x0 = t ∧φ[t 7→ x0]

〉
x0 ; x̄

�` 〈P | T̄ 〉 x0 ∉ vars(φ)�
ā

〈
φ

〉
x̄
�` 〈P | let (x0 ; x̄) := T̄ in x̄〉

SEQUENCING. The sequencing rule allows us to synthesize values for two groups of variables

one after another. It fixes the values of some of the output variables, treating them temporarily
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as inputs, and then continues with the synthesis of the remaining ones.�
ā ; x̄

〈
φ

〉
ȳ
�` 〈P1 | T̄1〉 �ā 〈P1〉 x̄� ` 〈P2 | T̄2〉�

ā
〈
φ

〉
x̄ ; ȳ

�` 〈P2 | let x̄ := T̄2 in x̄ ; T̄1〉

STATIC COMPUTATION. A basic rule is to perform computational steps when possible.�
a0 ; ā

〈
φ[t 7→ a0]

〉
x̄
�` 〈P | T̄ 〉 vars(t ) ⊆ ā�

ā
〈
φ

〉
x̄
�` 〈let a0 := t in P | let a0 := t in T̄ 〉

VARIABLE TRANSFORMATION. The ` transformation preserves the variables. To show how we

can change the set of variables soundly, we next present in our framework variable transfor-

mation by a computable function ρ [KMPS12], as an inference rule on two ` transformations.�
ā

〈
φ[x̄ 7→ ρ(x̄ ′)]

〉
x̄ ′�` 〈P | T̄ 〉�

ā
〈
φ

〉
x̄
�` 〈P | ρ(T̄ )〉

Slightly more generally, we have the following.�
ā

〈
φ′〉 x̄ ′�` 〈P | T̄ 〉 ∃x̄ : φ |= ∃x̄ ′ : φ′ φ′ |=φ[x̄ 7→ ρ(x̄ ′)]�

ā
〈
φ

〉
x̄
�` 〈P | ρ(T̄ )〉

EXISTENTIAL PROJECTION. This rule is a special case of variable transformation, where ρ simply

projects out some of the variables.�
ā

〈
φ

〉
x̄ ; x̄ ′�` 〈P | T̄ 〉�

ā
〈∃x̄ ′ : φ

〉
x̄
�` 〈P | let (x̄ ; x̄ ′) := T̄ in x̄〉

6.4 Synthesis for Linear Integer Arithmetic

This section presents a synthesis procedure for integer linear arithmetic (or Presburger arith-

metic) using the formalism developed in Section 6.3. We assume without loss of generality that

the synthesis problem is given as a conjunction of positive literals, with the only two relations

being = and ≤. The overall strategy is to, for a conjunction of literals, first eliminate as many

variables as possible using the equalities, then to compute witness terms for the remaining

variables based on the inequalities. The reader will observe that our description reads like a

description of quantifier elimination.
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6.4.1 Processing Equalities

A practical way of solving a system of integer arithmetic equalities is to rewrite it into Hermite

normal form (an integer analogous to echelon normal form) [Coh93]. Given a system

M x̄ = t̄ (ā)

where M is an integer matrix and t̄ (ā) denotes terms built over input variables and constants,

find two matrices U and H such that H = MU , U is unimodular and H is triangular. One can

then apply a variable transformation to simplify the system as

H x̄ ′ = t̄ (ā) with x̄ =U x̄ ′

Since H is triangular, computing solutions for x̄ ′ is straightforward: it suffices to solve variables

one by one and propagate their solution term. Because we are solving problems over integers,

though, we must take care that all divisions are valid. To this effect, we record the divisibility

constraints along the way. We denote these two operations by sol(H , x̄ ′, t̄ (ā)) and div(H , x̄ ′, t̄ (ā))

respectively. As an example, consider the system(
5 2

0 3

)(
x ′

1

x ′
2

)
=

(
a1

a2

)

