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ABSTRACT 

 

Transition-metal-catalyzed C-C coupling reactions have been extensively studied in the 

past three decades. These reactions have become invaluable to fundamental research and 

industrial applications, because they can be used construct complicated molecules from 

simple precursors. Among them, the coupling systems of aryl, alkenyl, and alkynyl halides 

have been well-optimized, while the coupling of non-activated alkyl halides, especially 

secondary alkyl halides, is still difficult. In the first chapter, the development of the 

transition-metal-catalyzed alkyl-alkyl cross-coupling reactions is introduced and summarized, 

and the difficulties and potential improvements are discussed. 

In chapter 2, a structure-activity study is described for Ni-catalyzed alkyl-alkyl Kumada-

type cross coupling reactions. A series of new nickel(II) complexes bearing bidentate and 

tridentate amino-amide ligands were synthesized and structurally characterized. The 

coordination geometries of these complexes include square planar, tetrahedral, and square 

pyramidal. The complexes had been examined as pre-catalysts for the cross coupling of non-

activated alkyl halides, particularly secondary alkyl iodides, with alkyl Grignard reagents. 

Comparison was made to the results obtained with the previously reported Ni pincer complex 

[(MeN2N)NiCl] (1). A transmetalation site in the pre-catalysts is necessary for the catalysis. 

The coordination geometries and spin-states of the pre-catalysts have little or no influence. 

The work led to the discovery of several well-defined Ni catalysts that are significantly more 

active and efficient than the pincer complex (1) for the coupling of secondary alkyl halides. 

The best catalysts are [(HNN)Ni(PPh3)Cl] (24) and [(HNN)Ni(2,4-lutidine)Cl] (27). The 

improved activity and efficiency were attributed to the fact that the phosphine and lutidine 

ligands in these complexes could dissociate from the Ni center during catalysis. The 

activation of alkyl halides was shown to proceed via a radical mechanism. 

After investigating how secondary alkyl halides could couple with primary Grignard 

reagents in high yields using nickel catalysts, the complementary methodology, the coupling 

of non-activated alkyl electrophiles with secondary and tertiary alkyl nucleophiles, is 

described in chapter 3. It was found that simple copper(I) chloride could catalyze the cross-

coupling of non-activated primary alkyl halides and tosylates with secondary and tertiary 

alkyl Grignard reagents. The method is highly efficient, practical, and general. A wide range 

of functional groups can be tolerated, such as ester, ketone, amide, nitrile, and heterocylic 

groups. 
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In chapter 4, a series of new copper complexes bearing hemilabile ligands were 

synthesized and structurally characterized. Among them, the copper complex 

[(MeN2N)Cu(PPh3)] (36) was shown to have the highest catalytic activity towards alkylation 

of benzoxazoles with secondary alkyl halides. The higher efficiency of 36 relative to other 

copper catalysts might result from a hemilabile property of the pincer ligand. An important 

additive, bis[2-(N,N-dimethylamino)ethyl] ether (BDMAEE) is also identified. This is the 

first time that non-activated secondary alkyl halides have been used as electrophiles in the 

alkylation of benzoxazoles. 

 

Keywords: cross coupling, C-H functionalization, alkyl electrophiles, coordination 

chemistry, alkylation, mechanism, nickel, copper, Kumada coupling, Grignard reagents, 

secondary alkyl halides. 
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RESUME 

 

Les réactions de couplage C-C catalysées par des métaux de transition ont été beaucoup  

étudiées durant les trois dernières décennies. Ces réactions sont devenues incontournables 

dans la recherche fondamentale et dans les applications industrielles, puisqu’elles peuvent 

être utilisées dans la synthèse de molécules complexes à partir de précurseurs simples. Parmi 

celles-ci, les systèmes de couplage d’halogénures d’aryle, d’alcène et d’alcyne ont été très 

bien optimisés, tandis que le couplage d’halogénures d’alkyle non-activés, et notamment les 

halogénures d’alkyle secondaires, est encore difficile. Dans le premier chapitre, le 

développement de réactions de couplage croisé alkyle-alkyle catalysées par des métaux de 

transition est introduit et résumé, puis les difficultés et les améliorations potentielles sont 

examinées. 

Dans le chapitre 2, une étude activité-structure est décrite pour les réactions de couplage 

croisé alkyle-alkyle de type Kumada et catalysées par le nickel. Une série de nouveaux 

complexes à base de nickel(II) portant des ligands  amino-amide bidenté et tridenté ont été 

synthétisés et caractérisés structurellement. Ces complexes possèdent des géométries de 

coordination plan-carré, tétraèdre ou pyramide à base carrée. Les complexes ont été étudiés 

comme pré-catalyseurs pour le couplage croisé d’halogénures d’alkyle, et en particulier 

d’iodures d’alkyle secondaires, avec des organomagnésiens de type alkyle. Les résultats ont 

été comparés avec ceux obtenus avec le complexe de nickel pincer [(MeN2N)NiCl] (1) déjà 

étudié par le Laboratory of Inorganic Synthesis and Catalysis. Un site de transmétallation sur 

les pré-catalyseurs est nécessaire pour la catalyse. Les géométries de coordination et les états 

de spin des pré-catalyseurs n’ont que peu d’influence voire aucune. Les travaux ont mené à la 

découverte de différents catalyseurs de nickel bien définis qui sont sensiblement plus actifs et 

efficaces que le complexe pincer (1) pour le couplage des halogénures d’alkyle secondaires. 

Les meilleurs catalyseurs sont les complexes [(HNN)Ni(PPh3)Cl] (24) et [(HNN)Ni(2,4-

lutidine)Cl] (27). L’activité améliorée et l’efficacité ont été attribuées au fait que les ligands 

phosphine et lutidine de ces complexes pourraient se dissocier du centre métallique de Ni 

pendant la catalyse. Il a été montré que l’activation d’halogénures d’alkyle procède via un 

mécanisme radicalaire. 

Après avoir étudié comment les halogénures d’alkyle secondaires pouvaient se coupler 

avec des organomagnésiens primaires avec des rendements élevés en utilisant des catalyseurs 

de nickel, la méthodologie complémentaire, à savoir le couplage d’électrophiles alkyles non-
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activés avec des nucléophiles alkyles secondaires et tertiaires, est décrite dans le chapitre 3. Il 

a été trouvé que le chlorure de cuivre(I) pouvait catalyser le couplage croisé d’halogénures et 

de tosylates d’alkyle primaires non activés avec des organomagnésiens de type alkyle 

secondaire et tertiaire. La méthode est hautement efficace, facilement réalisable et générale. 

Une grande variété de groupes fonctionnels peut être tolérée, comme les esters, les cétones, 

les amides, les nitriles et les groupes hétérocycliques. 

Dans le chapitre 4, une série de nouveaux complexes à base de cuivre possédant des 

ligands hémilabiles ont été synthétisés et caractérisés structurellement. Parmi eux, le 

complexe de cuivre [(MeN2N)Cu(PPh3)] (36) a montré la plus haute activité à travers 

l’activation de benzoxazoles avec des halogénures d’alkyle secondaires. L’efficacité du 

complexe 36, plus élevée que celle des autres catalyseurs de cuivre, pourrait résulter de la 

propriété hémilabile du ligand pincer. Un additif important, le bis[2-(N,N-

diméthylamino)éthyl] éther (BDMAEE) est également identifié. Des halogénures d’alkyle 

secondaires non-activés ont été employés comme électrophiles dans l’alkylation de 

benzoxazoles pour la première fois. 

 

Mots-clés: couplage croisé, fonctionnalisation de la liaison C–H, électrophiles alkyles, 

chimie de coordination, alkylation, mécanisme, nickel, cuivre, couplage de Kumada, 

organomagnésiens, halogénures d’alkyle secondaires. 

 



VI 
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eq. equation 

equiv.                       equivalent 

ESI      electrospray ionization 

Et         ethyl 
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FID flame ionization detector 
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HMeN2
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HPLC high-performance liquid chromatography 
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K Kelvin 
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MeNMeN′NH 2-(2-(dimethylamino)ethyl)-N,N-dimethylaniline 
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MeN2

MeN N,N-bis(2-dimethylaminophenyl)methylamine 
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Pd2(dba)3 tris(dibenzylideneacetone)dipalladium(0) 
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PhNNH N1-([1,1'-biphenyl]-2-yl)-N2,N2-dimethylbenzene-1,2-diamine 

ppm part per million 
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rxn reaction 
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sBu sec-butyl 
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1.1 Transition metal-catalyzed C-C cross-coupling reactions 

Transition metal-catalyzed cross-coupling reactions, such as C-C and C-heteroatom bond 

formation reactions, are extremely powerful in organic synthesis.1-3 Since the first Ni-

catalyzed Kumada coupling reaction was discovered in 1972,4 the development of coupling 

reactions has reached a level of sophistication that allows for a wide range of coupling 

partners to be combined efficiently. A variety of reactions have been used in the synthesis of 

natural products, pharmaceuticals, and materials.5-9 In 2010, the importance of this chemistry 

was recognized by the award of the Nobel prize to Heck, Negishi, and Suzuki “for palladium-

catalyzed cross-couplings in organic synthesis”. 

A C-C coupling reaction is the connection of two hydrocarbon fragments. Generally, one 

of the substrates is an organometallic reagent and the other is an electrophile. Because of the 

diversity of these two coupling partners, numerous new molecules can be formed. This is 

why the C-C coupling chemistry has been popular for more than three decades. Some of the 

most important “name reactions” are presented in Table 1.  

 

Table 1. Important metal-catalyzed C-C cross-coupling reactions. 

 

 

Reaction [M] Year 
 

Kumada-Corriu-Tamao 
 

R′MgY 
 

 
1972 

 
 

Negishi 
 

 
R′ZnY or R′2Zn 

 
1977 

 
Suzuki-Miyaura 

 

 
R′B(OY)2 

 
1979 

Heck 
 

, no R′-[M] is formed, the mechanism is 
different, alkene insert into the palladium-carbon 

bond intermediate 

1972 

 
Sonogashira 

 

 
In situ form from terminal alkyne with base and 

CuI 
1975 

 
Stille 

 

 
RSnR′′3 

 
1979 
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Table 1. (continued) 

Reaction [M] Found Year 
 

Hiyama 
 

 
RSiR′′3 

 
1988 

 

Since the pioneering contributions made by Heck, Negishi, and Suzuki et al.,10,11 many 

efficient catalytic systems have been designed. A variety of electrophilic coupling partners, 

aryl, vinyl, and alkynyl halides and pseudo-halides, can be readily coupled.12,13 Conversely, 

alkyl halides, especially non-activated ones containing β-hydrogens, remain difficult 

substrates.14-16 Non-activated alkyl halides herein are considered to be those alkyl halides that 

are not functionalized with activating groups (such as benzyl, allyl, propargyl, cyclopropyl, 

alkoxy, carbonyl, and others) in the α-position.15  Based on the general catalytic cycle for 

cross coupling reactions of alkyl halides (Figure 1),17 there are three main steps in a catalytic 

cycle. They are (1) oxidative addition: the low-valent metal species reacts with alkyl halide to 

give a metal alkyl species; Generally the valence of the metal will be increased from Mn to 

Mn+2; (2) transmetallation: metal alkyl species reacts with an organometallic reagent to give a 

diorgano-metal intermediate and inorganic metal salt; (3) reductive elimination: the diorgano-

metal species gives the cross coupling product and regenerates the starting catalyst.  

 

 

Figure 1. A general catalytic cycle for transition-metal-catalyzed C-C cross-coupling reactions of 
alkyl halides. 

 

The two most frequently cited causes for the difficulty in the coupling of non-activated 

alkyl halides are: (a) alkyl electrophiles are more electron-rich compared to their aryl and 

vinyl counterparts, and therefore they have less tendency to undergo oxidative addition with a 

metal catalyst, and (b) If oxidative addition of alkyl halides occurs, the resulting metal alkyl 

intermediates are substantially less stable than an aryl or alkenyl metal species owing to a 
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lack of π electrons available to interact with the empty d orbitals of the metal center. These 

metal alkyl species are then prone to unproductive β-H elimination or hydrodehalogenation. 

The cross coupling is thus not efficient. For these reasons, the development of cross-coupling 

of non-activated alkyl halides has fallen behind those of the coupling of aryl and vinyl 

electrophiles.   

Current progress in this area is mainly limited to alkyl–aryl/alkenyl coupling. The 

coupling of two sp3 carbon atoms is even more difficult, because the reductive elimination 

between two sp3 centers is slow compared to two sp2 centers or a sp3 and sp2 center,18-20 so a 

competitive exchange reaction between two alkyl groups may happen, which will form the 

symmetrical organometallic species (LnMR2), and produce the homocoupling product via 

reductive elimination. Moreover, the cross-coupling of secondary alkyl halides is an even 

more challenging task. The added steric hindrance of a secondary alkyl halide increases the 

energy barrier to oxidative addition, and also makes the resulting metal-alkyl species prone to β-H elimination. These factors make traditional transition-metal-catalyzed processes much 

more difficult. In the following sections, I will introduce the development of transition-metal-

catalyzed alkyl-alkyl cross-coupling reactions.  

1.2 Alkyl-alkyl Kumada-Corriu-Tamao coupling reactions 

During the past 100 years, Grignard reagents have been perhaps the most widely used 

organometallic reagents because they are cheap, easy to synthesize, and commercially 

available.21 The reactions can be done in a short time under mild conditions (although 

atmospheric moisture and oxygen should be excluded).22-27 As early as 1972, Kumada et al.4 

and Corriu and Masse28 independently reported the cross-coupling reactions of Grignard 

reagents with alkenyl and aryl halides using nickel salts as catalysts.  

In the past 30 years, there has been rapid development in the use of transition-metal 

catalysts in a variety of C-C bond formation reactions.29,30 Some reports have shown that 

Kumada-type reactions can overcome the difficulties of functional group tolerance, thus 

making such coupling reactions more widely applicable.31, 32 Examples of Kumada-type 

alkyl-alkyl cross-coupling reactions are introduced here. 

In 1986, Widdowson et al. reported Pd-catalyzed alkyl-alkyl Kumada cross-coupling 

reactions.33  By using [Pd(dppf)] as catalyst (formed in situ from [PdCl2(dppf)] and 

diisobutylaluminum hydride (DIBAL); dppf = 1,1'-bis(diphenylphosphino)ferrocene), both 

primary and secondary alkyl iodides can be coupled with alkyl Grignard reagents and provide 
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moderate to good yields. However, the reactions need be refluxed in THF. Furthermore, 

except for simple alkyl iodides, the results of alkyl bromide with functional groups were not 

shown in this paper. 

In 2002, Kambe et al. reported the first efficient Ni-catalyzed Kumada-type cross-coupling 

reactions of primary and secondary Grignard reagents with primary alkyl chlorides, bromides, 

and tosylates under mild conditions (Scheme 1).34 The use of 1,3-butadiene as a ligand is the 

key to attaining high yields of cross-coupling products. However, the functional 

compatibilities of the substrates were not explored, and secondary alkyl halides were not 

tested.  

 

 

Scheme 1. Nickel-catalyzed cross-coupling reactions of alkyl halides and tosylates with alkyl 
Grignard reagents. 

 

A radical clock experiment excluded the radical pathway. A plausible mechanism was also 

presented (Scheme 2). In step 1, Ni(0) (in situ generated from NiCl2 and a Grignard reagent) 

reacts with 2 equiv. of 1,3-butadiene to afford a bis-π-allyl nickel complex. Then, the nickel 

allyl complex reacts with a Grignard reagent to form a η1,η3-octadiene-diylnickelate complex. 

This latter complex then reacts with alkyl halide to form a dialkyl Ni complex (step 3). 

Reductive elimination then gives the coupling product and regenerates the bis-π-allyl nickel 

complex (step 4). 
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Scheme 2. A plausible reaction pathway of Ni-catalyzed Kumada coupling using 1,3-butadiene 
ligands. 

 

Our group reported a nickel-catalyzed alkyl-alkyl Kumada coupling method in 2009 

(Scheme 3).35 By using a well-defined pincer nickel complex, [(MeN2N)NiIICl], as pre-catalyst, 

non-activated and functionalized alkyl bromides and iodides can be coupled with alkyl 

Grignard reagents. A wide range of substrates can be used, and a very good functional group 

tolerance was achieved. Ester, amide, ether, acetal, nitrile, thioether and keto groups, as well 

as indole, pyrrole, and furan groups were tolerated. This work extends significantly the scope 

of cross-coupling reactions using Grignard nucleophiles, making these readily available 

reagents useful for the synthesis of organic molecules containing functional groups.  



 
 

7 
 

 

Scheme 3. Cross-coupling of non-activated and functionalized alkyl halides with alkyl Grignard 
reagents catalyzed by a Nickel complex with a pincer MeN2N Ligand. 

 

There are few efficient methods for iron-catalyzed Kumada-type C(sp3)-C(sp3) coupling 

reactions. In 2006, Chai et al. found that Fe(OAc)2 in combination with Xantphos was 

effective in coupling alkyl halides with alkyl Grignard reagents.36 The yields were generally 

low to medium. This was the first example of an iron-catalyzed sp3-sp3 cross-coupling 

reaction between Grignard reagents with unactivated alkyl halides (Scheme 4). 

 

 

Scheme 4. Iron-catalyzed cross-coupling reactions of alkyl halides with alkyl Grignard reagents. 
 

Copper-catalyzed cross-coupling reactions between alkyl halides and Grignard reagents 

were first reported by Kochi et al. in 1972.37 More than 30 years later, a significant 

exploration was done by Kambe et al. Carbon-Fluorine bonds have been thought to be the 

strongest bond in organic compounds, and the cleavage of Csp3-F bond is hard. Kambe et al. 

reported an efficient system for the cross-coupling reaction of alkyl fluorides with Grignard 

reagents catalyzed by simple NiCl2 or CuCl2 salts with 1,3-butadiene as the ligand (Scheme 

5).38 This protocol proceed efficiently between primary alkyl fluorides and various Grignard 
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reagents (primary, secondary, and tertiary alkyl and phenyl Grignard reagents) under mild 

conditions. The reactivity of alkyl halides was also examined and observed to be in the order 

chloride < fluoride < bromide. For the coupling of alkyl chloride, the yield was only 3%. The 

high reactivities of fluorides are originated from its conversion into bromides in the presence 

of MgBr2.
39 

 

 

Scheme 5. Copper-catalyzed cross-coupling reactions of alkyl fluorides with alkyl Grignard reagents. 
 

Four years later, in 2007, Kambe et al. overcame the difficulties for the coupling of alkyl 

chlorides (Scheme 6).40 They described the first example of a Cu-catalyzed cross-coupling 

reaction of alkyl chlorides with alkyl Grignard reagents in the presence of 1-phenylpropyne 

as an additive. This method can be also used for alkyl fluorides and mesylates. It is worth to 

note that only simple alkyl halides such as octyl and decyl halides were used as the substrates 

in both of these two reports. The synthetic utility of these reactions was not fully 

demonstrated. 

 

 

Scheme 6. Copper-catalyzed cross-coupling reactions of alkyl chlorides with alkyl Grignard reagents 
by using 1-phenylpropyne as an additive. 
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1.3 Alkyl-alkyl Negishi coupling reactions 

The Negishi reaction results in the formation of a new C-C bond between an organozinc 

compound and an organohalide.41 Traditionally Pd and Ni-based catalysts are used.42-44 

Recently, chemists found that iron catalysts can also achieve this task.45,46 Compared to 

Grignard reagents, organozinc compounds are milder nucleophiles. In principle, more 

functional groups are compatible.47,48 The coupling products may be obtained in good to 

excellent yields in a stereospecific manner.49 

Knochel et al. pioneered the development of alkyl–alkyl Negishi cross-coupling reactions. 

In their first report, alkyl iodides could be coupled with dialkyl zinc reagents in the presence 

of stoichiometric quantities of [Me2Cu(CN)(MgCl)2].
50 Later, they reported substrate-specific 

alkyl-alkyl cross coupling reactions catalyzed by nickel catalyst. Only alkyl halides 

containing double bonds at the 4- or 5- position as substrates could be coupled. It was 

suspected that the remote double bond could act as an additional ligand for Ni intermediates 

in the cross-coupling reactions.51,52 In 1998, the same group extended this methodology 

(Scheme 7).53 Instead of using special alkyl halides containing double bond, they utilized m-

trifluoromethylstyrene or acetophenone as a promoter. Functionalized primary iodoalkanes 

and primary diorganozinc compounds can be coupled efficiently. It is proposed that the main 

effect of these two promoters is that they facilitate the reductive elimination of the 

intermediate Ni(II) complex (Alkyl1)(Alkyl2)NiLn by removing electron density from the 

metal center.  

 

 

Scheme 7. Nickel-catalyzed Negishi-type cross-coupling reactions of alkyl-alkyl cross-coupling 
reported by Knochel et. al. 

 

With these successes in hand, a similar catalytic system was later developed. Slight 

modifications of the reaction conditions by adding Bu4NI, allowed efficient Ni-catalyzed 
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cross-coupling reactions between primary alkyl iodides and benzylzinc bromides.54 This 

system can be also applied to the efficient coupling of primary and secondary organozinc 

reagents with primary alkyl halides (Scheme 8).55 The possible role of Bu4NI is that it 

enhances the ionic concentration of the medium, which promotes the cross-coupling reactions. 

 

 

Scheme 8. Nickel-catalyzed Negishi-type cross-coupling reactions of alkyl halides with secondary 
alkylzinc reagents. 

 

Fu’s group also provided significant contributions in this field. With a combination of 2% 

Pd2(dba)3/8% PCyp3/1.2 equiv. NMI in THF/NMP at 80 °C (Cyp = cyclopentyl, NMI = N-

methylimidazole), a range of β-hydrogen-containing primary alkyl iodides, bromides, 

chlorides, and tosylates were coupled with an array of alkyl-, alkenyl-, and arylzinc halides in 

excellent yields.56 The process is also compatible with a variety of functional groups, 

including esters, amides, imides, nitriles, and heterocycles. Additionally, Organ et al. also 

discovered the Pd-N-heterocyclic carbine (NHC) system that achieves room-temperature 

Negishi cross-coupling of non-activated primary bromides and alkyl organozinc reagents 

with a variety of functionality.57,58 

In 2003, Fu et al. reported that Ni(cod)2 in the presence of (s-Bu)-Pybox in DMA 

catalyzed room temperature cross-coupling of secondary (and primary) alkyl bromides and 

iodides with alkylzinc halides in moderate to good yield with high functional group tolerance 

under mild conditions (Scheme 9).59 This is the first example of the Negishi cross-coupling of 

non-activated, β-hydrogen-containing, secondary alkyl halides, which opened a new area of 

synthetic chemistry. 



 
 

11 
 

 

Scheme 9. Nickel-catalyzed Negishi-type cross-coupling reactions of secondary alkyl halides with  
alkylzinc reagents. 
 

Later, Fu et al. expanded the method to asymmetric Negishi cross-couplings of α-bromo 

amides with organozinc reagents (Scheme 10).60 The nickel-pybox combination was again 

very reactive for this medium. Furthermore, the polar solvent 1,3-dimethyl-2-imidazolidinone  

(DMI) and THF were crucial for this method. This is the first method that achieved catalytic 

asymmetric cross-couplings of alkyl electrophiles.  

 

 

Scheme 10. First asymmetric Negishi coupling of secondary α-bromo amides with organozinc 
reagents. 
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Vicic et al. carried out an extensive study to probe the mechanism of Ni-catalyzed alkyl-

alkyl cross-couplings (Scheme 11).61 The [Ni(terpy)(CH3)] (terpy = terpyridine)  complex 

was the first successfully isolated and structurally characterized catalyst. It was proposed that 

the [Ni(terpy)(Alkyl2)] compound could activate alkyl halide to form [Ni(terpy)(Alkyl2)]X 

and release an alkyl radical via single-electron-transfer. Then, recombination of the carbon 

radical with Ni gives [Ni(terpy)(alkyl1)(alkyl2)]. Reductive elimination provides the coupling 

product and [Ni(terpy)X]. Transmetallation of [Ni(terpy)X] within the alkyl nucleophile 

could regenerate Ni-alkyl species. 

 

 

Scheme 11. Proposed catalytic cycle for alkyl–alkyl coupling by Ni-terpy complex. 
 

Cárdenas et al. utilized the proposed intermediacy of alkyl radicals in the Ni/Pybox 

system,62 synthesizing the substituted cyclic ethers via cascade formation of C sp3-sp3 bonds. 

Alkyl iodides containing an alkene group first underwent intra-molecular ring-closing 

reactions before being coupled to alkylzinc halides (Scheme 12). 
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Scheme 12. Possible mechanistic pathways for the nickel-catalyzed cyclization/coupling reaction. 

1.4 Alkyl-alkyl Suzuki-Miyaura coupling reactions 

The Suzuki-Miyaura reaction couples organo (aryl- or vinyl-) boronic acids/esters with 

organo halides (aryl, vinyl or alkyl). It is one of the most versatile and widely used cross-

coupling reactions because of the commercial availability and low toxicity of the starting 

materials, easy handling (relative air- and water-stable), and high functional-group 

tolerance.63-67 More importantly, the corresponding products could be obtained in good to 

excellent yields in a region- and stereospecific manner and nearly without steric hindrance 

problems.68,69 Originally, Pd acted as an efficient catalyst and dominated in this field for a 

long time.70,71 Recently, Fu et al. have extended this field by showing alkyl bromides and 

chlorides can be used as substrates using Ni catalysts.72 Significant contributions of alkyl-

alkyl cross-coupling reactions are introduced in this section.  
Suzuki et al. developed the first Pd-catalyzed Suzuki-type alkyl-alkyl cross-coupling 

reactions in 1992.73 In the presence of Pd(PPh3)4 and K3PO4, alkyl iodide can react with 9-

alkyl-9-BBN smoothly and provide moderate to good cross-coupling yields (Scheme 13). 

Functional 9-alkyl-9-BBN, aryl-BBN, and alkenyl BBN can be used as substrates, while 

alkyl bromides or secondary alkyl halides cannot be applied. The reaction was also identified 

as a radical process.   
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Scheme 13. The first Pd-catalyzed Suzuki-type alkyl-alkyl cross-coupling reactions. 
 

Fu et al. established the first efficient Suzuki reactions of alkyl bromides that possess β-

hydrogens.74 This work represents a significant expansion in the scope of the Suzuki reaction. 

Under the system of Pd(OAc)2/PCy3 (1:2) in the presence of K3PO4•3H2O, the non-activated 

alkyl halides (I or Br) coupled with B-alkyl-9-BBN at room temperature and gave good to 

excellent yields (Scheme 14). Additonally, Organ et al. first introduced the N-heterocyclic 

carbenes in Pd-catalyzed alkyl−alkyl Suzuki−Miyaura coupling reactions. Alkyl bromides 

can react with B-alkyl-9-BBN and provide modest yields.75 Later, by using a modified 

carbene ligand, the system was improved and high yields can be obtained.76,77 

 

 

Scheme 14. Pd-catalyzed Suzuki-type alkyl-alkyl cross-coupling reactions with alkyl bromides. 
 

Later, Fu et al. reported that with Pd2(dba)3 and PCy3 in the presence of CsOH•3H2O, the 

more challenging alkyl chlorides could also be coupled with 9-alkyl-9-BBN at high 

temperature (90 ⁰C) in dioxane (Scheme 15).78 The process is compatible with a variety of 

functional groups, including silyl ether, acetal, amine, nitriles and ester. 
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Scheme 15. Pd-catalyzed Suzuki-type alkyl-alkyl cross-coupling reactions with alkyl chlorides. 
 

Subsequently, the same group tried to establish a method for the coupling of alkyl 

tosylates.79 After a series of modification, they found that with PtBu2Me, rather than PCy3,  

the coupling of B-alkyl-9-BBN with alkyl tosylates could be realized. A combination of 

Pd(OAc)2 and PtBu2Me in the presence of NaOH in dioxane at 50 ⁰C was the conditions 

employed. During the study, they found that the reaction was exceptionally sensitive toward 

the cone angle of the ligands employed. A bench-stable trialkyl phosphonium salt, 

[HPtBu2Me]BF4, was a good precursor to the phosphine ligand. The Capretta group also 

developed a series of phosphaadamantane ligands. Combining these ligands with Pd(OAc)2, 

the resulting complexes were shown to work very well in Suzuki-type alkyl-alkyl cross-

couplings.80  

B-alkyl-9-BBN are useful substrates in Suzuki coupling reactions, yet we cannot ignore 

their drawbacks: they are not readily handled in air nor commercially available, and are less 

atom-economic. Boronic acids are desirable alternatives to be utilized in Suzuki coupling. Fu 

et al. explored a series of parameters, and discovered several efficient catalytic systems. They 

reported the first palladium-catalyzed protocols for the coupling of boronic acids and 

unactivated alkyl electrophiles (bromides) that bear β-H functionality.81 

In 2007, Fu et al. described the first method for achieving alkyl-alkyl Suzuki coupling of 

unactivated secondary alkyl halides with alkylboranes using a Ni/amine system (Scheme 

16).82 The simple, readily available diamine ligands were the most effective. KOtBu and 
iBuOH were also necessary. They proposed that the role of these basic species is to activate 

the alkylborane for transmetalation with nickel. 
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Scheme 16. Ni-catalyzed Suzuki-type alkyl-alkyl cross-coupling reactions of alkyl bromides and 
iodides. 

 

In 2010, Fu et al. reported the first Ni-catalyzed alkyl–alkyl Suzuki reaction of unactivated 

secondary alkyl chlorides under a similar system (NiCl2•glyme/dioxane to NiBr2•glyme/ 

iPr2O) (Scheme 17).83 This protocol was very efficient in the coupling of functionalized alkyl 

electrophiles under mild conditions. More important, this catalytic system not only break the 

barrier associated with unreactive alkyl chlorides, but also could be applied to Suzuki 

coupling of secondary and primary alkyl bromides and iodides. 

 

 

Scheme 17. Ni-catalyzed Suzuki-type cross-coupling reactions of secondary alkyl chlorides. 
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By using Ni(cod)2/chiral diamine as catalyst, the system can be also applied to asymmetric 

cross-couplings of non-activated alkyl electrophiles. This was the first example of 

enantioselective Suzuki couplings of alkyl electrophiles (Scheme 18).84 

 

KOtBu 1.2 equiv.
iBuOH 2 equiv.
iPr2O, 5 °C or r.t.

Ar
alkyl

Br
+

Ni(cod)2 10 mol%
Ligand 12 mol%

Ar
alkyl

alkyl1

Ligand

MeHN NHMe1.5 equiv.

Ph

F3C

82%, ee 70%

OTBS

68%, ee 78% 74%, ee 85%

O

O

OMe

OMe

OTBS

62%, ee 66%

O

73%, ee 76%

O

O

CF3F3C
9-Alkyl1-9-BBN

CO2Me

 

Scheme 18. Nickel-catalyzed Suzuki-type asymmetric cross-couplings of unactivated alkyl 
electrophiles. 

1.5 Reductive alkyl-alkyl coupling reactions 

Great progress has been achieved for the alkyl-alkyl cross-coupling reactions. An 

organometallic reagent is required in these reactions. In recent years, catalytic reductive 

coupling reactions of two electrophiles have become interesting.  There has been some 

progress in reductive C-C aryl-alkyl cross-coupling,85-87 allyl-alkyl cross-coupling,88,89 and 

aryl acid chloride-alkyl cross-couplings reactions.90  

There are several advantages of this type method. First of all, the coupling partners can be 

used directly without preparing organometallic reagents, which means that there is less waste 

generated. Secondly, the procedure is easier to carry out compared to traditional methods 

using organometallic reagents. Unlike Grignard or organozinc reagents, the substrates are 

generally not air/moisture sensitive. They can be handled in ambient atmosphere. Solvents 

need not be rigorously dried. Special equipment and protection are not required. Third, direct 

reductive coupling might show a high degree of functional group tolerance. Functional 
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groups such as alcohol, carboxylic acid, N-Boc, or heteroaromatics are well tolerated. Thus, 

such coupling reactions may have potential application in organic synthesis. Gong et al. 

established the first effective cross-coupling of two alkyl halides via a Ni-catalyzed reductive 

process (Scheme 19).91 Pybox ligands are found to be necessary to suppress the 

homocoupling reactions. This protocol avoids the use of organometallic reagents, and 

exhibits a high functional group tolerance, including nitrogen heterocycles, keto, or even 

alcohol groups. They concluded that a non-Negishi process may be operative. The main 

problems of this method are the relative low coupling yields and the use of excess of one 

coupling partner (3 equiv.), which will limit its application in large scale production.  

 

 

Scheme 19. Nickel-catalyzed reductive cross-couplings of non-activated alkyl halides using Pybox 
ligands. 

1.6 Summary and Outlook 

Transition-metal-catalyzed alkyl-alkyl cross coupling has been rapidly developed over the 

last years. High efficiency and good functional group tolerance have been demonstrated. 

However, there are still challenges remained in the field. The well-defined (pre)catalysts for 

cross coupling reactions are less developed. Moreover, the creation of tertiary and quaternary 

carbon centers is still a great challenge, as there are few reports for the coupling of secondary 

or even tertiary organometallic reagents with primary or secondary alkyl halides. Furthermore, 

the mechanism of the coupling reactions is still not clear, especially for first-row transition-

metal-catalyzed processes.  
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2.1 Introduction 

C-C cross coupling of non-activated alkyl halides and pseudo halides is one of the most 

actively pursued reactions in homogeneous catalysis.1-6 The coupling of secondary alkyl 

halides is particularly interesting because it creates a tertiary carbon center that might be 

otherwise difficult to access.3 An asymmetric process would produce a stereogenic carbon 

center. Pioneering and remarkable work of Fu et al. demonstrated that this type of 

asymmetric catalysis could indeed be achieved starting from racemic activated and non-

activated alkyl halides.7-13 However, non-activated secondary alkyl halides are very difficult 

to couple because of the increased steric hindrance of the substrates and the tendency of 

secondary alkyl halides to undergo base-mediated HX elimination (X = halide).3 

Consequently, there are only a handful of catalysts known for alkyl-alkyl coupling of non-

activated secondary alkyl electrophiles.7,8,14-21 And to the best of our knowledge, there are 

only two pre-formed and defined catalysts, including the one developed by our group.18,20,21  

We have focused on the development of well-defined (pre)catalysts for cross-coupling 

reactions.22 Our group recently reported a NiII pincer complex, [(MeN2N)NiCl] (1),20,22 that 

was an efficient catalyst for Kumada-Corriu-Tamao (Kumada) coupling of non-activated 

alkyl halides with Grignard reagents.20,21,23 Mechanistic study suggested that the catalysis 

started with the transmetalation of the Ni halide complex with an alkyl Grignard reagent to 

form a Ni alkyl species, which reacted with the alkyl halide to form the coupling product and 

regenerated the catalyst (Scheme 1).20,24 The catalysis has a wide substrate scope and a high 

functional group tolerance.21,23 As Grignard reagents are relatively cheap, easy to synthesize 

or purchase, this Ni-catalyzed Kumada coupling method is attractive for the synthesis of 

highly functionalized organic molecules. The scope of the coupling method, especially for 

secondary alkyl halides, however, remained to be expanded.20,21,23 In this chapter, I described 

a structure-activity study of nickel-catalyzed alkyl-alkyl Kumada coupling employing a series 

of isolated nickel complexes. It was possible to study some main factors governing the 

efficiency of the catalysis. Furthermore, catalysts much more efficient than complex 1 had 

been developed for the coupling of secondary alkyl halides.  
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Scheme 1. The proposed catalytic cycle for alkyl-alkyl Kumada coupling by the pincer complex 1. 

2.2 Synthesis and structure of nickel catalysts 

2.2.1 Ligand synthesis 

In addition to the pincer ligand MeN2N (2),22 several new ligands (3-9) were employed in 

this study (Chart 1). An analogue of ligand 4 with electron-donating methoxy substituents 

was recently reported by Heyduk et al.25  

 

Chart 1. 
 

