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Abstract
This thesis is devoted to the design and analysis of algorithms for scheduling problems. These

problems are ubiquitous in the modern world. Examples include the optimization of local

transportation, managing access to concurrent resources like runways at airports and efficient

execution of computing tasks on server systems. Problem instances that appear in the real

world often are so large and complex that it is not possible to solve them “by hand”. This rises

the need for strong algorithmic approaches, which motivates our focus of study.

In this work we consider two types of scheduling problems which gained in importance due to

recent technological advances. The first problem comes from the avionics industry and deals

with scheduling periodically recurring tasks in a parallel computer network on a plane: Each

task comes with a period p and execution time c, and needs to use a processor exclusively for

c time units every p time units. The scheduling problem is to assign starting offsets for the

first execution of the tasks so that no collision occurs. The second problem is a scheduling

problem that arises in highly parallelized processing environments with a shared common

resource, e.g., modern multi-core computer architectures. In addition to classical makespan

minimization problems such as scheduling on identical machines, each job has an additional

resource constraint. The scheduler must ensure that at no time, the accumulated requirement

of all active jobs at that time exceeds a given limit.

For both types of problems we study their algorithmic complexity in a mathematical, rigorous

way by designing approximation algorithms and establishing inapproximability results. We

thereby give a characterization of the approximation landscape of these problems.

We also consider a more practical perspective: For an engineer from the industry, a rigorous

proof that an algorithm finds a solution of certain guaranteed quality for all possible kinds

of problem instances is usually not that relevant. It is rather of interest to find “good enough”

or even optimal solutions for particular instances that actually appear in the real world in

“reasonable” time. We show that structural insights gained in the more theoretical process

of designing approximation algorithms can be highly beneficial also for obtaining practical

results. In particular, we develop integer programming formulations for the avionics problem

based on structural properties revealed in the design of approximation algorithms. These

formulations lead to strong tools that, for the first time, enable to algorithmically solve real-

world instances from our industrial partner.

Keywords: scheduling; real-time scheduling; periodic maintenance problem; resource con-

strained scheduling; approximation algorithms; offline algorithms; online algorithms; integer

programming; mathematical modeling
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Zusammenfassung
In dieser Arbeit befassen wir uns mit dem Entwurf und der Analyse von Algorithmen zum

Lösen von Schedulingproblemen. Derartige Probleme sind allgegenwärtig in der modernen

Welt. Beispielsweise gehören die Erstellung von Fahrplänen für den öffentlichen Nahverkehr

oder das effiziente Ausführen von Berechnungen in Computern oder Rechenzentren allesamt

zur Klasse der Schedulingprobleme. Die dabei auftretenden Probleminstanzen sind in der

Regel derart komplex, dass es nicht möglich ist, sie “von Hand” zu lösen. Deshalb ist es

notwendig, algorithmische Methoden zum Lösen dieser Probleme zu entwickeln.

Diese Arbeit beschäftigt sich mit dem Entwurf solcher Algorithmen für zwei Arten von Schedu-

lingproblemen, die in letzter Zeit aufgrund technologischen Fortschritts an Bedeutung gewon-

nen haben. Die erste Problemklasse stammt aus der Luftfahrtindustrie. Hier geht es darum,

periodisch auftretende Tasks in einem parallelen Rechnernetzwerk eines Flugzeugs auszufüh-

ren: Die Aufgabe des Schedulingalgorithmus ist es, jeder Task einen Start-Offset zuzuordnen,

so dass Kollisionen vermieden werden. Die zweite Klasse von Schedulingproblemen tritt in

hoch parallelisierten Rechnerumgebungen auf, wie beispielsweise in modernen Mehrkern-

Computerarchitekturen. Zusätzlich zu klassischen Makespan-Minimierungsproblemen be-

sitzt jeder Job einen gewissen Ressourcenbedarf. Der Scheduler muss sicherstellen, dass der

gesamte Ressourcenbedarf der Jobs, welche zu einem bestimmten Zeitpunkt aktiv sind, ein

vorgegebenes Limit nicht überschreitet.

Wir untersuchen die algorithmische Komplexität beider Problemklassen. Dazu entwickeln wir

Approximationsalgorithmen und beweisen Inapproximierbarkeitsresultate. Auf diese Weise

liefern wir eine Charakterisierung der Approximierbarkeit der Probleme.

Für einen Ingenieur in der Industrie ist ein mathematisch korrekter Beweis, dass ein bestimm-

ter Algorithmus immer, für jede erdenkliche Probleminstanz, eine Lösung gewisser Güte

erreicht, von nachrangiger Bedeutung. Vielmehr ist er daran interessiert, für seine konkret

auftretenden Probleminstanzen eine gute oder sogar optimale Lösung zu finden. Wir werden

zeigen, wie Wissen über die Struktur der Probleme, welches wir bei der theoretischen Analyse

erworben haben, auch für diese praktischere Sicht hilft. Für die Probleme aus der Luftfahrtin-

dustrie entwickeln wir ganzzahlige Programme, welche auf diesen strukturellen Eigenschaften

des Problems basieren. Auf diese Weise erhalten wir mächtige Werkzeuge, um erstmalig die

Probleminstanzen unseres Industriepartners zu lösen.

Schlagworte: Scheduling; Echtzeitscheduling; Periodic Maintenance Problem; Resource Cons-

trained Scheduling; Approximationsalgorithmen; Offlinealgorithmen; Onlinealgorithmen;

Ganzzahlige Programmierung; Mathematische Modellierung
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1 Introduction

Scheduling problems are ubiquitous in the modern world. Timetables for trains and buses

in public transportation networks need to be created in such a way that passengers can

travel between places quickly and without unnecessary waiting times. Flights at airports

need to be scheduled so that limited resources of airports (e.g., runways) are used efficiently

and the throughput (number of passengers/planes) is maximized. The phases of traffic

lights need to be coordinated so that average traveling times are minimized. Jobs and tasks

need to be processed on computers with parallel processing cores. All these problems are

scheduling problems. Often, problem instances that appear in the real world are so large

and complex that it is not possible to solve them “by hand”. This rises the need for strong

algorithmic approaches to these scheduling problems. This thesis is devoted to the study of

such algorithms for several scheduling problems which gained in importance due to recent

technological advances. These problems are typically formulated as optimization problems:

Find a feasible scheduling solution minimizing the usage of certain resources (machines,

processors, workers, etc.). What characterizes a good algorithm in this context? Clearly, an

algorithm that computes an optimal solution (i.e., a solution that minimizes the resources

used) efficiently is highly preferable. Unfortunately, this perfect goal is usually not achievable.

Under standard complexity theoretical assumptions, these problems are hard and there is

no hope for an algorithm that always finds an optimal solution for these problems efficiently.

Instead we resort to developing algorithms that always find a “near optimal” solution efficiently,

even for the worst problem instances. These kinds of algorithms are called approximation

algorithms.

From a more practical perspective, the characteristics of a good algorithm might differ. For

an engineer from the industry, a rigorous proof that an algorithm finds a solution of certain

guaranteed quality for all possible kinds of problem instances is usually not that relevant. It

is rather of interest to find “good enough” or even optimal solutions for particular instances

that actually matter for the concrete applications, in ”reasonable“ time. Although the main

focus of this thesis is on approximation algorithms, we also discuss the latter kind of more

practically oriented algorithms. In particular, we will see examples where structural insights

1



Chapter 1. Introduction

gained in the theoretical and rigorous process of designing approximation algorithms can be

extremely beneficial also for obtaining the latter kind of results.

In this thesis we study two types of scheduling problems. The first one is a real-time scheduling

problem from the avionics industry. The second one is a scheduling problem that arises in

highly parallelized environments with a shared common resource, e.g., modern computer

architectures. We first introduce both problem types in more detail and then discuss the

outline of this document.

1.1 Real-Time Avionics Optimization

In real-time scheduling problems, one is typically given a set of tasks and has to ensure that

all tasks can be processed in time without violating their deadlines. Often these tasks are of

periodic nature: they emit jobs periodically, and each of these jobs needs to finish execution

before its (relative) deadline. Real-time scheduling is a very broad and active area of research.

We refer to part four of a book by Leung et al. [LKA04] for an extensive introduction. Some

variants are well understood, while fundamental questions still remain open. For more details,

see also a recent survey paper by Davis and Burns [DB11].

Here we are concerned with a special type of real-time scheduling problem. The motivation

for this research comes from a real-word combinatorial optimization problem that was com-

municated to us by our industrial partner, a major avionics company. Modern airplanes use

sophisticated computer systems for steering and controlling the plane, communicating with

the air-traffic controller, and many other tasks. Also fly-by-wire control systems or autopilots

would not be possible without the help of sophisticated on-board computing networks. In

order to guarantee flight safety, the network must operate according to its specifications at all

times. While for a home computer a small discrepancy between expected and actual behavior

is perfectly acceptable, for a network that controls an aircraft it is not. Even a slight delay in

the execution of a program might result in serious and even fatal problems. For that reason,

the engineers rely on a static scheduling policy such that preemption and dynamic effects are

avoided.

The model that is used in this context is as follows. One is given a set T of tasks. Each task

τ ∈T is characterized by its execution time c(τ) ∈N and period p(τ) ∈N. The goal is to assign

the tasks to identical machines and to compute offsets a(τ) ∈N0 such that no collision occurs.

A task τ ∈T generates one job with execution time c(τ) at every time unit a(τ)+p(τ) ·k for all

k ∈N0. Each job needs to be processed immediately and non-preemptively after its generation

on the task’s machine. A collision occurs if two jobs are simultaneously active on one machine.

See Figure 1.1 for an illustration of the problem on one machine: The upper picture shows an

infeasible choice of offsets, a collision occurs. The lower picture shows a feasible choice of

offsets for the same instance.

2



1.2. Resource Constrained Scheduling

p1 2p1 3p1 4p1p2 2p2p30 lcm

p1 2p1 3p1 4p1p2 2p2p30 lcm

Figure 1.1: An example of an infeasible and a feasible schedule for the avionics scheduling
problem.

One advantage of this model is that a scheduling algorithm following this model is very

simple to implement. This allows to use code verification techniques to certify correctness

of the scheduling algorithm, something that is crucial in safety-critical applications. One

disadvantage of the model is that the available resources (machines) might not be used

efficiently, i.e., depending on the structure of a problem instance, it is possible that even in an

optimal solution, many machines are idle most of the time. However for the applications in

the avionics industry, the advantage of simplicity out-weights the loss in efficiency.

In this work we analyze the algorithmic complexity of this problem. It turns out that the

problem is quite intractable. We show that even simple problems like the following cannot be

solved efficiently even if all execution times are 1. Assume that one is given a set of tasks T

and feasible offsets for these tasks for one machine. Now consider another task τ and decide

whether there is an offset a(τ) so that task τ can be added to the existing schedule without

creating a collision. Even harder is the optimization variant, where a given task set should

be distributed to a minimum number of machines in a feasible way: there is no efficient

approximation algorithm with “nontrivial” approximation guarantee. It turns out however

that instances from the industry usually have a special structure: The periods are harmonic,

meaning that for any two periods of two tasks from the instance, one is an integer multiple

of the other. For this special case, we develop special data structures that allow us to obtain

“good” approximation algorithms. The structural insights also help to develop novel modeling

methods. They enable for the first time to compute optimal solutions for real-world instances

from the industry. For a more formal overview of our results regarding the problem, we refer

to Section 2.1.2 and Section 3.1.3.

1.2 Resource Constrained Scheduling

Modern computer architectures allow for a high degree of parallelization: Multi-core CPUs and

GPUs provide dozens (in the case of GPUs even hundreds) of parallel processing units. Usually

these processing units share common resources, e.g., the cache of a multi-core processor.

Hence, in order to utilize these systems efficiently, a scheduler must take into account the

limited resources when executing jobs on the parallel machines. This poses new algorithmic

challenges in designing efficient schedulers that respect these resource limitations.