Solving for x ′
2 gives us a2

3 as a term, and the divisibility constraint 3 |a2. Propagating this, we

obtain for x ′
1 the divisibility constraint 5 | 3a1−2a2

3 and the term 3a1−2a2
15 . We denote this by

sol(

(
5 2

0 3

)
,

(
x ′

1

x ′
2

)
,

(
a1

a2

)
) =

(
3a1 −2a2

15
,

a2

3

)
and

div(

(
5 2

0 3

)
,

(
x ′

1

x ′
2

)
,

(
a1

a2

)
) = 5 | 3a1 −2a2

3
∧3 |a2

Note that the first one is a vector, while the second one is a formula. In both cases, the free

variables could in principle range over {x ′
1, x ′

2, a1, a2}. Except in degenerate cases, however, the

free variables contain only a subset of the x variables. These two functions allow us to express

the resolution of a system of equalities as a rewrite rule:

H = MU
�

ā
〈
div(H , x̄ ′, t̄ (ā))∧φ[x̄ 7→U · sol(H , x̄ ′, t̄ (ā))]

〉
x̄ ′�` 〈P | T̄ 〉�

ā
〈

M x̄ = t̄ (ā)∧φ〉
x̄
�` 〈P | T̄ [x̄ ′ 7→ x̄]〉

Note that this rule is in fact a special case of VARIABLE TRANSFORMATION, where the multipli-

cation by U serves the role of ρ.

Intuitively, applying this rule corresponds to eliminating as many variables as the system of

equations permits. The remaining variables correspond to the dimensions of the solution

space for the equations, and we use them to rewrite the rest of the problem, applying the
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variable substitution principle.

6.4.2 Processing Inequalities

Contrary to the case of equalities, where the most productive approach is to consider the

entire system at once, in the case of inequalities we treat variables one by one. We assume the

use of the SEQUENCING rule and thus present all transformations as applied to a single output

variable x. We therefore work with a synthesis problem of the form:�
ā

〈∧
i

Li ≤ li x ∧ ∧
j

u j x ≤U j

〉
x

�

where all li and u j are integer constants, and Li and U j are terms whose free variables are in ā

(lower bounds and upper bounds). Possible witnesses for terms for x are:

L = max
i

(⌈
Li

li

⌉)
and U = min

i

(⌊
Ui

ui

⌋)
(Note that x may not be bounded on both sides, but we can assume it has at least one bound,

for otherwise we would simply apply the UNCONSTRAINED OUTPUT rule.)

For the witness to be valid, though, the inequality L ≤U needs to hold, or in expanded form:

∧
i , j

⌈
Li

li

⌉
≤

⌊
Ui

ui

⌋
(6.3)

We cannot simply output this conjunction as the precondition, as it is not expressed and

integer linear arithmetic, and may thus prevent us from processing further variables.

Let

m = lcm(lcmi li , lcm j u j )

the least common multiple of all multiplying constants li and u j . For each lower bound term

Li , let L′
i = m

li
Li , and similarly for upper bounds. For a given i and j , we have the equivalences

⌈
Li

li

⌉
≤

⌊
U j

u j

⌋
⇐⇒

⌈
L′

i

m

⌉
≤

⌊
U ′

j

m

⌋
⇐⇒ L′

i

m
≤

U ′
j −U ′

j mod m

m

⇐⇒U ′
j mod m ≤U ′

j −L′
i ⇐⇒ ∃n j ,k j : U ′

j = m ·n j +k j ∧k j ≤U ′
j −L′

i

Using these equivalences, formula (6.3) can be rewritten as

∃m̄, k̄ :
∧

j

(
U ′

j = m ·n j +k j ∧ ∧
i

(
k j ≤U ′

j −L′
i

))

120



6.4. Synthesis for Linear Integer Arithmetic

We could in principal handle the newly introduced m j and k j variables using the EXISTENTIAL

PROJECTION rule. If we call | J | the number of j indices in (6.3), we observe that our rewriting

introduces | J | equalities and 2 · | J | new variables. Our rules for processing equalities thus

cannot guarantee to always them all.