 

 

Protonated, neutral forms of these ligands were first prepared. Scheme 2 shows the 

synthesis of 3H and 4H. Coupling of 1-fluoro-2-nitrobenzene with 2-nitroaniline proceeded 

smoothly without a catalyst to give bis(2-nitrophenyl)amine (10) in a high yield. Reduction of 

10 with H2 using Pd/C catalyst gave bis(2-aminophenyl)amine (11) in a quantitative yield. 

Condensation of 9 with paraformaldehyde in the presence of a base, and subsequent reduction 

with NaBH4 gave bis(2-methylaminophenyl)amine (3H) in a good yield. 11 was also reacted 
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with acetone in the presence of an acid, and then reduced with NaBH3CN to give bis(2-

isopropylaminophenyl)amine (4H) in a modest yield. The overall synthetic sequence is 

similar to those employed for the preparation of pincer and tripodal triamido ligands.25,26     

 

NO2
F

NO2

DMSO
120 oC, 36 h

10, 82 %

NH

NO2

NO2

+

K2CO3

NH

NH2

NH2

H2
Pd/C

EtOAc
rt, 24 h

11, 99 %

NH2

1. HCl, 2. NaBH3CN
O

CH3OH
rt, 0.5 h

rt, 12 h

NH

N

N

4H, 52 %

H

H

2. NaBH4

CH3OH
reflux, 1 h

reflux, 1 h

NH

N

N

3H, 73 %

H

H1. paraformaldehyde
NaOMe

11

11

 

Scheme 2. Synthesis of pro-ligands 3H and 4H. 
 

Schemes 3 and 5 show the synthesis of tridentate ligand 5H, 7H, 8H, and 9H. These 

compounds were prepared in high yields using Pd-catalyzed Buchwald-Hartwig C-N 

coupling method.27,28 Ligand 7H was previously made by a different method.29 The proton of 

diphenyl amino group is more acidic than that of methyl phenyl amino group, thus 6HH 

could be prepared by selectively deprotonation of 3H with potassium hydride, and then 

methylation (Scheme 4).   
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Scheme 3. Synthesis of pro-ligands 5H. 
 

 

Scheme 4. Synthesis of pro-ligands 6HH. 
 

 

Scheme 5. Synthesis of pro-ligands 7H-9H. 
 

2.2.2 Metallation using organo lithium and magnesium reagents. 

Our group showed earlier that Ni complex 1 could be synthesized by reaction of a Ni salt 

with the Li complex of ligand 2.22 To access analogous Ni complexes with ligands 3-9, the 

amine groups were deprotonated by nBuLi to form the corresponding Li complexes.  
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Scheme 6. Lithiation of ligands 3, 4, 7-9.  
 

Lithiation occurred readily with nBuLi to give complexes 12-17 (Scheme 6). In a non-

coordinating solvent such as benzene, the products should be dimeric [LLi]2, similar to 

[MeN2NLi]2.
22 For ligands 3 and 4, only the proton on the bridging nitrogen atom was 

removed to form an anilido donor when one equivalent of nBuLi was used. The crystal 

structure of 13 was determined (Figure 1). The two Li ions have a similar coordination 

environment. The analogous complex 12 should have a similar structure. For ligand 8, the 

resulting complex 15 also has a dimeric solid-state structure (Figure 2). The two Li ions are 

not equivalent. One Li center is coordinated to four nitrogen donors from two molecules of 

ligand 8, in a distorted tetrahedral geometry. The other Li center is coordinated to two anilido 

donors, and has a weak interaction with a C-H bond of the ligand from another molecule. The 

Li-C and Li-H distances are 2.463 and 2.294 Å, respectively. This Li-CH interaction was 

responsible for the polymeric structure of complex 15 in the solid state. Due to the similarity 

of ligands 7-9, complexes 14 and 16 may be expected to have structures similar to 15.    
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N2

N1

N3

N4

N5

N6
Li1

Li2

 

Figure 1. Crystal structure of complex 13. The thermal ellipsoids are displayed in 50% probability.  
The following structures in this chapter are displayed at 50% probability which will not be illustrated 
any more. Selected bond lengths (Å): Li1-N1 2.049(9), Li1-N2 2.052(8), Li1-N4 2.042(9), Li1-N5 
2.062(8), Li2-N2 2.039(9), Li2-N3 2.063(8), Li2-N5 2.022(8), Li2-N6 2.102(8).  
 

Li1

Li2
N1

N2

N3

N4

 

Figure 2. Left: Crystal structure of complex 15. Selected bond lengths (Å): Li1-N1 2.051(4), Li1-N2 
2.079(4), Li1-N3 2.045(4), Li1-N4 2.045(4), Li2-N2 2.034(4), Li2-N4 2.015(4), Li2-C10 2.464(4). 
Right: Line drawing presentations of the structures of complexes 15. In the structure of 15, a weak Li-
CH interaction is shown as bond between Li2 and C10.  

 

When ligand 9 was lithiated in THF, a monomeric complex 17 was formed. The structure 

of 17 shows that the Li ion is coordinated to one molecule of 9 and two molecules of THF, in 

a tetrahedral fashion (Figure 3). When the dimeric complex 16 was treated with THF, it was 

converted to 17. Thus, the structures of these Li complexes depend on the solvents they were 

dissolved in. Donor solvents such as THF should favor monomeric forms.   
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Li1

N1

N2

O1

O2

 

Figure 3. Crystal structure of complex 17. Selected bond lengths (Å): Li1-N1 1.993(7), Li1-N2 
2.179(8), Li1-O1 1.963(7), Li1-O2 1.924(7).  

 

A magnesium complex was also synthesized as a potential transmetallation reagent. 

Reaction of 7 with EtMgCl in THF produced the dimeric compound 18 (Scheme 7). The 

structure of 18 was revealed by crystallography (Figure 4). 

 

 

Scheme 7. Synthesis of Mg complex 18. 
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Figure 4. Crystal structure of complex 18. Selected bond lengths (Å): Mg1-N1 2.231(3), Mg1-N2 
2.036(3), Mg1-O1 2.029(3), Mg1-Cl1 2.4225(18). 

 

2.2.3 Synthesis of nickel complexes of ligands 3-9 

For tridentate ligands 3 and 4, their Ni complexes could be easily prepared by reactions of 

the Li complexes with NiCl2(dme) (dme = dimethoxyethane) in THF (Scheme 8). The 

resulting Ni complexes (19 and 20) are diamagnetic. Only the rac-isomer was observed in the 

solid state (vide infra). However, in the solution, both rac and meso isomers exist, as 

indicated by the 1H and 13C NMR spectra. The ratios of isomers are 1:1 for 19, and 1:3 for 20. 

The synthesis of Ni pincer complex 21 could be achieved by a similar route without isolating 

the lithium complex (Scheme 9). By adding 2 equivalents of nBuLi to form the corresponding 

lithium di-amide complex, it then could react with NiCl2(2,4-lutidine)2 to produce Ni 

complex 22 in very high yield (Scheme 10).    

 



 
Chapter Two 

32 
 

  

Scheme 8. Synthesis of Ni pincer complexes 19 and 20. 
 

 

Scheme 9. Synthesis of Ni pincer complex 21 with hemilabile ligand. 
 

 

Scheme 10. Synthesis of Ni pincer complex 22 with di-amide ligand. 
 

The synthesis of Ni complexes with bidentate ligands 7-9 proved to be more challenging. 

Reaction of Li complexes 14-16 with NiCl2(dme) in THF or CH3CN did not lead to the 

expected Ni complexes, but rather the formation of protonated ligands, 7H-9H.  The Mg 

complex 18, on the other hand, failed to react with a Ni salt. The coordination chemistry of 

bidentate ligands was thoroughly studied employing various Ni precursors such as anhydrous 

NiCl2, NiBr2, NiI2, NiCl2(THF)1.5, NiCl2(PPh3)2, NiCl2(Py)4, Ni(OAc)2, NiCl2(2,4-lutidine)2, 

NiCl2(4-picoline)4. Under most conditions, reactions of 14-16 with these Ni salts produced 

mostly protonated ligands and sometimes small quantities of paramagnetic compounds that 

could not be identified. Fortunately, after many struggles, I was able to prepare a series of Ni 

complexes with these ligands by judicious choice of Ni precursors and reaction conditions.  



 
 

33 
  

Reaction of Li complex 15 with anhydrous NiCl2 in THF led to the formation of complex 

23, in which two molecules of ligand 8 coordinate to one Ni ion (Scheme 11). The complex is 

paramagnetic and its 1H NMR spectrum shows chemical shifts from -40 to +40 ppm. 

Changing the stoichiometry of the reagents did not affect the outcome of this reaction. 

Reaction of Li complex 14 with NiCl2(PPh3)2 in THF led to the paramagnetic complex 24 

(Scheme 11). The Ni is bound to one molecule of 7, Cl-, and PPh3.   

 

 

Scheme 11. Synthesis of complex 23 and 24. 
 

Reactions of Li complex 16 with NiCl2(py)2 and NiCl2(4-picoline)4 yielded five-coordinate 

Ni complexes 25 and 26 (Scheme 12). Both compounds are paramagnetic. Finally, four-

coordinate and diamagnetic Ni complexes were prepared by reaction of 14-16 with 

NiCl2(2,4-lutidine)2 (Scheme 12). The resulting complexes (27-29) have the formula of 

[(RNN)Ni(2,4-lutidine)(Cl)]. The diamagnetism is consistent with square-planar structures, 

which were confirmed by crystallography (section 2.2.4). The Cl- in Ni complex 27 could be 

replaced by OTf-, when 27 was reacted with TMSOTf. Similarly, the auxilary ligand PPh3 of 

complex 24 could be substituted with a carbene ligand 1,3-dimethylimidazolin-2-ylidene 

(dmiy) which was generated from the corresponding imidazolium iodide  with base in situ 

(Scheme 13).  

 

 

Scheme 12. Synthesis of complexes 25-29. 
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Scheme 13. Synthesis of complexes 30 and 31. 
 

2.2.4 Structures of Ni complexes.  

The solid-state structures of complexes 19-31 were determined by X-ray crystallography. 

The results confirmed the structural formula depicted in Schemes 8-13. The structures of 19 

and 20 (Figures 5 and 6) resemble that of 1. The pincer ligands coordinate in a meridional 

fashion. The larger substituents (Me and iPr) on the amine adapt a rac orientation. The Ni-N 

distances in 19 and 20 are all comparable to 1. The Ni (II) ions of 21 and 22 are in a square-

planar geometry (Figures 7 and 8). The Ni-N (alkyl arm) distance is slightly shorter than the 

Ni-N (aryl arm).  
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Ni1

N1

N2

N3

Cl1

 

Figure 5. Crystal structure of complex [(HMeN2N)NiCl] (19). There are two independent molecules in 
the asymmetric unit, and only one of them is shown. The crystal contains half molecule of solvent 
(CH2Cl2) which is not shown.  
 

N1

N2

N3

Ni1
Cl1

 

Figure 6. Crystal structure of [(HiPrN2N)NiCl] (20). 
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Ni1
N1

N2

N3

Cl1

 

Figure 7. Crystal structure of complexes [(MeNMeNN)NiCl] (21).There are two independent molecules 
in the asymmetric unit of 21, and only one of them is shown.  

 

N1

N2

N3

N4

Ni1

 

Figure 8. Crystal structure of complexes [(MeN2
MeN)Ni(lut)] (22). 
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The structures of 23 and 24 (Figures 9 and 10) show that the Ni(II) ions are in a distorted 

tetrahedral coordination environment. The structures of 25 and 26 show the coordination 

geometry of Ni ions to be distorted square pyramidal (Figures 11 and 12). The two nitrogen 

atoms of ligand 9, Cl-, and one pyridine/picoline nitrogen constitute the plane. The chloride 

anion occupies the position trans to the amido nitrogen. The second pyridine/picoline ligand 

occupies the axial position. The Ni-N distance for the axial pyridine/picoline ligand is slightly 

shorter, about 0.06 Å. The structures of 27, 28, and 29 (Figures 13-15) are similar, showing 

square-planar Ni(II) ions. Like 25 and 26, the chloride anion occupies the position trans to 

the amido nitrogen. To minimize steric congestion, the 2-methyl group of the 2,4-lutidine 

ligand is trans to the R1 (Me and Ph) group of the bidentate ligands in 28 and 29. In all 

complexes of ligand 9 (25, 26, 29), the phenyl R1 substituent is not co-planar with the parent 

aryl group in the solid-state. The structures of 30 and 31 resemble 27, but OTf-  and I- groups, 

respectively,  occupy the position trans to the amido nitrogen (Figures 16 and 17).  

 

Ni1

N1

N2

N3

N4

   

Figure 9. Crystal structure of complex [(MeNN)2Ni] (23). 
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Ni1

P1

N1

N2
Cl1

             

Figure 10. Crystal structure of complex [(HNN)Ni(PPh3)Cl] (24). 
 

Cl1

Ni1

N1
N2

N3
N4

         

Figure 11. Crystal structure of complex [(PhNN)Ni(Py)2Cl] (25). 
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Figure 12. Crystal structure of complex [(PhNN)Ni(4-Picoline)2Cl] (26). 
 

Ni1

N1

N2

N3

Cl1

       

Figure 13. Crystal structure of complex [(HNN)Ni(2,4-lutidine)Cl] (27). 
 



 
Chapter Two 

40 
 

        

Ni1
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N2
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Figure 14. Crystal structure of complex [(MeNN)Ni(2,4-lutidine)Cl] (28). 
 

N2

N1

N3

Ni1 Cl1

               

Figure 15. Crystal structure of complex [(PhNN)Ni(2,4-lutidine)Cl] (29). 
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Figure 16. Crystal structure of complex [(HNN)Ni(2,4-lutidine)OTf] (30). There are two independent 
molecules in the asymmetric unit of 30, and only one of them is shown. The unit cell of 30 contains 
one molecule of solvent (toluene) which is not shown. 

 

N4N5

Ni1
N3

N2
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Figure 17. Crystal structure of complex [(HNN)Ni(dmiy)I] (31). The crystal of 31 contains one 
molecule of solvent (toluene) which is not shown. 
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Table 1 lists the selected Ni-L/X bond distances in complexes 19-31. Several trends are 

noteworthy. In all complexes, the Ni-N(amide) bonds are significantly shorter than the Ni-

N(amine) bonds. In general, low-spin and diamagnetic compounds have shorter Ni-L 

distances, and the bonds in five-coordinate, square-pyramidal complexes are noticeably 

longer than their counterparts in four-coordinate complexes.  

 

Table 1. Selected bond distances in complexes 19-31.a 

 

Complex 
Ni-N 

(amide) 
Ni-N 

(amine) 

 
Ni-X 

 

Ni-L 
(additional) 

Geometry Spin state 

19 1.842(5) 1.932(5) 
2.2051(16) 

Ni-Cl 
- Square-Planar Dia 

20 1.838(4) 1.943(3) 
2.2156(12) 

Ni-Cl 
- Square-Planar Dia 

21 1.893(3) 1.983(3) 
2.2217(11) 

Ni-Cl 
1.966(4) 

L = N(alkyl) 
Square-Planar Dia 

22 1.884(35) 1.938(3) - 
1.901(4) 

L = N(Lut) 
Square-Planar Dia 

23 1.905(3) 2.090(4) - - Tetrahedral Para 

24 1.906(2) 2.060(2) 
2.2184(8) 

Ni-Cl 
2.3256(8) 

L = P(PPh3) 
Tetrahedral Para 

25 1.979(2) 2.174(2) 
2.3597(8) 

Ni-Cl 
2.076(2) 

L = N(Py) 
Square-

Pyramidal 
Para 

26 1.9754(16) 2.1625(15) 
2.3635(6) 

Ni-Cl 
2.0891(17) 

L = N(4-pico) 
Square-

Pyramidal 
Para 

27 1.877(4) 1.950(4) 
2.2069(14) 

Ni-Cl 
1.900(4) 

L = N(Lut) 
Square-Planar Dia 

28 1.882(4) 1.981(4) 
2.2198(13) 

Ni-Cl 
1.913(4) 

L = N(Lut) 
Square-Planar Dia 

29 1.887(2) 1.965(2) 
2.2113(8) 

Ni-Cl 
1.913(2) 

L = N(Lut) 
Square-Planar Dia 

30 1.849(4) 1.954(4) 
1.937(4) 
Ni-OTf 

1.916(4) 
L = N(Lut) 

Square-Planar Dia 

31 1.869(4) 2.020(4) 
2.5323(9) 

Ni-I 
2.5323(9) 
L = dmiy 

Square-Planar Dia 

 
a Distances are in Angstroms. Averaged bond distances were used in cases where there is more than one bond of the same 

given type. The geometry was approximated.  

2.3 Kumada coupling of secondary alkyl halides using nickel complexes as 
catalysts 

2.3.1 Test reactions 

[(PhNN)Ni(2,4-lutidine)Cl] (29) was used as test catalyst to optimize the reaction 

conditions for coupling 2-iodobutane with octylMgCl. Screening of reaction conditions 

showed that these reactions were best run at -20 oC and in DMA (DMA = 
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dimethylacetoamide), and using 1 equivalent of Grignard reagent diluted in THF (Table 2). 

Slow addition of Grignard reagents was sometime beneficial and, in the best cases, gave 5 to 

10 % better yields. The reactions generally finished within two hours. By changing the 

catalyst to 27 and 28, the yield could be further improved to 74%. The coupling of 2-

iodobutane with octylMgCl (eq. 1) and cyclohexyl iodide with butylMgCl (eq. 2) was chosen 

as a model reaction to test the performance of Ni complexes 19-31. The catalysis using 

complex 1 was used as a reference.  

 

Table 2. Optimizing conditions and control experiments.a 

 

 

 

Entry Grignard Cat. 
(mol%) Solvent Temp. 

(oC) Time Yield 
(%) [b] 

1 1.2 equiv. 29 (3%) DMA (0.75mL) -20 0.5h 55 

2 1.2 equiv. 29 (3%) DMA (0.75mL) r.t. 0.5h 21 

3 1.2 equiv. 29 (3%) DMA (0.75mL) 0 0.5h 42 

4 1.2 equiv. 29 (3%) DMA (0.75mL) -10 0.5h 49 

5 1.2 equiv. 29 (3%) DMA (0.75mL) -30 0.5h 16 

6 1.2 equiv. 29 (9%) DMA (0.75mL) -20 0.5h 55 

7 1.2 equiv. - DMA (0.75mL) -20 0.5h 0 

8 1.2 equiv. 29 (3%) DMA      (2mL) -20 0.5h 37 

9 2 equiv. 29 (3%) DMA (0.75mL) -20 0.5h 40 

10[c] 1.2 equiv. 29 (3%) DMA (0.75mL) -20 0.5h 24 

11[d] 1.2 equiv. 29 (3%) DMA (0.75mL) -20 0.5h 23 

12[e] 1.2 equiv. 29 (3%) DMA (0.75mL) -20 0.5h 25 

13 1 equiv. 29 (3%) DMA (0.75mL) -20 0.5h 55 

14 1.2 equiv. 29 (3%) DMF (0.75mL) -20 0.5h 10 

15 1 equiv. 29 (3%) NMP (0.75mL) -20 0.5h 12 

16 1 equiv. 29 (3%) THF (0.75mL) -20 0.5h trace 

17 1 equiv. 29 (3%) Dioxane (0.75mL) -20 0.5h trace 

18 1.2 equiv. 17 (3%) DMA (0.75mL) -20 0.5h trace 

19 1.2 equiv. 
NiCl2(2,4-

lut)2 (3 %) 
DMA (0.75mL) -20 0.5h 16 

20 1.2 equiv. 1 (3 %) DMA (0.75mL) -20 0.5h trace 

21[f] 1 equiv. 29 (3 %) DMA (0.75mL) -20 1h 66 



 
Chapter Two 

44 
 

Table 2. (Continued) 

Entry Grignard Cat. 
(mol%) Solvent Temp. 

(oC) Time Yield 
(%) [b] 

22[f] 1 equiv. 29 (1 %) DMA (0.75mL) -20 1h 45 

23[f] 1 equiv. 29 (3 %) DMA (0.5mL) -20 1h 49 

24[f] 1 equiv. 27 (3 %) DMA (0.5mL) -20 1h 66 

25[f] 1 equiv. 27 (3 %) DMA (0.75mL) -20 2h 74 

26[f] 1 equiv. 28 (3 %) DMA (0.75mL) -20 2h 74 

27[f] 1 equiv. 27 (3 %) DME (0.75mL) -20 2h 10 

28[f] 1 equiv. 27 (3 %) DCE (0.75mL) -20 2h 15 

29[f] 1 equiv. 27 (3 %) DEE (0.75mL) -20 2h 6 
a nOctylMgCl  was added dropwise  to a solution of 2-iodobutane (0.5 mmol) according to the conditions specified in 

Table 2. The reaction was allowed to proceed for a certain period of time. b GC yields relative to 2-iodobutane. c adding 30% 
TMEDA as additive, TMEDA = N,N,N’,N’-tetramethylethylenediamine. d adding 60 % BDMAEE as additive, BDMAEE = 
bis[2-(N,N-dimethylaminoethyl)]ether. e adding 1 equiv. LiCl as additive. f 0.5 mmol (1 equiv.) of nOctylMgCl was diluted 
in THF (3 mL), and then was added dropwise via a syringe pump (1 h).   

 

Figure 18 and Table 3 summarize the results. The original pincer catalyst [(MeN2N)NiCl] 

(1) was not efficient for coupling of 2-iodobutane (entry 1, Table 3), giving a 4 % coupling 

yield for equation 1. It gave a modest yield for the coupling of cyclohexyl iodide. Analogous 

pincer complexes with NHR donors [(HMeN2N)NiCl] (19) and  [(HiPrN2N)NiCl] (20) were not 

at all active for the coupling (entries 2 and 3, Table 3). The catalytic behavior of pincer 

complex with a more labile NEt2 side arm [(MeNMeN′N)NiCl] (21) is similar to 1, but the 

yield for coupling of cyclohexyl iodide was lower than 1 (entry 4, Table 3). Complex 

[(MeN2
MeN)Ni(2,4-lutidine)] (22) with a dianionic pincer ligand was not active for the 

coupling reactions at all (entry 5, Table 3). [(HNN)2Ni] complex (23) was also inactive (entry 

6, Table 3). As shown in Table 4, most of the starting alkyl halides remained after the 

reactions using these precatalysts, and thus their inefficiency was due to the inability to 

activate alkyl halides. More encouraging results were obtained with [(HNN)Ni(PPh3)Cl] (24). 

It was active for the coupling of both acyclic and cyclic secondary iodides, giving a yield of 

68 % and 61 % for 2-butyl and cyclohexyl iodide, respectively (entry 7, Table 3).  The five-

coordinate complexes 25 [(PhNN)Ni(Cl)(Py)2] and 26 [(PhNN)Ni(Cl)(4-Picoline)2] were also 

active (entries 8 and 9, Table 3). The coupling yields for 2-butyl iodide were low, and for 

cyclohexyl iodide were modest. The square-planar complexes [(RNN)Ni(2,4-lutidine)Cl]  

(27-29) were the most active catalysts (entries 10-12, Table 3). Coupling yields between 

62 % and 84 % were obtained. The coupling yields of [(HNN)Ni(2,4-lutidine)OTf] (30) were 

slightly lower than that of 27. The Ni complex [(HNN)Ni(dmiy)I] (31) was not active . From 
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the experimental results, Ni Complex [(HNN)Ni(2,4-lutidine)Cl] (27) was the best catalyst, 

giving yields of 74 % and 84% for the coupling of 2-butyl and cyclohexyl iodide, 

respectively (entry 10, Table 3).   

 

Table 3. Kumada coupling of secondary alkyl halides, test reactions.a 

 

 

Entry Catalyst Formula 
Yield (%) 

for reaction (1) 
Yield (%) 

for reaction (2) 

1 1 

 

4 46 

2 19 

 

trace 1 

3 20 

 

trace trace 

 
4 

 
21 

 

1 27 

5 22 

 

2 5 

6 23 

 

1 1 

7 24 

 

68 61 

8 25 

 

20 54 
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Catalyst 

Table 3. (Continued) 

Entry Catalyst formula 
Yield (%) 

for reaction (1) 
Yield (%) 

for reaction (2) 

9 26 

 

16 57 

10 27 

 

74 84 

11 28 

 

74 77 

12 29 

 

62 80 

13 30 

 

64 80 

14 31 

 

0 0 

 

a 0.5 mmol (1 equiv.) of RMgCl was diluted in THF (3 mL), and then was added dropwise via a syringe pump during 1 h 
to a DMA solution containing the nickel catalyst (0.015 mmol, 3 %) and alkyl iodide (0.5 mmol) at -20 oC . After addition, 
the reaction mixture was further stirred for 1 h at -20 oC and then the solution was taken out from the cooling system and 
stirred for 1 h to warm up to room temperature. 

 

 

Figure 18. A graphical representation of the efficiency of various Ni catalysts for the test coupling 
reaction. 
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Table 4. Distribution of unreacted starting material and major side products for Kumada coupling of 
secondary alkyl Halides, test reactionsa 

 

Entry Catalyst Formula 

Amount (%) of 
alkyl halide left 
after reaction 

(1) 

Major 
detectable 

side product 
and yield (%) 
for reaction 

(1) 

Amount 
(%) of 

alkyl halide 
left after 

reaction (2) 

Major 
detectable side 

product and 
yield (%) for 
reaction (2) 

1 1 

 

70 - 57 

- 

2 19 

 

67 - 65 

- 

3 20 

 

62 - 79 - 

 
4 

 
21 

 

95 trace - 

Cyclohexyl-
cyclohexyl 

(13%); Butyl-
Butyl (4%) 

5 22 

 

8 
Octyl-Octyl 

(3%) 
- 

Cyclohexyl-
cyclohexyl 

(16%); Butyl-
Butyl (6%) 

6 23 

 

48 - 88 - 

7 24 

 

10 
Octyl-Octyl 

(10%) 
- 

Cyclohexyl-
cyclohexyl 

(10%) 

8 25 

 

7 
Octyl-Octyl 

(10%) 
4 

Cyclohexyl-
cyclohexyl 

(10%) 

9 26 

 

49 
Octyl-Octyl 

(5%) 
12 

Cyclohexyl-
cyclohexyl 

(7%); Butyl-
Butyl (8%) 
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Table 4. (Continued) 

Entry Catalyst Formula 

Amount (%) of 
alkyl halide 

left after 
reaction (1) 

Major 
detectable 

side product 
and yield (%) 
for reaction 

(1) 

Amount 
(%) of 

alkyl halide 
left after 

reaction (2) 

Major 
detectable side 

product and 
yield (%) for 
reaction (2) 

10 27 

 

- 
Octyl-Octyl 

(10%) 
7 

Cyclohexyl-
cyclohexyl 

(6%); Butyl-
Butyl (5%) 

11 28 

 

- 
Octyl-Octyl 

(10%) 
5 

Cyclohexyl-
cyclohexyl 

(10%); Butyl-
Butyl (8%) 

12 29 

 

- 
Octyl-Octyl 

(10%) 
3 

Cyclohexyl-
cyclohexyl 

(8%); Butyl-
Butyl (7%) 

13 30 

 

- 
Octyl-Octyl 

(9%) 
- 

Cyclohexyl-
cyclohexyl 

(9%); Butyl-
Butyl (5%) 

14 31 

 

88 - 99 - 

 

a See Table 3 for conditions. 

2.3.2 Ranking of catalysts 

Complexes 1, 24, 26, and 27-29 showed certain activity for reactions (1) and (2). They 

were further tested for the coupling of additional cyclic and acyclic secondary alkyl iodides. 

The results are summarized in Table 5 and Figure 19.  

For coupling of cyclic alkyl iodides, the pincer complex 1 had a low efficiency for 

cyclopentyl iodide, and was inactive for cycloheptyl and cyclooctyl iodide. A similar trend 

was observed with 5-coordinate complex 26. It had a modest efficiency for the coupling of 

cyclopentyl iodide, and a low efficiency for cycloheptyl and cyclooctyl iodide. Both 1 and 26 

had low to no efficiency for the coupling of isopropyl and 3-pentyl iodide. The results were 

consistent with those shown in Table 3, and together, ranked complexes 1 and 26 as poor 

catalysts for coupling of secondary iodides. Table 6 showed that the low efficiency was 

largely due to the inability to activate secondary alkyl halides. 
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Table 5. Kumada coupling of secondary alkyl iodides, continued.a 

 

 
     

 
(1) 

8 trace 38 trace 0 

 
(26) 

43 3 47 13 7 

 
(24) 

58 50 43 65 52 

 
(27) 

69 53 69 87 82 

 
(28) 

75 38 68 81 61 

 
(29) 

68 31 69 65 54 

 

a Same conditions as in Table 3.  
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Figure 19. Graphical representation of the efficiency of various Ni catalysts for coupling reactions of 

secondary alkyl iodides. 

 

Four-coordinate complexes 24 and 27-29 were much more efficient catalysts. Alkyl 

halides were readily activated (Table 6), and modest to high yields were obtained for the 

coupling of all substrates. For all but one coupling reaction, complex 24 was the least 

efficient among these four catalysts, giving coupling yields of about 20% lower than the best 

yields for cyclic substrates. Table 7 showed that more elimination products were produced 

using 24 as pre-catalyst. The exception is the coupling of 2-pentyl iodide for which it gave 

the second highest yield (50%). For the coupling of isopropyl and cyclopentyl iodide, 

complexes 27-29 were similarly efficient, having yields of about 70%. However, for coupling 

of 3-pentyl, cycloheptyl, and cyclooctyl iodide, the performance of 27-29 was noticeably 

different. Complex 27, with the least bulky ligand 7, was clearly the best catalyst. It gave 

yields of 53%, 87%, and 82% for these substrates. The efficiency dropped with 28, and 

lowered furthermore with 29.  
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Table 6. Distribution of unreacted starting material for Kumada coupling of secondary alkyl iodides.a 
 

 
     

 
(1) 

62 67 47 80 89 

 
(26) 

14 67 22 52 64 

 
(24) 

- 21 - - 7 

 
(27) 

- 13 - - - 

 
(28) 

- 27 - - - 

 
(29) 

- 10 - - - 

 
a Same conditions as in Table 3.  
 

Table 7. Distribution of major side products for Kumada coupling of secondary alkyl iodides.a 

 

 
     

 
(1) 

- - - - - 
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Table 7. (Continued) 

 
     

 
(26) 

Octyl-Octyl 
(7%) 

Octene (12%) 

Octyl-Octyl 
(3%) 

Octyene (6%) 

Butyl-Butyl 
(8%) 

Cyclopentyl-
Cyclopentyl 

(9%) 

Butyl-Butyl 
(4%) 

Cycloheptyl
-Cycloheptyl 

(8%) 
Cyclohepete
ne (14%) 

Butyl-Butyl 
(3%) 

Cyclooctyl-
Cyclooctyl 

(5%) 
Cyclooctane 

(7%) 
Cyclooctene 

(12%) 

 
(24) 

Octyl-Octyl 
(9%) 

Octene (17%) 

Octyl-Octyl 
(8%) 

Octyene (4%) 

Butyl-Butyl 
(6%) 

Cyclopentyl-
Cyclopentyl 

(7%) 

Butyl-Butyl 
(9%) 

Cycloheptyl
-Cycloheptyl 

(2%) 
Cyclohepete
ne (36%) 

Butyl-Butyl 
(7%) 

Cyclooctyl-
Cyclooctyl 

(1%) 
Cyclooctane 

(26%) 
Cyclooctene 

(22%) 

 
(27) 

Octyl-Octyl 
(12%) 

 

Octyl-Octyl 
(9%) 

Octyene (8%) 

Butyl-Butyl 
(11%) 

Cyclopentyl-
Cyclopentyl 

(13%) 

Butyl-Butyl 
(5%) 

Cycloheptyl
-Cycloheptyl 

(7%) 
Cyclohepete
ne (1%) 

Butyl-Butyl 
(4%) 

Cyclooctyl-
Cyclooctyl 

(4%) 
Cyclooctane 

(5%) 
Cyclooctene 

(8%) 

 
(28) 

Octyl-Octyl 
(10%) 

 

Octyl-Octyl 
(7%) 

Octyene 
(13%) 

Butyl-Butyl 
(11%) 

Cyclopentyl-
Cyclopentyl 

(13%) 

Butyl-Butyl 
(6%) 

Cycloheptyl
-Cycloheptyl 

(8%) 
Cyclohepete
ne (2%) 

Butyl-Butyl 
(6%) 

Cyclooctyl-
Cyclooctyl 

(7%) 
Cyclooctane 

(9%) 
Cyclooctene 

(14%) 

 
(29) 

Octyl-Octyl 
(13%) 

 

Octyl-Octyl 
(8%) 

Octyene 
(22%) 

Butyl-Butyl 
(12%) 

Cyclopentyl-
Cyclopentyl 

(14%) 

Butyl-Butyl 
(5%) 

Cycloheptyl
-Cycloheptyl 

(10%) 
Cyclohepete
ne (12%) 

Butyl-Butyl 
(6%) 

Cyclooctyl-
Cyclooctyl 

(11%) 
Cyclooctane 

(11%) 
Cyclooctene 

(15%) 
 

a Same conditions as in Table 3. b The elimination product of cyclopentyl iodide, cyclopentene, cannot be detected by 
GC because it comes out together with the solvent. c The elimination product of cycloheptyl iodide, cycloheptene, overlaps 
with cycloheptane in GC measurements. The yields of cycloheptene were approximately by the combined yields of 
cycloheptene and cycloheptane. 
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As complexes 24 and 27 gave a similar coupling yield for 2-pentyl iodide, they were 

further tested for the coupling of acyclic secondary alkyl iodides that are bulkier than 3-

pentyl iodide.  Modest yields of 42 – 65% were obtained (Table 8). Complex 24 was slightly 

more efficient than 27, but the difference in yields was small, ranging from 2 % - 11%.  

 

Table 8. Kumada coupling of bulky acyclic secondary alkyl iodidesa 

 

 

Entry 
 

Yield 
with 24 

(%) 

Yield 
with 27 

(%) 

1 
 

65 54 

2 
 

51 45 

3 
 

46 44 

4 
 

51 42 
 

a Same conditions as in Table 3.  

 

Overall, the results in Tables 5 and 8 indicate that complex 27 is the best catalyst for the 

coupling of cyclic and non-bulky acyclic secondary alkyl iodides, and complex 24 is the best 

catalyst for the coupling of bulky acyclic secondary alkyl iodides. 

The coupling with secondary alkyl Grignard reagents30, 31
 was also attempted (Table 9). A 

very low yield was obtained for coupling of secondary alkyl iodide with a secondary alkyl 

Grignard reagent (entry 1, Table 9). The yields for coupling of primary alkyl iodides with 

secondary alkyl Grignard reagents were modest, and similar efficiencies were obtained for 

complexes 27-29. Unlike pincer complex 1,24
 no significant isomerization products were  

formed using these catalysts. 

 

Table 9. Kumada Coupling of Secondary Alkyl Grignard Reagensa 
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Entry Alkyl-I 
 

Cat. 
Yield 
 (%) 

1 
 

 

29 7 

2 n-C8H17 
 

27 43 

3 n-C8H17 
 

28 51 

4 n-C8H17 
 

29 42 

5 n-C4H9 

 

27 45 

 

a Same conditions as in Table 3.  

 

2.3.3 Probing the origin of the activity and efficiency for catalysts 1, 24, and 27. 

Here we define 'activity' as the reactivity of the catalyst toward alkyl halides, and it is 

correlated to the conversion of alkyl halides. 'Efficiency', on the other hand, is correlated to 

the selectivity and yield of the cross coupling product. A catalyst can be very active yet not 

efficient. 