3



Chapter 1. Introduction

We study the following model for the problem, which is called the resource constrained

scheduling problem. An instance consists of a set of n jobs and m machines. Each job comes

with a processing time and a resource requirement. The former specifies for how long a job

needs to be executed to be completed. The latter specifies the amount of the common shared

resource the job requires while it is active in order to work properly. The goal is to compute a

schedule, i.e., a map that assigns to each job a time-interval of sufficient length on a machine.

To model the shared resource, an “orthogonal” constraint is introduced: for a time-index t , the

resource usage at t is the sum of resource requirements of jobs active at time t . The resource

constraint requires that the resource usage never exceeds a given limit. A feasible schedule

for our scheduling problem must respect the resource constraint. The goal is to compute

a schedule of minimum makespan, i.e., a schedule where the last finishing time of a job is

minimized.

The resource constrained scheduling problem has versatile applications, not only to model

shared memory on parallel processors as previously mentioned. For example it can also be

used to assign a limited amount of workers to different maintenance tasks, or to cope with the

limited energy available for computing tasks. Next to the practical applications, the problem is

also quite intriguing from a theoretical perspective. It can be seen as a hybrid of two classical

problems from two different domains. On the one hand, one obtains classical minimum

makespan scheduling problems if all resource requirements are zero. On the other hand, the

well-known BIN-PACKING problem is a special case of the resource constrained scheduling

problem. The hybrid nature of the problem is also reflected in our algorithms. To tackle it, we

combine ideas and techniques from both domains.

In this work we study several variations of the problem. These include different machine

models (i.e., all machines are identical, or processing times and resource requirements of jobs

change for different machines), and also the types of schedules we allow (preemption, migra-

tion etc.). As for the avionics optimization problems, we analyze the algorithmic complexity

of these variations by giving a rigorous account on the approximation landscape. Along the

way we improve on a classical result by Garey and Graham [GG75] from 1975. We study two

fundamentally different types of algorithms: Online and offline algorithms. Online algorithms

are less powerful in the sense that they learn about a problem instance over time, allowing

only limited adaptations to a previously computed schedule once additional information

about an instance is revealed to the algorithm. In contrast, offline algorithms have complete

information about the problem instance. We also discuss how approximation algorithms

for online algorithms can be translated into approximation algorithms for certain types of

real-time scheduling problems, which completes the circle: the thesis both starts and ends

with the study of real-time scheduling problems. For details on our results regarding the

resource constrained scheduling problem, we refer to Section 4.1.3 and Section 5.1.3.

4



1.3. Organization

1.3 Organization

This document consists of two main parts. Chapters 2 and 3 deal with the real-time avionics

optimization problem. Chapter 2 focuses on our theoretical results in that area. In Chapter 3

we then discuss how to exploit our theoretical structural insights to derive algorithms that

quickly compute optimal solutions for real-world instances. The second part of the thesis

consists of Chapter 4 and Chapter 5. Here we study the resource constrained scheduling

problems. First in Chapter 4 we present our results regarding offline scheduling, whereas

Chapter 5 is devoted to online scheduling and real-time scheduling. The two parts of the

thesis are organized so that they are self-contained, in particular they do not build on each

other and can be read in arbitrary order. Also the individual chapters are kept to be rather

self-contained. The reader is advised however to read the respective introductory sections of

the two parts, i.e., Section 2.1 for part one and Section 4.1, before proceeding to the second

chapters of the respective parts. We recommend however to read Section 1.5 first for a brief

introduction on fundamental concepts and notation regarding approximation algorithms.

1.4 Sources

The results presented in Chapter 2 are joint work with Eisenbrand, Hähnle, Skutella, Verschae

and Wiese. The chapter is based on the paper [EHN+10]. The practical results from Chapter 3

are based on the paper [EKM+10] and are joint work with Eisenbrand, Kesavan, Mattikalli,

Nordsieck, Skutella, Verschae and Wiese. The results presented in Chapter 4 have several

sources. The work in Section 4.2 of that chapter regarding identical machines is joint work

with Andreas Wiese, and the presentation is based on the paper [NW12]. The results regarding

unrelated machines that we discuss in Section 4.3 is joint work both with Sanjoy Baruah and

Andreas Wiese and based on the paper [BNW11]. Finally the results presented in Chapter 5 are

joint work with José Verschae and Andreas Wiese. These results are not yet published at the

time of writing the thesis. At various points in the thesis we also review related work by other

authors. The respective sections are clearly marked as such, and credit to the authors is given.

1.5 Prerequisites

We assume that the reader is familiar with basic concepts from theoretical computer science,

in particular from complexity theory. These include the complexity classes P and N P and

concepts like polynomial-time reduction, N P-hardness and N P-completeness. Also the O(·),

o(·), Ω(·), Θ(·) notation is used throughout the thesis. Two good textbooks that introduce

these concepts are a book by Cormen, Leiserson, Rivest and Stein [CLRS01] and a book by

Papadimitriou [Pap94]. We also assume that the reader is accustomed to the basics of linear

programming. I.e., the reader should know what a linear program (LP) is and that it can be

solved efficiently. In depth knowledge of these topics is not required, though. We refer to a

book by Bertsimas and Tsitsiklis [BT97] for an extensive introduction.
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Chapter 1. Introduction

We now give a brief introduction into basic terminology used in conjunction with approx-

imation algorithms. People familiar with this subject can safely skip the remainder of this

section. We say that an algorithm runs in polynomial time if its running time can be upper

bounded by a polynomial f of constant degree: For every input instance I , if |I | denotes the

(binary) encoding length of the instance, the running time of the algorithm is at most f (|I |).

We equivalently say that algorithms that run in polynomial time are efficient. Given some min-

imization problem, for every instance I of the problem, with OPT (I ) we denote the minimum

value of a feasible solution to the problem. An algorithm is a c-approximation algorithm, if

it is efficient and, for all instances I , computes a solution of value at most c ·OPT (I ). As an

example, consider a polynomial time algorithm that computes feasible schedules for some

variant of the resource constrained scheduling problem. Assume that it has the property that

for every instance it computes a schedule that is at most twice as long as an optimal schedule.

Then that algorithm is a 2-approximation algorithm. An asymptotic c-approximation algo-

rithm is an algorithm that it is efficient and, for all instances I , computes a solution of value

at most c ·OPT (I )+o(OPT (I )). In other words, for an asymptotic approximation algorithm

we allow an additive error that, for instances whose optimal solution is large enough, gets

negligible compared to the value of the optimal solution. For our example, an algorithm that,

for all instances, computes a schedule of makespan at most 2 ·OPT +10000 ·pOPT , where

OPT denotes the makespan of an optimal schedule, would be an asymptotic 2-approximation

algorithm. A c-polynomial time approximation scheme (c-PTAS) is a family of approximation

algorithms of the following form. Given a minimization problem, for every constant ε> 0 there

is an approximation algorithm in the family that has an approximation factor of c +ε. Note

that as ε is constant, the running time of the algorithm can depend on ε in an arbitrary way.

However its running time has to be polynomial in the input size. For simplicity of notation,

a 1-PTAS is simply referred to as a PTAS. A c-fully polynomial time approximation scheme

(c-FPTAS) is a c-PTAS, where the running time of each (c + ε)-approximation algorithm is

also polynomial in the approximation guarantee 1
ε . A 1-FPTAS is simply referred to as an

FPTAS. Note that for practical applications, an FPTAS is more desirable over a PTAS: if the

dependence on the approximation quality is exponential (which is allowed for PTASes), the

algorithm is usually not very well suited for any practical purposes. A problem is APX-hard if

there is a constant c > 1 so that there is no c-approximation algorithm for the problem unless

P = N P . We also say that such a problem is inapproximable within a factor of c. Observe that

APX-hardness of a problem implies that there is no PTAS (with approximation factor one).

A problem is N P-hard in the strong sense (or strongly N P-hard for short), if it is NP-hard even

if the input is given in unary encoding, i.e., a number ` ∈Z in the input is encoded using `

bits instead of log(`) bits. For example, the BIN-PACKING problem is strongly NP-hard [GJ79],

whereas PARTITION is not: for the latter, there is an algorithm based on dynamic programming

that solves the problem in time polynomial in the unary encoding length of the instance [GJ79].

An algorithm whose running time is bounded in this way is said to run in pseudopolynomial

time. It is also worth mentioning that strongly NP-hard problems do not admit an FPTAS,

unless P = N P [GJ78]. For an extensive introduction into the concepts of approximation

algorithms, we refer to a book by Vazirani [Vaz01].
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2 Real-Time Avionics Optimization

2.1 Introduction

We now study a problem that occurs in the avionics industry in the design of modern aircraft,

as introduced in Section 1.1. Recall the definition of the model: one is given a set of tasks T ,

where each task τ ∈T is characterized by its execution time c(τ) ∈N and period p(τ) ∈N. The

goal is to assign the tasks to identical machines and to compute offsets a(τ) ∈N0 such that

no collision occurs. A task τ generates one job with execution time c(τ) at every time unit

a(τ)+p(τ)·k for all k ∈N0. Each job needs to be processed immediately and non-preemptively

after its generation on the task’s machine. A collision occurs if two jobs are simultaneously

active on one machine. In the periodic maintenance problem, given a task set T , the goal is

to compute feasible offsets a(τ) for all tasks of the instance, or to assert that no such offsets

exist. Figure 1.1 from the introduction shows an example with three tasks τ1, τ2, τ3. The

execution times are c(τ1) = c(τ2) = 1 and c(τ3) = 2. The periods are p(τ1) = 6, p(τ2) = 10

and p(τ3) = 15. The upper part of the picture shows an infeasible assignment of offsets

(a(τ1) = 0, a(τ2) = 1, a(τ3) = 2) whereas the lower part shows a feasible assignment of offsets

(a(τ1) = 1, a(τ2) = 0, a(τ3) = 2). The problem occurring in real-world systems is more complex

as usually the instances are too large to be scheduled to a single machine. For that reason, the

engineers are interested in the corresponding machine minimization problem, i.e., they want

to find the minimum number of identical machines on which the tasks can be distributed in a

feasible way. We refer to this problem as the periodic maintenance minimization problem.

This chapter is devoted to the complexity analysis of the periodic maintenance (minimization)

problem. We characterize the algorithmic complexity by presenting approximation algorithms

and establishing inapproximability results. Insights about the problem structure gained in

this analysis also lay the foundations for our results regarding practical applications presented

in Chapter 3.
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Chapter 2. Real-Time Avionics Optimization

2.1.1 Related Work

To the best knowledge of the author, there are two independent branches of research regard-

ing the periodic maintenance problem. The problem first appeared in a paper by Wei and

Liu [WL83] from 1983. They studied the special case of instances with unit execution times

and give a sufficient (but not necessary) condition on the existence of a schedule for instances

with unit execution times. In a follow up paper from 1990, Baruah et al. [BRTV90] show that

the problem is NP-hard (in the strong sense, also with unit execution times). Independently it

is shown in [BBNS02, Bha98] that the problem is NP-hard (in the strong sense).

In an unrelated line of research, Korst et al. [KALW91, KAL96] study the periodic maintenance

minimization problem under the name of “constrained scheduling problem”. In contrast

to the other branch, they consider arbitrary execution times and a multi-machine variant

similar to ours. Their focus is on designing heuristics for the problem. They also prove that

the problem is NP-hard.

The periodic maintenance minimization problem is a generalization of the BIN-PACKING

PROBLEM (e.g., see [Hoc96, Vaz01]). In the BIN-PACKING problem, one is given a set of items,

each item i having an item size s(i ) with 0 ≤ s(i ) ≤ 1. The goal is to find a partition of the items

into a minimum number of bins, where in each bin, the sum of item sizes must not exceed

1. Observe that given a periodic maintenance instance where the period lengths of all tasks

are identical, the problem is equivalent to BIN-PACKING. However, the additional generality

of the periodic maintenance problem leads to an increased computational complexity of the

problem. In particular, it is possible to approximate BIN-PACKING with an approximation ratio

of 1.5 [SL94] whereas, as we show later, it is impossible to approximate periodic maintenance

minimization with almost any nontrivial factor, unless P = N P .