We observe however that whenever there is solution, there is also one where all k j take values

between 0 and m −1. This implies that a sound synthesis schema for the k j variables is to

apply case splitting on all m · | J | possible assignments.

6.4.3 Example

We now present an example of our synthesis procedure. Consider the synthesis problem:

�a 〈x1 +x2 = a ∧x1 +5x3 = 2x2 ∧x1 ≥ 0∧x2 ≥ 0∧x3 ≥ 1〉 x1, x2, x3�

As described in the previous sections, we first handle the equalities. The corresponding system

is:

M x̄ = t̄ (ā) ≡
(

1 1 0

1 −2 5

) x1

x2

x3

=
(

a

0

)

The Hermite normal form of M is given by:

H = MU ≡
(

1 0 0

0 1 0

)
=

(
1 1 0

1 −2 5

) −1 −3 −5

2 3 5

1 2 3


In this case, H is already in completely solved form, and there are no divisibility constraints.

We have:

sol(H ,

 x ′
1

x ′
2

x ′
3

 ,

(
a

0

)
) =

 a

0

x ′
3

 and div(H ,

 x ′
1

x ′
2

x ′
3

 ,

(
a

0

)
) =>

By multiplying the solution vector by U , we obtain our variable substitution:

x1 7→ −a −5x ′
3 x2 7→ 2a +5x ′

3 x3 7→ a +3x ′
3

We apply this substitution to the inequalities of the original problem to obtain a new problem:�
a

〈−2a ≤ 5x ′
3 ∧1−a ≤ 3x ′

3 ∧5x ′
3 ≤−a

〉
x ′

3

�
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Because we have no more variables to eliminate, we do not need to eliminate the max, d·e and

b·c operators and can keep as a precondition the computable expression:

max

(⌈−2a

5

⌉
,

⌈
1−a

3

⌉)
≤

⌊−a

5

⌋
We can choose as a witness term, e.g. the upper bound. Our final program reads as follows:

let x ′
3 := −a

5
in

let x1 :=−a −5x ′
3 in

let x2 := 2a +5x ′
3 in

let x3 := a +3x ′
3 in

(x1, x2, x3)

6.5 Synthesis for QFBAPA

In this section, we briefly describe how we can leverage synthesis for integer linear arithmetic

to obtain a synthesis procedure for QFBAPA. In Chapter 4, we have presented a decision

procedure that works by reducing constraints over sets and their cardinalities to constraints

in integer arithmetic. The general idea of synthesis for QFBAPA is to use a similar reduction

through a variable substitution. The principal difference with the procedure of Chapter 4 is

that our synthesis rules must also account for model reconstruction.

We illustrate how to handle this through an example. Consider the synthesis problem of

splitting a set S into partitions of desired sizes:

�S 〈A∪B = S ∧ A∩B =;∧| A |+5x = 2|B |∧x ≥ 1〉 A,B , x�

As in Chapter 4, we start by labeling the sizes of the Venn regions of A, B and S with integer

variables ki , as displayed in Figure 6.1.

We now rewrite our synthesis problem using these new variables:

A∪B = S ; k1 = k2 = k3 = k4 = 0

A∩B =; ; k3 = k7 = 0

| A |+5x = 2|B | ; k1 +k3 +k5 +k7 +5x = 2(k2 +k3 +k6 +k7)

x ≥ 1 ; x ≥ 1

We additionally encode the cardinality of the input set variable S as equality s = k4+k5+k6+k7,

where s is a fresh (integer) input variable. Finally, we constrain all variables ki to be positive.

After simplification, the problem reduces to

�s 〈k5 +k6 = s ∧k5 +5x = 2k6 ∧k5 ≥ 0∧k6 ≥ 0∧x ≥ 1〉 k5,k6, x�
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A

B

S

k1

k2

k3

k4k5

k6
k7

Figure 6.1 – Labeling of Venn regions of A, B , and S.

Up to renaming, this problem is equivalent to the one we presented in Section 6.4.3. The

synthesis for integers thus yields the first part of the final program, to compute k5 and k6.