The coupling of cycloheptyl-I and cycloheptyl-Br was tested. The reaction time was set to 

1 hour (addition of Grignard reagent) + 1 hour (further reaction) at -20 oC. The results are 

shown in Table 10. Catalyst 1 was not an active catalyst, and most of the starting cycloheptyl 

halides remained (entries 1 and 5, Table 10). Catalyst 24 was slightly more active, yet 27 was 

more efficient. For coupling of cycloheptyl-I, a high yield of 74 % was obtained with 27; 

with 24, the yield was 53 %, and the main side product was cycloheptene (entries 2 and 3, 

Table 10). The conversion was more than 90 % in both cases. For coupling of cycloheptyl-Br, 

yields of about 30 % were obtained with both catalysts (entries 6 and 7, Table 10). Catalyst 

24 seems to be more active, giving a higher conversion. Yet more olefin was produced using 

24, and the overall efficiency was similar. When no catalyst was used, most alkyl halides 

remain unreacted, and a small amount of olefins were produced (entries 4 and 8, Table 10). 

Thus, the olefins observed in the coupling reactions using catalysts 24 and 27 should 

originate from metal-mediated β-H elimination.    
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Table 10. Kumada coupling of secondary alkyl halidesa 

 

 

Entry 
X/ 

Catalyst 
Octane Octene 

Cyclo- 
C7H14 

Cyclo- 
heptene 

C7H13I 
or 

C7H13Br 
 

Oct 
-Oct 

C7H13 
- C7H13 

C7H13 
-Oct 

1 I/1 99 0 0 7 76 <1 <1 <1 

2 I/24 8 2 8 36 1 8 1 53 

3 I/27 9 4 7 8 8 5 8 74 

4 I/no > 99 0 0 4 77 0 0 0 

5 Br/1 95 0 0 6 97 <1 0 <1 

6 Br/24 52 3 1 32 31 2 <1 38 

7 Br/27 49 5 1 12 43 2 6 34 

8 Br/no 86 0 0 2 92 0 0 0 
 

a Same conditions as in Table 3.  
 

These results show that for coupling of cyclic secondary alkyl halides, catalyst 1 has little 

activity because alkyl halides could not react during catalysis. On the contrary, alkyl halides 

are activated employing catalysts 24 and 27. Catalyst 24 seems to give the fastest alkyl halide 

activation, yet the catalysis is not very efficient due to β-H elimination which leads to olefinic 

products. The activation of alkyl bromide is slower than that of alkyl iodide. According to 

entry 7, Table 10, coupling of secondary alkyl bromide was fairly selective using 27 as the 

catalyst, although the conversion was low within the chosen reaction time. The coupling 

yields could be increased if a longer reaction time (2 h) was applied. Table 11 shows the 

results for some secondary alkyl bromides. Modest to good yields were obtained.  

 

Table 11. Kumada Coupling of Secondary Alkyl Bromidesa 
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Entry 
 

Alkyl 
Yield 
(%) 

1 

 

n-C8H17 69 

2 
 

n-C8H17 52 

3 
Br

 

n-C4H9 75 

4 

Br

 

n-C4H9 60 

5 
 

n-C8H17 64 
 

a 0.6 mmol (1.2 equiv.) of RMgCl was diluted in THF (3 mL), and then was added dropwise via a syringe pump during 1 
h to a DMA solution containing the nickel catalyst (0.015 mmol, 3 %) and alkyl bromide (0.5 mmol) at -20 oC . After 
addition, the reaction mixture was further stirred for 2 h at -20 oC and then the solution was taken out from the cooling 
system and stirred for 10 min to warm up to room temperature. 

 

We showed earlier that for catalyst 1, coupling of primary alkyl halides was faster than 

secondary alkyl halides.20 To determine whether this preference also holds for catalysts 24 

and 27, competition experiments were conducted using equal amounts of cyclohexyl and 

octyl iodides (eq. 5, Scheme 14 and table 12).    

 

 
 

Scheme 14. Competition experiment for primary and secondary alkyl iodides.  
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Table 12. Competition reaction primary and secondary alkyl iodides.a 

 

Catalyst 
Quenching 

time  

Conversion 
for C8H17I 

(%) 

Conversion 
for 

cyclohexyl-I 
(%) 

Yield for 
C8H17-C4H9 

(%) 

Yield for 
Cyclohexyl-

C4H9 (%) 

24 10 sec. 60 40 38 23 

24 1 min.  62 38 41 23 

24 2 min. 67 40 40 25 

24 5 min.  63 38 40 26 

27 10 sec. 60 44 35 14 

27 1 min.  59 43 36 17 

27 2 min. 64 43 36 20 

27 5 min.  59 38 37 22 
 

a The typical procedure for coupling was used, except that the addition of Grignard reagents was done at once. The 
reactions were conducted in multiple trials, with different quenching times. 

 

According to Scheme 14, with both catalysts 24 and 27, the coupling of octyl iodide was 

faster than cyclohexyl iodide. The difference in reaction rate is modest, as the conversion of 

octyl iodide was more than 2 times higher than cyclohexyl iodide. These results suggest that 

activation of primary alkyl halides is also faster than secondary alkyl halides with the new 

catalysts.  

Catalysts 24 and 27 were further studied for the coupling of primary alkyl halides. 

Unfortunately the yields were modest and generally lower than with catalyst 1. Further 

experiments were conducted to probe the origin of this lowered efficiency for coupling of 

primary alkyl electrophiles. The coupling of 2-phenylethyl-I with octylMgCl was chosen so 

that all expected side products could be easily determined by GC and GC/MS. 1.2 equivalent 

of Grignard reagent was used to ensure a high conversion. The reaction time was 30 minutes. 

Table 13 shows the results.  

 

Table 13. Kumada coupling of primary alkyl iodidesa 
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Entry Catalyst Octene 
Ethyl- 

benzene 
Styrene 

Phenyl- 
ethyl-I 

Phenyl- 
ethyl-Cl 

Oct 
-Oct 

(Phenyl- 
Ethyl)2 

C6H5C2H4 
-Oct 

1 no 0 0 27 3 58 0 0 0 

2 1 7 2 2 0 0 4 7 85 

3 24 5 0 20 0 23 13 16 29 

4 27 12 3 7 0 <1 18 24 41 
 

a  0.6 mmol (1.2 equiv) of octyl-MgCl in THF (2 M) was added dropwise to a DMA (0.75 mL) solution of Ni Cat. (3 
mol%) and the alkyl halide (0.5 mmol) at -20 °C. After addition, the reaction mixture was further stirred for 30 min at -20 oC 
and then the solution was taken out from the cooling system and stirred for 10 min to warm up to room temperature. 

 

When the coupling was conducted without a catalyst, we found that 97 % of β-

phenylethyl-I reacted (entry 1, Table 13). The main product was β-phenylethyl-Cl, possibly 

formed via a I/Cl exchange reaction with octyl-MgCl. Base-mediated elimination was severe, 

and 27 % of styrene was formed. These background reactions needed to be overcome for a 

successful cross coupling. With catalyst 1, the productive cross coupling was rapid and 

efficient, and out-competed the non-catalytic side reactions (entry 2, Table 13). A 85 % 

coupling yield was achieved. With catalyst 24, the cross coupling was not sufficiently rapid, 

and the non-catalytic side reactions were significant (entry 3, Table 13). The I/Cl exchange 

reaction was only partially attenuated, giving β-phenylethyl-Cl in a 23 % yield. Base-

mediated elimination was also severe, and 20 % of styrene was formed. In addition, homo-

coupling was noticeable. The yield of cross coupling was a low 29 %. With catalyst 27, the 

cross coupling was fast enough to suppress the non-catalytic side reactions (entry 4, Table 

13). However, homo-coupling marred the efficiency of cross coupling (41 %).   

The results in table 13 show that for coupling of primary alkyl iodides, the activity has the 

order of 1 > 27 > 24. Complex 24 was not active enough, and non-catalytic side reactions 

prevailed. Complex 27 was sufficiently active, but its efficiency suffers from significant 

homo-coupling. As a result, neither 24 nor 27 is a good catalyst for the coupling of primary 

alkyl halides. These two catalysts are thus best suited for coupling of secondary alkyl 

electrophiles. Fortunately, complex 1 is an excellent catalyst for the coupling of primary 

substrates. A combination of these three catalysts can cover a wide range of substrates. 

2.4 Radical clock 

Our group reported earlier that activation of alkyl halides using catalyst 1 occurred via a 

radical mechanism. To ascertain that this is the case for catalysis using complex 24 and 27, 
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we carried out coupling reactions using a radical clock, cyclopropylmethyl iodide (eq. 6, 

Scheme 15). Despite that the overall coupling yields for this primary alkyl iodide were again 

modest (vide supra), the distribution of coupling products gave insight into the activation 

process of the substrates. Both ring-closed and ring-opened products were observed with both 

catalysts, and the ring-opened products dominated. These results confirmed that the 

activation of primary alkyl halide takes place via an alkyl radical intermediate. The 

recombination of the primary carbon radical with the catalyst has a rate that is slightly lower 

than the ring-opening rearrangement of cyclopropyl-methyl radical, which has a first-order 

rate constant of about 108 s-1.58   

 

 

Scheme 15. Alkyl-alkyl Kumada coupling reactions using radical clocks.  
 

A similar radical clock reaction was carried out with a secondary alkyl halide, 6-iodohept-

1-ene (eq. 7, Scheme 15). Using 24 or 27 as the catalyst, the coupling with CH3MgCl yielded 

the ring-closed product, 1-ethyl-2-methylcyclopentane, in yield of about 30 %. The direct 

coupling product, 6-methylhept-1-ene, was produced in trace. Thus, the recombination of this 

acyclic secondary carbon radical with the catalyst is slower than the ring-closing 

rearrangement of the hept-6-en-2-radical, which has a first-order rate constant of about 105 s-

1.32  
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2.5 Substitution reactions for complexes 24, 25, and 27 

Precatalysts 24, 25, and 27 have tetrahedral, square-pyramidal, and square-planar 

structures, respectively. Unlike the pincer complex 1, the pyridine, PPh3, and lutidine ligands 

in these complexes might be subject to dissociation and ligand substitution during catalysis. 

To probe the stability of these complexes towards external donor ligands, substitution 

reactions were carried out.  

The lutidine ligand in complex 27 could not be substituted by PPh3, and the complex did 

not react with extra lutidine to form a 5-coordinate species (Scheme 16). However, the 

lutidine ligand could exchange with external lutidine. On the contrary, the PPh3 ligand in 24 

was prone to substitution (Scheme 16). It reacted with 2,4-lutidine to form 27 quantitatively. 

It also reacted with pyridine, likely forming a 5-coordinate complex like 25, according to 

NMR. It either did not undergo exchange reaction with PPh3 or the exchange was too slow to 

be observed by NMR. Complex 25, on the other hand, did not react with PPh3.  

The substitution reactions showed that pyridine and lutidine ligands bind more strongly 

than PPh3 for the Ni-bidentate ligand system. Because ligand substitution can occur either via 

associate or dissociate mechanism, the formation of 3-coordinate species from 24 and 27 in 

the substitution and exchanges reactions could not be definitely confirmed.  

 

N

N
Me2

Cl

N
Ni

2, 4-lutidine

PPh3

exchange

no reaction

N

N
Me2

PPh3

Cl
Ni

PPh3

2, 4-lutidine

pyridine

no reaction

27

24

27

[(HNN)Ni(Cl)(py)2]
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Scheme 16. Ligand substitution reactions of complexes 24, 25, and 27. 
 

2.6 Inhibition study for pre-catalysts 24 and 27 

As shown in Table 14, addition of an excess amount of PPh3 or 2,4-lutidine decreased both 

the conversions and the coupling yields for precatalyst 24 and 27. The more PPh3 or 2,4-

lutidine added, the lower the conversions and yields (compare entries 2 and 3, and 6 and 7, 

Table 14). These results suggest that PPh3 and 2,4-lutidine ligands in 24 and 27 dissociate 

from the Ni centers to form species with lower coordination numbers during catalysis. 

Addition of PPh3 or 2,4-lutidine decreases the concentrations of these species, and thus 

diminishes the efficiency of catalysis. The effect of this addition should be similar to that of 

decreasing the loading of the catalysts. Indeed, a lower loading of catalysts led to lower 

conversions and yields (entries 4 and 8, Table 14). 

 

Table 14. Inhibition study for catalysis by 24 and 27a 

 

 
 

Entry Cat. x Additive y Conversion (%) Yield (%) 

1 24 3   100 77 

2 24 3 PPh3 15 96 42 

3 24 3 PPh3 30 60 37 

4 24 0.6   41 12 

5 27 3   100 62 

6 27 3 2,4-lutidine 15 83 36 
 



 
Chapter Two 

62 
 

Table 14. (Continued) 

Entry Cat. x Additive y Conversion (%) Yield (%) 

7 27 3 2,4-lutidine 30 60 18 

8 27 0.6   92 18 
 

a Same conditions as in Table 3, except that the Grignard reagent was added at once.  

 

2.7 Discussion  

2.7.1 Synthesis of Ni complexes 

The earlier reported pincer complex 1 was not very efficient for the coupling of secondary 

alkyl halides. We hypothesized that it was due to the steric encumbrance of the pincer ligand 

2 on a square-planar Ni(II) ion. Ligands 3 and 4 were therefore synthesized in aim to reduce 

the steric hindrance of the ligands. Ligand 5 was synthesized for the same purpose, assuming 

that the alkyl amine donor might be hemilabile. Their synthesis and metallation were 

straightforward, in accordance with the well-known excellent chelating properties of pincer-

type ligands.33 While 3 and 4 could serve as trianionic ligands, they were purposely employed 

as a mono-anionic bis(amino)amide ligand via selective lithiation. The corresponding Ni 

complexes 19, 20 and 21 have structures similar to 1.  Ligand 6 is di-anionic amino-amide 

system. By changing the ligand's electronic and steric properties, the resulting Ni complex 

may bring some new insight into the coupling reactions.  

We thought that in ligands 2-6, the electronic property was dictated by both amino and 

amido donors. Bidentate ligands 7-9 were then prepared as a new class of mixed amine-

amide ligands. Combining them with another mono-dentate ligand could lead to a wider 

control in the steric and electronic properties of ligands, while mimicking the main characters 

of pincer ligands 2. However, it turned out that metallation of bidentate ligands was not 

trivial, and the originally targeted products, square-planar Ni(II) complexes, could only be 

accessed employing NiCl2(2,4-lutidine)2 as the Ni precursor. The use of other Ni salts 

resulted in various Ni complexes with tetrahedral or square pyramidal geometries.  

2.7.2 Alkyl-alkyl Kumada coupling using preformed Ni complexes 

Having many defined and structurally characterized Ni complexes in hand, we carried out 

a structure-activity study for alkyl-alkyl Kumada coupling reactions. As complex 1 was 

efficient for the coupling of primary but not secondary alkyl halides, we focused on the 
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coupling of secondary alkyl iodides. Two representative reactions, coupling of 2-butyl iodide 

with octylMgCl (Table 3, eq 1), and coupling of cyclohexyl iodide with butylMgCl (Table 3, 

eq 2), were used as test reactions for Ni complexes 1, 19-31. Pincer complex 1 and 21 had a 

low efficiency, and 19, 20, 22 and 31 had no efficiency. Most of the substrates remained 

intact after the reactions. Complexes 19 and 20 have protons as substituents on the amino 

donors which might be cleaved upon addition of basic Grignard reagents, leading to 

decomposition of the complexes. This might explain why they were completely inactive. The 

structure of complex 21 is similar to 1, and its skeleton is potentially more flexible and 

hemilabile, however its coupling yield of cylcohexyl iodide is slightly lower than 1. The 

coupling of octyl iodide was also tested, the yield was similar to 1.34 This suggests that the 

alkyl amine side arm remains coordinated during catalysis. Complex 22 contains di-anionic 

ligand with 2,4-lutidine occupying the fourth position. Complex 23 is tetrahedral and has a Ni 

center coordinated by two molecules of bidentate ligand 8. Compound 22 and 23 were not 

catalytically active. We showed earlier that transmetalation of an alkyl group from the 

Grignard reagent to the Ni-halide was a key step in alkyl-alkyl coupling by catalyst 1 

(Scheme 1). The inactivity of 22 and 23 might be attributed to the lack of a site for 

transmetallation. Complexes 24-30 all have such a site and they were indeed active for the 

cross coupling reactions. As shown in Table 3 and Figure 18, they performed better than 

complex 1 in the test reactions. The catalytic efficiency is slightly different between the 

chloride complex 27 and the triflate complex 30, but the origin of the difference is hard to 

clarify. The carbene complex 31 [(HNN)Ni(dmiy)I] was not active even though it had a Ni-I 

bond that was amenable for transmetalation. This was probably due to a significant change in 

the electronic and steric property of the nickel complex resulted from coordination of the 

carbene ligand. Such a complex is no longer active for the alkyl-alkyl Kumada coupling 

reactions of secondary alkyl halides, highlighting the importance of ligand electronic and 

steric properties for these coupling reactions.  

Selected catalysts (1, 24, 26-29) were further tested for the coupling of a wide range of 

secondary alkyl halides (Tables 3, 5, 8 and 11). Analysis of the results shown in Tables 3 and 

5 indicates that coordination number has a noticeable influence on the performance of these 

catalysts. Five-coordinate complexes 25 and 26 were less efficient than four-coordinate 

complexes 24 and 27-29, indicated by lower conversion of the substrates. This could be 

explained considering that even if one pyridine ligand in 25 and 26 dissociates, the resulting 

4-coordinate species are still less active than the 3-coordinate species from 27-29. On the 

other hand, spin-state of the precatalysts has at most a small influence. Paramagnetic catalyst 
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24 is only slightly inferior to the diamagnetic catalysts 27-29 and is significantly more active 

than diamagnetic 1.  

Complexes 27-29 differ only in the substituents on the bidentate ligands. It was then 

possible to examine the electro-steric effects of the ligands using these complexes. The bulk 

of the ligands is in the order of 27 < 28 < 29, but the efficiency of the catalysis follows the 

opposite order, 27 > 28 > 29. Thus, a less bulky ligand is better for the coupling of secondary 

alkyl halides. Considering on the other hand the donor property of ligands, the Ni center in 28 

is more electron rich than in 27 which is more electron rich than in 29. This is not the order of 

catalytic efficiency. Therefore, steric instead of electronic factor dictates the performance of 

catalysts 27-29. The efficiency of the catalysts correlates inversely with the yields of 

elimination products (Tables 7). Assuming that such products arise from metal-mediated 

beta-H elimination, the results suggest that a bulkier ligand favors β-H elimination through 

steric pressure.  

Precatalysts 24 and 27 differ in one ligand (PPh3 versus 2,4-lutidine), coordination 

geometry (tetrahedral versus squareplanar), and spin state (paramagnetic versus diamagnetic). 

Despite these differences, their catalytic efficiencies are similar. The ligand substitution 

reactions, and particularly the inhibition studies, showed that the PPh3 and lutidine ligands 

dissociated from the Ni centers to form the same active catalyst. The small difference in 

catalytic performance is then attributed to the different reaction rates and equilibrium 

constants for ligand dissociation. Also, complex 31 was successfully synthesized through the 

substitution of PPh3 with carbene ligand dmiy from complex 24. However, 31 had no 

efficiency for coupling of secondary alkyl halides and low efficiency for pimary alkyl 

halides.35 It is possible that the carbene ligand bonds to the nickel so well that it cannot 

dissociate from the nickel center to form the active three- coordinate Ni intermediate. And 

compared to the NMe2 arm of 2 (MeN2N), the dimy ligand is bigger. As a result, 31 had no 

efficiency for the coupling of secondary alkyl halides and low efficiency for coupling of 

primary alkyl halides.  

Compared to pincer complex 1, complexes 24 and 27 are less efficient for coupling of 

primary alkyl halides, but much more efficient for coupling of secondary alkyl halides. The 

origin of this contrast in efficiency is probably related to the fact that with complex 1, no 

ligand dissociates from the Ni center; with complexes 24 and 27, the PPh3 and lutidine 

ligands dissociate readily during catalysis.  

For primary alkyl iodides, a main challenge for cross coupling is the noncatalytic side 

reactions such as I/Cl exchange and base-mediated elimination (Table 13). These side 
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reactions are rapid, and to be efficient, a catalyst needs to activate the substrate quickly. The 

4-coordinate catalytically active species from 1 is electron-rich, and has a high activity 

toward primary alkyl halides. For complexes 24 and 27, the in situ generated 3-coordinate 

active species are less electron-rich, and react more slowly with primary alkyl halides. Using 

precatalyst 24, the activation of alkyl halides is not fast enough to compete with noncatalytic 

side reactions. For catalyst 27, the activation of alkyl halides is sufficiently fast, but 

homocoupling is severe and the overall efficiency drops. As the coupling takes place via an 

alkyl radical, the homocoupling products probably originate from bimolecular combination of 

the radicals.  

The situation is different for the coupling of secondary alkyl halides. Activation of 

secondary substrates is slower than for primary substrates due to steric constraints. However, 

noncatalytic side reactions are no longer a problem (Table 10). Furthermore, bimolecular 

combination of secondary alkyl radicals is slow, so homocoupling does not present a 

problem. Likely for steric reason, complex 1 has a very low activity for secondary substrates 

and is therefore not a good catalyst. For complexes 24 and 27, after the PPh3 and 2,4-lutidine 

ligands dissociate, the resulting 3-coordinate species can activate secondary substrates in an 

appreciable rate (albeit slower than with primary substrates). The various Ni alkyl species 

involved in the coupling now suffer more from β-H elimination due to a more open Ni center. 

In these cases, some olefinic products were formed. For precatalyst 24, β-H elimination 

appears to be more facile and a substantial amount of olefin is produced. For this reason, 24 

gives a cross-coupling yield of 50-70% for secondary substrates. Fortunately, a good 

compromise was found in precatalyst 27 so that only a small amount of olefin is produced in 

the coupling reactions. It thus becomes a very good catalyst.  

Dissociation of PPh3 and lutidine from precatalysts 24 and 27 gives the same 3-coordinate 

Ni-Cl species. Yet, the catalytic performance of 24 and 27 is sometimes quite different. This 

difference might be attributed to the different reaction rates and equilibrium constants for 

ligand dissociation. Similar observations have been made in a series of Pd-PEPPSI 

complexes.36 Some of the complexes differ only in the fourth pyridinyl ligand, which is 

shown to dissociate during catalysis. The catalytic performance of these complexes varies.34 

The overall catalytic cycle for reactions catalyzed by 24 and 27 should be similar to the one 

shown in Scheme 1. Transmetalation of a 3-coordinate Ni-halide species produces the 

corresponding Ni alkyl species, which reacts with an alkyl halide to give the coupling 

product. The results from coupling reactions of radical probe type-substrates indicate that the 

activation of alkyl halide occurs via a radical mechanism. 
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2.8 Conclusions 

In summary, we describe here a structure-activity study for Ni-catalyzed alkyl-alkyl 

Kumada coupling. A large number of Ni(II) complexes with tridentate and bidentate mixed  

amino-amide ligands were prepared and structurally characterized. The complexes of the 

bidentate ligands span a wide range of coordination numbers, geometries, and spin states. The 

rich coordination chemistry of Ni with these bidentate ligands points to the difficulty in 

identifying catalytically active species in many Ni catalyzed cross coupling reactions, where 

the catalysts are mixtures of Ni salts and ligands. Such problems can be alleviated by using 

pre-formed and well-defined coordination compounds as catalysts.   

Compared to the previously reported pincer complex, [(MeN2N)NiCl] (1), the newly 

prepared Ni complexes with the bidentate ligands are better catalysts for the coupling of 

secondary alkyl halides, as long as they contain one transmetalation site. Four-coordinate 

compounds are more efficient than five-coordinate compounds. Within the same series of 

compounds, the efficiency of the catalysis improves with a more open Ni center. 

Coordination geometry and spin state seem to have little influence.  

For Kumada coupling of secondary alkyl halides, two excellent catalysts have been 

developed. Tetrahedral complex [(HNN)Ni(PPh3)Cl] (24) is the best catalyst for coupling of 

bulky acyclic secondary alkyl iodides, with yields of 46 – 65 %. Square-planar complex 

[(HNN)Ni(2,4-lutidine)Cl] (27) is the best catalyst for coupling of cyclic and less bulky 

acyclic secondary alkyl iodides and bromides. A wide scope has been achieved using this 

catalyst, with typical yields of 60 - 87 %. The origin of the efficiency was thoroughly probed 

and was related to the steric property of the catalysts.  To the best of our knowledge, these 

two complexes are the most efficient catalysts for alkyl-alkyl Kumada coupling of non-

activated secondary alkyl halides.  

2.9 Experimental section 

2.9.1 Chemicals and Reagents 

All manipulations were carried out under an inert N2(g) atmosphere using standard 

Schlenk or glovebox techniques. Solvents were purified using a two-column solid-state 

purification system (Innovative Technology, NJ, USA) and transferred to the glove box 

without exposure to air. Deuterated solvents were purchased from Cambridge Isotope 

Laboratories, Inc., and were degassed and stored over activated 3 Å molecular sieves. Unless 

otherwise noted, all other reagents and starting materials were purchased from commercial 
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sources and used without further purification. Liquid compounds were degassed by standard 

freeze-pump-thaw procedures prior to use. Ligand MeNN2H and complex [(MeNN2)NiCl] (1) 

were prepared as described previously.22 The following chemicals were prepared according to 

literature procedures: NiCl2(2,4-lutidine)2,
37 NiCl(THF)1.5,

38 NiCl2(PPh3)2,
39 NiCl2(py)4, 

NiCl2(4-picoline)4,
40 3-iodopentane,14  iodocycloheptane,41 6-iodo-1-heptene.42   

2.9.2 Physical methods 

The 1H and 13C NMR spectra were recorded at 293 K on a Bruker Avance 400 

spectrometer. 1H NMR chemical shifts were referenced to residual solvent as determined 

relative to Me4Si (δ = 0 ppm). The 13C{1H} chemical shifts were reported in ppm relative to 

the carbon resonance of CDCl3 (77.0 ppm), C6D6 (128.0 ppm), CD3CN (1.3 ppm) or THF-d8 

(25.3 ppm). GC-MS measurements were conducted on a Perkin-Elmer Clarus 600 GC 

equipped with Clarus 600T MS. GC measurement was conducted on a Perkin-Elmer Clarus 

400 GC with a FID detector. HRESI-MS measurements were conducted at the EPFL ISIC 

Mass Spectrometry Service with a Micro Mass QTOF Ultima spectrometer. Elemental 

analyses were performed on a Carlo Erba EA 1110 CHN instrument at EPFL. The 

temperature of reactions below room temperature was regulated by a Julabo FT-902 chiller. 

X-ray diffraction studies were carried out in the EPFL Crystallographic Facility. Data 

collections were performed at low temperature using four-circle kappa diffractometers 

equipped with CCD detectors. Data were reduced and then corrected for absorption.43 

Solution, refinement and geometrical calculations for all crystal structures were performed by 

SHELXTL.44  

2.9.3 Synthetic methods 

General procedure for preparing substrates  

Triphenylphosphine (1.4 equiv) and imidazole (1.4 equiv) were dissolved in dry 

dichloromethane (200 mL). This solution was cooled with ice-water bath, and iodine (1.4 

equiv) was added per small portions. Then the alcohol was added dropwise to the above 

solution. The mixture was allowed to warm to room temperature, and it was stirred overnight. 

Next, hexane was added, and the solids were removed by passing the mixture through silica 

gel (hexane washing). The solvent was removed on a rotary evaporator, and the residue was 

purified by flash chromatography using hexane as eluant. 
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3-Iodohexane. This compound was prepared according to the general procedure from 3-

hexanol (100 mmol, 10.22 g). The product was obtained as a colorless oil (13.22 g, 62 %). 1H 

NMR (400 MHz, CDCl3): 4.05-4.16 (m, 1H), 1.70-1.95 (m, 3H), 1.49-1.69 (m, 2H), 1.31-

1.48 (m, 1H), 1.02 (t, J = 6.8 Hz, 3H), 0.92 (t, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl3): 

42.4, 42.3, 33.7, 22.8, 14.1, 13.2.45 

                   

 

5-Iodononane. This compound was prepared according to the general procedure from 5-

nonanol (100 mmol, 14.43 g). The product was obtained as a colorless oil (19.11 g, 75 %). 1H 

NMR (400 MHz, CDCl3): 4.05-4.16 (m, 1H), 1.78-1.92 (m, 2H), 1.60-1.72 (m, 2H), 1.42-

1.53 (m, 2H), 1.20-1.42 (m, 6H), 0.90 (t, J = 6.4 Hz, 6H). 13C NMR (100 MHz, CDCl3): 40.4, 

40.3, 31.6, 21.9, 13.9. 

 

 

3-Iodononane. This compound was prepared according to the general procedure from 3-

nonanol (100 mmol, 14.43 g). The product was obtained as a colorless oil (21.76 g, 86 %). 1H 

NMR (400 MHz, CDCl3): 4.02-4.13 (m, 1H), 1.61-1.95 (m, 4H), 1.20-1.55 (m, 8H), 1.01 (t, J 

= 7.2 Hz, 3H), 0.88 (t, J = 7.6 Hz, 3H). 13C NMR (100 MHz, CDCl3): 42.6, 40.3, 33.7, 31.7, 

29.5, 28.5, 22.6, 14.1, 14.0. 

 

 

Iodocyclooctane. This compound was prepared according to the general procedure from 

cyclooctanol (100 mmol, 12.82 g). The product was obtained as colorless oil (17.38 g, 73 %). 
1H NMR (400 MHz, CDCl3): 4.51-4.63 (m, 1H), 2.17-2.31 (m, 4H), 1.40-1.72 (m, 10H). 13C 

NMR (100 MHz, CDCl3): 38.2, 37.9, 27.4, 26.6, 25.1.  

 

 

 



 
 

69 
  

 

(2-iodobutyl)benzene. This compound was prepared according to the general procedure 

from 1-phenyl-2-butanol (20 mmol, 3.00 g). The product was obtained as colorless oil (4.00 

g, 77 %). 1H NMR (400 MHz, CDCl3): 7.22-7.43 (m, 5H), 4.25-4.42 (m, 1H), 3.17-3.42 (m, 

2H), 1.78-1.88 (m, 2H), 1.12 (t, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl3): 139.8, 128.9, 

128.4, 126.7, 47.1, 40.8, 32.5, 14.2. 

 

Synthesis of bis(2-methylaminophenyl)amine (HMeN2NH), 3H: 

     To a mixture of bis(2-aminophenyl)amine 9 (4.98 g, 0.025 mol) and paraformaldehyde 

(7.50 g, 0.246 mol) in MeOH (300 mL) was added a solution of NaOMe (15 mL, 28 wt% in 

MeOH) dropwise at 0 °C. The mixture was stirred under reflux for 1 h. After addition of 

NaBH4 (10.25 g, 0.271 mol), the solution was heated under reflux for 1 h. The reaction 

mixture was cooled to room temperature. To this mixture, 1 M NaOH (100 mL) was added 

followed by extraction with DCM (3 × 200 mL). The combined organic phase was dried over 

Na2SO4 and was filtered. The solvent was removed under vacuum, resulting in a dark liquid 

which was purified by column chromatography (SiO2, hexane:DCM 3:1). Yield: 5.2 g, 73 %. 
1H NMR (400 MHz, CDCl3): 7.04 (t, J = 5.8 Hz, 2H), 6.69-6.74 (m, 6H), 4.86 (br. s, 1H), 

3.75 (br. s, 2H), 2.87 (s, 6H). 13C NMR (100 MHz, CDCl3): 141.8, 130.7, 123.7, 119.7,117.9, 

110.7, 30.8. HR-MS (ESI): calculated for (C14H17N3, M+H), 228.1501; found, 228.1498. 

Anal. Calcd for C14H17N3 : C , 73.98; H, 7.54; N, 18.49. Found: C, 73.76; H, 7.65; N, 18.41. 

 

Synthesis of bis(2-isopropylaminophenyl)amine (HiPrN2NH), 4H: 

     A solution of bis(2-aminophenyl)amine (3.47 g, 17 mmol) was prepared in degassed 

MeOH (90 mL) under an inert atmosphere. Acetone (2.4 mL, 34 mmol) and HCl (2.8 mL, 37 

%) was added. The reaction mixture turned green during the addition of HCl. It was stirred 

for 30 min at room temperature, followed by careful addition of NaBH3CN (4.50 g, 72 

mmol), then the solution turned red. It was stirred for further 12 h at room temperature. The 

solvent was removed and the resulting residue was taken up in dichloromethane (400 mL).  It 

was washed with an aqueous solution of sodium dithionite (2 x 400 mL, 1M), and an aqueous 

solution of sodium bicarbonate (2 x 400 mL, 1M). The aqueous phase was extracted with 

dichloromethane (2 x 300 mL). The combined organic layers were dried over NaSO4 and the 

solvent was removed under vacuum. The brown oil was purified by column chromatography 

on SiO2 (Hexane/EtOAc 3:1). Bis(2-isopropylphenyl)amine was obtained as a yellow oil 
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(2.57 g, 52 %).1H NMR (400 MHz, CDCl3): 7.00 (t, J = 6.8 Hz, 2H), 6.75 (t, J = 8 Hz, 4H), 

6.68 (t, J = 7.6 Hz, 2H), 4.94 (br. s, 1H), 3.66 (sept. J = 6.4 Hz, 2H), 3.56 (br.s, 2H), 1.21 (d, 

J = 6.0 Hz, 12H). 13C NMR (100 MHz, CDCl3): 139.86, 131.39, 123.42, 120.36, 117.77, 

112.56, 44.24, 23.04. HR-MS (ESI): calculated for (C18H25N3, M+H), 284.2127; found, 

284.2135. Anal. Calcd for C18H25N3: C , 76.28; H, 8.89; N, 14.83. Found: C, 76.41; H, 8.99; 

N, 15.02. 

 

Synthesis of 2-(2-(dimethylamino)ethyl)-N,N-dimethylaniline (MeNMeN′NH), 5H: 

A 250 mL reaction vessel was charged with Pd2(dba)3 (1.36 g, 1.49 mmol), 

bis(diphenylphosphino)-ferrocene (DPPF) (1.65 g, 2.97 mmol), NaOtBu (9.84 g, 98 mmol) 

and toluene (100 mL) under a dinitrogen atmosphere. 2-Bromo-N,N-dimethylaniline (14.60 

g, 73 mmol) and 2-(dimethylamino)ethylamine (6.42 g, 73 mmol) were added to the reaction 

mixture. The resulting brown solution was vigorously stirred for 3 days at 100 °C. The 

solution was then cooled to room temperature and filtered through Celite. Removal of the 

solvent yielded a black liquid which was then purified by flash chromatography (silica-gel, 

acetone), and then was distilled under vacuum to afford the product as a light yellow oil. 

Yield: 9.50 g, 68%. 1H NMR (400 MHz, CDCl3): 6.98-7.04 (m, 2H), 6.68 (dt, J = 7.6, 1.2 

Hz, 1H), 6.62 (d, J = 8.0 Hz, 1H), 4.95 (br. s, 1H), 3.21 (q, J = 6.4 Hz, 2H), 2.65 (s, 6H), 2.59 

(t, J = 6.4 Hz, 2H), 2.28 (s, 6H). 13C NMR (100 MHz, CDCl3): 143.1, 140.3, 124.5, 118.8, 

116.3, 109.8, 58.6, 45.5, 43.8, 41.6. HR-MS (ESI): calculated for (C12H21N3, M+H), 

208.1814; found, 208.1810. Anal. Calcd for C12H21N3 : C , 69.52; H, 10.21; N, 20.27. Found: 

C, 69.73; H, 10.21; N, 20.09. 