2.1.2 Our Contribution

We give a rigorous account on the complexity landscape of the periodic maintenance mini-

mization problem, both designing approximation algorithms and proving inapproximability

results. It turns out that the periodic maintenance minimization problem is intractable. We

show that the problem is NP-hard to approximate within a factor of n1−ε for any constant

ε> 0, where n denotes the number of tasks in the instance. This is a very negative result in

terms of approximation algorithms as it essentially shows that one cannot do better than

trivial approximation algorithms: a trivial n-approximation algorithm is to open a separate

machine for each task of the instance. Even worse, it is not even straightforward to design

meaningful heuristics. A typical First-Fit heuristic would assign tasks one at a time, trying to

add tasks to machines already opened, then opening a new machine if a task cannot be added

to any open machine. But already the problem of deciding whether a task can be added to a

machine is difficult: Given a set of tasks with feasible offsets on a single machine, and another

task τ. The problem of deciding whether there is a feasible offset a(τ) for τ on that machine

is NP-complete. Fortunately, real-world instances usually have a strong property: the task

8



2.1. Introduction

Periods Approximation guarantee
Hardness results

absolute asymptotic

arbitrary n n1−εOPT ———
harmonic 2 (2−ε)OPT (2−ε)OPT +o(OPT )

Table 2.1: Overview of our results regarding the periodic maintenance minimization problem.

periods are harmonic, i.e., for any two periods p(τ1) and p(τ2), τ1,τ2 ∈T , one period is an

integer multiple of the other. We develop a special data structure, the (compressed) bin trees.

For harmonic instances, with the help of bin trees, one can implement efficient First-Fit type

heuristics. We present such a heuristic and show that it is a 2-approximation algorithm. We

also give a matching inapproximability result by showing that it is NP-hard to approximate

within a factor of (2− ε), for every constant ε > 0. Unlike the BIN-PACKING problem where

there is an asymptotic PTAS, this inapproximability bound also holds asymptotically. See

Table 2.1 for an overview of our results.

We also consider a variation of the problem, which we call the resource augmentation variant.

Here, the number m of machines is given as part of the input instance T . We assume that a

feasible solution that uses at most m machines exists. Instead of opening additional machines

to find a feasible solution, we allow to increase the machine speed: For α≥ 1, a task τ ∈T only

needs execution time of p(τ)/α. Anα-approximation algorithm for this variant is a polynomial

time algorithm that always finds a feasible solution on m speed-α machines, provided that

there is a feasible solution on speed 1 machines. It turns out that with slight adaptation of

the methods, we essentially get the same results in terms of approximation ratios as in the

machine minimization variant: The general problem is NP-hard to approximate within a

factor of n1−ε for any constant ε> 0. For the harmonic sub-case, there is a 2-approximation

algorithm. Here we do not have a matching inapproximability result for the harmonic case

though.

2.1.3 Outline

This chapter is organized as follows. First in Section 2.2 we deal with the general (i.e., non-

harmonic) case. We introduce general notion and concepts and establish the n1−ε inapprox-

imability and related hardness results. Afterwards in Section 2.3, we discuss the harmonic

case. We introduce the data structure of bin-trees, present the 2-approximation algorithm

and the hardness results. Finally in Section 2.4 we give an outlook on possible future research

directions. Unless stated otherwise, we deal with the periodic maintenance minimization

problem, i.e., the machine minimization variant. At some points we discuss adaptations to

make our methods work also for the resource augmentation variant.
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Chapter 2. Real-Time Avionics Optimization

2.2 The General Case

Properties of schedules for the periodic maintenance problem can be well described using

fundamental notion and methods from modular arithmetic. For that reason, we start with a

brief excursion before discussing the periodic maintenance problem.

2.2.1 Prerequisites from Modular Arithmetic

Given numbers n ∈ Z , m ∈Z \ {0} we say that m divides n, or m|n in short, if n is an integer

multiple of m. This means that there is a number k ∈ Z so that n = k ·m. The number

n mod m is defined as the unique number k ∈ Z with 0 ≤ k < m so that m|(n −k). In other

words, n mod m is the remainder of the (integer) division of n by m. The operation mod

defines an equivalence relation ≡ over the integers, the congruence relation: For n,n′ ∈Z and

m ∈ Z \ {0} we say that n ≡ n′( mod m) if n mod m = n′ mod m, or equivalently if m|(n −n′).

Given numbers k1, . . . ,kn ∈ Z, the greatest common divisor g := gcd{k1, . . . ,kn} ∈ N0 is the

natural number satisfying the following properties:

• g |ki for all i = 1, . . . , n.

• If p ∈Z\ {0} so that p|ki for all i = 1, . . . , n, then p|g .

Similarly the least common multiple ` := lcm{k1, . . . ,kn} ∈N0 is the natural number satisfying

• ki |` for all i = 1, . . . , n

• If m ∈Z\ {0} so that ki |m for all i = 1. . . , n, then `|m.

A number p ∈N, p > 1, is prime if there is no m ∈ {2,3, . . . , p −1} so that m|p. Two numbers

p, q ∈ N are co-prime, if gcd{p, q} = 1. A fundamental theorem from number theory is the

following.

Theorem 2.2.1 (Chinese remainder theorem (simplified)). Given a set of numbers p1, . . . , pn ∈
N and numbers a1, . . . , an ∈Z. Assume that p1, . . . , pn are pairwise co-prime. There is a number

a ∈Z that simultaneously satisfies the following congruences:

a ≡ ai ( mod pi ) ∀ i = 1, . . . ,n.

Given a number k ∈ Z, the ideal generated by k is the set k ·Z := {k ·m : m ∈ Z}. Note that

` ∈ k ·Z if and only if ` ≡ 0 mod k. For two sets of numbers I1 and I2 we define I1 + I2 :=
{i1 + i2 : i1 ∈ I1, i2 ∈ I2}. We conclude the brief excursion stating an elementary number

theoretical observation that follows from Bézout’s identity.

Lemma 2.2.2. Given k1,k2 ∈Z, then k1 ·Z+k2 ·Z= gcd(k1,k2) ·Z
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2.2. The General Case

2.2.2 General Concepts

We now come back to the periodic maintenance problem and review some basic facts. These

basic observations also appear in one form or another in previous work [WL83, BRTV90,

BBNS02, Bha98, KALW91, KAL96]. Consider an instance T . Note that every schedule is

periodic: it repeats after lcm{p(τ) : τ ∈ T } many time units. This immediately leads to

a feasibility test, which however is not efficient. A polynomial time feasibility test can be

derived as follows. Let τ1,τ2 ∈T be two tasks which we want to assign to a single machine.

Assume that c(τ1) = c(τ2) = 1. How can we check whether two offsets a(τ1) and a(τ2) lead to a

collision? Because the execution times are one and periods are integer, the two tasks collide

if and only if they release a job simultaneously. Hence they collide if and only if there are

numbers `1,`2 ∈N0 so that

a(τ1)+`1 ·p(τ1) = a(τ2)+`2 ·p(τ2). (2.1)

Note a subtlety here. We can relax the range of `1,`2 to be from the integers instead of N0.

This is because of the following. If there are `1,`2 ∈ Z that satisfy Equation (2.1), then also

`′1 := `1 +k · lcm(p(τ1), p(τ2))
p(τ1) ∈Z and `′2 := `2 +k · lcm(p(τ1), p(τ2))

p(τ2) ∈Z satisfy the equation for any

k ∈ Z. Hence the existence of `1,`2 ∈ Z satisfying Equation (2.1) implies the existence of

natural numbers satisfying the equation. Coming back to our feasibility test, we conclude

that the tasks τ1 and τ2 collide if and only if there are `1,`2 ∈ Z satisfying Equation (2.1).

Reformulating this we get that they collide if and only if

a(τ2)−a(τ1) = `1 ·p(τ1)−`2 ·p(τ2).

We conclude that they collide if and only if

a(τ2)−a(τ1) ∈ p(τ1) ·Z+p(τ2) ·Z= gcd(p(τ1), p(τ2)) ·Z,

using Lemma 2.2.2 for the last equality. Hence gcd(p(τ1), p(τ2))|(a(τ2)− a(τ1)). We get the

following feasibility criterion.

Lemma 2.2.3. Two tasks τ1,τ2 with c(τ1) = c(τ2) = 1 collide if and only if

a(τ1) ≡ a(τ2)( mod gcd(p(τ1), p(τ2)).

As also observed by Korst et al. [KALW91], this can be generalized easily to the case of arbitrary

execution times as follows.

Lemma 2.2.4 ([KALW91]). Two tasks τ1,τ2 do not collide if and only if

c(τ1) ≤ (a(τ2)−a(τ1)) mod gcd(p(τ1), p(τ2)) ≤ gcd(p(τ1), p(τ2))− c(τ2)

Proof. Replace the tasks τ1 (τ2) with c(τ1) (c(τ2)) many tasks of execution time 1 and set the

offsets so that they are executed one after another: set c(τi
1) = 1, p(τi

1) = p(τ1) and a(τi
1) =

11



Chapter 2. Real-Time Avionics Optimization

a(τ1)+ i for all i = 0, . . . ,c(τ1)−1. Analogously set c(τi
2) = 1, p(τi

2) = p(τ2) and a(τi
2) = a(τ2)+ i

for all i = 0, . . . ,c(τ2)− 1. Observe that τ1 and τ2 collide if and only if one of the pairs τi
1,

τ
j
2 collides. By Lemma 2.2.3 they collide if and only if 0 ≡ a(τ j

2)−a(τi
1) = a(τ2)−a(τ1)+ j −

i ( mod gcd(p(τ1), p(τ2))), i.e.,

a(τ2)−a(τ1) mod gcd(p(τ1), p(τ2)) = i − j mod gcd(p(τ1), p(τ2)).

Tasks τ1 and τ2 do not collide if none of these equations is satisfied. Observe that i − j

ranges from −c(τ2)+1 to c(τ1)−1. Hence in order to be collision free, the number a(τ2)−
a(τ1) mod gcd(p(τ1), p(τ2)) must be lower bounded by c(τ1) and upper bounded by the num-

ber −c(τ2) mod gcd(p(τ1), p(τ2)) = gcd(p(τ1), p(τ2))− c(τ2).

Analogous to the basic problem of BIN-PACKING, we can derive a lower bound on the optimal

solution as follows. In BIN-PACKING, the sum of item sizes rounded up to the nearest integer

gives a lower bound on the number of bins needed in any solution, simply by the fact that

every bin can hold items of cumulative size at most 1. An analogous statement can be derived

for the periodic maintenance problem. To this end, we define the utilization util(τ) of a task

τ ∈T as the execution time per period ratio:

util(τ) := c(τ)

p(τ)
.

For an instance T , we define util(T ) := ∑
τ∈T util(τ). Let OPT (T ) denote the number of

machines used in an optimal solution. We get the following lower bound.

Lemma 2.2.5. Given an instance T , there is no feasible one-machine schedule if util(T ) > 1.

Moreover, OPT (T ) ≥ dutil(T )e.

Proof. Let k := lcm{p(τ) : τ ∈T } be the least common multiple of all periods of the instance.

Then each task τ j runs jobs of total execution time exactly c(τ) · k
p(τ) = k ·util(τ) during the

time frame [0,k). Thus no matter how the offsets are assigned, the total execution time needed

for the instance T during that time-frame is k ·util(τ). Thus if util(T ) > 1, there can be no

single machine schedule.