It remains to show how we can reconstruct a solution for the set variables from a solution for

k5 and k6. (In the terminology of VARIABLE TRANSFORMATION, we need to identify ρ). For this,

we rely on the existence of any computable function pick(i ,T ) that computes a subset of size i

of a set T . For instance, pick(i ,T ) can pick the top i elements according to some ordering. We

reconstruct A and B as follows:

let A = pick(k5,S) in

let B = pick(k6,S \ A) in

(A,B)

By construction, the sets from which subsets are selected are guaranteed to be of sufficient

size.

6.6 Synthesis for Term Algebras

We present in this section a synthesis procedure for formulas over term algebras. We start by

assuming a pure term algebra, and later extend the system to algebras with elements from

parameter theories. In both cases, we present a series of normal forms and inference rules,

and argue that together they can be used to build a synthesis procedure.

6.6.1 Pure Term Algebras

The grammar of atoms over our term algebra is given by the following two production rules,

where c and F denote a constant and a function symbol from the algebraic signature, respec-

tively:

A ::= T = T |T 6= T | isc (T ) | isF (T )

T ::= x |c |F (T̄ ) |Fi (T )

In the following we assume that the algebra defines at least one constant and one non-nullary

constructor function. Formulas are built from atoms with the usual propositional connectives.

We use an extension of the standard theory of term algebras. The extension defines additional
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unary tester functions isc (·) and isF (·) for constant and functions in the algebraic signature

respectively, and unary selector functions Fi (·), with 1 ≤ i ≤ n where n is the arity of F . These

extra symbols form a definitional extension [Hod97] given by the axioms:

∀x : isc (x) ⇐⇒ x = c (6.4)

∀x : isF (x) ⇐⇒ ∃ȳ : x = F (ȳ) (6.5)

∀x, y : Fi (x) = y ⇐⇒ (∃ȳ : y = ȳ [i ]∧F (ȳ) = x)∨¬(∃ȳ : F (ȳ) = x)∧x = y (6.6)

Note that the case analysis in (6.6) is required only to make the selector functions total. In

practice, we are only interested in cases where the selectors are applied to arguments of the

proper type. We will therefore assume in the following that each selector application Fi (x) is

accompanied with a side condition isF (x).

Rewriting of tester and selector functions. By applying the axioms (6.4) and (6.5), we can

rewrite all applications of a tester function into an existentially quantified equality over terms.

We can similarly eliminate applications of testers by existentially quantifying over the argu-

ments of the corresponding constructors. Using the EXISTENTIAL PROJECTION rule, we can in

turn consider the obtained synthesis problem as a quantifier-free one.

Elimination through unification. We can at any point apply unification to a conjunction of

equalities over terms. Unification rewrites a conjunction of term equations into either ⊥, if

the equations contain a cycle or an equality involving incompatible constructors, or into an

equivalent conjunction of atoms
∧

i vi = ti , where vi is a variable and ti is a term. This set of

equations has the additional property that(⋃
i

{vi }

)
∩

(⋃
i

vars(ti )

)
=;

In other words, it defines a set of variables as a set of terms built from another disjoint set

of variables [BS01]. This form is particularly suitable for applications of the ONE-POINT rule:

indeed, whenever vi is an output variable, we can apply it, knowing that vi does not appear in

ti (or in any other equation).

Dual view. Unification allows us to eliminate output variables that are to the left of an

equality. When instead an input variable appears in such position, we can resort to a dual

form to eliminate output variables appearing in the right-hand side. We obtain the dual form

by applying as much as possible the following two rules to term equalities:

t = c

isc (t )

t = F (t1, . . . , tn)

F1(t ) = t1 ∧ . . .∧Fn(t ) = tn ∧ isF (t )
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Note that these are rewrite rules for formulas. Because they preserve the set of variables and

equisatisfiability, they can be lifted to inference rules for programs using the EQUIVALENCE

rule. Observe that at saturation, the generated atoms are of two kinds: 1) applications of tester

predicates and 2) equalities between two terms, each containing at most one variable. In

particular, all equalities between an output variable and a term are amenable to applications

of the ONE-POINT rule.