 

Synthesis of N,N-bis(2-methylaminophenyl)methylamine (HMeN2
MeN), 6HH: 

A THF solution (150 mL) of 3H (9.092 g, 40.0 mmol) was added to KH (1.604 g, 40.0 

mmol) by portion. The reaction mixture was stirred for 2 hours at room temperature. After 

MeI (11.360 g, 80.0 mmol) was added to the above solution and stirred for overnight at room 

temperature. After removal of the solvent, the residue was added 100 mL water, and 

extracted with 100 mL×3 CH2Cl2. Removal of the solvent yielded the crude product which 

was then purified by flash chromatography (silica-gel, hexane/ EtOAc 30:1) to afford the 

product as a white solid. Yield: 8.560 g, 89%. 1H NMR (400 MHz, CDCl3): 7.09 (dt, J = 7.6, 

1.2 Hz, 2H), 7.03 (dd, J = 7.6, 1.2 Hz, 2H), 6.63-6.73 (m, 4H), 4.24 (br. s, 2H), 3.03 (s, 3H), 

2.85 (d, J = 5.2 Hz, 6H). 13C NMR (100 MHz, CDCl3): 143.3, 136.2, 125.2, 121.6, 116.8, 

110.1, 40.6, 30.6. HR-MS (ESI): calculated for (C15H19N3, M+H), 242.1657; found, 
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242.1655. Anal. Calcd for C15H19N3 : C , 74.65; H, 7.94; N, 17.41. Found: C, 75.02; H, 7.82; 

N, 17.51. 

 

Synthesis of N1,N1-dimethyl-N2-phenylbenzene-1,2-diamine (HNNH), 7H: 

A 250 mL reaction vessel was charged with Pd2(dba)3 (1.36 g, 1.49 mmol), 

bis(diphenylphosphino)-ferrocene (DPPF) (1.65 g, 2.97 mmol), NaOtBu (9.84 g, 98 mmol) 

and toluene (100 mL) under a dinitrogen atmosphere. 2-Bromo-N,N-dimethylaniline (14.60 

g, 73 mmol) and aniline (6.80 g, 73 mmol) were added to the reaction mixture. The resulting 

brown solution was vigorously stirred for 2 days at 110 °C. The solution was then cooled to 

room temperature and filtered through Celite. Removal of the solvent yielded a black liquid 

which was then purified by flash chromatography (silica-gel, hexane/ EtOAc 30:1) to afford 

the product as a light yellow oil. Yield: 11.23 g, 72%. 1H NMR (400 MHz, CDCl3): 7.34 (d, J 

= 7.6 Hz, 1H), 7.24 (t, J = 6.6 Hz, 2H), 6.99-7.13 (m, 3H), 6.97 (t, J = 6.8 Hz, 1H), 6.84-6.95 

(m, 2H), 6.57 (br. s, 1H), 2.63 (s, 6H). 13C NMR (100 MHz, CDCl3): 142.8, 142.3, 137.8, 

129.4, 123.9, 120.6, 119.8, 119.4, 118.0, 114.3, 43.9. HR-MS (ESI): calculated for 

(C14H16N2, M+H), 213.1392; found, 213.1396. Anal. Calcd for C14H16N2: C , 79.21; H, 7.60; 

N, 13.20. Found: C, 79.12; H, 8.11; N, 13.55. 

 

Synthesis of N1,N1-dimethyl-N2-(o-tolyl)benzene-1,2-diamine (MeNNH), 8H: 

      It was synthesized in a procedure similar to the one described for (5) except that the o-

toluidine (7.82 g, 73 mmol) instead of aniline was used. Yield 12.50 g, 76%. 1H NMR (400 

MHz, CDCl3): 7.33 (d, J = 7.6 Hz, 1H), 6.98-7.21 (m, 4H), 6.84-6.97 (m, 2H), 6.83 (t, J = 7.2 

Hz, 1H), 6.42 (br. s, 1H), 2.69 (s, 6H), 2.28 (s, 3H). 13C NMR (100 MHz, CDCl3): 142.1, 

141.1, 138.6, 130.8, 128.8, 126.6, 124.0, 121.7, 119.4, 119.3, 118.9, 114.3, 44.0, 17.9. HR-

MS (ESI): calculated for (C15H18N2, M+H), 227.1548; found, 227.1540. Anal. Calcd for 

C15H18N2 : C , 79.61; H, 8.02; N, 12.38. Found: C, 79.72; H, 8.18; N, 12.62. 

 

Synthesis of N1-([1,1'-biphenyl]-2-yl)-N2,N2-dimethylbenzene-1,2-diamine (PhNNH), 9H: 

      It was synthesized in a procedure similar to the one described for (7) except that the 2-

aminobiphenyl (12.35 g, 73 mmol) instead of aniline. Yield 15.86 g, 75%. 1H NMR (400 

MHz, CDCl3): 7.52 (d, J = 8.0 Hz, 1H), 7.28-7.46 (m, 7H), 6.98-7.06 (m, 3H), 6.84 (t, J = 7.2 

Hz, 1H), 6.69 (br.s, 1H), 2.50 (s, 6H). 13C NMR (100 MHz, CDCl3): 142.6, 140.0, 139.3, 

138.2, 132.4, 130.8, 129.2, 128.5, 128.1, 127.2, 124.0, 121.0, 119.7, 119.7, 118.1, 114.3, 
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43.8. HR-MS (ESI): calculated for (C20H20N2, M+H), 289.1705; found, 289.1709. Anal. 

Calcd for C20H20N2 : C , 83.30; H, 8.99; N, 9.71. Found: C, 83.43; H, 7.11; N, 9.11.  

 

Synthesis of Bis(2-nitrophenyl)amine, 10: 

    A solution of 1-fluoro-2-nitrobenzene (10.00 g, 70.9 mmol, 1.0 eq), 2-nitroaniline (9.79 g, 

70.9 mmol, 1.0 eq.) and K2CO3 (11.80 g, 85.1 mmol, 1.2 eq.) was prepared in DMSO (200 

mL). The reaction mixture was stirred at 120 °C for 36 h. H2O was added (100 mL) and the 

mixture was extracted with DCM (3 x 300 mL). The combined organic layer was washed 

with a solution of NaCl (4 x 200 mL, 15 %). Bis(2-nitrophenyl)amine was obtained as an 

orange solid (15.1 g, 82 %). The 1H NMR and 13C NMR data of the product were identical to 

those described in the literature.46 

 

Synthesis of Bis(2-aminophenyl)amine, 11: 

     A solution of bis(2-nitrophenyl)amine, 8 (7.50 g, 28.9 mmol, 1.0 eq.) was prepared in 

EtOAc (80 mL). After catalyst Pd/C (570 mg, 7.6 mol %) was added, the reaction mixture 

was stirred under a hydrogen atmosphere (1 atm) at room temperature for 24 h. The solution 

was filtered under a nitrogen atmosphere and the solvent was removed under vacuum. The 

resulting residue was dissolved in dichloromethane and filtered over Celite under a nitrogen 

atmosphere. The solvent was removed and bis-(2-aminophenyl)amine was obtained as a light 

yellow solid (5.78 g, 99 %). The 1H NMR data of the product were identical to those 

described in the literature.47  

 

Synthesis of HMeN2NLi, 12: 

     A solution of bis(2-methylaminophenyl)amine (0.640 g, 2.82 mmol) was prepared in 

benzene (20 mL) under an inert atmosphere. A solution of nBuLi (1.6 M in hexane, 1.76 mL, 

2.82 mmol) was added carefully. The solution turned green. The reaction mixture was stirred 

for 1 h at room temperature, followed by the removal of the solvent under vacuum. Yields: 

0.468 g, 73 %. 1H NMR (400 MHz, C6D6): 7.38 (d, J = 7.6 Hz, 2H), 7.14 (s, 2H), 7.02 (t, J = 

5.6 Hz, 2H), 6.65-6.70 (m, 4H), 2.03 (s, 6H). The as-prepared sample contains a small 

amount of unidentified impurities that are difficult to remove, but it can be used without 

further purification to make the Ni complex.  
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Synthesis of HiPrN2NLi, 13: 

     A solution of bis(2-isopropylaminophenyl)amine (0.952 g, 3.36 mmol) was prepared in 

toluene (15 mL) under an inert atmosphere. A solution of nBuLi (1.6 M in hexane, 2.20 mL, 

3.52 mmol) was added carefully.  The solution turned green. The reaction mixture was stirred 

for 16 h at room temperature, followed by removal of the solvent under vacuum. Pentane was 

added (15 mL) to dissolve the impurities. The product was filtered and dried under vacuum. 

The lithium salt was obtained as light green solid (0.672 g, 69%). X-ray quality crystals were 

obtained by slow evaporation of a concentrated benzene solution. 1H NMR (400 MHz, C6D6): 

7.32 (d, J = 7.6 Hz, 2H), 7.02 (t, J = 6.8 Hz, 2H), 6.86 (t, J = 7.2 Hz, 2H), 6.65(t, J = 6.8 Hz, 

2H),   2.97-3.17 (m, 2H), 2.24 (br.s, 2H), 0.75 (d, J = 4.8 Hz, 12H). Anal. Calcd for 

C36H48Li2N6: C, 74.72; H, 8.36; N, 14.52. Found: C, 74.45; H, 8.55; N, 14.65. 

 

Synthesis of HNNLi, 14: 

     A solution of 7H (4.246 g, 20.0 mmol) was prepared in benzene (60 mL) under an inert 

atmosphere. A solution of nBuLi (1.6 M in hexane, 13.1 mL, 21.0 mmol) was added 

carefully. The reaction mixture was stirred for 1 h at room temperature, followed by partial 

removal of solvent under vacuum. Pentane was added (15 mL) to precipitate the product. The 

product was filtered and dried under vacuum (3.530 g, 81%). 1H NMR (400 MHz, CD3CN): 

7.16 (d, J = 8 Hz, 1H), 6.75-6.95 (m, 5H), 6.68 (t, J = 6.8 Hz, 1H), 6.12-6.32 (m,  2H), 2.53 

(s, 6H). 13C NMR (100 MHz, CD3CN): 157.9, 153.2, 144.6, 129.6, 126.1, 119.9, 119.1, 114, 

6, 113.3, 112.3, 45.3. Anal. Calcd for C28H30Li2N4: C, 77.05; H, 6.93; N, 12.84. Found: C, 

77.48; H, 7.02; N, 12.40. 

 

Synthesis of MeNNLi, 15: 

     It was synthesized in a procedure similar to the one described for 14 except that the 

following quantities of reagents were used: 8H (4.266g, 18.9 mmol), nBuLi (1.6 M in hexane, 

12.4 mL, 19.8 mmol), benzene (53 mL). Yield: 2.603g (59%). Diffusion of pentane into a 

benzene solution of 13 afforded colourless crystals suitable for X-ray analysis. 1H NMR (400 

MHz, CD3CN): 6.95-7.10 (m, 2H), 6.93 (d, J = 7.2 Hz, 1H ), 6.85 (t, J = 6.8 Hz, 1H), 6.76 (d, 

J = 7.2 Hz, 1H), 6.67 (t, J = 7.2 Hz, 1H), 6.36 (t, J = 6.8 Hz, 1H), 6.17 (t, J = 6.8 Hz, 1H), 

2.60 (s, 6H), 2.12 (s, 3H). 13C NMR (100 MHz, CD3CN): 157.2, 154.4, 143.8, 131.1, 129.2, 

127.0, 126.2, 119.5, 114.8, 114.6, 110.9, 45.2, 19.8. Anal. Calcd for C30H30Li2N4: C, 77.57; 

H, 7.38; N, 12.06. Found: C, 77.55; H, 8.05; N, 12.08.  
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Synthesis of PhNNLi, 16: 

     It was synthesized in a procedure similar to the one described for 14 except that the 

following quantities of reagents were used: 9H (3.071 g, 10.7 mmol), nBuLi (1.6 M in 

hexane, 7.0 mL, 11.2 mmol), benzene (30 mL). Yield: 2.650 g (84%). 1H NMR (400 MHz, 

CD3CN): 7.49 (d, J = 7.2 Hz, 2H), 7.29 (t, J = 7.2 Hz, 2H), 7.05-7.20 (m, 2H), 7.02 (d, J = 

7.2 Hz, 1H), 6.96 (d, J = 8 Hz, 1H), 6.80-6.92 (m, 2H), 6.67 (t, J = 7.2 Hz, 1H), 6.40 (t, J = 

6.8 Hz, 1H), 6.16 (t, J = 6.8 Hz, 1H), 2.41 (s, 6H). 13C NMR (100 MHz, CD3CN): 156.7, 

154.6, 144.8, 144.6, 133.1, 131.7, 130.1, 129.0, 128.8, 126.2, 126.1, 119.4,, 119.0, 115.9, 

114.5, 111.9, 45.1. Anal. Calcd for C40H38Li2N4: C, 81.62; H, 6.51; N, 9.52. Found: C, 82.15; 

H, 6.59; N, 9.03.  

 

Synthesis of [(PhNN)Li(THF)2], 17: 

     A solution of 9H (0.288 g, 1.0 mmol) was prepared in THF (3 mL) under an inert 

atmosphere. A solution of nBuLi (1.6 M in hexane, 0.7 mL, 1.1 mmol) was added carefully. 

The reaction mixture was stirred for 1 h at room temperature, followed by removal of the 

solvent under vacuum. The solid residue was recrystallized from THF/pentane (1:6) at -26 
oC. Yield: 0.250 g, 57 %. Alternatively, dissolution of complex 16 in THF produced the same 

product, as shown by NMR. And Diffusion of pentane into a THF solution of 16 at -26 oC 

afforded colourless crystals of 17 suitable for X-ray analysis. 1H NMR (400 MHz, THF-d8): 

7.56 (d, J = 7.6 Hz, 2H), 7.15 (t, J = 7.6 Hz, 2H), 7.08 (t, J = 9.2 Hz, 2H), 7.01 (t, J = 7.6 Hz, 

1H), 6.91 (d, J = 8 Hz, 1H), 6.78-6.83 (m, 2H), 6.64 (t, J = 7.2 Hz, 1H), 6.40 (t, J = 7.2 Hz, 

1H), 6.09 (t, J = 7.6 Hz, 1H), 2.48 (s, 6H). 13C NMR (100 MHz, THF-d8): 157.6, 155.6, 

145.3, 143.6, 133.4, 131.6, 129.9, 128.4, 128.2, 126.4, 125.5, 121.9, 118.4, 116.5, 115.3, 

111.1, 68.3, 45.3, 26.4. Anal. Calcd for C28H35LiN2O2: C, 76.69; H, 8.04; N, 6.39. Found: C, 

76.79; H, 8.14; N, 6.59. 

 

Synthesis of [(PhNN)MgCl(THF)]2, 18: 

     A 2.0 M solution of EtMgCl in THF (1.0 mL, 2.0 mmol) was added to a solution of 9H 

(0.577g, 2.0 mmol) in THF (10 mL) under stirring. After 1 h, the solvent was evaporated and 

the solid residue was dissolved in a minimum quantity of benzene and filtered. Pentane was 

added to the filtrate and a precipitate was formed. The precipitate was collected, washed with 

pentane, and dried under vacuum (0.597 g, 71%). Diffusion of pentane into a benzene 

solution of 16 afforded colourless crystals suitable for X-ray analysis. 1H NMR (400 MHz, 

C6D6): 7.50-7.70 (m, 4H), 7.20-7.40 (m, 2H), 6.92-7.07 (m, 4H), 6.84 (d, J = 7.2 Hz, 1H), 



 
 

75 
  

6.73 (t, J = 7.6 Hz, 1H), 6.43 (t, J = 7.2 Hz, 1H), 3.61 (br.s, 4H), 2.46 (br.s, 6H), 1.23 (br.s, 

4H). The as-prepared sample contains a small amount of THF that was difficult to remove.  

 

Synthesis of [(HMeN2N)NiCl], 19: 

      nBuLi (2.5 mmol, 1.6 M in hexane) was slowly added to a THF solution (20 mL) of the 

ligand HHMeN2N (0.569 g, 2.5 mmol) at room temperature. The reaction mixture was stirred 

for 1 h, and then this solution was added into a solution of NiCl2(dme) (0.550 g, 2.5 mmol, 

dme = dimethoxyethane) in THF (10 mL). The resulting solution was stirred overnight and 

then evaporated in vacuum. The residue was extracted with CH2Cl2 (20 mL), and then was 

concentrated  to ca. 5 mL. Addition of pentane (20 mL) afforded a green precipitate, which 

was filtered, washed with additional pentane, and dried in vacuo. Yield: 0.630g (70%). 

Diffusion of pentane into a dichloromethane solution of 19 afforded green needle crystals 

suitable for X-ray analysis. 1H NMR (400 MHz, CDCl3): 7.27 (d, J = 8.0 Hz, 1H), 7.01 (t, J = 

7.2 Hz, 1H), 6.96 (d, J = 8.4 Hz, 1H), 6.84-6.90 (m,  2H), 6.77 (d, J = 7.6 Hz, 1H), 6.39-6.50 

(m, 2H), 5.30 (s, 1H), 3.28-3.39 (m, 1H), 3.01-3.13 (m, 1H), 2.76-2.86 (m, 16H). 13C NMR 

(100 MHz, CDCl3): 149.01, 148.66, 140.26, 139.75, 128.35, 127.93, 123.76, 123.34, 115.58, 

115.28, 113.89, 113.42, 42.22, 41.02. Anal. Calcd for C14.5H15Cl2N3Ni : C, 48.26; H, 4.19; N, 

11.64. Found: C, 48.15; H, 4.54; N, 11.53. 

 

Synthesis of [(HiPrN2N)NiCl], 20: 

     A THF solution (10 mL) of 13 (0.132 g, 0.6 mmol) was added to a THF suspension (2 

mL) of NiCl2(dme) (0.174 g, 0.6mmol). The reaction mixture was stirred overnight at room 

temperature. After removal of solvent, the residue was extracted with CH2Cl2 (10 mL), and 

then was concentrated to ca. 5 mL. Addition of pentane (30 mL) afforded a green precipitate, 

which was filtered, washed with additional pentane, and dried in vacuo. Yield: 0.136g (60 

%). Diffusion of pentane into a dichloromethane solution of 20 afforded green needle crystals 

suitable for X-ray analysis. 1H NMR (400 MHz, CDCl3): 7.22 (d, J = 8.4 Hz), 7.14 (d, J = 8 

Hz)] (total 2H), 6.94-6.98 (m, 2H), 6.76 (d, J = 7.2 Hz, 2H), [6.42 (t, J = 6.8 Hz), 6.35 (t, J = 

7.2 Hz)] (total 2H), [3.91 (sept., J = 6.4 Hz), 3.66 (sept., J = 6 Hz)] (total 2H), [3.04 (s), 2.85 

(s)] (total 2H), [1.78 (d, J = 6.4 Hz), 1.73 (d, J = 6.4 Hz)] (total 6H), [1.54 (d, J = 6.4 Hz), 

1.33 (d, J = 6.4 Hz)] (total 6H). 13C NMR (100 MHz, CDCl3):151.63, 150.25, 135.92, 

134.89, 128.15, 127.96, 125.47, 125.42, 114.56, 114.53, 113.94, 112.83, 54.99, 23.18, 22.31, 

19.89. Anal. Calcd for C18H24ClN3Ni: C, 57.41; H, 6.42; N, 11.16. Found: C, 57.18; H, 6.69; 

N, 11.02. 
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Synthesis of [(MeNMeN′N)NiCl], 21: 

      nBuLi (16 mmol, 1.6 M in hexane) was slowly added to a THF solution (150 mL) of the 

ligand HNNNEt (3.317 g, 16 mmol) at room temperature. The reaction mixture was stirred for 

1 h, and then this solution was added into a solution of NiCl2(dme) (3.516 g, 16 mmol, dme = 

dimethoxyethane) in THF (50 mL). The resulting solution was stirred overnight and then 

evaporated in vacuum. The residue was extracted with CH2Cl2 (100 mL), and then was 

concentrated  to ca. 20 mL. Addition of pentane (100 mL) afforded a green precipitate, which 

was filtered, washed with additional pentane, and dried in vacuo. Yield: 2.850 g (59%). 

Diffusion of pentane into a dichloromethane solution of 21 afforded brown crystals suitable 

for X-ray analysis. 1H NMR (400 MHz, CDCl3): 6.86 (dt, J = 7.8, 1.2 Hz, 1H), 6.78 (dd, J = 

8.0, 0.8 Hz, 1H), 6.15-6.25 (m, 2H), 2.80 (s, 6H), 2.62 (t, J = 6.0 Hz, 2H), 2.50 (s, 6H). 2.37 

(t, J = 6.0 Hz, 2H). 13C NMR (100 MHz, CDCl3): 153.6, 144.2, 128.4, 119.3, 111.6, 109.5, 

66.8, 50.6, 49.1, 44.1. Anal. Calcd for C12H20ClN3Ni : C, 47.97; H, 6.71; N, 13.99 Found: C, 

47.93; H, 6.82; N, 14.15. 

 

Synthesis of [(MeN2
MeN)Ni(lut)], 22: 

      nBuLi (32 mmol, 1.6 M in hexane) was slowly added to a THF solution (150 mL) of the 

ligand MeNNHMe
2 6HH (3.856 g, 16 mmol) at room temperature. The reaction mixture was 

stirred for 1 h, and then this solution was added into a solution of NiCl2(2,4-lutidine)2 (5.502 

g, 16 mmol) in THF (50 mL). The resulting solution was stirred overnight and then 

evaporated in vacuum. The residue was extracted with benzene (100 mL), and then was 

concentrated  to ca. 20 mL. Addition of pentane (100 mL) afforded a green precipitate, which 

was filtered, washed with additional pentane, and dried in vacuo. Yield: 5.810 g (90%). 

Diffusion of pentane into a benzene solution of 22 afforded brown crystals suitable for X-ray 

analysis. 1H NMR (400 MHz, C6D6): 8.36 (br. s, 1H), 7.48 (dd, J = 8.0, 1.2 Hz, 2H), 7.23-

7.32 (m, 2H), 6.49 (d, J = 8.0 Hz, 2H), 6.43 (dt, J = 7.6, 0.8 Hz, 2H), 6.21 (s, 1H), 6.11 (d, J 

= 5.2 Hz, 1H), 3.62 (br. s, 3H), 3.59 (s, 3H), 1.69 (s, 6H), 1.59 (s, 3H). 13C NMR (100 MHz, 

C6D6): 160.5, 159.6, 150.7, 148.7, 141.0, 129.1, 125.9, 122.9, 121.6, 110.3, 109.5, 53.5, 33.1, 

25.5, 20.2. Anal. Calcd for C22H26N4Ni : C, 65.22; H, 6.47; N, 13.83. Found: C, 65.54; H, 

6.43; N, 13.66. 

 

Synthesis of [(MeNN)2Ni], 23: 

     A THF solution (5 mL) of 13 (0.0879 g, 0.38 mmol) was added to a THF suspension (2 

mL) of NiCl2 (0.025 g, 0.19 mmol). The reaction mixture was stirred overnight at room 
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temperature. After removal of solvent, the residue was extracted with benzene (10 mL). The 

solvent was evaporated to give a purple solid which was washed with pentane and dried in 

vacuo. Yield: 0.039 g (40 %).  1H NMR (400 MHz, C6D6): 34.44, 34.19, 26.44, 24.64, 10.40, 

-16.54, -23.36, -34.81, -37.82. X-ray quality crystals were obtained by slow evaporation of a 

concentrated acetonitrile solution. Anal. Calcd for C30H34N4Ni: C, 70.75; H, 6.73; N, 11.00. 

Found: C, 69.80; H, 6.54; N, 10.76. 

 

Synthesis of [(HNN)Ni(Cl)(PPh3)], 24: 

     A THF solution (20 mL) of 14 (0.460 g, 2.1 mmol) was added to a THF suspension (10 

mL) of NiCl2(PPh3)2 (1.253 g, 1.9 mmol). The reaction mixture was stirred overnight at room 

temperature. After removal of the solvent, the residue was extracted with CH2Cl2 (20 mL), 

and then was concentrated  to ca. 5 mL. Addition of pentane (30 mL) afforded the desired 

product, which was filtered, washed with additional pentane, and dried in vacuo. Yield: 0.882 

g (81 %). Diffusion of pentane into a benzene solution of 24 afforded violet crystals suitable 

for X-ray analysis. 1H NMR (400 MHz, C6D6): 41.76, 33.83, 18.02, 15.27, -1.82, -4.39, -

46.66, -51.66, -54.70. Anal. Calcd for C32H30ClN2PNi: C, 67.70; H, 5.33; N, 4.93. Found: C, 

67.71; H, 5.63; N, 4.70. 

 

Synthesis of [(PhNN)Ni(Cl)(Py)2], 25: 

     A THF solution (30 mL) of 16 (1.470 g, 5.0 mmol) was added to a THF suspension (20 

mL) of NiCl2(Py)4 (2.230 g, 5.0 mmol). The reaction mixture was stirred overnight at room 

temperature. After removal of solvent, the residue was washed with pentane and dried under 

vacuum, 20 mL CH2Cl2 was added to dissolve the solid. Addition of pentane (40 mL) led to a 

white precipitate. The solution was filtered through Celite, concentrated to ca. 5 mL. 

Additional of pentane (30 mL) afforded the desired product, which was filtered, washed with 

additional pentane, and dried in vacuo. Yield: 1.530 g (57 %). Diffusion of pentane into a 

toluene solution of 25 afforded purple crystals suitable for X-ray analysis. 1H NMR (400 

MHz, C6D6): 34.06, 22.22, 21.04, 19.36, 18.93, 13.78, 5.98, 4.39, 4.24, -10.52, -13.76, -

14.97. Anal. Calcd for C30H29ClN4Ni: C, 66.76; H, 5.42; N, 10.38. Found: C, 66.50; H, 5.49; 

N, 10.32. 

 

Synthesis of  [(PhNN)Ni(Cl)(4-Picoline)2], 26: 

     It was synthesized in a procedure similar to the one described for 25 except that the 

following quantities of reagents were used: 16 (1.470 g, 5.0 mmol), NiCl2(4-Picoline)4 
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(2.510g, 5.0 mmol). Yield: 1.210 g (43 %). Diffusion of pentane into a toluene solution of 26 

afforded brown crystals suitable for X-ray analysis. 1H NMR (400 MHz, C6D6): 32.64, 21.98, 

21.05, 18.99, 10.38, 7.94, 6.80, 4.38, 4.24, -6.95, -10.00, -13.85, -14.30, -22.01. Anal. Calcd 

for C32H33ClN4Ni: C, 67.69; H, 5.86; N, 9.87. Found: C, 67.18; H, 5.82; N, 9.69. 

 

Synthesis of  [(HNN)Ni(2,4-lutidine)Cl], 27:  

     A THF solution (50 mL) of 14 (1.669 g, 7.7 mmol) was added to a THF suspension (25 

mL) of NiCl2(2,4-lutidine)2 (2.614 g, 7.6 mmol). The reaction mixture was stirred overnight 

at room temperature. After removal of solvent, the residue was extracted with benzene (40 

mL), and then was concentrated to ca. 20 mL. Addition of pentane (60 mL) afforded the 

desired product, which was filtered, washed with additional pentane, and dried in vacuo. 

Yield: 2.503 g (80 %). Diffusion of pentane into a dichloromethane solution of 27 afforded 

brown crystals suitable for X-ray analysis. 1H NMR (400 MHz, CDCl3): 9.98 (br. s, 1H), 7.44 

(t, J = 6.4 Hz, 2H), 7.34 (br. s, 1H), 7.14 (d, J = 8 Hz, 1H), 7.04 (t, J = 7.2 Hz, 1H), 6.87 (br. 

s, 1H), 6.21 (d, J = 7.2 Hz, 2H), 6.13 (br. s, 6H), 5.96 (t, J = 6.8 Hz, 1H), 5.41 (t, J = 6.4 Hz, 

1H), 4.95 (d, J = 8 Hz, 1H), 3.92 (br. s, 3H), 1.97 (br. s, 3H). Anal. Calcd for C21H24ClN3Ni: 

C, 61.13; H, 5.86; N, 10.18. Found: C, 61.30; H, 6.09; N, 9.88. 

 

Synthesis of  [(MeNN)Ni(2,4-lutidine)Cl], 28: 

     It was synthesized in a procedure similar to the one described for 27 except that the 

following quantities of reagents were used: 15 (0.978 g, 4.2 mmol), NiCl2(2,4-lutidine)2 

(1.437 g, 4.2 mmol). Yield: 1.120 g62 %. Diffusion of pentane into a dichloromethane 

solution of 28 afforded brown crystals suitable for X-ray analysis. 1H NMR (400 MHz, 

C6D6): 8.66 (br. s, 1H), 6.98 (br. s, 1H), 6.78 (br. s, 1H), 6.63 (br. s, 3H), 6.40 (br. s, 1H), 

6.08 (br. s, 1H), 6.00 (br. s, 1H), 5.77 (br. s, 2H), 3.90 (br. s, 3H), 3.32 (br. s, 6H), 2.67 (br. s, 

3H), 1.32 (br. s, 3H). Anal. Calcd for C22H26ClN3Ni: C, 61.94; H, 6.14; N, 9.85. Found: C, 

62.28; H, 6.47; N, 9.79. 

 

Synthesis of  [(PhNN)Ni(2,4-lutidine)Cl], 29: 

     It was synthesized in a procedure similar to the one described for 27 except that the 

following quantities of reagents were used: 16 (2.251 g, 7.6 mmol), NiCl2(2,4-lutidine)2 

(2.614 g, 7.6 mmol). Yield: 3.120 g, 84%. Diffusion of pentane into a dichloromethane 

solution of 29 afforded brown crystals suitable for X-ray analysis. 1H NMR (400 MHz, 

C6D6): 8.38 (br. s, 1H), 7.61 (br. s, 2H), 7.23 (br. s, 3H), 7.09 (br. s, 2H), 6.94 (br. s, 1H), 
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6.84 (br. s, 1H), 6.64 (br. s, 2H), 6.11 (br. s, 1H), 6.02 (br. s, 2H), 5.80 (br. s, 1H), 3.59 (br. s, 

3H), 3.36 (br. s, 6H), 1.35 (br. s, 3H). Anal. Calcd for C27H28ClN3Ni: C, 66.36; H, 5.78; N, 

8.60. Found: C, 65.91; H, 5.92; N, 8.45 
 

Synthesis of  [(HNN)Ni(2,4-lutidine)(OTf)], 30:  

     A trimethylsilyl triflate (0.445 g, 2.0 mmol) was added to a toluene (40 mL) solution of 24 

(0.825 g, 2.0 mmol).The reaction mixture was stirred overnight at room temperature. After 

removal of solvent, the residue was extracted with Et2O (40 mL), and then the solution was 

evaporated to form the solid, washed with additional pentane, and dried in vacuo afforded the 

desired product. Yield: 0.860 g (82%). Diffusion of pentane into a toluene solution of 30 

afforded brown crystals suitable for X-ray analysis. 1H NMR (400 MHz, C6D6): 8.83 (s, 1H), 

6.65-6.72 (m, 3H), 6.55-6.62 (m, 3H), 6.42-6.49 (m, 1H), 5.89-6.11 (m, 4H), 3.87 (s, 3H), 

2.93 (s, 6H), 1.31 (s, 3H). Anal. Calcd for C22H24F3N3NiO3S: C, 50.22; H, 4.60; N, 7.49. 

Found: C, 50.43; H, 4.67; N, 7.86. 

 

Synthesis of  [(HNN)Ni(dmiy)I], 31:  

     A THF solution (30 mL) containing 24 (1.135 g, 2.0 mmol), 1,3-dimethylimidazolium 

iodide (0.448 g, 2.0 mmol) and LiOtBu (0.160 g, 2.0 mmol) was stirred for 5 hours at room 

temperature. After removal of solvent, the residue was extracted with benzene (40 mL), and 

then was concentrated to ca. 5 mL. Addition of pentane (60 mL) afforded the desired product, 

which was filtered, washed with additional pentane, and dried in vacuo. Yield: 0.428 g (43 

%). Diffusion of pentane into a toluene solution of 31 afforded green crystals suitable for X-

ray analysis. 1H NMR (400 MHz, CDCl3): 6.97-7.05 (m, 3H), 6.76-6.88 (m, 3H), 6.51-6.70 

(m, 1H), 6.40 (s, 2H), 6.24-6.30 (m, 1H), 5.98 (dd, J = 8.0, 1.2 Hz, 1H), 4.21 (s, 6H), 3.23 (s, 

6H). 13C NMR (100 MHz, CDCl3): 161.4, 156.5, 153.6, 140.2, 128.6, 128.1, 127.8, 122.6, 

122.3, 120.4, 113.4, 111.4, 51.6, 37.9. Anal. Calcd for C19H23IN4Ni: C, 46.29; H, 4.70; N, 

11.36. Found: C, 46.26; H, 4.59; N, 11.27. 

2.9.4 Crystallographic Details 

(1) Complex 13 (ov-kim1) 

A total of 21893 reflections (-10 < h < 11, -11 < k < 11, -23 < l < 23) were collected at T = 

140(2) K in the range of 3.41 to 25.00o of which 5614 were unique (Rint = 0.0998); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 



 
Chapter Two 

80 
 

positions. The residual peak and hole electron densities were 0.837 and –0.368 eA-3, 

respectively. The absorption coefficient was 0.068 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0862, wR(F2) = 0.1509 and a GOF = 1.112 

(I>2σ(I)). C36H48Li2N6, Mw = 578.68, space group P-1, Triclinic, a = 9.425(10), b = 

9.633(7), c = 19.58(2) Å, α = 101.90(7) °, β = 98.01(7) °, γ = 103.41(6) °, V = 1660(3) Å3, Z 

= 2, ρcalcd = 1.158 Mg/m3.  

  

(2) Complex 15 (rp300452) 

A total of 16461 reflections (-13 < h < 13, -13 < k < 12, -24 < l < 24) were collected at T = 

140(2) K in the range of 2.91 to 25.03o of which 4565 were unique (Rint = 0.0846); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.173 and –0.168 eA-3, 

respectively. The absorption coefficient was 0.069 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0440, wR(F2) = 0.0728 and a GOF = 0.843 

(I>2σ(I)). C30H34Li2N4, Mw = 464.49, space group P21/c, Monoclinic, a = 11.6380(14), b = 

10.9616(13), c = 20.954(3) Å, β = 102.795(13) °, V = 2606.7(5) Å3, Z = 4, ρcalcd = 1.184 

Mg/m3.  

 

(3) Complex 17 (rp300551) 

A total of 11731 reflections (-11 < h < 11, -9 < k < 11, -25 < l < 25) were collected at T = 

140(2) K in the range of 2.81 to 25.02o of which 4211 were unique (Rint = 0.0548); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.248 and –0.172 eA-3, 

respectively. The absorption coefficient was 0.072 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0548, wR(F2) = 0.0957 and a GOF = 0.944 

(I>2σ(I)). C28H35LiN2O2, Mw = 438.52, space group P31, Trigonal, a = 9.9517(6), b = 

9.9517(6), c = 21.757(2) Å, V = 1866.0(2) Å3, Z = 3, ρcalcd = 1.171 Mg/m3.  

 

(4) Complex 18  (rp400091) 

A total of 6947 reflections (-13 < h < 13, -16 < k < 16, -16 < l < 16) were collected at T = 

140(2) K in the range of 2.36 to 24.45o of which 3599 were unique (Rint = 0.0474); MoKα 
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radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.199 and –0.256 eA-3, 

respectively. The absorption coefficient was 0.219 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0693, wR(F2) = 0.1559 and a GOF = 1.136 

(I>2σ(I)). C48H54Cl2Mg2N4O2, Mw = 838.47, space group P21/n, Monoclinic, a = 11.674(2), 

b = 14.028(3), c = 14.417(3) Å, β = 110.70(3) °, V = 2208.5(8) Å3, Z = 2, ρcalcd = 1.261 

Mg/m3.  

 

(5) Complex 19 (rp500152) 

A total of 7061 reflections (-12 < h < 12, -16 < k < 14, -10 < l < 19) were collected at T = 

140(2) K in the range of 3.06 to 27.50o of which 7061 were unique (Rint = 0.0000); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 3.048 and –2.234 eA-3, 

respectively. The absorption coefficient was 1.595 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0724, wR(F2) = 0.2213 and a GOF = 1.103 

(I>2σ(I)). C14.5H17Cl2N3Ni (including 0.5 CH2Cl2), Mw = 362.92, space group P-1, Triclinic, 

a = 9.9490(8), b = 12.5384(19), c = 14.8903(16) Å, α = 113.657(10) °, β = 110.70(3) °, γ = 

111.582(8) °, V = 1545.7(3) Å3, Z = 4, ρcalcd = 1.559 Mg/m3.  