The second claim easily follows from the first. In order to obtain a feasible schedule, every

solution has to partition the tasks to machines so that in no group, the total utilization exceeds

1. We conclude that the optimal solution needs at least dutil(T )e many machines.

Note that the utilization bound can be arbitrarily bad. Take any instance with unit execution

times, where the periods are sufficiently large pairwise disjoint primes. Then the utilization

bound is 1. The feasibility criterion from Lemma 2.2.3 however implies that each task needs a

separate machine, i.e., OPT (T ) = n.
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2.2. The General Case

2.2.3 Popular heuristics fail for periodic maintenance

Consider an instance T . First-Fit is a simple and very popular heuristic for many packing

problems, such as, e.g., BIN-PACKING etc. Adapted to our problem, First-Fit considers tasks in

some given order and greedily packs the current task on the first open machine on which it

fits. In case there is no such machine, it opens a new machine on which the current task is

scheduled. A crucial subproblem occurring in this context is to decide whether a task τ can

be scheduled on a machine on which other tasks, say τ1, . . . ,τn , have already been scheduled.

Determining whether there is a feasible one-machine schedule for τ1, . . . ,τn ,τ is an NP-hard

problem. But what about a simpler variant? Assume that we already have feasible offsets for

tasks τ1, . . . ,τn . We want to assign an offset a for τ without changing the offsets of the other

tasks. If all processing times are equal to 1 and the period of τ is p, the feasible offsets a for

task τ are the solutions to the system

a 6≡ a j mod gcd(p, p(τ j )) for j = 1, . . . ,n.

For arbitrary p j ∈ N and p = ∏n
i=1 p(τ j ), this is the NP-complete problem of computing

simultaneous incongruences, see, e.g., [GJ79]. Thus, already this crucial subproblem is NP-

hard.

One heuristical way around this is as follows: Split the instance into several subproblems,

then treat each of the subproblems independently. Here we can group the tasks of an instance

by their period length and schedule each group to different machines. This way, for each

group, we “only” need to solve a BIN-PACKING problem as all periods of each subproblem are

identical. Unfortunately this heuristic is only an n-approximation algorithm: for any instance

that has a feasible one-machine schedule but n different periods, our algorithm would open n

machines. Of course such an approximation guarantee is far from desirable. Unfortunately

one cannot do (much) better as we show next.

2.2.4 Inapproximability

We now prove that the periodic maintenance minimization problem is NP-hard to approximate

within a factor of n1−ε for any constant ε> 0. This is established by a reduction from a classical

problem from graph theory. A graph G = (V ,E) is a set of nodes V together with a set of edges

E ⊆ {{u, v} : u, v ∈V ,u 6= v}. An independent set in G is a set of vertices S ⊆V such that no two

nodes from S are connected by an edge.

Definition 2.2.6 (COLORING problem). Given a graph G = (V ,E), find a partition of V into a

minimum number of independent sets.

A result by Zuckerman [Zuc07] shows that the COLORING problem is N P-hard to approximate

within a factor of n1−ε for any constant ε> 0. Here n is the number of nodes of the graph. We

will give a reduction from COLORING to the periodic maintenance minimization problem that

preserves approximation ratios and hence allows to transfer the inapproximability results for
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Figure 2.1: Reduction of the COLORING problem to the machine minimization problem.

coloring to the machine minimization problem.

The reduction from COLORING

We remark that this reduction has been stated independently in the PhD-thesis of Bha-

tia [Bha98]. It works as follows. Let G = (V ,E) be an instance for the coloring problem. Let Ē

be the complement of E , i.e.,

Ē :=
{

{u, v} : u, v ∈V , {u, v} ∉ E
}

.

We construct a periodic maintenance instance as follows. We choose |Ē | many different primes,

a prime qe for each e ∈ Ē . For each node v ∈V , we define a task τv with c(τv ) := 1 and set its

period to the product of primes from adjacent edges in Ē , i.e.,

p(τv ) := ∏
e∈Ē : v∈e

qe .

We denote with red(G) := {τv : v ∈V } the periodic maintenance instance obtained from graph

G using this construction. See Figure 2.1 for an illustration of the reduction. Note that we can

compute red(G) in polynomial time. In particular, we can find the primes qe in polynomial

time, since the Prime Number Theorem guaranteesΘ
(

x
ln(x)

)
primes among the first x natural

numbers (see e.g., [New80]).

The construction has two important properties:

Lemma 2.2.7. Given a graph G = (V ,E), the machine minimization instance red(G) satisfies:

a) For each edge {u, v} ∈ E, the tasks τu and τv cannot be assigned to the same machine.

b) If U ⊆V is an independent set, then {τv : v ∈U } can be scheduled to one machine.

Proof. For each node v ∈V , define Ev := {e ∈ Ē : v ∈ e}. Observe that by construction, for each

14
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pair u, v of nodes we have

gcd(p(τu), p(τv )) = ∏
e∈Eu∩Ev

qe (2.2)

a) Let u, v ∈V such that {u, v} ∈ E . Thus {u, v} ∉ Ē , and hence Eu ∩Ev =;. Thus (2.2) im-

plies gcd(p(τu), p(τv )) = 1. Assume that u and v can be scheduled to the same machine.

Using the feasibility criterion from Lemma 2.2.3, then there are offsets a(τu), a(τv ) ∈Z
such that

Z 3 a(τv )−a(τu) ∉ gcd(pu , pv )Z=Z,

a contradiction.

b) Let U be an independent set in G . We can define valid offsets as follows. For each edge

e = {u, v} ∈ Ē , set δe,u = 0 and δe,v = 1 (choose the roles of u and v arbitrarily). Now for

each v ∈U , let the offsets a(τv ) be the solution of the following system of simultaneous

congruences:

a(τv ) ≡ δe,v mod qe ∀e ∈ Ē , v ∈ e.

The Chinese Remainder Theorem [JJ98] guarantees the existence of these a(τv ). Let

u, v ∈U , u 6= v . Because U is an independent set, we have e = {u, v} ∈ Ē . By definition of

the offsets, we have a(τu) ≡ 0 mod qe and a(τv ) ≡ 1 mod qe (or vice versa). In particular

a(τu) 6≡ a(τv ) mod qe .

As Eu ∩Ev = {e} we conclude gcd(p(τu), p(τv )) = qe . Hence Lemma 2.2.3 asserts that no

collision occurs.

We can now prove that our construction is a reduction:

Lemma 2.2.8. For each k ∈N, a graph G is k-colorable if and only if red(G) can be scheduled to

k machines.

Proof. Assume that red(G) can be scheduled to k machines. For each machine i = 1, . . . ,k, let

Vi := {v ∈V : τv assigned to machine i }

be the set of nodes whose tasks are assigned to the machine. Clearly V1, . . . ,Vk is a partition of

V . Moreover with Lemma 2.2.7 we know that no two nodes u, v ∈Vi are adjacent, for every

i = 1, . . . ,k. Thus each of the sets Vi is independent and they form a k-coloring. Now assume

that G is k colorable, and let V1, . . . ,Vk be a partition of V into independent sets. With Lemma
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2.2.7 we know that for each Vi , we can assign all tasks emerging from its nodes to a single

machine. Hence we need no more than k machines for a feasible schedule.

We stress again that this reduction only uses tasks of unit execution time.

For the variant of resource augmentation, a very similar reduction works. Recall that in this

variant, instead of opening new machines, we are allowed to increase the speed of machines.

Given a graph G = (V ,E) and a number k ∈N. Let Ē denote the complement of E as defined

above. For each e ∈ Ē , we choose pairwise different primes qe > k. For each node v ∈V , we

define a task τv with c(τv ) := 1 and

p(τv ) := k · ∏
e∈Ē : v∈e

qe .

We denote with r̃ed(G) := {τv : v ∈V } the periodic maintenance instance obtained from graph

G using this construction. Note that it is essentially the same construction as in the machine

minimization case, except that the all periods are multiplied with a factor of k. We can show

that it is a reduction.

Lemma 2.2.9. If a graph G = (V ,E) is k-colorable, then there is a feasible single machine

schedule for r̃ed(G) (on a speed-1 machine).

Proof. For each v ∈ V , let χ(v) ∈ {0, . . . ,k − 1} be its color. For each edge e = {u, v} ∈ Ē , set

δe,u = 0 and δe,v = 1 (choose the roles of u and v arbitrarily). Now for each v ∈U , let the offsets

a(τv ) be the solution of the following system of simultaneous congruences:

a(τv ) ≡χ(v) mod k

a(τv ) ≡ δe,v mod qe ∀e ∈ Ē , v ∈ e.

The Chinese Remainder Theorem [JJ98] guarantees the existence of these a(τv ) because all

modules qe and k are pairwise co-prime. Let u, v ∈ V , u 6= v . If e = {u, v} ∈ E , then as χ is

a coloring we have χ(u) 6= χ(v). Hence by definition of the offsets we get a(τu)− a(τv ) ≡
χ(u)−χ(v) 6≡ 0( mod k). As by construction we have gcd(p(τu), p(τv ) = k, we conclude that

tasks τu and τv do not collide.

If however e = {u, v} ∉ E , assume that τu and τv do collide. Hence we have that a(τv ) ≡
a(τu) mod gcd(p(τu), p(τv )). Here gcd(p(τu), p(τv )) = k · qe and thus in particular a(τv ) ≡
a(τu) mod qe , in contradiction to the construction of the a. We conclude that no collision

occurs and hence the schedule is feasible.

Lemma 2.2.10. If there is a feasible single machine schedule for r̃ed(G) (on a speed-1 machine),

then the graph G = (V ,E) is k-colorable.
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Proof. For each node v ∈V , set χ(v) := a(τv ) mod k. Now consider two nodes u, v ∈ v , u 6= v

with {u, v} ∈ E . We need to show that χ(u) 6= χ(v). By construction, gcd(p(τu), p(τv ) = k. As

the tasks do not collide, by Lemma 2.2.3 we have that χ(u) 6≡ χ(v) mod k, which shows the

claim.

Implications for approximation hardness

The reduction creates exactly one task for each node of the graph. Thus Theorem 2.2.8 shows

that inapproximability results in terms of numbers of nodes can be transferred directly to

inapproximability results for the machine minimization problems in terms of number of tasks.

We transfer the following result from Zuckerman [Zuc07], which states that the chromatic

number, i.e., the minimal number of colors needed to color a graph, is hard to approximate:

Theorem 2.2.11 ([Zuc07]). It is NP-hard to approximate the chromatic number within a factor

of n1−ε for every constant ε> 0, where n is the number of nodes in the graph.

With the discussion above, the following is immediate:

Theorem 2.2.12. The machine minimization problem (even for unit execution times) is hard

to approximate within a factor of n1−ε for every constant ε> 0, unless P = N P.

For the resource augmentation variant, Lemma 2.2.9 and Lemma 2.2.10 imply an analogous

result.

Theorem 2.2.13. The resource augmentation variant (even for unit execution times) is hard to

approximate within a factor of n1−ε for every constant ε> 0, unless P = N P.

Proof. Assume that we have an α-approximation algorithm for the resource augmentation

problem. We can turn it into an α-approximation algorithm for graph coloring as follows. For

each k = 1, . . . ,n, we construct the instance r̃ed(G) for the resource augmentation problem. If G

is k-colorable, the two lemmas from above guarantee a that a feasible single machine schedule

exists, and hence the approximation algorithm can compute one on a speed-α machine. We

run the algorithm for every k to find the smallest one where the algorithm succeeds. Note that

the fact that the algorithm finds a speed-α schedule does not imply that there is a feasible

speed-one schedule. However, it is not hard to see that instead it implies that there is a feasible

speed-one machine schedule for the instance r̃ed(G) where we choose k̃ := bk ·αc. We skip the

formal proof for this claim as it is a bit technical. The essential idea is that the feasible offsets

from the speed-α schedule give feasible offsets for a speed-one schedule of the new instance

by scaling the offsets up by a factor of α and rounding it down to the nearest integer.