Disequalities. Finally, we introduce a dedicated rule for the treatment of disequalities be-

tween terms. The rule is defined for disequalities over variables and constants in conjunctive

normal form (CNF). From a conjunction of disequalities over terms, we can obtain CNF by

applying the following rewrite rules until saturation:

F (t̄1) 6=G(t̄2) F 6=G

>
F (t̄1) 6= F (t̄2)

t 1
1 6= t n

1 ∨ . . .∨ t 1
2 6= t n

2

Intuitively, the first rule captures the fact that terms built with distinct constructors are trivially

distinct (note that this also captures distinct constants, which are nullary constructors). The

second rule breaks down a disequality into a disjunction of disequalities over subterms.

To obtain witness terms from the CNF, it suffices to satisfy one disequality in each conjunct.

We achieve this by eliminating one variable after another, applying for each a diagonalization

principle, as follows. In the following rule φCNF denotes the part of the CNF formula over

atomic disequalities that does not contain a given variable of interest x0.�
ā

〈
φCNF

〉
x̄
�` 〈P | T̄ 〉 x0 ∉φCNF������ā

〈 (x0 6= t1 ∨ . . .)

∧ . . .

∧ (x0 6= tn ∨ . . .)

∧ φCNF

〉
x0 ; x̄

������` 〈P | let x̄ := T̄ in (∆(t1, . . . , tn) ; T̄ )〉

In the generated program,∆ denotes an n-ary computable function that returns, at run time, a

term distinct from all its arguments. Such a value is guaranteed to exist, since the term algebra

is assumed to have at least one constructor. This function runs in time polynomial in the

number of its arguments.

Synthesis Procedure

We now argue that the reductions to normal forms and the rules presented above are sufficient

to form a complete synthesis procedure for a given pure term algebra. The procedure is given

by the following steps:

1. Reduce an arbitrary propositional structure to a conjunction through applications of

the CASE SPLIT rule.
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2. Remove selectors and testers through rewrites and applications of EXISTENTIAL PROJEC-

TION.

3. Apply unification to all equalities, then apply ONE-POINT as often as possible. As a result,

the only equalities remaining have the form a = t , where a is an input variable and

a ∉ vars(t ).

4. Rewrite into dual form, then apply ONE-POINT as much as possible. After applying

ASSERTIONS, the problem is reduced to a conjunction of disequalities, each involving at

least one output variable.

5. Transform the conjunction into CNF and eliminate all remaining variables by successive

applications of the diagonalization rule.

Given a conjunction of literals, the generated program runs in time polynomial in the size of

the input terms: it consists of a sequence of assignments, one for each output variable, and

each term has polynomial size.

6.6.2 Reduction to an Interpreted Theory

We now consider the case of a term algebra defined over an interpreted theory T . A canonical

example is the algebra of integer lists, where T is the theory of integers, and defined by the

constant Nil : List and the constructor Cons :Z×List→ List. In this theory, the selector function

Cons1(·), for instance, is of type List→Z. We show how to reduce a synthesis problem in the

combination of theories to a synthesis problem in T . We focus on the important differences

with the previous case.

Purification. We can assume without loss of generality that constructor terms contain no

subterms from T other than variables. Indeed one can always apply the DEFINITION rule to

separate such terms.

Unification. Applying unification can result in derived equalities between variables of T .

These should simply be preserved in the reduced problem.

Dual view. Applying the rewriting into the dual view can result in derived equalities of the

form x = t , where x is a variable from T and t is an application of selectors to an input variable.

Because T cannot handle these selectors, we need to rewrite t into a simple variable. By using

the DEFINITION and SEQUENCING rules, we make this variable an input of the problem in T .