 

(6) Complex 20 (rp500011) 

A total of 5251 reflections (-29 < h < 29, -10 < k < 10, -17 < l < 17) were collected at T = 

140(2) K in the range of 2.46 to 24.39o of which 2763 were unique (Rint = 0.0478); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.360 and –0.396 eA-3, 

respectively. The absorption coefficient was 1.244 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0520, wR(F2) = 0.1098 and a GOF = 1.120 

(I>2σ(I)). C18H24ClN3Ni, Mw = 376.56, space group C2/c, Monoclinic, a = 25.079(5), b = 

8.7830(18), c = 16.494(3) Å, β = 101.76(3) °, V = 3556.9(12) Å3, Z = 8, ρcalcd = 1.406 Mg/m3.  
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(6) Complex 21 (rp700491) 

A total of 28546 reflections (-19 < h < 18, -9 < k < 11, -21 < l < 20) were collected at T = 

100(2) K in the range of 3.13 to 24.99o of which 4626 were unique (Rint = 0.0771); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.393 and –0.378 eA-3, 

respectively. The absorption coefficient was 1596 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0370, wR(F2) = 0.0624 and a GOF = 1.093 

(I>2σ(I)). C10H20ClN3Ni, Mw = 300.47, space group Pca21, Orthorhombic, a = 16.1973(14), 

b = 9.2551(7), c = 18.251(2) Å, V = 2736.0(4) Å3, Z = 8, ρcalcd = 1.459 Mg/m3.  

 

(6) Complex 22 (rp700466) 

A total of 33427 reflections (-10 < h < 10, -18 < k < 18, -18 < l < 17) were collected at T = 

100(2) K in the range of 3.13 to 25.00o of which 3515 were unique (Rint = 0.1201); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.980 and –0.505 eA-3, 

respectively. The absorption coefficient was 0.980 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0603, wR(F2) = 0.1062 and a GOF = 1.128 

(I>2σ(I)). C22H26N4Ni, Mw = 405.18, space group P21/n, Monoclinic, a = 8.4828(9), b = 

15.428(5), c = 15.348(4) Å, β = 91.847(17) °, V = 2007.6(8) Å3, Z = 4, ρcalcd = 1.341 Mg/m3.  

P2(1)/n 

(7) Complex 23 (rp300461) 

A total of 18331 reflections (-30 < h < 30, -15 < k < 15, -10 < l < 11) were collected at T = 

140(2) K in the range of 2.87 to 26.72o of which 4901 were unique (Rint = 0.0951); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.650 and –0.458 eA-3, 

respectively. The absorption coefficient was 0.782 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0486, wR(F2) = 0.0815 and a GOF = 0.906 

(I>2σ(I)). C30H34N4Ni, Mw = 509.32, space group Pna21, Orthorhombic, a = 24.052(3), b = 

12.1888(18), c = 8.7468(12) Å, V = 2564.2(6) Å3, Z = 4, ρcalcd = 1.319 Mg/m3.  
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(8) Complex 24 (rp500073) 

A total of 13288 reflections (-18 < h < 18, -14 < k < 14, -26 < l < 26) were collected at T = 

140(2) K in the range of 2.13 to 27.67o of which 7094 were unique (Rint = 0.0518); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.623 and –0.663 eA-3, 

respectively. The absorption coefficient was 0.755 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0542, wR(F2) = 0.1226 and a GOF = 0.995 

(I>2σ(I)). C38H36ClN2NiP, Mw = 645.82, space group P21/n, Monoclinic, a = 14.755(3), b = 

10.848(2), c = 20.482(4) Å, β = 95.92(3) °, V = 3260.9(11) Å3, Z = 4, ρcalcd = 1.315 Mg/m3.  

 

(9) Complex 25 (rp500091) 

A total of 6164 reflections (-11 < h < 11, -14 < k < 14, -33 < l < 33) were collected at T = 

140(2) K in the range of 2.72 to 27.48o of which 6164 were unique (Rint = 0.0000); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.525 and –0.770 eA-3, 

respectively. The absorption coefficient was 0.842 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0423, wR(F2) = 0.1040, and a GOF = 1.112 

(I>2σ(I)). C30H29ClN4Ni, Mw = 539.73, space group P212121, Orthorhombic, a = 9.2090(18), 

b = 11.415(2), c = 25.719(5) Å, V = 2703.6(9) Å3, Z = 4, ρcalcd = 1.326 Mg/m3.  

 

(10) Complex 26 (rp400696) 

A total of 51271 reflections (-14 < h < 14, -17 < k < 17, -25 < l < 25) were collected at T = 

140(2) K in the range of 3.05 to 27.50o of which 6842 were unique (Rint = 0.0542); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.235 and –0.256 eA-3, 

respectively. The absorption coefficient was 0.764 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0306, wR(F2) = 0.0568 and a GOF = 1.091 

(I>2σ(I)). C32H33ClN4Ni, Mw = 567.78, space group P212121, Orthorhombic, a = 11.3515(5), 

b = 13.3682(12), c = 19.724(2) Å, V = 2993.2(4) Å3, Z = 4, ρcalcd = 1.260 Mg/m3.  
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(11) Complex 27 (rp400172) 

A total of 6939 reflections (-10 < h < 10, -16 < k < 16, -22 < l < 22) were collected at T = 

140(2) K in the range of 3.05 to 26.37o of which 3943 were unique (Rint = 0.0417); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.552 and –0.752 eA-3, 

respectively. The absorption coefficient was 1.104 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0735, wR(F2) = 0.1793 and a GOF = 1.143 

(I>2σ(I)). C21H24ClN3Ni, Mw = 412.59, space group P21/n, Monoclinic, a = 8.6520(17), b = 

13.343(3), c = 17.759(4) Å, β = 100.48(3) °, V = 2016.0(7) Å3, Z = 4, ρcalcd = 1.359 Mg/m3. 

  

(12) Complex 28 (rp400242) 

A total of 32840 reflections (-13 < h < 13, -32 < k < 32, -16 < l < 16) were collected at T = 

140(2) K in the range of 3.03 to 25.03o of which 7321 were unique (Rint = 0.0834); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.842 and –0.753 eA-3, 

respectively. The absorption coefficient was 1.056 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0655, wR(F2) = 0.1600 and a GOF = 1.170 

(I>2σ(I)). C22H26ClN3Ni, Mw = 426.62, space group P21/n, Monoclinic, a = 11.049(3), b = 

27.593(3), c = 13.867(3) Å, β = 92.802(15) °, V = 4222.6(15) Å3, Z = 8, ρcalcd = 1.342 Mg/m3.  

 

 

(13) Complex 29 (rp400173) 

A total of 77139 reflections (-19 < h < 19, -20 < k < 20, -25 < l < 25) were collected at T = 

140(2) K in the range of 3.05 to 27.50o of which 5545 were unique (Rint = 0.0955); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.791 and –0.528 eA-3, 

respectively. The absorption coefficient was 0.931 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0502, wR(F2) = 0.0906 and a GOF = 1.236 

(I>2σ(I)). C27H28ClN3Ni, Mw = 488.68, space group Pbca, Orthorhombic, a = 15.2003(16), b 

= 16.024(3), c = 19.873(4) Å, V = 4840.4(13) Å3, Z = 8, ρcalcd = 1.341 Mg/m3.  
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(14) Complex 30 (rp600366) 

A total of 22872 reflections (-15 < h < 15, -27 < k < 27, -27 < l < 27) were collected at T = 

140(2) K in the range of 2.17 to 27.67o of which 11825 were unique (Rint = 0.0714); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.618 and –0.573 eA-3, 

respectively. The absorption coefficient was 0.853 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0645, wR(F2) = 0.1454 and a GOF = 0.987 

(I>2σ(I)). C25.50H28F3N3NiO3S, Mw = 572.28, space group P21/n, Monoclinic, a = 12.306(4), 

b = 21.035(4), c = 21.091(6) Å, β = 100.604(17) °, V = 5366(3) Å3, Z = 8, ρcalcd = 1.417 

Mg/m3.  

 

(15) Complex 31 (rp600571) 

A total of 18022 reflections (-14 < h < 14, -14 < k < 14, -28 < l < 28) were collected at T = 

140(2) K in the range of 2.24 to 27.48o of which 10800 were unique (Rint = 0.0376); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 1.171 and –1.754 eA-3, 

respectively. The absorption coefficient was 1.946 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0496, wR(F2) = 0.1496 and a GOF = 1.154 

(I>2σ(I)). C26H31IN4Ni, Mw = 585.16, space group P-1, Triclinic, a = 10.892(2), b = 

11.176(2), c = 22.147(4) Å, α = 100.07(3) °, β = 98.76(3) °, γ = 94.04(3) °, V = 2610.3(9) Å3, 

Z = 4, ρcalcd = 1.489 Mg/m3.  

2.9.5 Typical procedure for the alkyl-alkyl Kumada coupling 

 

0.5 mmol (1 equiv.) of RMgCl was diluted in THF (3 mL), and then was added dropwise 

via a syringe pump during 1 h to a DMA solution containing the nickel catalyst (0.015 mmol, 

3 %) and alkyl iodide (0.5 mmol) at -20 oC . After addition, the reaction mixture was further 

stirred for 1 h at -20 oC and then the solution was taken out from the cooling system and 

stirred for 1h to warm up to room temperature. A mixture of distilled water (15 mL), 

hydrochloric acid (25%, 1 mL), and dodecane (internal standard, 60 μL, 0.265 mmol) or 
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decane (internal standard, 60 μL, 0.310 mmol ) was added to the reaction mixture. The 

resulting solution was extracted with diethyl ether (3 × 10 mL) and the organic phase was 

separated, dried over MgSO4, and filtered. The organic products were identified by GC-MS, 

and the yields were determined by GC with decane or dodecane as the internal standard.  

2.9.6 Coupling of radical clocks 

The cross coupling reaction in eq. 6 was carried out following the protocol described in 

Table 11. The reaction in eq. 7 was carried out following the protocol described in Table 3. 

The products were identified by GC, GC-MS and NMR for eq. 6, and GC and GC-MS for eq. 

7. The yields were determined by GC relative to the organic halides. The 1H NMR of the 

ring-opened48 and ring-closed49 products of eq. 6 were identical to those reported in the 

literatures. The MS spectra of the ring-opened and ring-closed products of eq. 7 were 

identical to those reported in the MS database of the instrument (see 2.11 GC-MS spectra of 

products). For the ring-closed products, both cis- and trans-isomers were produced, and the 

yields are referred to the overall yields of both isomers.  
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2.11 GC-MS spectra of products 

Dodecane internal standard Rt =12.30 min. Butylcyclohexane Rt = 9.84 min. 
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Dodecane internal standard Rt =12.27 min. Butylcycloheptane, Rt =12.01 min. 
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Dodecane internal standard Rt =12.22 min. Octylcycloheptane Rt = 17.75 min. 
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Dodecane internal standard Rt =12.22 min. Butylcyclooctane Rt = 13.85 min. 
 
 

,  16-Sep-2010 + 16:08:50

7.01 9.01 11.01 13.01 15.01 17.01 19.01 21.01 23.01
Time0

100

%

rp500122 Scan EI+ 
TIC

2.16e9
13.85

12.25

6.70

7.62 8.00 21.12

 
 
 

,  16-Sep-2010 + 16:08:50

43 63 83 103 123 143 163
m/z0

100

%

rp500122 1001 (13.844) Scan EI+ 
4.54e869

55

41

39

38

43

54

44

56

67

65

111

70
83

81
71 9784

95
110

99

112

125113 140 168

 
 
 
 

 
 
 
 
 
 
 

 



 
 

93 
  

Dodecane internal standard Rt =12.22 min. Decylbenzene Rt = 18.75 min. 
 

 
 

,  30-Nov-2010 + 15:01:27
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Dodecane internal standard Rt =12.29 min. (2-ethyldecyl)benzene Rt = 20.07 min. 
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Dodecane internal standard Rt =12.32 min. 3-Ethylundecane Rt = 13.30 min. 
 
 

,  02-Aug-2010 + 14:30:29
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Dodecane internal standard Rt =12.24 min. 4-Ethyldodecane Rt = 14.38 min. 
 
 
 

,  06-Sep-2010 + 10:28:15
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Dodecane internal standard Rt =12.31 min. 7-Ethylpentadecane Rt = 18.04 min. 
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Dodecane internal standard Rt =12.29 min. 5-Butyltridecane Rt = 17.68 min. 
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Dodecane internal standard Rt =12.12 min. 1-ethyl-2-methylcyclopentane Rt = 5.52 and 
6.04 min (cis and trans). 
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,  14-Dec-2010 + 15:21:26
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Decane internal standard Rt =8.94 min. Dodec-1-ene Rt = 12.05 min, nonylcyclopropane 

Rt = 12.64 min.   
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3.1 Introduction 

Efficient alkyl-alkyl cross-coupling reactions have historically been difficult to achieve, 

due to the reluctance of alkyl electrophiles to undergo oxidative addition, and due to the 

propensity of metal alkyl intermediates for β-H elimination.1-7 Recent work shows that these 

problems can be circumvented by judicious choices of catalysts, ligands, and conditions.8-27 

The previous chapter demonstrated how secondary alkyl halides could couple with primary 

Grignard reagents in high yields using nickel catalysts. However, the complementary process, 

that is, the coupling of non-activated alkyl electrophiles with secondary and tertiary alkyl 

nucleophiles, is still challenging. This is due to the difficulty in transmetallation from 

sterically encumbered nucleophiles, and because isomerization of metal alkyl species is 

generally facile and will lead to undesired products.28-37 As a result, these potentially valuable 

coupling reactions have not been systematically investigated and only sporadic examples 

have been reported.10-13, 38-42 In this context, the work of Cahiez et al. and Kambe et al. on 

copper catalysis deserves special attention.12, 13, 38, 39 They showed that non-activated alkyl 

halides could be coupled to secondary and tertiary alkyl Grignard reagents in high yields in 

the presence of a copper salt, with or without a diene or alkyne ligand. These studies provide 

important proofs of concept. However, only simple alkyl halides such as octyl and decyl 

halides were used as the substrates. The synthetic utility of these reactions was not fully 

demonstrated, given the high reactivity of alkyl Grignard reagents towards functional groups. 

Following our group’s earlier work in functional group-tolerant Kumada coupling of non-

activated alkyl halides,26,43,44 we decided to study the copper-catalyzed coupling reactions 

using functionalized alkyl electrophiles as the coupling partners. In this chapter, I describe a 

copper-based method that is efficient for the coupling of secondary and tertiary Grignard 

reagents with alkyl halides and tosylates containing important and sensitive functional groups.  

The high activity, broad scope, and high functional group tolerance of the copper catalysis 

showcase its value in preparative and synthetically useful reactions.    

3.2 Optimization of the reaction conditions for coupling of 5-bromopentyl 
acetate with tBuMgCl 

The coupling of 5-bromopentyl acetate with tBuMgCl (1.0 M in THF) was used as the test 

reaction (Table 1). Without a catalyst, no coupling product was formed. In the presence of a 

simple copper salt such as CuCl, the coupling proceeded smoothly at room temperature. The 

yields were over 90% for reactions in THF, toluene, or ether, but lower for reactions in DMF 
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or NMP. A loading of 0.5 mol% was sufficient to give a yield of 94%. The coupling reaction 

could be catalyzed by a soluble Cu(I) complex such as [Cu(PPh3)Cl]4, or 

[Cu(Phen)(PPh3)2]NO3 in a similar yield. CuCl2 and CuCl2•2H2O were also suitable pre-

catalysts. It appears that Cu-catalyzed cross-coupling of 5-bromopentyl acetate with tBuMgCl 

is highly efficient under very simple conditions such as a small loading of CuCl, room 

temperature, in THF, and with no additives. 

 

Table 1. Entries for the optimization of conditions for the coupling of 5-bromopentyl acetate with 
tBuMgCl. 

 

Entry Cat. (loading) Solvent T[oC] Yield (%)a 

1 
 

CuCl (3 mol%) 
 

THF r.t. 94 

 
2 
 

CuCl (3 mol%) THF -20 39 

 
3 
 

CuCl (3 mol%) THF -60 29 

 
4 
 

 
CuCl (1 mol%) THF r.t. 

 
95b 

 
5 
 

 
CuCl (0.5 mol%) THF r.t. 

 
94b 

 
6 
 

 
No cat. THF r.t. 

 
Trace 

 
7 
 

 
CuCl2 (3 mol%) THF r.t. 

 
89 

 
8 
 

 
Cu(PPh3)Cl (3 mol%) THF r.t. 

 
97 

 
9 
 

[Cu(Phen)(PPh3)2]NO3 
(3 mol%) 

THF r.t. 90 

 
10 
 

Cu(CH3CN)4PF6 (3 mol%) THF r.t. 11 
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Table 1. (Continued) 

Entry Cat. (loading) Solvent T[oC] Yield (%)a 

 
11 
 

 
CuCl2•2H2O (3 mol%) THF r.t. 

 
90 

12 CuCl (3 mol%) Et2O r.t. 
 

93 
 

 
13 
 

CuCl (3 mol%) DMF r.t. 60 

 
14 
 

CuCl (3 mol%) Toluene r.t. 94 

 
15 
 

CuCl (3 mol%) Pentane r.t. 88 

 
16 
 

CuCl (3 mol%) Dioxane r.t. Trace 

 
17 
 

CuCl (3 mol%) DMA r.t. 43 

 
18 
 

CuCl (3 mol%) NMP r.t. 38 

 

a GC yields. b Reaction performed on scale 10 times larger than given in the general reaction condition.  

3.3 Scope of Kumada-Corriu-Tamao coupling of functionalized alkyl 
halides with alkyl Grignard reagents 

Having demonstrated that the copper catalysis could be applied for the coupling of a 

functionalized alkyl halide with a tertiary alkyl Grignard reagent, we decided to explore the 

scope of this catalysis. For the convenience of experimental manipulation, the reactions were 

carried out in THF, at room temperature, and with 3 mol % CuCl as catalyst. As shown in 

Table 2, a large number of functionalized alkyl electrophiles could be coupled to secondary 

and tertiary alkyl Grignard reagents in high isolated yields. The coupling was generally 

completed within 1 h.    
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Table 2. Scope of Cu-catalyzed alkyl-alkyl coupling.a 

 

 
 

Entry Alkyl-X Product Yieldb 

(%) 

1 
  

82 

2 

  

77 

3 
 

 

75 

4 
 

 

73 

5   
76c 

6   
91c 

7 
  

81 

8 
 

S

 

82 

9 
  

90 

10 
 

 

80 
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Table 2. (Continued) 

Entry Alkyl-X Product Yieldb 

(%) 

11 
  

82 

12  
 

75 

13 
  

86 

14 

  

82 

15 

  

84 

16 
 

 
84 

17 
  

83 

18 
  

87 

19 
  

74 

20 
  

75d 

21  

 

93 

22 
 

 

85 
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Table 2. (Continued) 

Entry Alkyl-X Product Yieldb 

(%) 

23 
  

76 

24 
  

94 

25   90 

26 
  

93 

27 
  

78 

 

a See experimental part. b Isolated yield. c 2.2 equiv. of Grignard reagent was used. d 4 equiv. of NMP was used as 

additive.  

 

Ester and amide groups were readily tolerated (entries 1-4, Table 2). A substrate 

containing a carboxylic acid group was successfully coupled when more than 2 equiv. of a 

Grignard reagent was applied (entry 5, Table 2). Presumably the first equivalent of the 

Grignard reagent deprotonated the carboxylic acid group to form a carboxylate group, which 

however did not interfere with the cross coupling. Likewise, a substrate containing an alcohol 

group was coupled in a high yield under similar conditions (entry 6, Table 2). As expected, 

the more robust ether and thioether groups were tolerated (entries 7-10, Table 2). Nitrile-

containing substrates were coupled as well (entries 11 and 12, Table 2). Acetal group was 

also tolerated, which could lead to useful aldehyde-containing compounds after deprotection 

(entry 13, Table 2). Gratifyingly, substrates containing important heterocyclic groups such as 

indole, furan, piperidine, thiophene, and pyridine groups were coupled in high yields (entries 

14-19, Table 2). The coupling of ketone-containing substrates was more challenging. Under 

the standard conditions, the yields were about 30-50% (entries 1 and 2, Table 3). Decreasing 

the Grignard or increasing the catalyst loading was not helpful.  However, it was found that 

NMP (NMP = N-methylpyrrolidone) promoted the coupling of ketone-containing substrates. 

For example, with 4 equiv. of NMP as additive, the yield of a substrate containing an 

aliphatic ketone moiety was increased to 75% (entry 20, Table 1).  
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Table 3. Coupling of ketone-containing substrate. 

 

Entry Cat. (loading) Conditions 
Yield 
(%)a 

 
1 
 

 
CuCl (5 mol%) 

 

 
iPrMgCl 1.2 equiv., r.t., THF 

 
42 

 
2 
 

 
CuCl (5 mol%) 

 

 
tBuMgCl 1.2 equiv., r.t., THF 

 
51 

 
3 
 

 
CuCl (5 mol%) 

 
tBuMgCl 1.2 equiv., -20 ℃, THF 

 
30 

 
4 
 

 
CuCl (5 mol%) 

 
tBuMgCl 1.2 equiv., r.t., THF,  

4 equiv. NMP 

 
75 

 
5 
 

 
CuCl (10 mol%) 

 
tBuMgCl 1.2 equiv., r.t., THF 

 
71 

 
6 
 

 
CuBrS(CH3)2 (5 mol%) 

 
tBuMgCl 1.2 equiv., r.t., THF 

 
68 

 
7 
 

 
CuCl (5 mol%) 

 
tBuMgCl 1.0 equiv., -20 ℃, THF 

 
30 

 
8 
 

 
CuCl (5 mol%) 

 
tBuMgCl 1.0 equiv., r.t., THF 

 
29 

 
a GC yields. 

 

Importantly, not only alkyl iodides and bromides, but also alkyl tosylates could be coupled 

(entries 18 and 19, Table 2). Because tosylates are often easily prepared from the 

corresponding alcohols, this success significantly increases the synthetic utility of the present 

coupling method. Alkyl-Cl could not be coupled under these conditions. Thus, selective 

coupling of an alkyl bromide in the presence of an alkyl-Cl group was achieved (entry 21, 

Table 2). Likewise, because secondary alkyl halide could not be coupled under these 

conditions, the coupling of primary alkyl bromide is selective in the presence of a secondary 

alkyl-Br moiety (entries 22-23, Table 2). Interestingly, the coupling of alkyl electrophile is 

selective in the presence of an aryl-Br moiety (entry 24, Table 2). This feature can be useful 

for sequential and selective functionalization of alkyl and aryl electrophiles.   
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The nucleophilic coupling partners are not limited to iPrMgCl or tBuMgCl. Various 

acyclic and cyclic Grignard reagents could be used. While the present work focuses on the 

coupling of secondary and tertiary alkyl Grignard regents, the same method could be used for 

the coupling of primary alkyl Grignard regents with high yields (entries 25-27, Table 2). 

The limit of the group tolerance of the coupling method was also probed, which indicated 

that aldehyde, nitro, and succinimide groups were not compatible with this method (Table 4). 

Probably these functional groups were too reactive towards Grignard reagents. 

 

Table 4. Limitations of the coupling method. 

 

 

Entry Alkyl-X Grignard 
Yield 
(%)a 

 
1 
 

 

 

 
iPrMgCl 

 

 
0 

 
2 
 

 

 

 
tBuMgCl 

 

 
0 

3 
  

iPrMgCl 
 

trace 

 
4 
 

 

 
tBuMgCl 

 

 
16 

 
5 
 

 

 

 
tBuMgCl 

 
0 

 
a GC yields. 
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3.4 Attempts at asymmetric catalysis of alkyl-alkyl Kumada-Coriu-Tamao 
coupling 

Since a tertiary or quaternary carbon center is produced by the cross coupling of a primary 

alkyl electrophile with a secondary or tertiary alkyl Grignard reagent, this reaction may 

provide the chance to create a stereogenic center via an asymmetric process. Thus, we 

attempted to develop enantioselective coupling reactions of this type using a chiral copper 

catalyst. Two test reactions were investigated (eq. 1 and 2, Scheme 1). Five chiral ligands 

commonly used for copper catalysis were applied in conjunction with a soluble Cu salt-

Cu(OTf)2. Upon addition of a ligand to a solution of Cu(OTf)2, the color of the solution 

changed instantaneously, indicating the formation of a soluble copper complex. As shown in 

Scheme 1, the yields of the coupling reactions were high regardless of the ligands employed. 

However, none of the five ligands gave rise to an enantiomeric excess, even at -60 oC. It is 

possible that the copper complexes with these ligands cannot differentiate between the two 

substituents of the secondary alkyl Grignard reagents. It is also possible that the active 

catalyst is an organocopper species without the chiral ligand attached. Further work is 

warranted to probe the origin of the non-enantioselectivity, and to eventually develop an 

enantioselective coupling method.   

 

O
O
P N

N N

OH HO

rxn. 1: yield: 82%, e.e.: ~ 0%
rxn. 2: yield: 74%, e.e.: ~ 0%

rxn. 1: yield: 73%, e.e.: ~ 0%
rxn. 2: yield: 67%, e.e.: ~ 0%  
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Scheme 1. Cross coupling reactions employing chiral ligands. Yields were determined by GC. 
 

3.5 Mechanistic investigations 

A few experiments were conducted to probe the mechanism of the coupling reactions. The 

Cu-catalyzed coupling of 1 with tBuMgCl had the same yields in the absence and presence of 

excess (100 equiv.) amount of Hg. This result suggests that homogeneous copper species, 

rather than heterogeneous copper particles, are the active catalysts. The coupling of 

cyclopropyl methyl bromide with tBuMgCl yielded only neopentylcyclopropane, but not 5,5-

dimethylhex-1-ene (eq. 3, Scheme 2). The coupling of 6-bromo-1-hexene with tBuMgCl 

yielded only 7,7-dimethyloct-1-ene, but not neopentylcyclopentane (eq. 4, Scheme 2). These 

results indicate that the activation of alkyl electrophile does not occur via a radical 

mechanism. Given that alkyl tosylates can be coupled in high yields, a SN2 mechanism is 

more likely, which is consistent with the work of Kambe et al. on similar reactions.12 

 

 

 

Scheme 2. Cross coupling reactions using radical probes. Yields were determined by GC.  
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3.6 Conclusions 

In conclusion, we have developed a highly efficient method for the cross coupling of non-

activated and functionalized alkyl halides and tosylates with secondary and tertiary alkyl 

Grignard reagents. The copper-based method is remarkably simple and general. The wide 

scope, and especially the tolerance to a large number of important yet sensitive functional 

groups, makes this method attractive for the preparation of functional molecules.45 

3.7 Experimental section 

3.7.1 Chemicals and Reagents 

All manipulations were carried out under an inert N2(g) atmosphere using standard 

Schlenk or glovebox techniques. Solvents were purified using a two-column solid-state 

purification system (Innovative Technology, NJ, USA) and transferred to the glove box 

without exposure to air. Deuterated solvents were purchased from Cambridge Isotope 

Laboratories, Inc., and were degassed and stored over activated 3 Å molecular sieves. Unless 

otherwise noted, all other reagents and starting materials were purchased from commercial 

sources and used without further purification. Liquid compounds were degassed by standard 

freeze-pump-thaw procedures prior to use. The list of the references and procedures for the 

synthesis of the following starting materials can be found in our group previous 

publications:43,44,46,47 N,N-diethyl-6-bromohexanamide (table 2, entry 2), ethyl 4-

iodobutanoate (table 2, entry 4), (3-bromopropoxy)benzene (table 2, entry 7), 6-iodo-2,2-

diphenylhexanenitrile (table 2, entry 11), (3-bromopropyl)(phenyl)sulfane (table 2, entry 8), 

methyl 1-(3-iodopropyl)-1H-indole-3-carboxylate (table 2, entry 14), 1-(3-iodopropyl)-3-

methyl-1H-indole (table 2, entry 15), 2-(3-iodopropyl)furan (table 2, entry 16), tert-butyl 4-

(iodomethyl)piperidine-1-carboxylate (table 2, entry 17), 1-iodooctan-4-one (table 2, entry 

20), 1-bromo-4-(2-iodoethyl)benzene (table 2, entry 24), 2-(2-

iodoethyl)bicyclo[2.2.1]heptanes (table 2, entry 26). 2-(thiophen-2-yl)ethyl 4-

methylbenzenesulfonate (table 2, entry 18), 2-(pyridin-2-yl)ethyl 4-methylbenzenesulfonate 

(table 2, entry 19), 2-(trifluoromethyl)phenethyl 4-methylbenzenesulfonate (table 2, entry 27) 

were prepared from the corresponding alcohol by standard methods.48,49 Tert-

butylmagnesium chloride (1.0 M solution in THF), isopropylmagnesium chloride (2.0 M 

solution in THF), cyclopentylmagnesium chloride (2.0 M solution in diethyl ether), 

cylcopropylmagnesium bromide (0.5 M solution in THF), cycloheptylmagnesium bromide 

(2.0 M solution in diethyl ether), cylohexylmagnesium chloride (2.0 M solution in diethyl 
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ether), 3-pentylmagnesium bromide (2.0 M solution in diethyl ether), pentylmagnesium 

chloride (2.0 M solution in THF), 4-methoxylphenethylmagnesium chloride (0.5 M solution 

in THF), octylmagnesium chloride (2 M solution in THF) were purchased from Aldrich. (1-

phenylpropan-2yl)magnesium bromide and (1-phenylethyl)magnesium chloride were 

prepared from their corresponding bromide or chloride in THF using general literature 

procedure.50,51 Concentration of Grignard reagents was determined using literature 

procedure.52 

3.7.2 Physical methods 

The 1H and 13C NMR spectra were recorded at 293 K on a Bruker Avance 400 

spectrometer. 1H NMR chemical shifts were referenced to residual solvent as determined 

relative to Me4Si (δ = 0 ppm). The 13C{1H} chemical shifts were reported in ppm relative to 

the carbon resonance of CDCl3 (77.0 ppm), [D6]DMSO (39.5 ppm). GC measurement was 

conducted on a Perkin-Elmer Clarus 400 GC with a FID detector. HRESI-MS measurements 

were conducted at the EPFL ISIC Mass Spectrometry Service with a Micro Mass QTOF 

Ultima spectrometer. APPI-MS experiments were performed on a hybrid linear ion trap 

Fourier transform ion cyclotron resonance mass spectrometer (LTQ FT-ICR MS, Thermo 

Scientific, Bremen, Germany) equipped with a 10 T superconducting magnet (Oxford 

Instruments Nanoscience, Abingdon, UK).  Samples were dissolved at a concentration of 0.1 

mg/mL in toluene and analysed using the atmospheric pressure photoionization (APPI) ion 

source at a flow rate of 10 μL/min. The nebulizer temperature was set to 300 °C.  Mass 

measurements were performed with a resolution of 100’000 at m/z 400, with 50 to 100 scans 

averaging.  Data analysis was carried out using XCalibur software (Thermo Scientific, 

Bremen, Germany). Elemental analyses were performed on a Carlo Erba EA 1110 CHN 

instrument at EPFL. HPLC analyses were carried out on an Agilent 1260 system with 

CHIRALPACK® IB column for 6-metyl-7-phenylheptyl acetate and CHIRALCEL® OB-H 

column for ethyl 5-phenylhexanoate in hexane/isopropanol mixtures. 

3.7.3 General procedures for the entries reported in Table 1, 3, 4 

A 1.0 M solution of tert-butylmagnesium chloride (commercially available, 0.6 mL, 0.6 

mmol) was added to a 1.5 mL of THF solution containing CuCl (1.5 mg, 0.015 mmol) and 5-

bromopentyl acetate (83 μL, 0.5 mmol) (slow addition is not necessary and the Grignard 

reagent could be added at once). The reaction mixture was stirred at room temperature for 1 

h. It was quenched by the addition of 10 mL of saturated NH4Cl aqueous solution. The 
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organic phase in the resulting solution mixture was extracted with ether (3 times, 10 mL 

each), dried over Na2SO4, filtered, and subject to GC analysis. 60 μL of dodecane was used 

as an internal standard.  

3.7.4 General procedures for the entries reported in Table 2 

A  solution of alkyl Grignard reagent (1.8 mmol) was added to a 4.5 mL of THF solution 

containing CuCl (4.5 mg, 0.045 mmol) and alkyl halide (1.5 mmol) (slow addition is not 

necessary and the Grignard reagent could be added at once). The reaction mixture was stirred 

at room temperature for 1 h. It was quenched by the addition of 20 mL of saturated NH4Cl 

aqueous solution. The organic phase in the resulting solution mixture was extracted with ether 

(3 times, 20 mL each), dried over Na2SO4, filtered, and finally evaporated under a reduced 

pressure. The residue was purified by flash chromatography (silica-gel) to afford the product. 

For the new compounds, their 1H and 13C data were reported together with high resolution 

mass spectrometric data and/or elemental analysis.  

3.7.5 General procedures for cross coupling reactions employing chiral ligands in 
scheme 1 

Cu(OTf)2 (0.015 mmol) and chiral ligand (0.030 mmol) were stirred in THF (1.5 ml) at 

room temperature for 20 min. Then, 5-bromopentyl acetate (83 μL, 0.5 mmol) was added and  

the resulting solution was cooled to -60 oC. (1-phenylpropan-2yl)magnesium bromide (0.6 

mmol) was added, and the solution was stirred for 1h under -60 oC.  The reaction was 

quenched by the addition of 10 mL of saturated NH4Cl aqueous solution. The organic phase 

in the resulting solution mixture was extracted with ether (3 times, 10 mL each), dried over 

Na2SO4, filtered. The yield was determined by GC, 60 μL of dodecane was used as an 

internal standard. The e.e. value was determined by HPLC with chiral column. Similar 

procedure was used for the reaction shown in scheme 1, equation 2 except the condition 

details shown in the equation. 

3.7.6 Hg-test experiment 

The reaction condition was the same as 3.7.3 except 100 equiv. Hg relative to CuCl was 

added in the beginning of the reaction.  

3.7.7 Radical probe experiments 

The cross coupling reactions in scheme 2 were carried out following the protocol 

described in part 3.7.3. The products were identified by GC, GC-MS and NMR. Particularly 
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the protons on the double bond of the product or starting materials are easy to identify by 

NMR.  

3.7.8 Detailed descriptions for products 

 

 
6,6-dimethylheptyl acetate (table 2, entry 1):  
Eluated from the column with hexane-diethyl ether (10:1) in 82% yield as a colorless liquid.  
1H NMR (400 MHz, CDCl3): 4.05 (t, J = 6.4 Hz, 2H), 2.04 (s, 3H), 1.65-1.56 (m, 2H), 1.38-
1.20 (m, 4H), 1.20-1.12 (m, 2H), 0.86 (s, 9H). 
13C NMR (100 MHz, CDCl3): 170.9, 64.5, 44.0, 30.1, 29.3, 28.6, 26.8, 24.1, 20.8. 
HRESI-MS: calculated for (C11H23O2, M+H), 187.1698; found, 187.1704. 
 

 
N,N-diethyl-7-methyloctanamide (table 2, entry 2):  
Eluated from the column with hexane-diethyl ether (1:1) in 77% yield as a colorless liquid.  
1H NMR (400 MHz, CDCl3): 3.28 (q, J = 7.2 Hz, 2H), 3.22 (q, J = 7.2 Hz, 2H), 2.19 (t, J = 
7.6 Hz, 2H), 1.59-1.52 (m, 2H), 1.48-1.36 (m, 1H), 1.26-1.17 (m, 4H), 1.10-1.06 (m, 5H), 
1.01 (t, J = 7.2 Hz, 3H), 0.77 (d, J = 6.8 Hz, 6H).  
13C NMR (100 MHz, CDCl3): 172.0, 41.7, 39.8, 38.6, 32.9, 29.6, 27.7, 27.0, 25.3, 22.4, 14.2, 
12.9. 
HRESI-MS: calculated for (C13H28NO, M+H), 214.2171; found, 214.2170. 
 