This in turn shows (with Lemma 2.2.10) that the graph is bα ·kc colorable. Hence we can

α-approximate the coloring number of the graph. We conclude that there can be no n1−ε-

approximation algorithm for the resource augmentation problem.
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0 q1 2 ·q1 3 ·q1 4 ·q1 5 ·q1 6 ·q1

Figure 2.2: A schedule for a single machine. The gray jobs belong to the task with period length
q1, the striped jobs to tasks with period length q2 = 3 ·q1, and the dotted jobs to tasks with
period length q3 = 6 ·q1.

2.3 The Harmonic Case

As pointed out in Section 2.2.3, it is not clear how to design an efficient First-Fit type algo-

rithm for the (general) periodic maintenance problem as already the subproblem of deciding

whether a task can be added to a machine is NP-hard. If an instance however is harmonic,

things change fundamentally. Recall that an instance is harmonic, if for each two tasks of that

instance, the period of one task is an integer multiple of the other. We will present a data struc-

ture that allows us to design efficient First-Fit type approximation algorithms. We then show

that this algorithm is a 2-approximation algorithm. In the following we always assume that

tasks τ1, . . . ,τn of the input instance T are sorted such that p(τ j ) | p(τ j+1), for j = 1, . . . ,n −1.

Moreover, the number of different period lengths of the input-tasks is denoted by k and the

set of all task periods is denoted by Q(T ) = {q1, . . . , qk }, where qi | qi+1, for i = 1, . . . ,k −1. We

first describe the data structure, then present a 2-approximation algorithm, and finally discuss

hardness results.

2.3.1 Bin Trees

An important encoding of single-machine schedules which we use repeatedly is the (com-

pressed) bin tree that we now explain. Assume that offsets a(τ j ) for tasks τ j , j = 1, . . . ,n, are

given so that they determine a feasible single-machine schedule where no two jobs collide.

Observe that the schedule repeats itself after the largest period qk = lcm(q1, . . . , qk ).

By a simple shifting argument, we can assume that the first task τ1 with minimum period

p1 = q1 has offset a1 = 0: Observe that differences of offsets stay unchanged when all offsets

are shifted by the same number. Hence the algebraic feasibility criterion from Lemma 2.2.4

ensures that a schedule remains feasible when shifting offsets. The smallest period q1 now

partitions the time-horizon [0, qk ) into bins [i ·q1, (i +1) ·q1); see Figure 2.2 for an example.

Consider two bins Bi = [i ·q1, (i +1) ·q1) and B j = [ j ·q1, ( j +1) ·q1) such that i ≡ j mod qr /q1.

By construction, these intervals are shifted exactly by qr time units. Hence as far as tasks with

period length up to qr are concerned, these bins look exactly the same. As a shorthand, we

write Bi ≡r B j when i ≡ j mod qr /q1.

We use this basic fact to describe schedules in a hierarchical structure called a bin tree which

we now define. The root of a full bin tree is a node representing a bin containing all tasks of

period length q1. It has q2/q1 children, each of which represents a bin that contains all its
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Figure 2.3: The full bin tree corresponding to the schedule in Figure 2.2.

Figure 2.4: The compact form of the bin tree in Figure 2.3.

parent’s tasks and may contain additional tasks of period length q2. We say that the root is of

period q1, and its children are of period q2. In general, a node B of period qr contains only

tasks of period length up to qr . If qr < qk , it has qr+1/qr children, each of which is a node

of period qr+1. Each child of B represents a bin that contains all tasks of B and may contain

additional tasks of period length qr+1. Each scheduled task of period length qr appears in a

unique node of period qr and in all children of that node.

As a consequence of this definition, there is a one-to-one correspondence between nodes

of period qr in the full bin tree and equivalence classes of bins modulo the equivalence

relation ≡r . Furthermore, the hierarchy of equivalence relations ≡r (r = 1, . . . ,k) corresponds

to the hierarchy of the tree in the following way. If two nodes of period ≥ qr have the same

ancestor of period qr , then their corresponding bins are equivalent modulo ≡r , and vice versa.

In particular the leaves of the bin tree correspond to the bins of the schedule (though not

in the same order). Thus we can freely convert between a feasible schedule in terms of task

offsets and the corresponding bin tree representation; see Figure 2.3.

The number of nodes in a full bin tree is dominated by its leaves, of which there are qk /q1

many. So we cannot operate efficiently on full bin trees and, in particular, we cannot afford

to store a full bin tree to implement our First-Fit heuristic. However, if a node of period qr

does not contain a task of period qr , it is completely determined by its parent. Therefore,

we only need to store those nodes of the tree that introduce a new task to the schedule, see

Figure 2.4 for an example. In this way we have a compressed bin tree whose number of nodes is

bounded by the number of tasks and that can be constructed in polynomial time. Coming

back to the implementation of First-Fit, given a bin tree and an unscheduled task τ whose

period length is greater or equal to the period lengths of all tasks in the bin tree, one can easily

determine whether τ can be inserted into the compressed bin tree by checking all the leaves

of the compact tree, as well as all nodes to which a new leaf of the right period can be added.

We will use this fact in the next subsection.
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2.3.2 First-Fit: A 2-Approximation Algorithm

Making use of the bin tree structure and in particular compressed bin trees, one can implement

the following First-Fit algorithm efficiently. It maintains a list M1, . . . , M` of open machines

where Mi was opened before M j if i < j . Each machine is represented by a (compressed)

bin tree. The type of a machine is the bin size of its tree, i.e., the smallest period of the tasks

assigned to the machine. The remaining capacity of a bin is the bin size minus the sum of

execution times of tasks already assigned to the bin. The algorithm now tries to assign the

tasks one by one to the machines, in order of nondecreasing periods. To assign a task τ j , it

considers all machines that have been opened previously (in the order of opening). If the

remaining capacity of one of the leaf bins of a machine is at least c(τ j ), then we assign the

task to that bin (ties are broken arbitrarily): pack the task “leftmost” into the bin by assigning

the smallest possible offset within the bin so that no collision occurs. If the algorithm fails to

assign task τ j to any of the machines, two machines of type p(τ j ) are opened and the task is

assigned to one of them. The fact that two machines instead of one machine is opened is to

simplify some averaging arguments in the analysis of the algorithm. See Listing 1 for a more

formal description of the algorithm.

Algorithm 1 A 2-approximation algorithm for the periodic maintenance minimization
problem with harmonic periods.

Sort instance T nondecreasing by period length, let T = {τ1, τ2, . . . , τn} be in this order.
M ← {}
for j ← 1 to n do

for each machine M ∈M (in order of opening) do
if τ j can be assigned to M then

Assign τ j to M
break

end if
end for
if τ j not assigned then

Open two machines M1, M2 of type p(τ j )
Assign τ j to machine M1.
M ←M ∪ {M1, M2}.

end if
end for

Note that, because tasks are added in non-decreasing order of period lengths, we only add

tasks to leaves of the compressed bin tree. With the discussion from Section 2.3.1, we conclude

that the algorithm can be implemented to run in polynomial time. It remains to show that the

algorithm has the desired approximation guarantee.

Theorem 2.3.1. The First-Fit algorithm is a 2-approximation algorithm.

The remainder of this subsection is devoted to the proof of this theorem. In the analysis, for

the sake of simplicity, we will always argue via full bin-trees, although the algorithm operates
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on compressed bin-trees.

Witnesses

Before we present the proof of Theorem 2.3.1 we discuss some differences to the analysis

of the First-Fit algorithm for BIN-PACKING and motivate the concept of a witness that turns

out to be very useful. The simple observation showing that First-Fit for BIN-PACKING is a

2-approximation is as follows: If First-Fit opens a new bin, then let α be the minimum weight

of all previously opened bins. This implies that the current item has weight at least 1−α and

if there are any other open bins, they must have weight at least max{α,1−α}. The average

weight of the bins is thus at least 1/2.

Now suppose that the First-Fit algorithm for the periodic maintenance minimization problem

opens a new machine for task τ j . Analogous to BIN-PACKING, we would like to argue that

the utilization of the open machines (i.e., the total utilization of the tasks assigned to the

machine) is high. We then could use the lower bound in terms of utilization from Lemma 2.2.5.

Unfortunately this does not work. If the open machines all have a small type, i.e., a bin size

less than c(τ j ), then we have to open a new machine for τ j regardless of the utilization of the

machines. In particular, it is not true that the average utilization of the open machines is at

least 1/2. However, we can derive a lower bound on the average utilization of the machines

whose type is compatible with τ j , where the set of compatible types is denoted by Q( j ) := {q ∈
Q : c(τ j ) ≤ q ≤ p(τ j )}. Hence τ j serves as a witness that those machines are highly utilized on

average. Before we state this formally, we provide one useful insight that is helpful for the

proof. Recall that another way of characterizing the utilization of a machine is to consider the

ratio of time when a machine is busy during a hyper-period (i.e., the least common multiple of

the periods) to the total length of the hyper-period. Observe that as the leaf-bins correspond

to the bins of the schedule in the first hyper-period, we can equivalently see the utilization as

the average fill ratio of the leaf-bins. The fill ratio is the ratio of total execution time of tasks in

that bin to the bin size.

Lemma 2.3.2. Consider a schedule computed by the First-Fit algorithm. Let τ j ∈T be a task,

and let q ∈Q( j ) be a compatible machine type. Let M1, . . . , M` be a set of machines of type q with

`≥ 2. Suppose that τ j was assigned to a different machine that was opened after M1, . . . , M`.

Then 1
`

∑`
i=1 util(Mi ) > 1

2 .

Proof. Consider the situation when the First-Fit algorithm is about to assign task τ j . The leaf

bins of all bin trees from M1, . . . , M` are of period at most p(τ j ). Let α be the minimum fill

ratio of all those leaf bins. Clearly α> 0 as otherwise, by construction, task τ j could be added

to such a bin. If α> 1
2 , then every bin is more than half filled and the claim follows.

Thus, we can assume that α≤ 1
2 . Let Mi be a machine with a leaf bin that is filled only by α. As

α> 0, there is a task τ′ assigned to that bin. Clearly c(τ′) ≤ q ·α.
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M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14

M1 M2 M3 M4

τ τ τ

Figure 2.5: The situation of Lemma 2.3.3: Every group of machines but the last has a witness.
The last two machines of the last group provide a witness for the rest.

Now for every k < i , we claim that the fill ratio of all leaf bins of Mk is more than 1−α. This

is because otherwise the task τ′ could and would have been assigned to machine Mk . On

the other hand for k > i , if there is a machine Mk and a leaf-bin on that machine that has a

fill ratio of at most 1−α, then all tasks from that bin could and would have been assigned to

machine Mi as there is enough space in the bin of task τ′.

We conclude that for all machines except Mi , every leaf-bin has a fill ratio of more than 1−α.

Hence the utilization of each of those machines is more than 1−α. Every bin on Mi attains at

least the minimum fill ratio of α. As α≤ 1
2 , and there are at least two machines, the average

utilization of all machine M1, . . . , M` more than 1
2 .

For a period q ∈ Q(T ), let Mq denote the set of machines of type q . We say that Mq has

a witness, if there is a task τ ∈ T compatible to q that is scheduled to a machine of larger

type than q . If all machine types have a witness, we can now easily show that we have a

2-approximation.

Lemma 2.3.3. F F (T ) denotes the number of machines opened by the First-Fit heuristic. If for

all q ∈Q(T ), q < qk , the set Mq has a witness, then F F (T ) ≤ 2 ·OPT (T ).

Proof. An illustration of the essential proof idea is given in Figure 2.5. Let q ∈Q with q < qk ,

and let τ be a witness for Mq . Then we can apply Lemma 2.3.2 to show that
∑

M∈Mq
util(M) ≥

1
2 |Mq |. Now let M ′ be the set Mqk without the two last machines that we call M̃1 and M̃2. Let

τ be a task assigned to M̃1. Observe that τ is a witness for M ′. Thus,
∑

M∈M ′ util(M) ≥ 1
2 |M ′|.

Hence we have F F (T )−2 ≤ 2 ·util(T \{τ}) which implies F F (T )−2 < 2 ·util(T ) ≤ 2 ·OPT (T ).