Disequalities. Contrary to the pure case, we cannot always eliminate all conjuncts in the

CNF by applying a diagonalization; we can eliminate variables that belong to the term algebra,

but not variables of T . Instead, for each disequality v 6= w over T in the CNF, we introduce at
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the top-level a disjunction v = w∨v 6= w , and apply the CASE SPLIT rule to encode a guess. This

in essence compiles the guessing of the partitioning of shared variables that is traditionally

introduced in a Nelson-Oppen setting [NO79]. Because CASE SPLIT preserves the relation

entirely, this is a sound and complete reduction step.

Once all the disequalities have been handled, either through diagonalization if they are over

algebraic terms, or by case-splitting if they are over T variables, we have entirely reduced the

synthesis problem into a synthesis problem for T .

6.7 Implementation

We have implemented our synthesis procedures for integer linear arithmetic and QFBAPA as

a tool called Comfusy (Complete Functional Synthesis). 1 Comfusy is a plugin for the Scala

compiler, and can synthesize code for all the examples presented in this chapter, including

pattern-matching expressions involving arithmetic constraints. Since it works at an early

compilation, all subsequent optimization are applied to our generated code as well. We used

Z3 [dMB08b] to handle the compile-time checks. (Although we could in principle have used

synthesis to solve these satisfiability problems, our implementation is far slower for such tasks

than Z3.)

Compilation times. Figure 6.2 shows the compile times for a set of benchmarks, with and

without our plugin. Without the plugin, the code is of no use (the invocations to synthesis,

when not rewritten, simply throw an exception), but the difference between the timings in-

dicates how much time is spent generating the synthesized code. We also measured how

much time is used for the compile-time checks for satisfiability and uniqueness. The exam-

ples SecondsToTime, FastExponentiation, and SplitBalanced were presented in Section 6.2.

ScaleWeights computes solutions to a puzzle, PrimeHeuristic contains a long pattern-matching

expression where every pattern is checked for reachability, and SetConstraints is a variant of

SplitBalanced.

Our numbers show that the additional time required for the code synthesis is minimal. More-

over, note that the code we tested contained almost exclusively calls to the synthesizer. The

increase in compilation time in practice would thus be lower for code that mixes standard

Scala with selected synthesis invocations.

Code size. An older version of Comfusy generated if-then-else statements that correspond

to large disjunctions that appear when handling inequalities, as explained at the end of

Section 6.4.2. In certain cases, this led to formulas of large size. We have improved this by

generating code that executes about as fast but uses a “for” loop instead of disjunctions.

1. The synthesis procedure for term algebras has been implemented independently and is available from
http://lara.epfl.ch/~psuter/spt/.
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scalac w/ plugin w/ checks
SecondsToTime 3.05 3.2 3.25
FastExponentiation 3.1 3.15 3.25
ScaleWeights 3.1 3.4 3.5
PrimeHeuristic 3.1 3.1 3.1
SetConstraints 3.3 3.5 3.5
SplitBalanced 3.3 3.9 4.0

Figure 6.2 – Measurement of synthesis times. Without applying synthesis (scalac), with syn-
thesis but with no call to Z3 (w/ plugin) and with both synthesis and compile-time checks
activated (w/ checks). All times are in seconds.

Comfusy is available for download from http://lara.epfl.ch.

6.8 Related Work

The theory and results in this chapter were originally presented in a series of papers [KMPS10b,

KMPS10a, KMPS12, JKS13].

Early work on synthesis [MW71, MW80] focused on synthesis using expressive and unde-

cidable logics, such as first-order logic and logic containing the induction principle. The

Deductive Tableau methodology [MW92, AB01], for instance, can synthesize interesting pro-

grams containing recursion. There are two features that distinguish our work from such

approaches. First, we can synthesize programs even when the output does not exist for any

input. In fact, the precondition computed by synthesis procedures exactly characterizes the

acceptable input domain. Second, our procedures provide completeness and termination

guarantees, just like decision procedures, while tableau-based techniques do not.

Recent work on synthesis [SGF10] resolves some of these difficulties by decoupling the prob-

lem of inferring program control structure and the problem of synthesizing the computation

along the control edges. Furthermore, the work leverages verification techniques that use both

approximation and lattice theoretic search along with decision procedures. As such, it is more

ambitious and aims to synthesize entire algorithms. By nature, it cannot be both terminating

and complete over the space of all programs that satisfy an input/output specification (thus

the approach of specifying program resource bounds). In contrast, we focus on synthesis of

program fragments with very specific control structure dictated by the nature of the decidable

logical fragment.