 
6-metyl-7-phenylheptyl acetate (table 2, entry 3):  
Eluated from the column with hexane-diethyl ether (1:1) in 77% yield as a colorless liquid.  
1H NMR (400 MHz, CDCl3): 7.33-7.28 (m, 2H), 7.26-7.17 (m, 3H), 4.09 (t, J = 6.8 Hz, 2H), 
2.71-2.64 (m, 1H), 2.45-2.35 (m, 1H), 2.08 (s, 3H), 1.83-1.70 (m, 1H), 1.70-1.62 (m, 2H), 
1.51-1.29 (m, 5H), 1.28-1.15 (m, 1H), 0.89 (d, J = 6.4 Hz, 3H).  
13C NMR (100 MHz, CDCl3): 171.1, 141.1, 129.1, 128.0, 125.5, 64.5, 43.6, 36.4, 34.9, 28.5, 
26.7, 26.1, 20.9, 19.3. 
HRESI-MS: calculated for (C16H25O2, M+H), 249.1855; found, 249.1852. 
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Ethyl 5-phenylhexanoate (table 2, entry 4):53 

Eluated from the column with hexane-diethyl ether (100:0 to 10:1) in 73% yield as a 
colorless liquid.  
1H NMR (400 MHz, CDCl3): 7.34-7.28 (m, 2H), 7.21-7.17 (m, 3H), 4.11 (q, J = 7.2 Hz, 2H), 
2.78-2.65 (m, 1H), 2.27 (t, J = 6.8 Hz, 2H), 1.67-1.44 (m, 4H), 1.27-1.21 (m, 6H).  
13C NMR (100 MHz, CDCl3): 173.6, 147.1, 128.3, 126.9, 125.9, 60.1, 39.7, 37.7, 34.3, 23.1, 
22.2, 14.2.  
HRESI-MS: calculated for (C14H21O2, M+H), 221.1542; found, 221.1552. 
Elemental analysis: Anal. Calcd for C14H20O2: C, 76.33; H, 9.15. Found: C, 76.69; H, 9.37. 
 

 
7,7-dimethyloctanoic acid (table 2, entry 5):  
Queched with 30 ml H2O and 1 ml 25% HCl instead of saturated NH4Cl solution. Eluated 
from the column with hexane-diethyl ether (2:1) containing 1% HOAc in 76% yield as a 
colorless liquid.  
1H NMR (400 MHz, [D6]DMSO): 11.99 (br.s, 1H), 2.18 (t, J = 7.2 Hz, 2H), 1.56-1.45 (m, 
2H), 1.30-1.05 (m, 6H), 0.85 (s, 9H). 
13C NMR (100 MHz, [D6]DMSO): 174.5. 43.6, 33.7, 30.1, 29.6, 29.3, 24.6, 23.8. 
HRESI-MS: calculated for (C10H19O2, M-H), 171.1385; found, 171.1377. 
 

 
7,7-dimethyloctan-1-ol (table 2, entry 6):  
Eluated from the column with hexane-diethyl ether (3:1) in 91% yield as a colorless liquid.  
1H NMR (400 MHz, CDCl3): 3.64 (t, J = 6.4 Hz, 2H), 1.61-1.48 (m, 2H), 1.38-1.13 (m, 9H), 
0.86 (s, 9H). 
13C NMR (100 MHz, CDCl3): 63.1, 44.2, 32.8, 30.3, 30.3, 29.4, 25.8, 24.5. 
Elemental analysis: Anal. Calcd for C10H22O: C, 75.88; H, 14.01. Found: C, 75.54; H, 13.73. 
 

 
((4,4-dimethylpentyl)oxy)benzene (table 2, entry 7):  
Eluated from the column with hexane-diethyl ether (60:1) in 81% yield as a colorless liquid.  
1H NMR (400 MHz, CDCl3): 7.34-7.26 (m, 2H), 6.98-6.90 (m, 3H), 3.95 (t, J = 6.8 Hz, 2H), 
1.86-1.72 (m, 2H), 1.41-1.28 (m, 2H), 0.95 (s, 9H).  
13C NMR (100 MHz, CDCl3): 159.1, 129.4, 120.4, 114.5, 68.7, 40.1, 30.2, 29.3, 24.7. 
HRESI-MS: calculated for (C13H21O, M+H), 193.1592; found, 193.1600. 
Elemental analysis: Anal. Calcd for C13H20O: C, 81.20; H, 10.48. Found: C,80.97; H, 10.48. 
 

 
((4,4-dimethylpentyl)sulfanyl)benzene (table 2, entry 8):  
Eluated from the column with hexane in 82% yield as a colorless liquid.  
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1H NMR (400 MHz, CDCl3): 7.44-7.31 (m, 4H), 7.21 (t, J = 6.8 Hz, 1H), 2.95 (t, J = 7.2 Hz, 
2H), 1.72-1.59 (m, 2H), 1.40-1.33 (m, 2H), 0.93 (s, 9H).  
13C NMR (100 MHz, CDCl3): 137.0, 128.7, 128.7, 125.5, 43.3, 34.4, 30.3, 29.3, 24.4. 
HRESI-MS: calculated for (C13H21S, M+H), 209.1364; found, 209.1365. 
Elemental analysis: Anal. Calcd for C13H21S: C, 74.94; H, 9.67. Found: C, 74.56; H, 9.45. 
 

O

 
(((4,4-dimethylpentyl)oxyl)methyl)benzene (table 2, entry 9):  
Eluated from the column with hexane-diethyl ether (50:1) in 90% yield as a colorless liquid.  
1H NMR (400 MHz, CDCl3): 7.38-7.35 (m, 4H), 7.35-7.27 (m, 1H), 4.53 (s, 2H), 3.48 (t, J = 
6.4 Hz, 2H), 1.68-1.59 (m, 2H), 1.28-1.24 (m, 2H), 0.92 (s, 9H). 
13C NMR (100 MHz, CDCl3): 138.6, 128.3, 127.6, 127.4, 72.8, 71.4, 40.2, 30.1, 29.3, 25.0. 
HRESI-MS: calculated for (C14H23O, M+H), 207.1749; found, 207.1747. 
Elemental analysis: Anal. Calcd for C13H20S: C, 81.50; H, 10.75. Found: C, 81.40; H, 10.85. 
 

 
1-(2-cyclopentylethyl)-4-methoxylbenzene (table 2, entry 10):  
Eluated from the column with hexane-diethyl ether (40:1 to 10:1) in 80% yield as a colorless 
liquid.  
1H NMR (400 MHz, CDCl3): 7.19 (d, J = 7.6 Hz, 2H), 6.92 (d, J = 8.0 Hz, 2H), 3.86 (s, 3H), 
2.66 (t, J = 7.6 Hz, 2H), 1.88-1.80 (m, 3H), 1.80-1.54 (m, 6H), 1.31-1.22 (m, 2H).  
13C NMR (100 MHz, CDCl3): 157.5, 135.0, 129.1, 113.5, 55.1, 39.5, 38.4, 34.1, 32.6, 25.2. 
HRESI-MS: calculated for (C14H21O, M+H), 205.1592; found, 205.1596. 
Elemental analysis: Anal. Calcd for C13H20S: C, 81.50; H, 10.75. Found: C, 81.40; H, 10.85. 
 

 
7-methyl-2,2-diphenyloctanenitrile (table 2, entry 11):  
Eluated from the column with hexane-diethyl ether (10:1) in 82% yield as a colorless liquid.  
1H NMR (400 MHz, CDCl3): 7.48-7.20 (m, 10H), 2.39-2.28 (m, 2H), 1.56-1.23 (m, 5H), 
1.20-1.06 (m, 2H), 0.84 (d, J = 6.4 Hz, 6H). 
13C NMR (100 MHz, CDCl3): 140.3, 128.8, 127.7, 126.8, 122.5, 51.8, 39.7, 38.5, 27.8, 27.2, 
25.8, 22.5. 
HRESI-MS: calculated for (C21H26N, M+H), 292.2065; found, 292.2060. 
 

 
7,7-dimethyloctanenitrile (table 2, entry 12):  
Eluated from the column with hexane-diethyl ether (10:1) in 75% yield as a colorless liquid.  
1H NMR (400 MHz, CDCl3): 2.32 (t, J = 7.2 Hz, 2H), 1.69-1.62 (m, 2H), 1.44-1.35 (m, 2H), 
1.32-1.20 (m, 2H), 1.20-1.14 (m, 2H), 0.85 (s, 9H). 
13C NMR (100 MHz, CDCl3): 119.8, 43.8, 30.2, 29.5, 29.3, 25.3, 23.7, 17.1. 
HRESI-MS: calculated for (C10H20N, M+H), 154.1596; found, 154.1591. 
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2-(3,3-dimethylbutyl)-1,3-dioxane (table 2, entry 13):  
Eluated from the column with pentane-diethyl ether (10:1) in 86% yield as a colorless liquid.  
1H NMR (400 MHz, CDCl3): 4.47 (t, J = 5.2 Hz, 1H), 4.14-4.07 (m, 2H), 3.80-3.72 (m, 2H), 
2.15-2.00 (m, 1H), 1.62-1.52 (m, 2H), 1.36-1.28 (m, 1H), 1.28-1.24 (m, 2H), 0.87 (s, 9H).  
13C NMR (100 MHz, CDCl3): 103.1, 66.9, 37.8, 30.6, 29.8, 29.2, 25.8. 
HRESI-MS: calculated for (C10H21O2, M+H), 173.1542; found, 173.1546. 
 

 
Methyl 1-(3-cyclopropylpropyl)-1H-indole-3-carboxylate (table 2, entry 14):  
Eluated from the column with hexane-diethyl ether (9:2) in 82% yield as a colorless liquid.  
1H NMR (400 MHz, CDCl3): 8.24-8.20 (m, 1H), 7.83 (s, 1H), 7.38-7.31 (m, 1H), 7.31-7.27 
(m, 2H), 4.12 (t, J = 7.2 Hz, 2H), 3.93 (s, 3H), 2.02-1.92 (m, 2H), 1.29-1.20 (m, 2H), 0.72-
0.61 (m, 1H), 0.50-0.41 (m, 2H), 0.07-0.00 (m, 2H). 
 13C NMR (100 MHz, CDCl3): 165.3, 136.3, 134.0, 126.5, 122.4, 121.6, 121.5, 109.9, 106.6, 
50.8, 46.5, 31.6, 29.7, 10.2, 4.3. 
HRESI-MS: calculated for (C16H20NO2, M+H), 258.1494; found, 258.1497. 
 

 
1-(3-cycloheptylpropyl)-3-metyl-1H-indole (table 2, entry 15):  
Eluated from the column with hexane in 84% yield as a colorless liquid.  
1H NMR (400 MHz, CDCl3): 7.65 (d, J = 7.6 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.36-7.26 (m, 
1H), 7.19-7.16 (m, 1H), 6.93 (s, 1H), 4.10 (t, J = 7.2 Hz, 2H), 2.43 (s, 3H), 1.98-1.82 (m, 
2H), 1.82-1.45 (m, 11H), 1.40-1.19 (m, 4H). 
 13C NMR (100 MHz, CDCl3): 136.3, 128.7, 125.5, 121.2, 119.0, 118.4, 110.0, 109.2, 46.5, 
39.0, 35.4, 34.5, 28.5, 28.3, 26.5, 9.7. 
HRESI-MS: calculated for (C19H28N, M+H), 270.2222; found, 270.2212. 
Elemental analysis: Anal. Calcd for C19H27N: C, 84.70; H, 10.10; N, 5.20. Found: C, 84.55; 
H, 10.48; N, 5.14.  
 

 
2-(3-cyclohexylpropyl)furan (table 2, entry 16):  
Eluated from the column with hexane in 84% yield as a colorless liquid.  
1H NMR (400 MHz, CDCl3): 7.30 (dd, J = 2.0, 0.8 Hz, 1H), 6.29-6.28 (m, 1H), 5.99-5.98 (m, 
1H), 2.60 (t, J = 7.6 Hz, 2H), 1.79-1.60 (m, 7H), 1.18-1.33 (m, 6H), 0.92-0.80 (m, 2H).  
13C NMR (100 MHz, CDCl3): 156.6, 140.6, 110.0, 104.4, 37.4, 37.0, 33.3, 28.3, 26.7, 26.4, 
25.3. 
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Elemental analysis: Anal. Calcd for C13H20O: C, 81.20; H, 10.48. Found: C, 81.31; H, 10.63.  
 

 
tert-butyl 4-isobutylpiperidine-1-carboxylate (table 2, entry 17):  
Eluated from the column with hexane-diethyl ether (10:1)  in 83% yield as a colorless liquid.  
1H NMR (400 MHz, CDCl3): 4.06 (br.s, 2H), 2.74-2.61 (m, 2H), 1.72-1.54 (m, 3H), 1.45 (s, 
9H), 1.42-1.48(m, 1H, overlap), 1.11-0.98 (m, 4H), 0.86 (d, J = 6.4 Hz, 6H). 
 13C NMR (100 MHz, CDCl3): 154.7, 78.9, 45.9, 43.9 (br), 33.4, 32.3, 28.4, 24.4, 22.7. 
HRESI-MS: calculated for (C14H28NO2, M+H), 242.2120; found,242.2112. 
Elemental analysis: Anal. Calcd for C14H27NO2: C, 69.66; H, 11.27; N, 5.80. Found: C, 
69.47; H, 11.27; N, 5.74.  
 

 
2-(3,3-dimethylbutyl)thiophene (table 2, entry 18):  
Eluated from the column with pentane in 87% yield as a colorless liquid.  
1H NMR (400 MHz, CDCl3): 7.13-7.09 (m, 1H), 6.94-6.90 (m, 1H), 6.81-6.78 (m, 1H), 2.85-
2.79 (m, 2H), 1.66-1.58 (m, 2H), 0.97 (s, 9H). 
 13C NMR (100 MHz, CDCl3): 146.5, 126.6, 123.5, 122.6, 46.2, 30.5, 29.2, 25.3. 
HRESI-MS: calculated for (C10H17S, M+H), 169.1051; found, 169.1060. 
 

 
2-(3,3-dimethylbutyl)pyridine (table 2, entry 19):54 
Eluated from the column with pentane-diethyl ether (3:1)  in 74% yield as a colorless liquid.  
1H NMR (400 MHz, CDCl3): 8.54-8.49 (m, 1H), 7.55 (td, J = 7.6, 1.6 Hz, 1H), 7.13 (d, J = 
8.0 Hz, 1H), 7.07-7.04 (m, 1H), 2.78-2.69 (m, 2H), 1.61-1.57 (m, 2H), 0.96 (s, 9H). 
13C NMR (100 MHz, CDCl3): 163.1, 149.1, 136.2, 122.5, 120.7, 44.3, 33.9, 30.5, 29.3. 
HRESI-MS: calculated for (C11H18N, M+H), 164.1439; found, 164.1434. 
 

 
9,9-dimethyldecan-5-one (table 2, entry 20):  
Eluated from the column with hexane-diethyl ether (60:1) in 75% yield as a colorless liquid.  
1H NMR (400 MHz, CDCl3): 2.40-2.30 (m, 4H), 1.58-1.47 (m, 4H), 1.34-1.23 (m, 2H), 1.14-
1.10 (m, 2H), 0.88 (t, J = 7.2 Hz, 3H), 0.85 (s, 9H). 
13C NMR (100 MHz, CDCl3): 211.6, 43.7, 43.6, 42.5, 30.3, 29.3, 26.0, 22.4, 19.1, 13.8. 
HRESI-MS: calculated for (C12H25O, M+H), 185.1905; found, 185.1907. 
Elemental analysis: Anal. Calcd for C12H24O: C, 78.20; H, 13.12. Found: C, 78.09; H, 13.21. 
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(6-chloro-2-methylhexyl)benzene (table 2, entry 21):  
Eluated from the column with hexane in 93% yield as a colorless liquid containing 10% 2,3-
dimethyl-1,4-diphenylbutane which cannot be separated from chromatography column.  
1H NMR (400 MHz, CDCl3): 7.34-7.25 (m, 2H), 7.23-7.12 (m, 3H), 3.55 (t, J = 6.4 Hz, 2H), 
2.64 (dd, J = 13.6, 6.4 Hz, 1H), 2.40 (dd, J = 13.2, 8.0 Hz, 1H), 1.84-1.69 (m, 3H), 1.62-1.32 
(m, 3H), 1.25-1.12 (m, 1H), 0.88 (d, J = 6.8 Hz, 3H). 
13C NMR (100 MHz, CDCl3): 141.4, 129.2, 128.2, 125.7, 45.2, 43.6, 35.8, 34.9, 32.9, 24.4, 
19.4. 
APPI-MS: calculated for C13H19Cl, 210.11698; Found, 210.11707. 
 

 
(6-bromo-2-methylheptyl)benzene (table 2, entry 22):  
Eluated from the column with hexane in 85% yield as a colorless liquid containing 11% 2,3-
dimethyl-1,4-diphenylbutane which cannot be separated from chromatography column. 
1H NMR (400 MHz, CDCl3): 7.32-7.26 (m, 2H), 7.25-7.14 (m, 3H), 4.21-4.14 (m, 1H), 2.77-
2.62 (m, 1H), 2.49-2.36 (m, 1H), 1.89-1.14 (m, 10H), 0.86-0.96 (m, 3H). 
13C NMR (100 MHz, CDCl3): 141.3, 129.1, 128.1, 125.6, 51.8, 43.7, 43.5, 41.4, 41.3, 35.9, 
35.8, 34.9, 34.8, 26.5, 26.4, 25.3, 25.2, 19.4, 19.3. 
APPI-MS: calculated for C14H21Br, 268.08211; found, 268.08221. 
 

 
2-bromo-6-ethyloctane (table 2, entry 23):  
Eluated from the column with hexane in 76% yield as a colorless liquid.  
1H NMR (400 MHz, CDCl3): 4.20-4.09 (m, 1H), 1.90-1.67 (m, 5H), 1.52-1.13 (m, 9H), 0.84 
(t, J = 7.6 Hz, 6H). 
13C NMR (100 MHz, CDCl3): 52.0, 41.6, 40.2, 32.0, 26.5, 25.4, 25.3, 25.0, 10.9, 10.8.  
Elemental analysis: Anal. Calcd for C10H21Br: C, 54.30; H, 9.57. Found: C, 54.25; H, 9.73.  
 

 
1-bromo-4-(2-cyclopropylethyl)benzene (table 2, entry 24):  
Eluated from the column with hexane in 94% yield as a colorless liquid.  
1H NMR (400 MHz, CDCl3): 7.43-7.38 (m, 2H), 7.10-7.07 (m, 2H), 2.69 (t, J = 7.6 Hz, 2H), 
1.56-1.48 (m, 2H), 0.77-0.63 (m, 1H), 0.49-0.39 (m, 2H), 0.10-0.04 (m, 2H). 
13C NMR (100 MHz, CDCl3): 141.5, 131.2, 130.2, 119.2, 36.5, 35.4, 10.6, 4.5. 
APPI-MS: calculated for C11H13Br, 224.01951; found, 224.01957. 
Elemental analysis: Anal. Calcd for C11H13Br: C, 58.69; H, 5.82. Found: C, 58.44; H, 5.79.  
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1-chlorononane (table 2, entry 25):26  
Eluated from the column with hexane in 90% yield as a colorless liquid.  
1H NMR (400 MHz, CDCl3): 3.52 (t, J = 6.8 Hz, 2H), 1.82-1.70 (m, 2H), 1.48-1.34 (m, 2H), 
1.34-1.20 (m, 10H), 0.88 (t, J = 6.8 Hz, 3H). 
13C NMR (100 MHz, CDCl3): 45.1, 32.7, 31.8, 29.4, 29.2, 28.9, 26.9, 22.7, 14.1. 
 

 
2-(4-(4-methoxylphenyl)butyl)bicycle[2.2.1]heptane (table 2, entry 26):  
Eluated from the column with hexane in 93% yield as a colorless liquid.  
1H NMR (400 MHz, CDCl3): 7.11-7.06 (m, 2H), 6.84-6.80 (m, 2H), 3.79 (s, 3H), 2.59-2.49 
(m, 2H), 2.19-2.12 (m, 1H), 1.97-1.88 (m, 1H), 1.62-0.91 (m, 15H). 
13C NMR (100 MHz, CDCl3): 157.6, 135.1, 129.2, 113.6, 55.3, 42.2, 41.1, 38.3, 36.8, 36.5, 
35.2, 35.1, 31.9, 30.2, 28.9, 27.5. 
HRESI-MS: calculated for C18H27O, 259.2062; found, 259.2061. 
Elemental analysis: Anal. Calcd for C18H26O: C, 83.67; H, 10.14. Found: C, 83.56; H, 10.26. 
  

 
1-decyl-2-(trifluoromethyl)benzene (table 2, entry 27):55 
Eluated from the column with hexane in 93% yield as a colorless liquid.  
1H NMR (400 MHz, CDCl3): 7.61 (d, J = 8.0 Hz, 1H), 7.49-7.42 (m, 1H), 7.33 (d, J = 7.6 Hz, 
1H), 7.29-7.23 (m, 1H), 2.81-2.75 (m, 2H), 1.69-1.56 (m, 2H), 1.47-1.25 (m, 14H), 0.90 (t, J 
= 6.8 Hz, 2H). 
13C NMR (100 MHz, CDCl3): 141.8, 131.6, 130.9, 128.3 (2JC-F =30.1 Hz), 125.8 (3JC-F = 5.8 
Hz), 125.6, 124.7 (1JC-F = 272.1 Hz), 32.7, 31.9, 31.8, 29.7, 29.6, 29.6, 29.4, 29.4, 22.7, 14.1.  
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4.1 Introduction 

The synthesis of aromatic heterocycles has been actively investigated because these 

molecules often exhibit interesting biological, pharmaceutical, and materials functions.1-3 

Subsequently, direct C-H functionalization has emerged as one of the most straightforward 

and efficient methods for the derivatization of aromatic heterocycles. Significant progress has 

been made in direct arylation, alkenylation, and alkynylation.4-17 Direct alkylation has proved 

to be the most challenging, especially if the alkyl groups contain β-hydrogens.18-25 This is 

likely due to the tendency of metal alkyl intermediates to undergo unproductive β-H 

elimination.26-30  

Several approaches are now available for direct alkylation of aromatic heterocycles, 

including Friedel-Crafts,31 radical alkylation,32-34 insertion of C-H bond into olefins,35-42 

coupling of heterocycles with tosylhydrazones,43,44 and coupling of heterocycles with alkyl 

electrophiles.45-50 Most reported methods only introduce a primary alkyl groups. Metal-

catalyzed hydroarylation of olefins is, in principle, an effective way to incorporate a 

secondary alkyl group into heterocycles, yet current success is largely limited to the 

introduction of activated alkyl (e.g., benzyl and allyl) groups.35-41 Wang et al. pioneered Cu-

catalyzed direct benzylation and allylation of azoles with N-tosylhydrazones.43 Miura et al. 

then reported Ni- and Co-catalyzed alkylation of azoles with N-tosylhydrazones, which was 

the first general method to couple non-activated secondary alkyl groups with azoles.44 Our 

group and others recently developed metal-catalyzed direct alkylation of azoles and thiazoles 

using non-activated alkyl halides.43, 46, 47, 50 Unfortunately, only primary alkyl halides could 

be used. Earlier work from our group showed that a Ni pincer complex, [(MeN2N)NiCl],51, 52 

was an active pre-catalyst for cross coupling of non-activated alkyl halides,53-55 and direct 

C—H alkylation.46,56 This result led to investigation in the chemistry of the analogous Cu 

complexes.  In this chapter, several copper complexes with hemilabile ligands including 
MeN2N were successfully synthesized, and their applications as catalysts in direct alkylation 

of azoles using secondary alkyl halides were studied. An important additive is also identified.  

4.2 Copper complexes 

4.2.1 Ligand synthesis 

In addition to the pincer ligands MeN2N (2), MeNMeN′N (5), and bidentate ligand HNN (7), 

which were discussed in Chapter 2, several new ligands (32-34) were employed in this study 

(Chart 1). 
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Chart 1. 

 

 

Protonated, neutral forms of ligands 32 and 33 were first prepared. 32H and 35 were 

prepared in high yield using the Pd-catalyzed Buchwald-Hartwig C-N coupling method 

(Scheme 1), which is the same procedure used for the preparation of 2H, 5H and 7H  

(Chapter 2). Phosphorylation of 35 using 2 equiv. of nBuLi and ClPPh2 and subsequent 

aqueous HCl workup led to isolation of 33H in high yield. 34 was prepared by deprotonation 

with potassium hydride, and methylation with MeI (Scheme 1). 

 

NH2

Br

I dppf, NaOBut

35, 88 %

NH

Br

+

Pd2(dba)3

toluene
100 oC, 3 d

1) BuLi, -60 oC-rt, Et2O

33H, 87 %

2) ClPPh2, -60oC-rt
NH

PPh2

Br

OMe

NH2 dppf, NaOBut

32H, 88 %

NH

NMe2

+

Pd2(dba)3

toluene
110 oC, 2 d

NMe2
OMe

NH

NMe2

NMe2

1) KH, THF, 2h

2) MeI, 16h
NMe

NMe2

NMe2

34, 76%2H  

Scheme 1. Synthesis of ligands 32H, 33H, and 34. 
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4.2.2 Synthesis and structures of copper complexes 

Initially, 2 (MeN2N) was used as test ligand for the synthesis of copper complexes. The 

anionic bis(amino)amide ligand N2N alone was not sufficient to stabilize the Cu(I) ion. The 

reactions of [(MeN2N)Li]2
51 with a Cu(I) precursor (e.g., CuI, CuCl, [Cu(CH3CN)4]PF6) led to 

the formation of copper mirror and protonated ligand MeN2NH. Triphenylphosphine, 

however, could be used as a co-ligand to form a stable Cu(I) complex. Thus, reaction of 

[(MeN2N)Li]2 with [Cu(PPh3)Cl]4 yielded [(MeN2N)Cu(PPh3)] (36) (Scheme 2). The solid-state 

molecular structure of 36 was established by X-ray crystallography (Figure 1). The Cu ion is 

in a distorted trigonal planar ligand environment. The N2N ligand is bidentate, with one of the 

amine donors being non-coordinating (N3-Cu1 = 3.290(2) Å). The Cu-N (amide) distance 

(1.9406(16) Å) is significantly shorter than the Cu-N (amine) distance (2.1339(16) Å). 

 

 

Scheme 2. Synthesis of the complex [(MeN2N)Cu(PPh3)] (36).  

N1

N2

N3

P1Cu1

 

Figure 1. Crystal structure of 36. The thermal ellipsoids are displayed in 50% probability. The 

following structures in this chapter are displayed at 50% probability which will not be illustrated any 

more.  
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After establishing the synthesis method of copper amino amide complex 36, other amino 

amide ligands 5, 7, 32, and 33 could be metallated with copper by a similar procedure. The 

protonated ligands were first deprotonated by 1 equiv. nBuLi, then reacted with 

[Cu(PPh3)Cl]4 to yield correponding copper complexes 37-40 (Scheme 3). For 40, an 

additional 1 equiv. PPh3 was needed to obtain high yield due to each copper complex unit 

containing two PPh3 ligands. The structures of 37, 38, and 39 resemble 36, in which copper is 

three coordinate. The Cu ion of 40 is in a tetrahedral ligand environment (Figure 2-5). 

 

 

Scheme 3. Synthesis of the copper complexes 37-40. 
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N1

N2

O1

Cu1
P1

 

Figure 2. Crystal structure of complex [(NNO)Cu(PPh3)] (37). There are two independent molecules 
in the asymmetric unit of 37, and only one of them is shown. The unit cell of 37 contains one 
molecule of solvent (toluene) which is not shown. 
 

P1Cu1

N1

N2

N3

 

Figure 3. Crystal structure of complex [(MeNMeN′N)Cu(PPh3)] (38). 
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N1

N2

P1
Cu1

 

Figure 4. Crystal structure of complex [(HNN)Cu(PPh3)] (39). 
 

P1

P2 P3

Cu1

N1

 

Figure 5. Crystal structure of complex [(NP)Cu(PPh3)2] (40). The unit cell of 40 contains 0.4 
molecule of THF and 0.6 molecule of pentane which is not shown. 
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The neutral ligand 34 was reacted with Cu(CH3CN)4PF6 in acetonitrile at room 

temperature to yield cationic complex 41 (Scheme 4). The copper complex 41 is a tetrahedral 

structure with PF6 as the counter anion (Figure 6). The 1H NMR signal for bound CH3CN in 

41 was observed at 2.24 ppm in CD2Cl2, 0.27 ppm downfield from free CH3CN.  

 

 

Scheme 4. Synthesis of the complex [(MeN2
MeN)Cu(CH3CN)][PF6] (41).  

 

N1

N2
N3

N4

P1

F1

F2

F3

F4

F5 F6

Cu1

 

Figure 6. Crystal structure of complex [(MeN2
MeN)Cu(CH3CN)][PF6] (41). 
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Reaction of [(MeN2N)Li]2 with CuCl and PEt3 yielded [(MeN2N)Cu(PEt3)] (42) (Scheme 5). 

Complex 42 resembles the other Cu(I) complexes, and is a distorted trigonal planar ligand 

environment (Figure 7). The Cu-P(alkyl) distance is 2.15475(5) Å , which is longer than Cu-

P(aryl) in 36. Cu(II) complexes were also synthesized successfully. Reaction of [(MeN2N)Li]2 

with Cu(OAc)2 yielded [(MeN2N)Cu(OAc)] (43). The fourth coordination site is occupied by 

OAc-, which binds to Cu in an 1η fashion. It appears that Cu(I) complexs containing amino 

amide ligand need a phosphine ligand for stability. Mixing Cu(COD)Cl precursor and 

[(MeN2N)Li]2, and benefiting from a disproportion reaction, Cu(II) complex 44 could be 

obtained in high yield. Reaction of [(MeN2N)Li]2 with Cu(OTf)2 yielded [(MeN2N)Cu(OTf)] 

(45), however, the product contains LiOTf, which is hard to separate from 45. Additionally, a 

ligand exchange reaction could produce 45 by stirring 44 with trimethylsilyl 

trifluoromethanesulfonate (TMSOTf) in toluene, which gives pure 45 in high yield (Scheme 

5).  

 

Li
LiN N
Me2N

Me2N
NMe2

NMe2

1/2

N Cu

NMe2

NMe2

Cl

44, 81%

42, 51%

Me2
N

N
Cu PEt3

NMe2

TMSOTf

Toluene. rt
N Cu

NMe2

NMe2

OTf

CuCl, PEt3
THF, rt

N Cu

NMe2

NMe2

OAc

43, 89%

Cu(OAc)2
THF, rt

Cu(COD)Cl
THF, rt

45, 80%

Cu(OTf)2
THF, rt

 

Scheme 5. Synthesis of the copper complexes 42-45.  
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N1

N2

N3

P1Cu1

 

Figure 7. Crystal structure of complex [(MeN2N)Cu(PEt3)] (42). 

 

The coordination geometry of Cu(II) is approximately square-planar in all Cu(II) 

complexes (43-45) (Figure 8-10). The pincer NN2 ligand binds to Cu(II) in the mer fashion 

which resembles N2N-Ni complexes.51, 52 The Cu-O distance is slightly shorter in 43 (1.930(3) 

Å) than in 45 (2.001(4) Å). In general, the amide nitrogen atom is sp2 hybridized, as the sum 

of the three bonds around it are all close to 360o. The Cu-N(amide) bonds are about 0.2 Å 

shorter than the corresponding Cu-N(amine) bonds. The key strucural parameters for all the 

copper complexes are summarized in Table 1 and 2. 

 

Table 1. Selected bond lengths for copper complexes. a 

Complex 
Cu-N 

(amide) 
Cu-N 

(amine) 
Cu-P 

 
Cu-X 

 

36 [(MeN2N)Cu(PPh3)] 1.9406(16) 2.1339(16) 2.1492(6) - 

37 [(NNO)Cu(PPh3)] 1.925(2) 2.106(2) 2.1383(9) - 

38 [(MeNMeN′N)Cu(PPh3)] 1.910(3) 2.177(3) 2.1535(14) - 

39 [(HNN)Cu(PPh3)] 1.908(3) 2.142(3) 2.1392(10) - 

40 [(NP)Cu(PPh3)2] 2.027(3) - 

2.3016(12) 
Cu-P(NP) 
2.2727(12) 

Cu-P(PPh3)av. 

- 

41 [(MeN2
MeN)Cu(CH3CN)][PF6] - 

2.168(4) Cu1-N1 
2.111(5) Cu1-N3 
2.123(5) Cu1-N4 

- 
1.869(5) 

Cu-N 
(CH3CN) 

 



 
 

137 
 

Table 1. (Continued) 

Complex 
Cu-N 

(amide) 
Cu-N 

(amine) 
Cu-P 

 
Cu-X 

 

42 [(MeN2N)Cu(PEt3)] 1.9244(13) 2.2013(15) 2.1547(5) - 

43 [(MeN2N)Cu(OAc)] 1.892(4) 2.082(4)av. - 1.930(3) 

44 [(MeN2N)CuCl] 1.887(3) 2.084(3)av. - 2.1991(11) 

45 [(MeN2N)Cu(OTf)] 1.892(4) 2.0083(3) - 2.001(4) 

 
a Distances are in Angstroms. Averaged bond distances were used in cases where there is more than one bond of the 

same given type. b X is the fourth ligand on Cu aside from the tridentate ligand chelate. 

 

Table 2. Selected bond angles for copper complexes. a 

Complex 
N(amine)-

Cu-N(amide) 
N(amide)-

Cu-P 
P-Cu-

N(amine) 

 
A-Cu-B 

(Additional) 
 

Geometry 

36 [(MeN2N)Cu(PPh3)] 85.00(6) 143.42(5) 131.34(5) - Trigonal-Planar 

37 [(NNO)Cu(PPh3)] 85.41(9) 141.81(7) 132.56(6) - Trigonal-Planar 

38 [(MeNMeN′N)Cu(PPh3)] 83.57(12) 156.89(9) 119.54(9) - Trigonal-Planar 

39 [(HNN)Cu(PPh3)] 84.83(10) 152.30(8) 121.45(8) - Trigonal-Planar 

40 [(NP)Cu(PPh3)2] - 
85.10(9) 
P(NP) 

111.22(9) 
N1-Cu1-P2 
108.46(9) 

N1-Cu1-P3 

113.85(4) 
P1-Cu1-P2 
114.05(4) 

P1-Cu1-P3 
118.90(4) 

P2-Cu1-P3 

Tetrahedral 

41 
[(MeN2

MeN)Cu(CH3CN)][PF6] 
- - - 

128.94(18) 
N1-Cu1-N2 
82.34(16) 

N1-Cu1-N3 
83.04(16) 

N1-Cu1-N4 
123.33(18) 
N2-Cu1-N3 
116.04(19) 
N2-Cu1-N4 
113.36(17) 
N3-Cu1-N4 

Tetrahedral 

42 [(MeN2N)Cu(PEt3)] 83.34(5) 152.63(4) 123.98(4) - Trigonal-Planar 

43 [(MeN2N)Cu(OAc)] 83.20(15)av. - - 
96.71(15)av. 

O-Cu-
N(amine) 

Square-Planar 

44 [(MeN2N)CuCl] 82.74(12) av. - - 
93.38(9)av. 

Cl-Cu-
N(amine) 

Square-Planar 

45 [(MeN2N)Cu(OTf)] 86.63(8) - - 
93.36(8) 
O-Cu-

N(amine) 
Square-Planar 

 
a Bonds angles are in degrees. The geometry was approximated. 
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N1

N2

N3
O1

O2

Cu1

 

Figure 8. Crystal structure of complex [(MeN2N)Cu(OAc)] (43). 
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N2

N3

Cl1

 

Figure 9. Crystal structure of complex [(MeN2N)CuCl] (44). 
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Cu1
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Figure 10. Crystal structure of complex [(MeN2N)Cu(OTf)] (45). 