The last inequality is by the utilization bound from Lemma 2.2.5. Since both F F (I ) and

2 ·OPT (I ) are even, we conclude F F (T ) ≤ 2 ·OPT (I ).

If the special case of Lemma 2.3.3 does not apply, we can identify sub-instances that are

pairwise independent of each other, yet cover all machines opened by First-Fit. We use this

observation to prove Theorem 2.3.1 by induction; see also Figure 2.6.

Proof of Theorem 2.3.1. We prove the theorem by induction on k, the number of different

periods. If k = 1, then the claim follows directly from Lemma 2.3.3. Now assume that First-Fit
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Figure 2.6: Possible situation in the proof of Theorem 2.3.1: Group M2 does not have a witness.
The dark tasks form the set T . Together with the white tasks, they form the set T ′. The striped
tasks form the set T ′′.

is a 2-approximation for all instances with less than k periods. We want to prove the same

for instances with k periods. If for all q ∈Q, q < qk , the set Mq has a witness, again the claim

follows directly with Lemma 2.3.3.

Thus, let q ∈Q, q < qk be a period such that Mq does not have a witness. We now partition

our task set T as follows.

T ′ := {τ ∈T : First-Fit assigns τ to a machine of type ≤ q}

and T ′′ :=T \T ′. Moreover, let T := {τi ∈T ′ : p(τi ) ≤ q}, i.e., the set of tasks assigned to a

machine of type ≤ q , having a period of at most q . Let τ j be an arbitrary task in T ′′. Then q

is not compatible with τ j since otherwise τ j would be a witness for Mq . Thus, each task in

T ′′ has a running time > q . As the period lengths of all tasks in T are at most q , no task in

T can be scheduled on the same machine as a task in T ′′. This shows that T and T ′′ are

independent in the sense that OPT (T )+OPT (T ′′) =OPT (T ∪T ′′) ≤OPT (T ).

On the other hand, since First-Fit assigns each task of T ′ to a machine of type ≤ q and

these must have been opened and typed by a task in T , one has F F (T ) = F F (T ′) and

F F (T ) = F F (T )+F F (T ′′). Using the induction hypothesis, we get

F F (T ) = F F (T )+F F (T ′′) ≤ 2 ·OPT (T )+2 ·OPT (T ′′) ≤ 2 ·OPT (T ).

This concludes the proof.

This algorithm can easily be turned into a 2-approximation algorithm for the resource aug-

mentation variant. Consider an instance J that should be scheduled on m machines. As by

assumption for augmented instances, there is a feasible schedule on m speed-one machines,

our algorithm from above will compute a feasible schedule for at most 2 ·m speed-one ma-

chines. Observe that for two machines of same type, their schedule in bin structure can be
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merged into a feasible schedule for one speed-2 machine M as follows: Assume that machine

M1 and M2 are of type q . Each bin of both machines (and the tasks within) gets scaled down

by a factor of 2, i.e., each bin is of length q/2. Now for each node in the bin tree(s), we take

their scaled bins from M1 and M2 and place them into the same node for machine M . We do

it in such a way that the scaled bin from machine M1 occupies the interval [0, q/2], and the

scaled bin from M2 occupies the interval [q/2, q]. This way we get a schedule that is feasible

for speed-2 machines. We conclude:

Theorem 2.3.4. There is a 2-approximation algorithm for the resource augmentation variant

with harmonic periods.

2.3.3 Inapproximablity

After the discussion of the 2-approximation algorithm, we now present a matching inapprox-

imability result. This is established with a reduction from PARTITION. The instances generated

by the reduction have the harmonic periods property. Consider a PARTITION instance, i.e., n

items with sizes s1, . . . , sn ∈N. Let B := 1
2

∑n
i=1 si . The PARTITION-problem is to decide whether

or not there is a subset of items whose total size is B . This problem is NP-complete [GJ79]. We

will always assume that B ∈N, since otherwise the instance is obviously a NO-instance.

We construct an instance for the machine minimization problem with harmonic periods

containing n +1 tasks τ1, . . . ,τn+1 as follows:

c(τ j ) := s j , p(τ j ) := 2B +2 ∀ j = 1, . . . ,n, c(τn+1) := 1, p(τn+1) := B +1.

We define red(s1, . . . sn) := {τ1, . . . ,τn+1}. Clearly, red(s1, . . . , sn) can be computed from s1, . . . , sn

in polynomial time. The intuition behind this construction is as follows. Observe that the

constructed tasks have harmonic periods. Therefore, when assigning the tasks to a machine,

we can think of assigning them to bins (see Section 2.3.1 for a discussion of the bin concept).

We want to assign all tasks to one machine. By construction, task τn+1 defines two bins, each

of them having a remaining capacity of B to be filled with the other tasks. Every task τ j has an

execution time of s j , and thus partitioning the tasks to the two bins essentially encodes the

PARTITION problem. Therefore the tasks can be distributed to the two bins if and only if the

corresponding PARTITION instance is a YES-instance. A formal proof follows.

Lemma 2.3.5. Given a PARTITION instance s1, . . . , sn ∈N, the instance is a YES-instance if and

only if red(s1, . . . , sn) can be scheduled to one machine.

Proof. Observe that util(red(s1, . . . sn)) = 1. Thus if red(s1, . . . , sn) can be scheduled to one

machine, this machine is never idle. Assume that red(s1, . . . , sn) can be scheduled to one

machine, and let a1, . . . , an+1 be feasible offsets. Consider the time interval [an+1 +1, an+1 +B ]

between the first and the second execution of task τn+1. Let S be the set of indices of the tasks

executed during this interval. Note that every task will be executed at most once during this

24



2.3. The Harmonic Case

interval. Since the processor is never idle, we have

B = ∑
j∈S

s j ,

which proves that s1, . . . , sn is a YES-instance.

Now assume that s1, . . . , sn is a YES-instance. Thus there is a subset S ⊆ [n] with

B = ∑
j∈S

s j .

We assign all tasks to one machine. For each j ∈ S, we successively assign task τ j an offset

such that the first execution of these tasks completely occupies the interval [0,B −1]. Task

τn+1 receives offset B . For all other tasks, we successively assign an offset such that their first

execution completely occupies the interval [B +1,2B ]. One can easily check that the resulting

schedule is feasible.

This reduction directly implies an inapproximability result:

Corollary 2.3.6. There is no (2−ε)-approximation algorithm for the machine minimization

problem with harmonic periods for any ε> 0, unless P = N P.

Proof. Assume there is (2−ε)-approximation for some ε> 0. Given an instance for the PAR-

TITION problem, Lemma 2.3.5 implies that the algorithm will output a solution using one

machine, if it is a YES-instance. It will output a solution using at least two processors otherwise.

Thus, this algorithm can be used to decide the N P-complete PARTITION problem.

Asymptotic approximation

For some APX-hard problems one can get a better approximation guarantee if one allows for

asymptotic approximation, i.e., if one searches for algorithms whose approximation guarantee

is c ·OPT +o(OPT ). As mentioned previously, this is true for example for BIN-PACKING. This

problem is hard to approximate within a factor of 3
2 . Nevertheless, there is an asymptotic

PTAS [FdlVL81]. We now show that this is not true in the case of periodic maintenance

minimization. We first describe a construction that will be useful to prove this result. It

essentially duplicates instances to “pump up” OPT , but at the same time enforces independent

treatment of the duplicates. Let T be an instance of the machine minimization problem.

For some ` ∈N, let ` ·T denote the instance where each execution time and each period is

multiplied by the factor `. Note that there is a one-to-one correspondence between solutions

to T and to ` ·T . Let B := maxτ j∈T p(τ j ). For any `≥ B , consider the instance

T ′ =T ∪ (` ·T ).
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Take any two tasks τ ∈ T and τ′ ∈ ` ·T . Observe that no solution to T ′ can assign τ and

τ′ to the same machine, as the execution time of one is at least as large as the period of the

other. Thus the tasks of T and ` ·T use disjoint sets of machines, and therefore can be treated

individually. This implies that OPT (T ′) = 2 ·OPT (T ). We call this construction a duplication,

formulated more general as follows: Given an instance T , and k ∈N. Let B := maxτ j∈T p(τ j ).

We define

dup(T ,k) :=
k−1⋃
i=0

B i ·T .

With the preceding discussion, the following is immediate:

Lemma 2.3.7. For any set of tasks T and any k ∈N, we have

OPT
(
dup(T ,k)

)= k ·OPT (T ).

Also note that the duplication does not destroy the structure of the instances: If T is an

instance with harmonic periods, dup(I ,B) will have harmonic periods as well. We can use

the duplication to show that asymptotic approximation algorithms cannot achieve better

performance guarantees than non-asymptotic approximation algorithms:

Theorem 2.3.8. Let c be some constant. Assume that we have a polynomial time algorithm

that for any instance T computes a solution using at most c ·OPT (T )+o(OPT (T )) many

machines. Then for any constant ε > 0 there is an (c + ε)-approximation algorithm for the

machine minimization problem or the machine minimization problem with harmonic periods,

respectively.

Proof. Assume that we have an algorithm with an c ·OPT + f (OPT ) approximation guarantee,

where f (OPT ) ∈ o(OPT ). Then there is a constant M such that: f (OPT ) ≤ ε ·OPT for all

OPT ≥ M . We construct an (c +ε)-approximation algorithm as follows: Given an instance

T , the algorithm duplicates it to obtain the instance T ′ := dup(T , M). With Lemma 2.3.7

we have OPT (T ′) = M ·OPT (T ) ≥ M . Thus the c ·OPT + f (OPT ) approximation algorithm

produces a solution using at most

c ·OPT (T ′)+ f (OPT (T ′)) ≤ (c +ε) ·OPT (T ′) = M · (c +ε) ·OPT (T )

machines. From the properties of the duplication operation it follows that each copy of

T in the instance T ′ must be scheduled to a disjoint subset of machines. Since the total

number of machines used is M · (c + ε)OPT (T ), and M copies of T are assigned to these

machines, at least one copy is assigned to at most (c +ε) ·OPT (T ) many machines. This is an

(c +ε)-approximation for the original instance T .

As noted before, the duplication does not destroy the structure of harmonic instances. There-

fore, this theorem together with Corollary 2.3.6 directly shows that also there is no asymptotic
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(2−ε)-approximation algorithm.

Theorem 2.3.9. There is no (2−ε)OPT +o(OPT ) approximation algorithm for the machine

minimization problem with harmonic periods for any ε> 0, unless P = N P.

2.4 Further Research Directions

For both the periodic maintenance minimization problem and the special case of harmonic

periods, we have a complete characterization of the approximation landscape with tight lower

and upper bounds on the approximation factor (under the assumption that P 6= N P ). We have

seen however that there is a drastic difference in the algorithmic complexity of the periodic

maintenance problem compared to the special case with harmonic periods. Where the general

problem is inapproximable within almost every nontrivial factor, there is a 2-approximation

algorithm for the harmonic sub-case. This rises the question of whether there is something

“in between” these two extreme cases. Are there sub-cases more general than harmonic

periods that still admit nontrivial approximation algorithms? One way to characterize these

generalizations is via the divisibility graph of the periods. The divisibility graph is a directed

graph that has a node v ∈ V for every different period of the problem instance. Two nodes

u and v share an arc (u, v) if the period of u divides the other, and there is no “intermediate

node”, i.e., no node w so that the period of u divides the period of w and the period of w

divides the period of v . Observe that if the periods are harmonic, this graph is simply a path. A

generalization would be to consider instances whose divisibility graphs form an out-tree (i.e.,

a tree where each node except for the root has in-degree one). The concept of bin-trees can be

generalized to this setting in a more or less natural way: a bin of the bin-tree corresponding

to a period that has more than one descendant in the divisibility graph has to partition the

remaining free space in the bin amongst these descendants. For each descendant in the

divisibility tree, the bin-node in the bin tree would then have the usual amount of child bins

for that period, and all of these children can use only the space reserved for them in the

partition. How to design a good first-fit heuristic however becomes less obvious. Another

way to generalize the harmonic case would be via partial orders: Observe that the divisibility

of the periods defines a partial order. It is a complete order if and only if the periods are

harmonic. One could study certain classes of partial orders and see whether they admit

non-trivial approximation algorithms.
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3 Real-time Avionics Optimization in
Practice

3.1 Introduction

In Chapter 2, we studied the periodic maintenance minimization problem in a mathematically

rigorous way, leading to a characterization of the complexity landscape of the problem. Our

industrial partner however is not so much interested in the theoretical worst-case complexity

of the problem, but rather in a solution to his concrete problem instances that should be

found in a “reasonable” amount of time. Moreover, the problem as it appears in the real world

is more complex than the “pure” periodic maintenance minimization problem: Tasks are not

only characterized by an execution time/period pair, but also have additional requirements in

terms of memory, I/O, operational availability, functional separation, and functional grouping.