Our work further differs from the past ones in 1) using decision procedures to guarantee the

computation of synthesized functions whenever a synthesized function exists, 2) bounds

on the running times of the synthesis algorithm and the synthesized code size and running

time, and 3) deployment of synthesis in well-delimited pieces of code of a general-purpose

programming language.

128

http://lara.epfl.ch


6.8. Related Work

Program sketching has demonstrated the practicality of program synthesis by focusing its

use on particular domains [SLTB+06, SLAT+07]. The algorithms employed in sketching are

typically focused on appropriately guided search over the syntax tree of the synthesized

program. In contrast, our synthesis uses the mathematical structure of a decidable theory

to explore the space of all functions that satisfy the specification. This enables our approach

to achieve completeness without putting any a priori bound on the syntax tree size. Indeed,

some of the algorithms we describe can generate fairly large yet efficient programs. We expect

that our techniques could be fruitfully integrated into search-based frameworks.

Quantifier elimination decision procedures directly support parameterized problems, so

they are a particularly convenient starting point for our method. Other decision procedures

are also suitable, but may require more design and implementation effort to be turned into

interesting synthesis procedures. In particular, an alternative automata-theoretic approach

to synthesis for integer arithmetic with bitvectors was subsequently developed [HJK10]; this

approach tends to generate larger but more efficient code. Term algebras admit quantifier

elimination [SW02, Hod97] and thus are suitable candidates. Our synthesis procedure is

similar to quantifier elimination when it comes to eliminating variables that are constrained

by an equality, with the additional requirement that the witness term be stored to serve in the

program. However the treatment of disequalities is simplified: elimination procedures typically

rewrite a disequality between a variable and a term into a disjunction of equalities between

the same variable and terms constructed with different constructors [Hod97, p.63sqq]. This

has the advantage that the language of formulas needs not be extended, allowing for nested

quantifiers to be eliminated one after the other. In our synthesis setting, this is not necessary,

as we can rely on additional computable functions, as we have illustrated with the use of

∆, thus greatly simplifying the resulting program. A related area of research is compilation

of unification in Prolog [AK91]. Note, however, that this process typically does not require

handling of disequalities, so it deals with a simpler language.

Pattern-matching compilation is a task for which specialized procedures for term algebras

have been developed [Wad87, Mar08]. When viewed through the prism of synthesis proce-

dures, these algorithms can be thought of as procedures that are specialized for disjunctions

of term equalities, and where the emphasis is put on code reuse. We expect that using a com-

bination of our synthesis procedures and common subexpression elimination techniques,

one should be able to derive pattern-matching compilation schemes that would support, e.g.,

disjunctive patterns, non-linear patterns, and could take into account guards referring to

integer predicates.

Specialization of decision procedure for the purpose of predicate abstraction was considered

in [LBC05]. In addition to covering a different set of theories, our results are broader because

our process generates not only a satisfiability check but also the values of variables.

Finally, our approach can be viewed as sharing some of the goals of partial evaluation [JGS93].

However, we do not need to employ general-purpose partial evaluation techniques (which
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typically provide linear speedup), because we have the knowledge of a particular decision

procedure. We use this knowledge to devise a synthesis algorithm that, given formula F ,

generates the code corresponding to the invocation of this particular decision procedure.
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7 Conclusion

We have presented in this dissertation new theoretical results as well as concrete system im-

plementations. We have developed decidability results for broad classes of logic, and demon-

strated their applicability to software verification. We have developed and implemented an

extension to Scala that integrates declarative programming with the more standard functional

and imperative paradigms, demonstrating the feasibility and the benefits of this approach.

Moreover, we have designed and implemented techniques to automatically derive correct

program implementations from specifications.