 

4.3 Optimization of the coupling reaction conditions between benzoxazole 
and cyclopentyl iodide 

Complex 36 was used as a test catalyst to optimize the reaction conditions for the coupling 

of benzoxazole with cyclopentyl iodide (Table 3). It turned out to be a good catalyst for direct 

alkylation. The Ni/Cu based method, which was efficient for direct coupling of azoles with 

primary alkyl halides,46 was inefficient for this reaction. After attempts at modification, it 

gave a maximum yield of 4% (entry 1, Table 3). Replacing [(MeN2N)NiCl] (1) with 36 

improved the yield to 32% (entry 2, Table 1). Increasing the loading of 36 to 10 mol % 

further increased the yield to 50% (entry 3, Table 3). The yields were similar when the 

reactions were run at 80oC or 100oC. tBuONa and toluene were the best base and solvent 

combination. Other combinations such as tBuOLi/dioxane, tBuOLi/DMF, and 

Cs2CO3/toluene gave no or inferior yields. Interestingly, without CuI as co-catalyst, the yield 

was only 11% (entry 4, Table 3). CuI alone did not catalyze the reaction (entry 5, Table 3).  
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Table 3. Optimization of Conditions for the Coupling of Benzoxazole with Cyclopentyl-I.a  

 

 

Entry Catalysts Conditions 
Yield 

(%)b 

1 
5 mol % [(MeN2N)NiCl] 

and 5 mol % CuI 
1.4 equiv tBuONa, 140 oC 4 

2 
5 mol % [(MeN2N)Cu(PPh3)] 

(36)  and 5 mol % CuI 
1 equiv tBuONa, 100 oC 32 

3 
10 mol % 36 and 5 mol % 

CuI 
1.2 equiv tBuONa, 

80 oC or 100 oC 
50 

4 10 mol % 36 1.2 equiv tBuONa, 80 oC 11 

5 5 mol % CuI 1.2 equiv tBuONa, 80 oC 0 

6 
10 mol % 36 

and 5 mol % CuI 

5 mol % or 0.2 equiv 
BDMAEE, 1.2 equiv tBuONa, 

100 oC 
77 

7 10 mol % 36 
0.2 equiv BDMAEE, 

1.2 equiv tBuONa, 80 oC 
87/80c 

8 15 mol % CuI 
0.2 equiv BDMAEE, 

1.2 equiv tBuONa, 80 oC 
62 

9 

10 mol % 
[Cu(Phen)(PPh3)2]NO3 or 

Cu(S(CH3)2)Br or 
[Cu(PPh3)Cl]4 

0.2 equiv BDMAEE, 

1.2 equiv tBuONa, 80 oC 
57-61 

10 
10 mol % [(MeN2N)NiCl] 

and 5 mol % CuI 

0.2 equiv BDMAEE, 

1.2 equiv tBuONa, 80 oC 
10 

11 none 
0.2 equiv BDMAEE, 

1.2 equiv tBuONa, 80 oC 
0 

12 
6.5 mol % 

[(BDMAEE)Cu2I2] 

0.2 equiv BDMAEE, 

1.2 equiv tBuONa, 80 oC 
61 

13 10 mol % 36 
0.2 equiv TMEDA, 

1.2 equiv tBuONa, 80 oC 
44 

14 15 mol % CuI 
0.2 equiv TMEDA, 

1.2 equiv tBuONa, 80 oC 
0 

15 
10 mol % 

[(TMEDA)CuI] 
1.2 equiv tBuONa, 80 oC 0 
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Table 3. (Continued) 

Entry Catalysts Conditions 
Yield 

(%)b 

16 
10 mol % 

[(NNO)Cu(PPh3)] (37) 
0.2 equiv BDMAEE, 

1.2 equiv tBuONa, 80 oC 
75 

17 
10 mol % 

[(MeNMeN′N)Cu(PPh3)] 
(38) 

0.2 equiv BDMAEE, 

1.2 equiv tBuONa, 80 oC 
71 

18 
10 mol % 

[(HNN)Cu(PPh3)] (39) 
0.2 equiv BDMAEE, 

1.2 equiv tBuONa, 80 oC 
77 

19 
10 mol %  

[(NP)Cu(PPh3)2] (40) 

0.2 equiv BDMAEE, 

1.2 equiv tBuONa, 80 oC 
5 

20 
10 mol % 

[(MeN2
MeN)Cu(CH3CN)] 

[PF6] (41) 

0.2 equiv BDMAEE, 

1.2 equiv tBuONa, 80 oC 
61 

21 
10 mol % 

[(MeN2N)Cu(PEt3)] (42) 
0.2 equiv BDMAEE, 

1.2 equiv tBuONa, 80 oC 
73 

22 
10 mol %  

[(MeN2N)CuCl] (44) 

0.2 equiv BDMAEE, 

1.2 equiv tBuONa, 80 oC 
67 

 

aSee the experimental part for details. bGC yield relative to benzoxazole. cIsolated yield.  

 

In the previous studies of Ni-catalyzed Kumada-type coupling reactions, our group found 

that bis[(2-(N,N-dimethylaminoethyl)]ether (BDMAEE, previously abbreviated as O-

TMEDA) often promoted the catalysis.54,55 Out of curiosity, the effect of BDMAEE was 

tested for direct alkylation. To our delight, addition of 5 mol% or 0.2 equiv of BDMAEE led 

to a coupling yield of 77% (entry 6, Table 3). Slightly lower yields were obtained when the 

loadings of BDMAEE were between 1 to 5 equiv. Lowering the temperature from 100 to 

80oC further increased the yield to 87% (entry 7, Table 3). CuI was no longer necessary under 

these conditions. When 36 was replaced by CuI (15 mol %), the yield decreased to 62%. 

When another soluble Cu(I) complex, [Cu(Phen)(PPh3)2]NO3 (phen = phenanthroline) or 

Cu(S(CH3)2)Br or [Cu(PPh3)Cl]4 was used as precatalyst, the yield was about 60% (entry 9, 

Table 3). These results indicate a superior catalytic activity for complex 1. On the other hand, 

[(MeN2N)NiCl] was still a poor catalyst even with BDMAEE as additive (compare entries 1 

and 10, Table 3). A control experiment showed that without a Cu catalyst, BDMAEE did not 

catalyze the coupling (entry 11, Table 3). Finally, a preparative reaction under the optimized 

conditions (entry 7, Table 3) gave the alkylated product in an isolated yield of 80%. 
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As BDMAEE was essential for achieving high yields in the Cu-catalyzed direct alkylation, 

its roles were investigated. Obviously BDMAEE is a potential ligand. When CuI or 

Cu(S(CH3)2)Br was used as pre-catalyst (entries 8 and 9, Table 3), the active catalyst was 

most likely a Cu-BDMAEE complex. Reaction of CuI with BDMAEE produced a copper 

complex that appeared to be [(BDMAEE)Cu2I2], according to NMR and elemental analysis 

(Figure 11 and 12). Using this complex as catalyst, the coupling of benzoxazole with 

cyclopentyl iodide had a yield of 61%, similar to that obtained using CuI or Cu(S(CH3)2)Br in 

conjunction with BDMAEE. However, BDMAEE was not a ligand when complex 36 was 

used as catalyst, as no reaction occurred between 36 and BDMAEE. Furthermore, using 36 as 

catalyst, the yield was significantly higher (87%) than using [(BDMAEE)Cu2I2] as catalyst. 

Under these conditions, BDMAEE must play another important role. It is possible that 

BDMAEE partially solubilizes the inorganic base and promotes the deprotonation of azole. It 

is also possible that BDMAEE facilitates the transmetallation of azole anions to the Cu center 

in 36. These roles might be replaced by CuI, albeit with a lower efficiency. In fact, the 

combination of 36 and CuI gave a coupling yield of about 50% (entry 3, Table 1), much 

higher than that of 11% using 36 alone (entry 4, Table 3). TMEDA 

(tetramethylethylenediamine) was another poor substitute for BDMAEE, resulting in a yield 

of 40% (entry 13, Table 3). The combination of CuI and TMEDA alone was not catalytically 

active (entries 14 and 15, Table 3).  

Other new copper complexes were tested under the optimized conditions. The trigonal-

planar amino amide copper complexes (37-39) whose structures are similar to that of 36, had 

slightly lower yields (71%-77%) than 36 (entries 16-18, Table 3). [(NP)Cu(PPh3)2] (40) was 

inefficient for the reaction (entry 19, Table 3). Surprisingly, [[(MeN2
MeN)Cu(CH3CN)][PF6] 

(41), which has labile acetonitrile ligands which may dissociate from copper(I) to generate 

one free coordination site, also gave lower yield (61%) (entry 20, Table 3). The yield using 

[(MeN2N)Cu(PEt3)] (42) was  lower than using 36 (entry 21, Table 3), indicating that PPh3 

may be involved in the catalytic cycle. The yield of [(MeN2N)CuCl] (44), which contains 

Cu(II) ion and MeN2N ligand, was lower than 36 (entry 22, Table 3). From these results, it 

was clear that 36 was the best catalyst. It is possible that electronic property of the MeN2N 

ligand best fits the catalytic system. It is also possible that the hemilabile MeN2N ligands 

could potentially act as tridentate ligands which stabilize the one of active catalyst 

intermediates better than others.      
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Figure 11. 1H NMR spectra of BDMAEE and Cu-BDMAEE complex.  

 

 
 

Figure 12. 13C NMR spectra of BDMAEE and Cu-BDMAEE complex.  
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4.4 Scope of the copper-catalyzed alkylation of benzoxazoles 

The scope of the Cu-catalyzed alkylation of benzoxazoles was explored (Table 4). 

Cycloheptyl- and cyclooctyl-I were coupled to benzoxazole in high yields (entries 1-2, Table 

4). Acyclic secondary alkyl iodides were also suitable substrates, and the reactions were 

insensitive to the length of the alkyl chains (entries 3-7, Table 4). Secondary alkyl bromides 

could also be coupled (entries 8-10, Table 4). Addition of a catalytic amount of CuI increased 

the yield substantially, probably because CuI mediated an I/Br exchange reaction.57 

Substituted benzoxazoles could also be alkylated in high yields (entries 11-16, Table 4). Both 

electron-donating Me and MeO groups and electron-withdrawing Cl and Br groups were 

tolerated. The aryl-Cl and aryl-Br moieties in the products (entries 14 and 15, Table 4) leave 

room for further functionalization by traditional cross coupling methods. Other iodide sources 

were not as effective for C-Br activation (entries 1 and 2, Table 5). Cl/I exchange was 

difficult for secondary alkyl chlorides under these conditions (entries 3 and 4, Table 5). 

Interestingly, for an unknown reasons, the coupling of primary alkyl halides was not efficient 

(entries 5-7, Table 5). Fortunately, such coupling can be achieved using previously reported 

Ni-catalysts.43,46,47  

 

Table 4. Scope of Cu-catalyzed alkylation of benzoxazoles.a   

 

Entry Azole Alkyl-X Product 
Yield 

(%)b 

1 
   

73 

2 
   

75 

3 
   

81 

4 
   

71 

5 
  

 

81 

6 
   

82 
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Table 4. (Continued) 

Entry Azole Alkyl-X Product 
Yield 

(%)b 

7 
 

 
 

76 

8 
   

66c 

9 
   

57 

10 
   

60c 

11 
   O

N

 
63 

12 
  O

N

 
62 

13 
   

64 

14 
   

73 

15 
   

69 

16 
   

64 

 

a 80oC for alkyl-I and 100oC for alkyl-Br. See experimental part for details. b Isolated yield. c 10 mol % 36 + 20 mol % 

CuI + 40 mol % BDMAEE were used.   

 

Table 5. Additional entries for the coupling of alkyl halides with benzoxazole. 

 

 

Entry Alkyl-X Catalyst, additive 
Temperature, 

time 
Yield[a] 

1 
 

10 mol % 36, 0.2 equiv NaI 

1 equiv BDMAEE 
80oC, 16 h trace 
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Table 5. (Continued) 

Entry Alkyl-X Catalyst, additive 
Temperature, 

time 
Yield[a] 

2 
 

10 mol % 36,  

0.2 equiv NH4I 

0.2 equiv BDMAEE 

120oC, 16 h 0 

3 
 

10 mol % 36, 

0.2 equiv BDMAEE 
100oC, 16 h trace 

4 
 

10 mol % 36, 5 mol % CuI, 

0.2 equiv BDMAEE 
100oC, 16 h 0 

5 Octyl-I 
10 mol % 36, 0.2 equiv 

BDMAEE 
80oC, 16 h trace 

6 
 

10 mol % 36, 

0.2 equiv BDMAEE 
100oC, 16 h 37 

7 
 

20 mol % 36, 

0.2 equiv BDMAEE 
100oC, 16 h 54 

8 
 

10 mol % 36, 

0.2 equiv BDMAEE,  

10 equiv Hg 

100oC, 16 h 74 

 

a GC yield. 

 

Benzoxazoles bearing some particular functional group (ester, nitro, nitrile) at 5-postion 

could not be coupled efficiently (entries 1-3, Table 6).  This might be due to the coordination 

of donor atoms of the functional groups to the metal in the catalyst. For the 5- and 6-methyl 

substituted benzoxazoles, good yields could be obtained (entries 11 and 12, Table 3). 

However, only trace amount of the 4-methyl derivative coupling product was observed (entry 

4, Table 6). This might be due to steric problem which affects the deprotonation of 

benzoxazole with the copper species.58 Oxazolo[4,5-b]pyridine failed to couple with 

cyclopentyl iodide, which indicted that there may be a compromise between the acidity at 2-

position of benzoxazole and the ability to coordinate with copper species.59 For non-fused 

azoles (entries 7-12, Table 6), 1-methyl-1H-benzo[d]imidazole (entry 13, Table 6) and 

benzothiazole (entry 14, Table 6), the yields were 0% which may caused by their weaker 

acidity.59-61 
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Table 6. Limitations for the coupling of heterocycles. 

 

Entry Heteroarenes Yield[a] 

1 
 

15 

2 
 

0 

3 
 

0 

4 

O

N

 

trace 

6 
 

0 

7 
N

O  
0[b] 

8 
 

0[b] 

9 
 

0 

10 

 

0[b] 

11 N

O
 

0[b] 

12 

 

0 
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Table 6. (Continued) 

Entry Heteroarenes Yield[a] 

13 

 

0 

14 
 

0[b] 

 

a GC yield. b The reaction temperature was 100oC. 

4.5 Mechanistic investigations 

The catalytic cycle of the Cu-catalyzed alkylation reaction might be similar to those 

proposed for Cu-catalyzed direct arylation and alkynylation of aromatic heterocycles.6,7,13 The 

azoles are deprotonated and transmetalated to Cu, and the resulting organometallic Cu 

species react with alkyl halides to give the coupling products. Previously, Ni particles were 

found to be the active species for Ni-catalyzed direct alkylation by a Hg-test experiment.46 A 

similar Hg-test was conducted for the Cu catalysis. Thus, the coupling of benzoxazole with 

cyclopentyl-I was conducted in the presence of 10 equiv of Hg. The yield was 74%, close to 

the value obtained in the absence of Hg (entry 8, Table 5). This result suggests, albeit does 

not prove, that homogeneous Cu complexes are the active species. 

Several experiments were carried out to probe the activation process of alkyl halides. 

Coupling of benzoxazole with tButyl-I gave a yield of 23% (eq. 1, Scheme 6). While the yield 

is too low to be synthetically useful, the result rules out the possibility of a SN2-process for 

the alkylation. The reaction of benzoxazole with 6-iodohept-1-ene gave the ring-closed 

product in a yield of 62% (eq. 2, Scheme 6). This result indicates that the activation of 

secondary alkyl halides occurs via a radical process. Furthermore, the recombination of the 

resulting secondary carbon radical with the catalyst is slower than the ring-closing 

rearrangement of the hept-6-en-2-radical, which has a first-order rate constant of about 105 s-

1.62 When the coupling of benzoxazole with cyclopentyl-I was conducted in the presence of 1 

equiv of a radical inhibitor, TEMPO, the yield was zero. This result is consistent with a 

radical mechanism for the alkylation.  
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Scheme 6. Alkylation reactions using mechanistic probes; Isolated yields are reported. 

4.6 Conclusions 

In conclusion, we have developed a Cu-catalyzed direct alkylation of benzoxazoles. While 

the scope is limited and remains to be improved, to the best of our knowledge, this is the first 

time that non-activated secondary alkyl halides have been used as electrophiles. The well-

defined Cu complex 36 is the best catalyst. The higher efficiency of 36 relative to other 

copper catalysts might result from the hemilabile property of the pincer ligand, which will be 

the subject of future exploration. The alkylation is promoted by a catalytic amount of 

BDMAEE. A similar promotion might be found for other C-H functionalization reactions. 

4.7 Experimental section 

4.7.1 Chemicals and Reagents 

All manipulations were carried out under an inert N2(g) atmosphere using standard 

Schlenk or glovebox techniques. Solvents were purified using a two-column solid-state 

purification system (Innovative Technology, NJ, USA) and transferred to the glove box 

without exposure to air. Deuterated solvents were purchased from Cambridge Isotope 

Laboratories, Inc., and were degassed and stored over activated 3 Å molecular sieves. Unless 

otherwise noted, all other reagents and starting materials were purchased from commercial 

sources and used without further purification. Liquid compounds were degassed by standard 

freeze-pump-thaw procedures prior to use. The following chemicals were prepared according 

to literature procedure: 2H,51 7H,63 Li complex [(MeN2N)Li]2,
51 [(MeN2N)NiCl]51, 

[Cu(PPh3)Cl]4,
64-66 Cu(COD)Cl,67 Cu(tmeda)I,68,69 iodocycloheptane (entry 1, table 4),  

iodocyclooctane (entry 2, table 4),  3-iodopentane (entry 4, table 4), 3-iodononane (entry 5, 

table 4), 5-iodononane (entry 6, table 4), (3-iodobutyl)benzene (entry 7, table 4),63 azoles 
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(entry 13 and 16, table 4, entry 1-6, 9-12, table 6)70,71 6-iodo-1-heptene (Scheme 6).72  The 

synthetic method of 5H was described in experimental part of chapter 2.    

4.7.2 Physical methods 

The 1H, 31P and 13C NMR spectra were recorded at 293 K on a Bruker Avance 400 

spectrometer. 1H NMR chemical shifts were referenced to residual solvent as determined 

relative to Me4Si (δ = 0 ppm). The 31P{1H} chemical shifts were reported relative to 85% 

H3PO4. The 13C{1H} chemical shifts were reported in ppm relative to the carbon resonance of 

CDCl3 (77.0 ppm), C6D6 (128.1 ppm), CD2Cl2 (53.9 ppm). GC measurement was conducted 

on a Perkin-Elmer Clarus 400 GC with a FID detector. HRESI-MS measurements were 

conducted at the EPFL ISIC Mass Spectrometry Service with a Micro Mass QTOF Ultima 

spectrometer. Elemental analyses were performed on a Carlo Erba EA 1110 CHN instrument 

at EPFL. X-ray diffraction studies were carried out in the EPFL Crystallographic Facility. 

The data collections for both crystal structures were performed at low temperature using Mo 

Κα radiation on a Bruker APEX II CCD diffractometer equipped with a kappa geometry 

goniometer. The data were reduced by EvalCCD73 and then corrected for absorption.74 The 

solution and refinement was performed by SHELX.75 The structure was refined using full-

matrix least-squares based on F2 with all non hydrogen atoms anisotropically defined. 

Hydrogen atoms were placed in calculated positions by means of the “riding” model. 

4.7.3 Synthetic methods for ligands and copper complexes 

Synthesis of N1-(2-methoxyphenyl)-N2,N2-dimethylbenzene-1,2-diamine (NNOH), 32H: 

A 250 mL reaction vessel was charged with Pd2(dba)3 (1.36 g, 1.49 mmol), 

bis(diphenylphosphino)-ferrocene (DPPF) (1.65 g, 2.97 mmol), NaOtBu (9.84 g, 98 mmol) 

and toluene (100 mL) under a dinitrogen atmosphere. 2-Bromoanisole (13.65 g, 73 mmol) 

and 2-amino-N,N-dimethylaniline (9.95 g, 73 mmol) were added to the reaction mixture. The 

resulting brown solution was vigorously stirred for 2 days at 110 °C. The solution was then 

cooled to room temperature and filtered through Celite. Removal of the solvent yielded a 

black liquid which was then purified by flash chromatography (silica-gel, hexane/ EtOAc 

30:1) to afford the product as a light yellow oil. Yield: 14.90 g, 84%. 1H NMR (400 MHz, 

CDCl3): 7.37-7.46 (m, 2H), 7.08-7.14 (m, 1H), 6.95-7.05 (m, 1H), 6.84-6.95 (m, 5H), 3.92 (s, 

3H), 2.71 (s, 6H). 13C NMR (100 MHz, CDCl3): 148.9, 143.3, 137.3, 132.7, 123.6, 120.7, 

120.1, 119.8, 119.3, 115.3, 115.3, 110.6, 55.6, 43.9. HR-MS (ESI): calculated for 
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(C15H18N2O, M+H), 243.1497; found, 243.1499. Anal. Calcd for C15H18N2O : C , 74.35; H, 

7.49; N, 11.56. Found: C, 74.44; H, 7.43; N, 11.20. 

 

Synthesis of 2-(diphenylphosphino)-N-phenylaniline (NPH), 33H: 
nBuLi (100 mmol, 1.6 M in hexane) was slowly added to a solution of 2-bromo-N-

phenylbenzenamine (50 mmol, 12.40 g) in Et2O (200 mL) at -60 oC. The mixture was stirred 

for 2 h and warmed to ambient temperature and stirred for 16 h again. After cooling this 

solution to -60 oC, ClPPh2 (18.4 mL, 100 mmol) was added, and the resulting reaction 

mixture was stirred for 2h and warmed to room temperature again. After 16 h, the suspension 

was evaporated to dryness, redissolved in MeOH (500 mL), and acidified with concentrated 

HCl (20 mL). After stirring for 1 h, the solution was neutralized with an excess of Na2CO3 

(42.40 g, 400 mmol) and evaporated to dryness. The crude product was obtained by 

extraction with CH2Cl2 and further purified by flash chromatography (silica-gel, hexane/ 

EtOAc 50:1) to afford the product as a white solide. Yield: 15.37 g, 87%. 1H NMR (400 

MHz, CDCl3): 7.39-7.43 (m, 10H), 7.23-7.38 (m, 4H), 6.87-7.01 (m, 5H), 6.28 (d, J = 6.0 Hz, 

1H). 13C NMR (100 MHz, CDCl3):146.8, 146.6, 142.7, 135.4, 135.4, 134.6, 134.6, 133.8, 

133.6, 130.0, 129.2, 128.9, 128.7, 128.6, 124.5, 124.4, 121.4, 121.1, 121.0, 119.0, 116.6, 

116.6. 31P NMR (162 MHz, CDCl3): -18.95. HR-MS (ESI): calculated for (C24H20NP, M+H), 

354.1412; found, 354.1417. Anal. Calcd for C24H20NP : C , 81.57; H, 5.70; N, 3.96. Found: 

C, 81.74; H, 5.68; N, 3.86. 

 

Synthesis of N,N-bis(2-dimethylaminophenyl)methylamine (MeN2
MeN), 34: 

A THF solution (300 mL) of 2H (10.216 g, 40.0 mmol) was added to KH (1.845 g, 46.0 

mmol) by portion. The reaction mixture was stirred for 2 hours at room temperature. After 

MeI (6.529 g, 46.0 mmol) was added to the above solution and stirred for overnight at room 

temperature. After removal of the solvent, the residue was added 100 mL water, and 

extracted with 100 mL×3 CH2Cl2. Removal of the solvent yielded the crude product which 

was then purified by flash chromatography (silica-gel, hexane/ EtOAc 30:1) to afford the 

product as a light yellow oil. Yield: 8.151 g, 76%. 1H NMR (400 MHz, CDCl3): 6.99-7.05 (m, 

2H), 6.91-6.98 (m, 2H), 6.85-6.88 (m, 4H), 3.30 (s, 3H), 2.64 (s, 12H). 13C NMR (100 MHz, 

CDCl3): 146.4, 143.4, 123.8, 122.3, 122.3, 119.5, 42.8, 36.2. HR-MS (ESI): calculated for 

(C17H23N3, M+H), 270.1970; found, 270.1973. Anal. Calcd for C17H23N3 : C , 75.80; H, 8.61; 

N, 15.60. Found: C, 76.00; H, 8.77; N, 15.51. 
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Synthesis of 2-bromo-N-phenylbenzenamine, 35:76 

A 250 mL reaction vessel was charged with Pd2(dba)3 (1.36 g, 1.49 mmol), 

bis(diphenylphosphino)-ferrocene (DPPF) (1.65 g, 2.97 mmol), NaOtBu (9.84 g, 98 mmol) 

and toluene (100 mL) under a dinitrogen atmosphere. 2-Bromo-aniline (12.56 g, 73 mmol) 

and iodobenzene (14.89 g, 73 mmol) were added to the reaction mixture. The resulting brown 

solution was vigorously stirred for 3 days at 100 °C. The solution was then cooled to room 

temperature and filtered through Celite. Removal of the solvent yielded a black liquid which 

was then purified by flash chromatography (silica-gel, hexane) to afford the product as a 

colourless oil. Yield: 15.91 g, 88%. 1H NMR (400 MHz, CDCl3): 7.57 (dd, J = 8.0, 1.6 Hz, 

1H), 7.33-7.40 (m, 2H), 7.30 (dd, J = 8.4, 1.6 Hz, 1H), 7.16-7.23 (m, 3H), 7.06-7.11 (m, 1H), 

6.75-6.80 (m, 1H), 6.13 (br. s, 1H). 13C NMR (100 MHz, CDCl3): 141.5, 141.3, 132.9, 129.4, 

128.0, 122.6, 120.8, 120.2, 115.7, 112.1. HR-MS (ESI): calculated for (C12H10BrN, M+H), 

248.0075; found, 248.0083. 

 

Synthesis of [(MeN2N)Cu(PPh3)], 36: 

A THF solution (50 mL) of [(MeN2N)Li]2  (3.92 g, 7.50 mmol) was added to a THF 

suspension (100 mL) of [Cu(PPh3)Cl]4 (5.42 g, 3.75 mmol). The reaction mixture was stirred 

for 1 h at room temperature. After removal of solvent, the residue was extracted with benzene 

(200 mL), and then was concentrated to ca. 20 mL. Addition of pentane (100 mL) afforded a 

light yellow precipitate, which was filtered, washed with additional pentane, and dried in 

vacuo. Yield: 7.50 g (86 %). Diffusion of pentane into a benzene solution of 36 afforded 

yellow crystals suitable for X-ray analysis. 1H NMR (400 MHz, C6D6): 7.60 (d, J = 8.0 Hz, 

2H), 7.32 (t, J = 8.8 Hz, 6H), 7.17-7.11 (m, 3H), 7.03-6.93 (m, 10H), 6.80 (t, J = 7.2 Hz, 2H), 

2.49 (s, 12H). 13C NMR (100 MHz, C6D6): 150.8, 144.3, 134.2, 134.0, 133.6, 130.2, 129.0, 

128.9, 125.4, 119.2, 118.8, 115.5, 45.9. 31P NMR (162 MHz, C6D6): 9.2. Anal. Calcd for 

C34H35N3PCu : C, 70.39; H, 6.08; N, 7.24. Found: C, 70.06; H, 6.02; N, 7.10. 

 

Synthesis of [(NNO)Cu(PPh3)], 37: 

      nBuLi (11.2 mmol, 1.6 M in hexane) was slowly added to a THF solution (250 mL) of the 

ligand NNOH (2.580 g, 10.7 mmol) at room temperature. The reaction mixture was stirred 

for 1 h, and then this solution was added into a solution of [Cu(PPh3)Cl]4 (3.847 g, 2.7 mmo) 

in THF (25 mL). The resulting solution was stirred overnight and then evaporated in vacuum. 

The residue was extracted with benzene (100 mL), and then was filtered and concentrated to 

ca. 20 mL. Addition of pentane (100 mL) afforded a white precipitate, which was filtered, 
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washed with additional pentane, and dried in vacuo. Yield: 3.913 g (65%). Diffusion of 

pentane into a toluene solution of 37 afforded colourless crystals suitable for X-ray analysis. 
1H NMR (400 MHz, C6D6): 7.78 (d, J = 7.6 Hz, 1H), 7.32-7.43 (m, 6H), 7.22 (d, J = 8.0 Hz, 

1H), 6.92-7.12 (m, 13H), 6.86 (d, J = 8.0 Hz, 1H), 6.55 (t, J = 7.2 Hz, 1H), 3.28 (s, 3H), 2.50 

(s, 6H). 13C NMR (100 MHz, C6D6): 154.6, 154.1, 145.4, 140.0, 134.1, 133.9, 133.8, 133.4, 

130.2, 129.0, 128.9, 127.5, 126.4, 121.7, 120.0, 119.8, 113.2, 112.8, 111.2, 55.1, 48.0.  
31P NMR (162 MHz, C6D6): 9.424. Anal. Calcd for C73H72Cu2N4O2P2 (2[NNOCu(PPh3)]+ 

Toluene): C, 71.49; H, 5.92; N, 4.57. Found: C, 71.50; H, 5.84; N, 4.79. 

 

Synthesis of [(MeNMeN′N)Cu(PPh3)], 38: 

      nBuLi (16 mmol, 1.6 M in hexane) was slowly added to a THF solution (150 mL) of the 

ligand MeNMeN′NH (3.317 g, 16 mmol) at room temperature. The reaction mixture was stirred 

for 1 h, and then this solution was added into a solution of [Cu(PPh3)Cl]4 (3.516 g, 4 mmo) in 

THF (50 mL). The resulting solution was stirred overnight and then evaporated in vacuum. 

The residue was extracted with benzene (100 mL), and then was concentrated  to ca. 20 mL. 

Addition of pentane (100 mL) afforded a light yellow precipitate, which was filtered, washed 

with additional pentane, and dried in vacuo. Yield: 6.200 g (73%). Diffusion of pentane into a 

toluene solution of 38 afforded light yellow crystals suitable for X-ray analysis. 1H NMR 

(400 MHz, C6D6): 7.48-7.56 (m, 6H), 7.33 (t, J = 7.2 Hz, 1H), 6.94-7.06 (m, 11H), 6.55 (t, J 

= 7.6 Hz, 1H), 3.88 (t, J = 6.4 Hz, 2H), 2.94 (t, J = 6.8 Hz, 2H), 2.42 (s, 6H), 2.17 (s, 6H). 13C 

NMR (100 MHz, C6D6): 156.6, 140.3, 134.1, 133.9, 133.5, 130.2, 129.0, 128.9, 128.4, 119.3, 

109.6, 108.8, 64.9, 50.0, 47.6, 46.4. 31P NMR (162 MHz, C6D6): 8.543. Anal. Calcd for 

C30H35CuN3P: C, 67.71; H, 6.63; N, 7.90. Found: C, 67.90; H, 6.51; N, 7.47. 

 

Synthesis of [(HNN)Cu(PPh3)], 39: 

      nBuLi (15 mmol, 1.6 M in hexane) was slowly added to a THF solution (50 mL) of the 

ligand HNNH (3.185 g, 15 mmol) at room temperature. The reaction mixture was stirred for 1 

h, and then this solution was added into a solution of [Cu(PPh3)Cl]4 (5.419 g, 3.75 mmo) in 

THF (100 mL). The resulting solution was stirred for 0.5 h and then evaporated in vacuum. 

The residue was extracted with benzene (100 mL), and then was filtered and concentrated to 

ca. 20 mL. Addition of pentane (100 mL) afforded a light yellow precipitate, which was 

filtered, washed with additional pentane, and dried in vacuo. Yield: 5.880 g (73%). Diffusion 

of pentane into a toluene solution of 39 afforded colourless crystals suitable for X-ray 

analysis. 1H NMR (400 MHz, C6D6): 7.71-7.76 (m, 3H), 7.35-7.42 (m, 6H), 7.30 (t, J = 7.2 



 
Chapter Four 

154 
 

Hz, 2H), 7.06-7.10 (m, 1H), 6.89-7.02 (m, 11H), 6.58 (dt, J = 7.6, 1.2 Hz, 1H), 2.41 (s, 6H). 
13C NMR (100 MHz, C6D6): 156.1, 153.3, 141.1, 134.0, 133.9, 133.3, 132.9, 130.3, 129.3, 

129.1, 129.0, 127.7, 124.3, 120.1, 118.6, 113.4, 112.4, 47.9. 31P NMR (162 MHz, C6D6): 

9.19. Anal. Calcd for C32H30CuN2P: C, 71.56; H, 5.63; N, 5.22. Found: C, 71.75; H, 5.65; N, 

5.29. 

 

Synthesis of [(NP)Cu(PPh3)2], 40: 

      nBuLi (0.4 mmol, 1.6 M in hexane) was slowly added to a THF solution (10 mL) of the 

ligand NPH (32H) (0.142 g, 0.4 mmol) at room temperature. The reaction mixture was stirred 

for 1 h, and then this solution was added into a solution of [Cu(PPh3)Cl]4 (0.145 g, 0.1 mmol) 

and PPh3 (0.105 g, 0.1mmol) in THF (5 mL). The resulting solution was stirred overnight and 

then evaporated in vacuum. The residue was extracted with benzene (15 mL), and then was 

filtered and concentrated to ca. 2 mL. Addition of pentane (10 mL) afforded a yellow 

precipitate, which was filtered, washed with additional pentane, and dried in vacuo. Yield: 

0.300 g (80%). Diffusion of pentane into a THF solution of 40 afforded yellow crystals 

suitable for X-ray analysis. 1H NMR (400 MHz, CD2Cl2): 7.24-7.37 (m, 8H), 6.94-7.21 (m, 

34H), 6.89-6.94 (m, 3H), 6.82 (t, J = 7.6 Hz, 2H), 6.58 (t, J = 7.2 Hz, 1H), 6.16-6.29 (s, 1H). 
13C NMR (100 MHz, CD2Cl2): 164.1, 163.9, 157.0, 136.4, 134.5, 134.4, 134.2, 133.1, 132.9, 

131.7, 129.7, 128.9, 128.6, 128.6, 128.4, 128.3, 125.2, 118.5, 113.9, 113.3. 31P NMR (162 

MHz, CD2Cl2): -0.237, -13.606. Anal. Calcd for C64.6H59.4CuNO0.4P3 ([NPCu(PPh3)2+ 

0.4THF+0.6pentane]): C, 76.62; H, 5.91; N, 1.38. Found: C, 76.19; H, 5.66; N, 1.46. 

 

Synthesis of [(MeN2
MeN)Cu(CH3CN)PF6], 41: 

A CH3CN solution (25 mL) of MeN2
MeN (34) (1.347 g, 5 mmol) was added to a CH3CN 

solution (25 mL) of Cu(CH3CN)4PF6 (1.864 g, 5 mmol). The reaction mixture was stirred 

overnight at room temperature. The solution was concentrated to ca. 20 mL. Addition of THF 

(150 mL) afforded a white precipitate, which was filtered, washed with additional pentane, 

and dried in vacuo. Yield: 1.680 g (65%). Diffusion of pentane into a dichloromethane 

solution of 41 afforded colourless crystals suitable for X-ray analysis. 1H NMR (400 MHz, 

CD2Cl2): 7.47-7.52 (m, 2H), 7.42-7.47 (m, 2H), 7.30-7.38 (m, 4H), 3.37 (s, 3H), 3.00 (s, 6H), 

2.57 (s, 6H), 2.24 (s, 3H). 13C NMR (100 MHz, CD2Cl2): 148.4, 146.4, 128.5, 128.1, 125.2, 

122.6, 116.7, 51.9, 50.4, 49.5, 2.9. 31P NMR (162 MHz, CD2Cl2): -143.991 (septet). Anal. 