The processors have limited memory capabilities and limited I/O capabilities via a network.

For that reason, to address the problem on real-world instances and in their full complexity,

we rely on integer programming approaches. An integer program is a linear program whose

variables are constrained to be integer. Integer programming is a very powerful concept which

allows to model a huge range of combinatorial optimization problems. Unfortunately this

implies that solving integer programs is NP-hard. Nevertheless, there exists a rich spectrum of

methods and tools to solve integer programs for practical purposes. As the problem is NP-hard,

the focus for these methods is not to have an algorithm of polynomial worst-case complexity,

but an algorithm that runs “fast” on “many” instances of “moderate” size. Developing good

methods is a huge and active research area on its own, but not the focus of this work. We

refer to a book by Laurence A. Wolsey [Wol98] for an extensive introduction into the subject.

Although these methods get increasingly powerful, they are yet far from solving all practically

relevant integer programming formulations, even of moderate size. For that reason, it is not

sufficient to only find some integer programming model for a combinatorial optimization

problem, as the efficiency of the solvers running on different models of the same problem can

vary drastically. This motivates to develop good integer programming formulations for the

periodic maintenance problem, which will be the focus of this chapter.

It turns out that textbook formulations, like time-indexed formulations, are not even remotely
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strong enough to tackle problem instances of real-world size. However by exploiting struc-

tural insights of the problem we provide integer programming models that outperform the

textbook approach by orders of magnitude. Our first formulation is based on the algebraic

feasibility criterion from Lemma 2.2.4. Linearizing this criterion we obtain a compact integer

programming model. Although the performance of this model is much better than the basic

textbook approach, it is still not sufficient to solve industrial size instances. As the real-world

instances however are harmonic, we can rely on the theoretical insights from Chapter 2 re-

garding harmonic instances: The structure of bin trees allows us to develop a fundamentally

different integer programming model that is able to handle industrial size instances of the

scheduling problem. Even for real-world instances not belonging to the subclass, one can still

use the formulation as a heuristic using a rounding technique.

3.1.1 Problem Definition

We quickly recap the formal definition of the periodic maintenance minimization problem

from Chapter 2. We are given a set of tasks T = {τ1, . . . ,τn} where each task τ j is characterized

by its execution time c(τ j ) ∈N and period p(τ j ) ∈N. The goal is to assign the tasks to a set

of machines and to compute offsets a(τ j ) ∈N0. A task τ j generates one job with execution

time c(τ j ) at every time unit a(τ j )+p(τ j ) ·k for all k ∈N0. Each job needs to be processed

immediately and non-preemptively after its generation on the task’s machine. A collision

occurs if two jobs are simultaneously active on the same machine. A schedule is feasible if

no collision occurs. The problem is to find an assignment of the tasks to a minimum number

of machines, so that for each machine, a feasible schedule can be found. We now call this

problem the basic periodic maintenance problem (basic PMP). We denote by Q = {q1, ..., qk }

the set of all period lengths arising in the respective instance. We assume that q1 < . . . < qk . An

instance has harmonic periods if for each pair of tasks τi ,τ j we have that either p(τi )|p(τ j ) or

p(τ j )|p(τi ).

In the extended PMP, machines have additional resource limitations in terms of memory of

different types (RAM, ROM, etc.) and communication links that need to be considered. Each

task has a given requirement for each type of memory and needs certain communication links

to be open on its machine. Each machine can handle only a limited number of links and has a

limit on the total bandwidth used by them. Moreover, due to system stability requirements and

operation functionality, certain tasks need to be assigned to different machines, where certain

other tasks have to be assigned to the same machine. Also, the machines are partitioned

into two cabinets (left and right). Some of the tasks have to be distributed evenly among the

cabinets in order to design a fail-safe architecture.

3.1.2 Related Work

See Section 2.1.1 for a review of previous theoretical work on the periodic maintenance min-

imization and related problems. Here we discuss literature regarding computational work.

30



3.1. Introduction

To our best knowledge, we were the first to do computational studies on this problem. After

our results where published in [EKM+10], Al Scheikh, Brun, Hladik and Prabhu followed with

further computational analysis. In [ASBH10] they propose an integer programming formula-

tion very similar to our congruence-formulation that we will explain below. In [ASBHP11] they

propose an iterative procedure to solve the problem.

In contrast to the sparse literature concerning computational studies of the periodic mainte-

nance problem, for the special case of the BIN-PACKING problem, there exists extensive litera-

ture on heuristics as well as branch-and-bound and column generations methods. In [MT90]

polynomial time approximation algorithms as well as lower bounds, and exact algorithms are

studied. Lower bounds to the optimal solution (which can be computed fast) are presented

in [CPPT07]. Several approaches have been proposed for solving the BIN-PACKING problem

with branch-and-price techniques; see, e.g., [Van99, VBJN94, VdC99]. An algorithm called

BISON is proposed in [SKJ97], where branch-and-bound techniques and tabu search are

combined to design an exact hybrid algorithm.

Regarding heuristics, there is also a lot of literature for the BIN-PACKING problem. For example,

Gupta and Ho propose a heuristic that greedily minimizes the slack of the machines. Fleszar

and Hindi [FH02] modify these ideas and combine them with variable neighborhood search

to design an hybrid algorithm. Moreover, Loh et al. [LGW08] propose a simple local heuristic

based in the concept of weighted annealing.

3.1.3 Our Contribution

The here presented methods lead, for the first time, to an industry strength tool to optimally

schedule real-word problems from the avionics industry. This is achieved by the following

steps.

• We describe two integer programming models that differ considerably from the textbook

time-indexed formulation. Both formulations outperform the time-indexed formula-

tion.

• The two models have orthogonal strengths and weaknesses: While the congruence for-

mulation is of polynomial size, the bin-formulation is pseudopolynomial. Furthermore

the bin-formulation applies only to harmonic instances but outperforms the congruence

formulation by several orders of magnitude.

• Many real-world instances are “almost harmonic” which means that only few tasks need

to be removed from the instance to make it harmonic. The industry strength method

to solve difficult instances is based on rounding these outlying periods to the nearest

smaller period in the total order.
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3.1.4 Outline

This chapter is organized as follows. In Section 3.2, we present two IP-formulations for the ba-

sic PMP: the textbook time-indexed approach and a formulation based on linear congruences

and the algebraic feasibility criterion. Then in Section 3.3, we discuss the case of harmonic

PMP and explain the IP formulation based on bin trees. Afterwards in Section 3.4, we de-

scribe how to cope with the additional constraints needed for the extended PMP. Finally, our

benchmark results are given Section in 3.5: We compare the three IP-formulation as well as

the results obtained by a (greedy) first-fit heuristic.

3.2 General IP-Formulations

As indicated before, we now describe two integer programming formulations for the basic

PMP. First we consider a time indexed formulation, where we have variables assigning tasks to

time slots on each machine. Then, we present a less naïve approach that exploits the algebraic

feasibility criterion of Lemma 2.2.4. We call this model the congruence-formulation. It uses

variables that indicate the offset of each task. The formulations presented in this section are

formulated as “feasibility tests”: For a given number of machines m, they compute a feasible

assignment to the machines or assert that no such assignment exists. All formulations can

easily be modified to model the machine minimization variant using standard techniques. We

chose the feasibility variant here to keep the presentation as simple as possible.

3.2.1 Time-Indexed-Formulation

Our first formulation is a naïve formulation that uses binary variables to indicate the offset

and machine assignment for each task. More precisely, we consider variables w j ,i ,t ∈ {0,1} for

each τ j ∈ T , i ∈ [m] and t ∈ {0,1, . . . , p(τ j )}. If w j ,i ,t is set to one, this indicates that task τ j

should be assigned to machine i with an offset of t . Otherwise it should be zero. The integer

program then looks as follows:∑
i∈[m]

∑
t∈{0,1,...,p(τ j )−1}

w j ,i ,t = 1 ∀τ j ∈T (3.1)

w j ,i ,t +w j ′,i ,t ′ ≤ 1 ∀τ j ,τ j ′ ∈T ∀i ∈ [m]∀t , t ′ leading to collision (3.2)

w j ,i ,t ∈ {0,1} ∀τ j ∈T ∀i ∈ [m]∀t

The constraints of type (3.1) make sure that every task gets assigned exactly one machine

and offset. The constraints of type (3.2) ensure that the assignment computed by the integer

program is feasible. We conclude that if there is a feasible schedule on m machines for instance

T , the integer program will compute one. However, the efficiency of this IP is extremely poor.

The total number of variables is isΘ(|T |·m·qk ) and the number of constraints isΘ(|T |2·m·q2
k ).

This is exponential in the encoding size of the input, and also huge for real world instances. It

is little surprising that this very naive IP formulation performs very bad in practice, however
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this is the only approach “from the book” that was previously known for this problem.

3.2.2 Congruence-Formulation

Now we describe our congruence-formulation for the basic PMP. Unlike the time-indexed

formulation, its complexity is polynomial in the input size. The main idea is to use a lin-

earization of the algebraic feasibility criterion from Lemma 2.2.4 to model offset feasibility. To

this end, we introduce integer variables a j for each task τ j ∈T , which models the offset for

task τ j . In order to check whether two tasks collide we linearize the feasibility criterion from

Lemma 2.2.4: Two tasks τ j and τ j ′ are collision free if and only if

c(τ j ) ≤ a j ′ −a j + s j , j ′ ·gcd(p(τ j ), p(τ′j )) ≤ gcd(p(τ j ), p(τ′j ))− c(τ j ′),

where s j , j ′ ∈Z is an integer variable.

The machine assignment is done via additional binary variables x j ,i ∈ {0,1} for each machine

i ∈ [m], indicating whether or not task j is assigned to machine i . The full IP model looks as

follows. As shorthand we set gcd j , j ′ := gcd(p(τ j ), p(τ′j )).

∑
i∈[m]

x j ,i = 1 ∀τ j ∈T (3.3)

y j , j ′ ≥ x j ,i +x j ′,i −1 ∀τ j ,τ j ′ ∈T ∀i ∈ [m] (3.4)

y j , j ′ · c(τ j ) ≤ a j ′ −a j + s j , j ′ ·gcd j , j ′ ∀τ j ,τ j ′ ∈T (3.5)

gcd j , j ′ −y j , j ′ · c(τ j ′) ≥ a j ′ −a j + s j , j ′ ·gcd j , j ′ ∀τ j ,τ j ′ ∈T (3.6)

x j ,i ∈ {0,1} ∀τ j ∈T ∀i ∈ [m]

s j , j ′ ∈Z ∀τ j ,τ j ′ ∈T

The equations of type (3.3) make sure that every task gets assigned to exactly one machine. In

the inequalities of type (3.4) we use variables y j , j ′ indicating whether two tasks τ j and τ j ′ are

assigned to the same machine. Constraints (3.4) make sure that if τ j and τ′j are assigned to the

same machine, y j , j ′ is (at least) one. Otherwise it can be 0. Finally constraints (3.5) and (3.6)

ensure that the offsets computed for tasks assigned to the same machine are collision free: if

y j , j ′ is forced to one, these constraints are exactly the linearization of the algebraic feasibility

criterion as discussed above. Otherwise, if y j , j ′ is 0, the constraint is trivially satisfiable: for

any choice of a j and a j ′ there is an integer s j , j ′ that makes the constraints (3.5) and (3.6)

feasible. This way the collision constraint is disabled for tasks assigned to different machines.