Taken individually, our contributions represent advances in the fields of decision procedures,

program verification, programming language design and synthesis respectively. Taken together,

we believe they form conclusive evidence that program specifications have an integral role to

play alongside implementations in software development.

We conclude this dissertation by highlighting future research directions of interest.

Quantifier elimination for term algebras with catamorphisms. Our results in chapters 2

and 3 apply to quantifier-free formulas. While positive results already exist for particular

instances of the problem [ZSM05], it would be interesting to characterize when exactly the

first-order theory is decidable for the combination of term algebras, a catamorphism and the

image theory. One immediate application would be to devise a synthesis procedure for such a

theory, thus extending the applicability of the framework presented in Chapter 6.

Decision procedures for sets with homomorphisms. We have presented in Chapter 4 a

decision procedure for sets with the cardinality operator. Our technique relies on decomposing

constraints by identifying and organizing absolute and relative independences. One intuitive

explanation for why this works is that models for BAPA formulas have a high degree of

symmetry: if there exists one model, then there exist many others, obtained by permuting the

elements and preserving the sizes of the Venn regions.
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The cardinality operator on sets is a particular instance of a set homomorphism. A desirable

result would be to establish that, for any set homomorphism α, the theory of one-level in-

terpreted sets with α is decidable and amenable to hypertree decomposition. This would

give us for instance an efficient algorithm for the theory of sets with minimal and maximal

elements [KPS10]. We expect that such a general result may require that the homomorphism

be accompanied with a unary predicate characterizing its co-domain, not unlike the condition

under which the satisfiability procedure of Chapter 3 is complete for tree homomorphisms.

Synthesis beyond decidable domains. We have used in Chapter 6 the formalism of infer-

ence rules to describe synthesis procedures as application strategies that always succeed.

While we find it remarkable that such procedures exist for interesting classes of synthesis

predicates, bridging the gap between what can be solved at runtime and what can be syn-

thesized will necessarily involve going beyond these domains. An appealing direction is to

define speculative rules, that apply transformations which may or may not make progress

towards a solution. As an example, we could devise a rule that corresponds to guessing that the

solution requires a recursive function, and that decomposes the problem into a base case and

a recursive case. In the recursive case, it would be free to assume that the synthesis predicate

holds for the recursive call. Speculative rules, when they reach a goal, would still be required to

generate correct programs by construction, and in particular to satisfy the relation refinement

and domain preservation conditions. A strategy for synthesis in the presence of speculative

rules would be to perform synthesis procedures steps whenever applicable, and to interleave

them with guesses if no immediate progress is possible. When the resulting search space

becomes too large to be searched practically, a promising possibility is to rely on interaction

with the user, in a way similar to how proof assistants work: synthesis could become a process

where the computer performs as many steps as is possible in a short amount of time, and

relies on the user to break down harder problems.

Integrating synthesis and runtime solving. Finally, we believe new exciting directions will

arise from the combination of the runtime approach described in Chapter 5 and the synthesis

approach from Chapter 6. These two approaches come with different trade-offs: the runtime

approach can handle general constraints that need not be known entirely at compile time,

hardly generates any code, but can be slow. The synthesis approach on the other hand requires

that the predicate is completely known at the time of synthesis, works for well-defined classes,

and generates very efficient, although sometimes large, code. The first natural direction in

combining these two approaches would be to compile specifications whenever they fit into

synthesizable classes. Simply detecting this at compile time is unlikely to be enough, though,

as constraints are typically built dynamically. A more promising solution would be to invoke

synthesis procedures at run time, resulting in an architecture similar to just-in-time compilers

in virtual machines. Another avenue for combination would be to allow for synthesis rule

to generate code that invokes constructs such as �nd, resulting in a form of code generation

where programs are only partially synthesized. This is particularly appealing for problems
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that admit a simple solution in a general case, but require complex programs for a few corner

cases.

Such advances would be an important step towards programming languages that integrate

specifications and code. It is our hope that the availability of such tools will impact the way

we approach program development, and constructing correct programs will no longer be the

exception, but become the norm.
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