Calcd for C19H26CuF6N4P: C, 43.97; H, 5.05; N, 10.80. Found: C, 43.88; H, 4.99; N, 10.74. 
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Synthesis of [(MeN2N)Cu(PEt3)], 42: 

     A THF solution (50 mL) of PEt3 (2.360 g, 20 mmol) was added to a THF suspension (50 

mL) of CuCl (0.990 g, 10 mmol). The reaction mixture was stirred for 1h at room 

temperature. Then, a THF solution (30 mL) of [MeN2NLi]2 (02.631 g, 5 mmol) was added to 

the above solution and stirred for overnight. After removal of solvent, the residue was 

extracted with benzene (50 mL), and then was filtered and evaporated all the solvent, and 

again the product was extracted with pentane, the solution concentrated to ca. 20 mL, and 

stored in fridge (-20 oC) to recrytallize  to afforded a colourless need crystals, which was 

filtered, and dried in vacuo. Yield: 2.220 g (51%). Recrystallization of 42 in pentane at -20 oC 

afforded colourless crystals suitable for X-ray analysis. 1H NMR (400 MHz, C6D6): 7.24 (dd, 

J = 7.2, 0.8 Hz, 2H), 7.05-7.10 (m, 4H), 6.78 (dt, J = 8.0, 1.2 Hz, 2H), 2.65 (s, 12H), 0.98 (dq, 

JH-H = 7.6 Hz, JP-H = 7.6 Hz, 6H), 0.69 (dt, JH-H = 7.6 Hz, JP-H = 16.8 Hz, 9H) ppm. 13C NMR 

(100 MHz, C6D6): 150.9, 144.0, 125.0, 119.2, 118.7, 115.3, 45.8, 17.7, 17.5, 8.9, 8.9 ppm. 31P 

NMR (162 MHz, C6D6): -0.514 ppm. Anal. Calcd for C22H35CuN3P: C, 60.60; H, 8.09; N, 

9.64. Found: C, 60.85; H, 8.14; N, 9.53. 

 

Synthesis of [(MeN2N)Cu(OAc)], 43: 

     A THF solution (10 mL) of [MeN2NLi]2 (0.131 g, 0.25 mmol) was added to a THF 

suspension (2 mL) of Cu(OAc)2 (0.091 g, 0.5 mmol). The reaction mixture was stirred 

overnight at room temperature. After removal of solvent, the residue was extracted with 

CH2Cl2 (10 mL), and then was filtered and concentrated to ca. 3 mL. Addition of pentane (15 

mL) afforded a blue precipitate, which was filtered, washed with additional pentane, and 

dried in vacuo. Yield: 0.167 g (89%). Diffusion of pentane into a dichloromethane solution of 

43 afforded blue crystals suitable for X-ray analysis. Anal. Calcd for C18H23CuN3O2: C, 

57.35; H, 6.15; N, 11.15. Found: C, 57.59; H, 6.22; N, 11.36. 

 

Synthesis of [(MeN2N)CuCl], 44: 

     A THF solution (40 mL) of [MeN2NLi]2 (2.088 g, 8 mmol) was added to a THF suspension 

(40 mL) of Cu(COD)Cl (3.316 g, 16 mmol). The reaction mixture was stirred overnight at 

room temperature. After removal of solvent, the residue was extracted with CH2Cl2 (50 mL), 

and then was filtered and concentrated to ca. 10 mL. Addition of pentane (50 mL) afforded a 

blue precipitate, which was filtered, washed with additional pentane, and dried in vacuo. 

Yield: 2.287 g (81%). Diffusion of pentane into a toluene solution of 44 afforded blue 
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crystals suitable for X-ray analysis. Anal. Calcd for C16H20ClCuN3: C, 54.39; H, 5.71; N, 

11.89. Found: C, 54.18; H, 6.02; N, 11.56. 

 

Synthesis of [(MeN2N)Cu(OTf)], 45:  

     A trimethylsilyl triflate (0.111 g, 0.5 mmol) was added to a toluene (10 mL) solution of 44 

(0.141 g, 0.4 mmol).The reaction mixture was stirred overnight at room temperature. After 

removal of solvent, the residue was extracted with benzene (10 mL), and then the solution 

was concentrated to ca. 2 mL. Addition of pentane (10 mL) afforded the desired product, 

which was filtered, washed with additional pentane, and dried in vacuo. Yield: 0.150 g 

(80%). Diffusion of pentane into a toluene solution of 45 afforded red needle crystals suitable 

for X-ray analysis. Anal. Calcd for C17H20CuF3N3O3S: C, 43.73; H, 4.32; N, 9.00. Found: C, 

43.81; H, 4.21; N, 8.98. 

 

Synthesis of [(BDMAEE)Cu2I2] 

BDMAEE (120 mg, 0.75 mmol) was added to a dichloromethane suspension (7 mL) of 

CuI (143 mg, 0.75 mmol). After 3 min, CuI appeared to be dissolved. The reaction was 

stirred for 0.5 h, during which time a white powder started to precipitate. The solution was 

stirred overnight. The white solid was collected by filtration, washed with additional pentane, 

and dried in vacuo. Yiled: 122 mg (60%). From elemental analysis, the CuI and BDMAEE 

ratio is 2 : 1, Anal. Calcd for C8H20N2OI2Cu2: C, 17.76; H, 3.73; N, 5.18. Found: C, 17.74; H, 

3.67; N, 5.01. The white solid product is not soluble in THF, CH2Cl2, DMF, MeOH.  

The reaction between CuI and BDMAEE was additionally monitored by NMR in CD2Cl2 

before precipitation appeared (Figures 11 and 12). It appeared that a Cu-BDMAEE complex 

was formed in the solution. 

4.7.4 Crystallographic details  

(1) Complex 36 (rp600342) 

A total of 44261 reflections (-15 < h < 15, -16 < k < 16, -25 < l < 25) were collected at T = 

100(2) K in the range of 3.21 to 27.50o of which 6669 were unique (Rint = 0.0413); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.463 and –0.492 eA-3, 

respectively. The absorption coefficient was 0.829 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0346, wR(F2) = 0.0726 and a GOF = 1.083 
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(I>2σ(I)). C34H35CuN3P, Mw = 580.16, space group P21/c, Monoclinic, a = 12.1586(8), b = 

12.6802(16), c = 19.525(4) Å, α = 90°, β = 103.689(13)°, γ = 90°, V = 2924.8(7) Å3, Z = 4, 

ρcalcd = 1.318 Mg/m3. CCDC number 860876 contains the supplementary crystallographic 

data for this complex. The data can be obtained free of charge from the Cambridge 

Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.  

 

(2) Complex 37 (rp700187) 

A total of 12955 reflections (-15 < h < 15, -27 < k < 27, -17 < l < 17) were collected at T = 

140(2) K in the range of 2.14 to 27.69o of which 6701 were unique (Rint = 0.0352); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.500 and –0.706 eA-3, 

respectively. The absorption coefficient was 0.802 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0499, wR(F2) = 0.1261 and a GOF = 1.061 

(I>2σ(I)). C73H72Cu2N4O2P2, Mw = 1226.37, space group P21/n, Monoclinic, a = 11.969(6), 

b = 21.048(8), c = 13.447(4) Å, β = 116.03(2) °, V = 3044(2) Å3, Z = 2, ρcalcd = 1.338 Mg/m3. 

 

(3) Complex 38 (rp700492) 

A total of 9464 reflections (-12 < h < 13, -14 < k < 14, -17 < l < 17) were collected at T = 

140(2) K in the range of 2.44 to 27.68o of which 5717 were unique (Rint = 0.0468); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.632 and –0.812 eA-3, 

respectively. The absorption coefficient was 0.889 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0538, wR(F2) = 0.1506 and a GOF = 1.165 

(I>2σ(I)). C30H35CuN3P, Mw = 532.12, space group P-1, Triclinic, a = 9.998(5), b = 

11.276(4), c = 13.478(6) Å, α = 104.93(3) °, β = 102.89(3) °, γ = 104.48(2) °, V = 1352.8(10) 

Å3, Z = 2, ρcalcd = 1.306 Mg/m3. 

 

(4) Complex 39 (rp700013) 

A total of 11399 reflections (-14 < h < 14, -13 < k < 13, -31 < l < 31) were collected at T = 

140(2) K in the range of 2.63 to 27.67o of which 6099 were unique (Rint = 0.0497); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 
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atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.576 and –0.534 eA-3, 

respectively. The absorption coefficient was 0.908 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0562, wR(F2) = 0.1411 and a GOF = 1.002 

(I>2σ(I)). C32H30CuN2P, Mw = 537.09, space group P21/n, Monoclinic, a = 10.881(2), b = 

10.151(2), c = 24.022(5) Å, β = 93.20(3) °, V = 2649.2(9) Å3, Z = 4, ρcalcd = 1.347 Mg/m3. 

 

(5) Complex 40 (rp700611) 

A total of 23814 reflections (-17 < h < 17, -31 < k < 31, -21 < l < 21) were collected at T = 

140(2) K in the range of 2.10 to 27.74o of which 12259 were unique (Rint = 0.0776); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.432 and –0.702 eA-3, 

respectively. The absorption coefficient was 0.548 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0646, wR(F2) = 0.1449 and a GOF = 0.975 

(I>2σ(I)). C64.63H59.50CuNO0.38P3, Mw = 1012.58, space group P21/c, Monoclinic, a = 

13.492(4), b = 24.333(6), c = 16.310(3) Å, β = 100.370(14) °, V = 5267(2) Å3, Z = 4, ρcalcd = 

1.277 Mg/m3.  

 

(6) Complex 41 (rp700482) 

A total of 7195 reflections (-9 < h < 9, -23 < k < 24, -15 < l < 15) were collected at T = 

140(2) K in the range of 2.54 to 24.55o of which 3700 were unique (Rint = 0.0473); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.488 and –0.904 eA-3, 

respectively. The absorption coefficient was 1.110 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0692, wR(F2) = 0.1908 and a GOF = 1.039 

(I>2σ(I)). C19H26CuF6N4P, Mw = 518.95, space group P21/n, Monoclinic, a = 8.5040(17), b 

= 20.598(4), c = 12.908(3) Å, β = 97.91(3) °, V = 2239.5(8) Å3, Z = 4, ρcalcd = 1.539 Mg/m3.  

 

(7) Complex 42 (rp700378) 

A total of 81975 reflections (-16 < h < 16, -27 < k < 27, -28 < l < 28) were collected at T = 

100(2) K in the range of 3.38 to 30.03o of which 6764 were unique (Rint = 0.0545); MoKα 
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radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.415 and –0.386 eA-3, 

respectively. The absorption coefficient was 1.021 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0356, wR(F2) = 0.0659 and a GOF = 1.144 

(I>2σ(I)). C22H35CuN3P, Mw = 436.04, space group Pbca, Orthorhombic, a = 11.611(3), b = 

19.6963(13), c = 20.290(4) Å, V = 4640.1(15) Å3, Z = 8, ρcalcd = 1.248 Mg/m3. 

 

(8) Complex 43 (rp700103) 

A total of 3921 reflections (-16 < h < 16, -11 < k < 11, -15 < l < 20) were collected at T = 

140(2) K in the range of 2.57 to 27.79o of which 3921 were unique (Rint = 0.0000); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.686 and –1.366 eA-3, 

respectively. The absorption coefficient was 1.297 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0598, wR(F2) = 0.1870 and a GOF = 1.155 

(I>2σ(I)). C18H23CuN3O2, Mw = 376.93, space group P21/c, Monoclinic, a = 12.752(5), b = 

8.435(4), c = 15.840(5) Å, β = 90.86(2) °, V = 1703.6(12) Å3, Z = 4, ρcalcd = 1.470 Mg/m3. 

 

(9) Complex 44 (rp700107) 

A total of 7499 reflections (-17 < h < 17, -10 < k < 10, -21 < l < 21) were collected at T = 

140(2) K in the range of 2.47 to 27.71o of which 4236 were unique (Rint = 0.0380); MoKα 

radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.906 and –0.867 eA-3, 

respectively. The absorption coefficient was 1.319 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0527, wR(F2) = 0.1509 and a GOF = 1.177 

(I>2σ(I)). C18.50H26ClCuN3, Mw = 389.41, space group P21/n, Monoclinic, a = 13.718(6), b = 

8.226(2), c = 16.531(5) Å, β = 92.79(2) °, V = 1863.2(11) Å3, Z = 4, ρcalcd = 1.388 Mg/m3.  

 

(10) Complex 45 (rp700485) 

A total of 4270 reflections (-8 < h < 8, -19 < k < 19, -25 < l < 25) were collected at T = 

140(2) K in the range of 2.76 to 27.65o of which 2365 were unique (Rint = 0.0751); MoKα 
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radiation (λ= 0.71073 Å). The structure was solved by the direct methods. All non-hydrogen 

atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized 

positions. The residual peak and hole electron densities were 0.782 and –1.433 eA-3, 

respectively. The absorption coefficient was 1.230 mm-1. The least squares refinement 

converged normally with residuals of R(F) = 0.0646, wR(F2) = 0.1858 and a GOF = 1.165 

(I>2σ(I)). C17H20CuF3N3O3S, Mw = 466.96, space group Pnma, Orthorhombic, a = 6.961(4), 

b = 14.770(5), c = 19.704(7) Å, V = 2025.8(15) Å3, Z = 4, ρcalcd = 1.531 Mg/m3.  

4.7.5 General procedures for Tables 3, 5, 6 and Scheme 6 

A mixture of Cu catalyst (quantity shown in the corresponding table), BDMAEE or 

TMEDA (quantity shown in the corresponding table), tBuONa (quantity shown in the 

corresponding table), alkyl halide (0.6 mmol) and azole (0.5 mmol) was placed in a vial and 2 

mL of toluene was added. The mixture was heated under N2 during 16 h (temperature shown 

in the corresponding table). The reaction mixture was then cooled to room temperature, 

quenched with water (15 mL) and 1 mL of 1M HCl, extracted with CH2Cl2 (3 times, 10 mL 

each), dried over Na2SO4, filtered, and subjected to GC analysis. 60 μL of dodecane was used 

as an internal standard.  

4.7.6 General procedures for Table 4 

A mixture of [(MeN2N)Cu(PPh3)] (87 mg, 0.15 mmol), BDMAEE (24 mg, 0.15 mmol) 
tBuONa (173 mg, 1.8 mmol), Alkyl-X (1.8 mmol) and azole (1.5 mmol) was placed in a vial 

and 6 mL of toluene was added. Additional CuI (57 mg, 0.3 mmol) and BDMAEE (total 96 

mg, 0.6 mmol) were added for coupling of alkyl-Br. The mixture was heated under N2 during 

16h at 80 oC (100 oC for alkyl-Br). The reaction mixture was then cooled to room 

temperature, quenched with 15 mL of water and 1 mL of 1M HCl, extracted with CH2Cl2 (3 

times, 20 mL each), dried over Na2SO4, filtered, and finally evaporated under a reduced 

pressure. The residue was purified by flash chromatography on silica-gel. 

4.7.7 Stereochemical assignment of ring-closed product (Scheme 6, eq. 2)                                              
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2-((2-methylcyclopentyl)methyl)benzoxazole (4)  (108 mg, 0.5 mmol, major and minor 

ratio is 3.3 : 1 determined by 1H NMR and 3.4 : 1 determined by GC) obtained from the 

reaction of benzoxazole coupling with 6-iodo-1heptene (scheme 6) was hydrolyzed using 

ZnCl2 in 14% HCl aqueous and Ethanol mixture.44  The major and minor hydrolysis products 

ratio is 3.3 : 1 determined by 1H NMR. The 1H and 13C NMR of minor product are in good 

agreement with the reported data of 2-(trans-2-methylcyclopentyl)acetic acid,77 which assign 

trans and cis isomers of 2-((2-methylcyclopentyl)methyl)benzoxazole ratio is 1:3.3.  

2-(2-methylcyclopentyl)acetic acid: 1H NMR (400 MHz, CDCl3): 11.40 (br, 1H), 2.52 (dd, 

J = 14.8, 4.8 Hz, 0.23H, minor), 2.41 (dd, J = 14.4, 6.0 Hz, 0.77H, major), 2.35-2.04 (m, 

2.54H), 2.00-1.17 (m, 6.46H), 0.99 (d, J = 6.8 Hz, 0.69H, minor), 0.83 (d, J = 6.8 Hz, 2.31H, 

major) ppm.     
13C NMR (100 MHz, CDCl3) major: 180.4, 39.4, 36.0, 35.4, 33.1, 30.0, 22.5, 15.1 ppm; 

minor: 180.4, 43.7, 40.4, 39.0, 34.3, 32.3, 23.1, 18.9 ppm. 

4.7.8 Detailed descriptions for products in Table 4 

 

2-Cyclopentylbenzoxazole  (Table 3, entry 7)78:  

Eluated from the column with hexane-diethyl ether (20:1) in 80% yield as a yellow liquid.  
1H NMR (400 MHz, CDCl3): 7.69-7.64 (m, 1H), 7.48-7.45 (m, 1H), 7.31-7.26 (m, 2H), 3.44-

3.32 (m, 1H), 2.25-2.12 (m, 2H), 2.10-1.99 (m, 2H), 1.91-1.79 (m, 2H), 1.79-1.67 (m, 2H). 
13C NMR (100 MHz, CDCl3): 170.5, 150.7, 141.3, 124.2, 123.9, 119.4, 110.2, 38.8, 31.3, 

25.6. 

HRESI-MS: calculated for (C12H14NO, M+H), 188.1075; found, 188.1076. 

 

 

2-Cycloheptylbenzoxazole (Table 4, entry 1)78:  

Eluated from the column with hexane-diethyl ether (20:1) in 73% yield as a yellow liquid.  
1H NMR (400 MHz, CDCl3): 7.69-7.62 (m, 1H), 7.46-7.40 (m, 1H), 7.27-7.20 (m, 2H), 3.15-

3.08 (m, 1H), 2.20-2.13 (m, 2H), 1.97-1.86 (m, 2H), 1.84-1.73 (m, 2H), 1.68-1.50 (m, 6H). 
13C NMR (100 MHz, CDCl3): 171.2, 150.5, 141.1, 124.1, 123.8, 119.4, 110.0, 39.6, 32.1, 

28.2, 26.1. 

HRESI-MS: calculated for (C14H18NO, M+H), 216.1388; found, 216.1397. 



 
Chapter Four 

162 
 

 

2-Cycloheptylbenzoxazole (Table 4, entry 2)78:  

Eluated from the column with hexane-diethyl ether (20:1) in 75% yield as a yellow liquid.  
1H NMR (400 MHz, CDCl3): 7.67-7.64 (m, 1H), 7.47-7.41 (m, 1H), 7.28-7.22 (m, 2H), 3.21-

3.15 (m, 1H), 2.16-2.09 (m, 2H), 2.02-1.94 (m, 2H), 1.80-1.69 (m, 2H), 1.67-1.49 (m, 8H). 
13C NMR (100 MHz, CDCl3): 171.4, 150.5, 141.1, 124.1, 123.8, 119.4, 110.1, 38.1, 29.6, 

26.8, 25.9, 25.0. 

HRESI-MS: calculated for (C15H20NO, M+H), 230.1545; found, 230.1543. 

 

 

2-Isopropylbenzoxazole (Table 4, entry 3)79:  

Eluated from the column with pentane-diethyl ether (20:1) in 81% yield as a yellow liquid.  
1H NMR (400 MHz, CDCl3): 7.72-7.66 (m, 1H), 7.51-7.46 (m, 1H), 7.32-7.27 (m, 2H), 3.31-

3.19 (m, 1H), 1.47 (d, J = 6.8 Hz, 6H). 
13C NMR (100 MHz, CDCl3): 171.2, 150.6, 141.2, 124.3, 123.9, 119.5, 110.2, 28.8, 20.2. 

HRESI-MS: calculated for (C10H12NO, M+H), 162.0919; found, 162.0920. 

 

 

2-(3-Pentyl)benzoxazole (Table 4, entry 4 or 10):  

Eluated from the column with hexane-diethyl ether (20:1) in 71% yield (starting from 3-

iodopentane) and 60% yield (starting from 3-bromopentane) as a yellow liquid.  
1H NMR (400 MHz, CDCl3): 7.70-7.65 (m, 1H), 7.48-7.43 (m, 1H), 7.29-7.22 (m, 2H), 2.90-

2.82 (m, 1H), 1.95-1.73 (m, 4H), 0.89 (t, J = 7.2 Hz, 6H). 
13C NMR (100 MHz, CDCl3): 169.7, 150.5, 141.2, 124.1, 123.8, 119.5, 110.2, 43.3, 26.1, 

11.7. 

HRESI-MS: calculated for (C12H16NO, M+H), 190.1232; found, 190.1235. 
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2-(3-Nonyl)benzoxazole (Table 4, entry 5):  

Eluated from the column with hexane-diethyl ether (20:1) in 81% yield as a yellow liquid.  
1H NMR (400 MHz, CDCl3): 7.70-7.65 (m, 1H), 7.49-7.43 (m, 1H), 7.30-7.23 (m, 2H), 2.98-

2.89 (m, 1H), 1.93-1.70 (m, 4H), 1.32-1.22 (m, 8H), 0.91(t, J = 7.2 Hz, 3H), 0.85 (t, J = 7.2 

Hz, 3H). 
13C NMR (100 MHz, CDCl3): 169.9, 150.6, 141.2, 124.1, 123.8, 119.5, 110.2, 41.8, 33.2, 

31.6, 29.1, 27.2, 26.6, 22.5, 13.9, 11.7.  

HRESI-MS: calculated for (C16H24NO, M+H), 246.1858; found, 246.1860. 

 

 

2-(5-Nonyl)benzoxazole (Table 4, entry 6)44:  

Eluated from the column with hexane-diethyl ether (20:1) in 82% yield as a yellow liquid.  
1H NMR (400 MHz, CDCl3): 7.70-7.66 (m, 1H), 7.49-7.45 (m, 1H), 7.30-7.23 (m, 2H), 3.03-

2.94 (m, 1H), 1.91-1.79 (m, 2H), 1.79-1.68 (m, 2H), 1.36-1.14 (m, 8H), 0.83 (t, J = 6.8 Hz, 

6H).  
13C NMR (100 MHz, CDCl3): 170.1, 150.5, 141.1, 124.1, 123.8, 119.5, 110.2, 40.2, 33.3, 

29.5, 22.5, 13.8. 

HRESI-MS: calculated for (C16H24NO, M+H), 246.1858; found, 246.1862. 

 

 

2-{2-(4-phenyl)butyl}benzoxazole (Table 4, entry 7):  

Eluated from the column with hexane-diethyl ether (20:1) in 76% yield as a yellow liquid.  
1H NMR (400 MHz, CDCl3): 7.75-7.70 (m, 1H), 7.54-7.48 (m, 1H), 7.37-7.25 (m, 4H), 7.23-

7.17 (m, 3H), 3.25-3.13 (m, 1H), 2.76-2.65 (m, 2H), 2.38-2.25 (m, 1H), 2.10-1.97 (m, 1H), 

1.50 (d, J = 7.2 Hz, 3H).  
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13C NMR (100 MHz, CDCl3): 170.3, 150.6, 141.4, 141.2, 128.4, 128.3, 125.9, 124.4, 124.0, 

119.6, 110.3, 36.5, 33.6, 33.3, 18.4. 

HRESI-MS: calculated for (C17H18NO, M+H), 252.1388; found, 252.1396. 

 

 

2-Cyclobutylbenzoxazole (Table 4, entry 9)78:  

Eluated from the column with pentane-diethyl ether (20:1) in 57% yield as a yellow liquid.  
1H NMR (400 MHz, CDCl3): 7.71-7.64 (m, 1H), 7.51-7.45 (m, 1H), 7.32-7.25 (m, 2H), 3.85-

3.72 (m, 1H), 2.63-2.40 (m, 4H), 2.22-2.00 (m, 2H).  
13C NMR (100 MHz, CDCl3): 169.4, 150.8, 141.4, 124.4, 124.0, 119.6, 110.3, 33.4, 27.0, 

18.8. 

HRESI-MS: calculated for (C11H12NO, M+H), 174.0919; found, 174.0915. 

 

 

2-Cyclohexylbenzoxazole (Table 4, entry 8)78:  

Eluated from the column with pentane-diethyl ether (20:1) in 66% yield as a yellow liquid.  
1H NMR (400 MHz, CDCl3): 7.70-7.65 (m, 1H), 7.50-7.43 (m, 1H), 7.32-7.24 (m, 2H), 3.00-

2.91 (m, 1H), 2.19-2.12 (m, 2H), 1.90-1.84 (m, 2H), 1.76-1.64 (m, 3H), 1.50-1.25 (m, 3H). 
13C NMR (100 MHz, CDCl3): 170.4, 150.5, 141.3, 124.3, 123.9, 119.6, 110.2, 37.9, 30.5, 

25.8, 25.6. 

HRESI-MS: calculated for (C13H16NO, M+H), 202.1232; found, 202.1236. 

 

 

2-Cyclopentyl-5-methylbenzoxazole (Table 4, entry 11):  

Eluated from the column with hexane-diethyl ether (20:1) in 63% yield as a yellow liquid.  
1H NMR (400 MHz, CDCl3): 7.42 (s, 1H), 7.29 (d, J = 8.4 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 

3.35-3.27 (m, 1H), 2.41 (s, 3H), 2.12-2.09 (m, 2H), 2.01-1.95 (m, 2H), 1.88-1.74 (m, 2H), 

1.74-1.66 (m, 2H).  
13C NMR (100 MHz, CDCl3): 170.4, 148.8, 141.3, 133.5, 125.1, 119.3, 109.4, 38.7, 31.2, 

25.5, 21.3. 

HRESI-MS: calculated for (C13H16NO, M+H), 202.1232; found, 202.1242. 
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2-Cyclopentyl-6-methylbenzoxazole (Table 4, entry 12):  

Eluated from the column with hexane-diethyl ether (20:1) in 62% yield as a yellow liquid.  
1H NMR (400 MHz, CDCl3): 7.52 (d, J = 8.0 Hz, 1H), 7.26 (s, 1H), 7.09 (d, J = 8.0 Hz, 1H), 

3.39-3.30 (m, 1H), 2.45 (s, 3H), 2.20-2.09 (m, 2H), 2.08-1.97 (m, 2H), 1.90-1.77 (m, 2H), 

1.77-1.65 (m, 2H).  
13C NMR (100 MHz, CDCl3): 170.0, 151.1, 139.1, 134.5, 125.0, 118.8, 110.4, 38.8, 31.3, 

25.6, 21.6. 

HRESI-MS: calculated for (C13H16NO, M+H), 202.1232; found, 202.1233. 

 

 

2-Cyclopentyl-5-methoxylbenzoxazole (Table 4, entry 13):  

Eluated from the column with hexane-diethyl ether (20:1 to 10:1) in 64% yield as a yellow 

liquid.  
1H NMR (400 MHz, CDCl3): 7.32 (d, J = 8.8 Hz, 1H), 7.16 (d, J = 2.8 Hz, 1H), 6.86 (dd, J = 

8.0, 2.4 Hz, 1H), 3.82 (s, 3H), 3.39-3.28 (m, 1H), 2.20-2.08 (m, 2H), 2.07-1.94 (m, 2H), 1.90-

1.77 (m, 2H), 1.77-1.65 (m, 2H).  
13C NMR (100 MHz, CDCl3): 171.4, 156.9, 145.4, 142.1, 112.5, 110.2, 102.8, 55.9, 38.9, 

31.3, 25.6. 

HRESI-MS: calculated for (C13H16NO2, M+H), 218.1181; found, 218.1190. 

 

 

5-Chloro-2-cyclopentylbenzoxazole (Table 4, entry 14):  

Eluated from the column with hexane-diethyl ether (30:1) in 73% yield as a yellow liquid.  
1H NMR (400 MHz, CDCl3): 7.63 (d, J = 2.0 Hz, 1H), 7.38 (d, J = 8.8 Hz, 1H), 7.24 (dd, J = 

8.8, 2.0 Hz, 1H), 3.41-3.30 (m, 1H), 2.22-2.10 (m, 2H), 2.07-1.95 (m, 2H), 1.92-1.79 (m, 

2H), 1.79-1.66 (m, 2H).  
13C NMR (100 MHz, CDCl3): 172.0, 149.2, 142.3, 129.3, 124.4, 119.4, 110.8, 38.8, 31.2, 

25.6. 

HRESI-MS: calculated for (C12H13ClNO, M+H), 222.0686; found, 222.0697. 
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5-Bromo-2-cyclopentylbenzoxazole (Table 4, entry 15):  

Eluated from the column with hexane-diethyl ether (20:1) in 69% yield as a yellow liquid.  
1H NMR (400 MHz, CDCl3): 7.78 (d, J = 2.0 Hz, 1H), 7.38 (dd, J = 8.4, 2.0 Hz, 1H), 7.33 (d, 

J = 8.8 Hz, 1H), 3.41-3.30 (m, 1H), 2.22-2.09 (m, 2H), 2.07-1.95 (m, 2H), 1.91-1.78 (m, 2H), 

1.78-1.65 (m, 2H).  
13C NMR (100 MHz, CDCl3): 171.9, 149.8, 143.0, 127.3, 122.5, 116.6, 111.4, 38.8, 31.3, 

25.7. 

HRESI-MS: calculated for (C12H13BrNO, M+H), 266.0180; found, 266.0175. 

 

 

2-cyclopentyl-5-phenylbenzoxazole (Table 4, entry 16):  

Eluated from the column with hexane-diethyl ether (20:1) in 64% yield as a yellow liquid.  
1H NMR (400 MHz, CDCl3): 7.89 (s, 1H), 7.62 (d, J = 7.2 Hz, 2H), 7.52 (s, 2H), 7.46 (t, J = 

7.6 Hz, 2H), 7.36 (t, J = 7.2 Hz, 1H), 3.45-3.37 (m, 1H), 2.20-2.18 (m, 2H), 2.12-2.04 (m, 

2H), 1.98-1.82 (m, 2H), 1.77-1.66 (m, 2H).  
13C NMR (100 MHz, CDCl3): 171.2, 150.3, 142.0, 141.2, 137.8, 128.8, 127.4, 127.0, 123.8, 

118.0, 110.2, 38.9, 31.3, 25.7. 

HRESI-MS: calculated for (C18H18NO, M+H), 264.1388; found, 264.1389. 

 

 

2-(Tert-butyl)benzoxazole (Scheme 6, eq. 1)80:  

Eluated from the column with pentane-diethyl ether (20:1) in 23% yield as a yellow liquid.  
1H NMR (400 MHz, CDCl3): 7.71-7.67 (m, 1H), 7.51-7.45 (m, 1H), 7.33-7.25 (m, 2H), 1.47 

(s, 9H). 
13C NMR (100 MHz, CDCl3): 173.4, 150.8, 141.2, 124.3, 123.9, 119.7, 110.2, 34.1, 28.4. 

HRESI-MS: calculated for (C11H14NO, M+H), 176.1075; found, 176.1083. 
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2-((2-methylcyclopentyl)methyl)benzoxazole (Scheme 6,  eq. 2):  

Eluated from the column with hexane-diethyl ether (20:1) in 62% yield as a yellow liquid.  
1H NMR (400 MHz, CDCl3): 7.70-7.64 (m, 1H), 7.51-7.46 (m, 1H), 7.32-7.26 (m, 2H), 3.09 

(dd, J = 14.4, 4.8 Hz, 0.23H, minor), 2.98 (dd, J = 15.2, 6.8 Hz, 0.77H, major), 2.79 (dd, J = 

15.2, 9.2 Hz, 0.77H, major), 2.76 (dd, J = 14.4, 8.8 Hz, 0.23H, minor), 2.56-2.42 (m, 0.77H, 

major), 2.23-2.08 (m, 0.77H, major), 1.87-1.68 (m, 2.46H), 1.66-1.51 (m, 1.54H, major), 

1.51-1.29 (m, 2H), 1.31-1.17 (m, 0.46H), 1.00 (d, J =6.8 Hz, 0.69H, minor), 0.93 (d, J =7.2 

Hz, 2.31H, major). 
13C NMR (100 MHz, CDCl3) major: 167.4, 150.7, 141.4, 124.2, 123.9, 119.4, 110.1, 41.2, 

36.2, 33.0, 29.9, 29.6, 22.4, 15.1; minor: 167.4, 150.7, 141.4, 124.2, 123.9, 119.4, 110.1, 

45.6, 40.5, 34.4, 33.2, 32.3, 23.1, 19.0. 

HRESI-MS: calculated for (C14H18NO, M+H), 216.1388; found, 216.1383. 
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The Ni pincer complex [(MeN2N)NiCl] (1) developed by our group showed high efficiency 

for cross coupling of non-activated and functionalized alkyl halides with alkyl Grignard 

reagents. One limitation of the reactions is the low efficiency for the coupling of secondary 

alkyl halides. Subsequently, the development of Kumda-type alkyl-alkyl cross-coupling was 

the starting point of this Ph.D thesis. Thirteen well-defined Ni(II) complexes were 

synthesized and structurally characterized. Many of these complexes are active for Kumada 

coupling of non-activated secondary alkyl halides. Using these complexes, it was possible to 

study the influence of coordination number, geometry, and spin state on the efficiency of 

catalysis. Another important outcome of this work is the development of two excellent new 

catalysts [(HNN)Ni(PPh3)Cl] (24) and [(HNN)Ni(2,4-lutidine)Cl] (27) for alkyl-alkyl Kumada 

coupling of non-activated secondary alkyl halides. The origin of their high efficiency was 

shown to be related to the steric properties of the ligands and the access to a transmetalation 

pathway. There are only a handful of catalysts known for alkyl-alkyl coupling of non-

activated secondary alkyl halides, let alone well-defined catalysts. This work significantly 

expanded the available pool of catalysts for this challenging methodology, which is highly 

desirable in organic synthesis. The structure-activity study is an important step toward the 

understanding of this coupling reaction. 

 In an attempt to find a more synthetically useful pathway to the formation of tertiary and 

quaternary carbon centers, the reverse methodology was considered as an alternative. An  

efficient method for the cross-coupling of alkyl halides and tosylates with secondary and 

tertiary alkyl Grignard reagents was subsequently developed. Simple conditions such as a 

small loading of CuCl at room temperature in THF, and with no additives, are the big 

advantage of this methodology. It also shows broad substrate scope and good functional 

group tolerance.   

In recent years, copper catalysts have become a promising area for C-H functionalization 

and cross-coupling reactions. In the last part of my thesis, ten copper complexes with newly 

designed ligands were synthesized and fully characterized. They were screened to test the 

alkylation of benzoxazoles by using secondary alkyl halides, which are desirable secondary 

alkyl electrophiles. The best catalyst is the copper(I) complex  [(MeN2N)Cu(PPh3)] (36) which 

contains the bis-(amino)amide (MeN2N) ligand. The reactions are promoted by bis[2-(N,N-

dimethylamino)ethyl] ether. 

As described here, some progress has been made in creating tertiary and quaternary carbon 

centers by nickel and copper-catalyzed cross-coupling reactions of alkyl eletrophiles during 

the course of my thesis. However, there are several issues that still remain to be resolved: (1) 
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Although significant progress of Kumada type alkyl-alkyl cross-couplings has been made, 

coupling of alkyl chlorides is less studied. Alkyl chlorides are desirable alkylation reagents 

because of their wide availability and low cost relative to their iodo and bromo analogues, 

however they are less reactive due to the strong C-Cl bond compared to C-Br and C-I bonds. 

Thus, high functional group-tolerant Kumada couplings of non-activated alkyl chlorides 

should be developed. (2) As was found in the coordination chemistry of a series of bidentate 

and tridentate ligands, nickel and copper complexes with different coordination number, 

geometry, oxidation states (copper chemistry) and catalytic efficiency can be produced 

depending on the reaction conditions. Based on this observation, it will be advantageous to 

use well-defined catalysts for mechanistic investigations. (3) I develop three pathways to 

create tertiary and quaternary carbon centers by nickel and copper-catalyzed cross-coupling 

reactions. Application of this chemistry to catalysts possessing chiral ligands could result in 

formation of desired enantioselective products, and should be explored. (4) With regards to 

C-H functionalization by copper catalysis, significant improvements must be made to the 

catalytic system in order to broaden the scope of the substrates. 
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