We conclude that if a feasible m machine solution to the problem exists, our formulation will

find one. In total, we haveΘ(|T |2 +|T | ·m) variables andΘ(|T |2 ·m) constraints. The size of

the formulation is thus polynomial in the input size.
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Figure 3.1: A schedule for a single machine and a schedule for the same tasks which is in bin
structure. The gray jobs belong to tasks with period length q1, the striped jobs to tasks with
period length q2 = 3 ·q1, and the checkered jobs to tasks with period length q3 = 6 ·q1.

3.3 Harmonic IP-Formulation

We now consider the easier case of instances with harmonic periods. Before we state our

IP-formulation tailored to this special case, we discuss the deeper structural insights necessary

to get to this formulation.

3.3.1 Structural Insights

Consider a harmonic instance T , and recall the concept of (full) bin trees as introduced

in Section 2.3.1: A feasible schedule for a single machine can be represented by a tree of

hierarchical bins. The tree has a level for each period length q1, . . . , qk . On level qr , there are

qr /q1 many bin-nodes, each representing an equivalence class w.r.t. ≡r , and containing only

tasks with period at most qr . Only tasks of period qr are new, the others are inherited from the

ancestors.

In Section 2.3.1 we have seen that feasible schedules can always be expressed in terms of bin

trees, which turned out to be very useful when designing First-Fit type algorithms. For the IP

formulation however, we need even more structure. For a task τ assigned to a bin of the tree,

we define its relative offset as the offset within the bin, i.e., the distance from the start of the

bin. We say that a schedule is in bin structure, if the following two conditions hold for every

bin of the corresponding tree:

• Tasks are ordered non-decreasingly by period length, i.e., there is no task of larger period

length that has smaller relative offset than a task of smaller period length in the same

bin.

• There are no idle times in a bin between task executions: If a bin is idle at time t , then

all relative offsets of tasks in the bin are smaller than t .

Figure 3.1 depicts a feasible single machine schedule together with a schedule for the same

instance in bin structure. Figure 3.2 represents the latter schedule as a bin tree.

It is true that if an instance T has a feasible single machine schedule, then it also has one in

bin structure. This is proven indirectly with the following lemma. It allows us to completely

reformulate the problem of computing a schedule. Rather than computing offsets that are
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Figure 3.2: The bin tree corresponding to the schedule in Figure 3.1.

non-colliding, we formulate it as a problem of assigning tasks to bins in such a way that no

bin is “over-packed”.

Lemma 3.3.1. Consider an instance T with period lengths q1 < . . . < qk . There is a feasible

single-machine schedule for T if and only if the following assignment problem has a solution.

For each task τ ∈ T , assign it to one of the bins of period p(τ) in the bin tree, and all its

descendants. The assignment must be in such a way that no bin is over-packed, i.e., the total

execution time of tasks assigned to each bin is at most q1.

Proof. Clearly, if there is a feasible schedule, its bin tree gives rise to a solution to the assign-

ment problem in the straightforward way. Now lets assume that we have a solution to the

assignment problem, and want to convert it into a feasible schedule. This is done with a greedy

algorithm: Sort the tasks non-decreasingly by period length. Then assign them to the bins as

indicated in the solution to the assignment problem, assigning them the smallest possible

relative offset. The fact that no bin is over-packed in the bin assignment problem makes sure

that we can always do that. Observe that this way we always obtain a feasible schedule in bin

structure.

3.3.2 Bin-Formulation

Lemma 3.3.1 allows us to reinterpret the scheduling problem as a bin-assignment problem.

First for simplicity assume that we want to assign all tasks to a single machine. Lemma 3.3.1

tells us that we only need to find an assignment of tasks to corresponding bins in the bin tree

so that no bin is overloaded. A task τ j ∈T has p(τ j )/q1 many choices for bins to assign to, i.e.,

the bins on the tree level of period p(τ j ). We model this by introducing variables z j ,` ∈ {0,1}

for `= 0, . . . , p(τ j )/q1 −1. Variable z j ,` is 1 if and only if task j is assigned to bin `. To make

sure that every task gets assigned to a bin, we add constraints of the form

p(τ j )/q1−1∑
`=0

z j ,` = 1 ∀τ j ∈T .

Now we model the packing problem. If τ j is assigned to bin `-th bin on level p(τ j ) of the bin

tree, it is automatically assigned also to all its descendants. Leaf bins that are descendants of

that bin are precisely the bins B`′ so that `′ ≡ ` mod p(τ j )/q1. Equivalently, task τ j appears

in bin B`′ if and only if z j ,(`′ mod p(τ j )/q1) = 1. Hence we can guarantee that a leaf bin is not
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overloaded by imposing a knapsack type constraint:∑
τ j∈T

c(τ j ) · z j ,(` mod p(τ j )/q1) ≤ q1 ∀` ∈ {0, . . . , qk /q1 −1}.

It is sufficient to pose this constraint for the leaf bins: for every non-leaf bin there is a leaf bin

containing a super-set of tasks. Summarizing, we can model the single machine basic PMP for

harmonic periods as follows:

p(τ j )/q1−1∑
`=0

z j ,` = 1 ∀τ j ∈T∑
τ j∈T

c(τ j ) · z j ,(` mod p(τ j )/q1) ≤ q1 ∀` ∈ {0, . . . , qk /q1 −1}

z j ,` ∈ {0,1} ∀τ j ∈T ∀` ∈ 0,1, . . . , p(τ j )/q1 −1.

We now turn to the multi-machine PMP. Analogous to the single machine case, we consider

variables z j ,i ,` ∈ {0,1} that indicates whether a task τ j ∈ T is assigned to the `-th bin on

machine i for ` ∈ {0, . . . , p(τ j )/q1 −1}. An extra difficulty we now have to face is that we do not

know a priori which is the smallest period length appearing on each machine. In particular we

do not know the bin size of the machine. We overcome this by simultaneously modeling all

bin sizes. For every period qr , r = 1, . . . ,k, we introduce a variable zr
j ,i ,` ∈ {0,1}. It is valid only

if the bin-size is qr and indicates whether a task τ j ∈T is assigned to the `-th bin on machine

i for ` ∈ {0, . . . , p(τ j )/qr −1}. It is used only if the smallest period assigned to machine i is qr .

The corresponding bin packing constraint is then

∑
τ j∈T

c(τ j ) · zr
j ,i ,(` mod p(τ j )/qr ) ≤ qr ∀i ∈ [m],∀` ∈

{
0, . . . ,

qk

qr
−1

}
,∀r = 1, . . . ,k.

We still need to disable these packing constraints in case that no task of that period is assigned

to the machine. To this end, for each period length qr and each machine i ∈ [m] we introduce

an indicator variable di ,r ∈ {0,1}. It is 1 if and only if a task of period qr is assigned to machine

i . This variable is modeled by constraints of type

di ,r ≥
p(τ j )/q1−1∑

`=0
z j ,i ,` ∀i ∈ [m],∀r ∈ {1, . . . ,k},∀τ j : p(τ j ) = qr

The packing constraint is then modified to

∑
τ j∈T

c(τ j ) · zr
j ,i ,` ≤ qr + (1−di ,r )qk ∀i ∈ [m],∀` ∈

{
0, . . . ,

qk

qr
−1

}
,∀r = 1, . . . ,k

and is therefore disabled if there is no task of period qr . Finally we model the zr
j ,i ,` by “glueing”
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neighboring q1 sized bins. We set:

zr
j ,i ,` =

(`+1)·qr /q1−1∑
`′=`·qr /q1

z j ,i ,`′ ∀τ j ,∀i ∈ [m],∀r ∈ {1, . . . ,k},∀` ∈ {0, . . . , qr /q1 −1}.

In summary, the bin formulation looks as follows:

∑
i∈[m]

p(τ j )/q1−1∑
`=0

z j ,i ,` = 1 ∀τ j ∈T

zr
j ,i ,` =

(`+1)·qr /q1−1∑
`′=`·qr /q1

z j ,i ,`′ ∀τ j ,∀i ,∀r ∈ {1, . . . ,k},∀` ∈ {0, . . . , qr /q1 −1}

di ,r ≥
p(τ j )/q1−1∑

`=0
z j ,i ,` ∀i ∈ [m],∀r ∈ {1, . . . ,k},∀τ j : p(τ j ) = qr

∑
τ j∈T

c(τ j ) · zr
j ,i ,` ≤ qr + (1−di ,r )qk ∀i ∈ [m],∀` ∈

{
0, . . . ,

qk

qr
−1

}
,∀r = 1, . . . ,k

z j ,i ,` ∈ {0,1}

zr
j ,i ,` ∈ {0,1}.

Note that we actually do not need the variables zr
j ,i ,` explicitly: We can replace each occurrence

by a sum from the second line of the model from above. This reduces the complexity a bit.

After this replacement, the bin-formulation needsΘ
(
|T | ·m · qk

q1

)
variables and constraints in

total. This is pseudopolynomial in the input. However the ratio qk /q1 usually is rather small

for instances from the real world, so that the total size of this model for these instances is

rather small.

3.4 Extended Constraints

We now briefly describe how to incorporate the additional requirements of the extended PMP

into our IP models. This adaption is quite straightforward, simply by adding some additional

constraints. These constraints however require binary variables x j ,i ∈ {0,1} indicating whether

or not task τ j is assigned to machine i . We also need binary variables y j , j ′ ∈ {0,1} that are one

if tasks τ j and τ j ′ are assigned to the same machine. These variables are already part of the

congruence formulation. For the other formulations they can be modeled analogously. We

skip the details.

The extended PMP has several types of memory constraints: Every processor has limited

memory, each task has a certain memory requirement, and a feasible assignment of tasks to

processors must ensure that the sum of memory requirements of tasks assigned to a processor

do not exceed its memory limits. These constraints are modeled with knapsack inequalities of
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the form ∑
τ j∈T

m j x j ,i ≤ Mi ∀i ∈ [m],

here m j and Mi denote the memory requirements and limits, respectively. Also, each machine

can open a set of communication links. Denote by S the set of all possible links. Each link

s ∈ S needs a bandwidth bs . For each machine, the total number of open links is bounded by a

value T L and the total bandwidth available for links is bounded by a value T B . For each task

τ j we are given a set S j ⊆ S of links which are required to be opened on a machine which τ j is

assigned to. A link is opened only once even if used by several tasks on the same processor.

We introduce binary variables os,i ∈ {0,1} which indicate whether link s is open on machine

Mi . The right behavior can easily be modeled analogous to what we did before. Using these

variables, we ensure that the bounds in terms of bandwidth and number of links is not violated

by adding more knapsack type constraints. Next, there are certain pairs of tasks which need

to be scheduled on the same machine or on different machines. We can force tasks τ j ,τ j ′

to be assigned to different machines by setting y j , j ′ = 0, where y is the variable indicating

that two tasks are on the same machine as defined above. We can ensure that the tasks are

assigned to the same machine by setting x j ,i = x j ′,i for all machines i . Finally, there are sets

of tasks T ′ ⊆T which have to be distributed evenly among the left and the right cabinet of

machines. Formally, it is required that
∣∣T ′∣∣/2 many tasks of them are scheduled on machines

in the left and in the right cabinet if
∣∣T ′∣∣ is even. If

∣∣T ′∣∣ is odd, it is required that
(∣∣T ′∣∣+1

)
/2

tasks are assigned to the left cabinet and
(∣∣T ′∣∣−1

)
/2 tasks are assigned to the right cabinet.

For each machine Mi , it is pre-defined whether it is located in the left or in the right cabinet.

This partitions the set of machines M into sets ML and MR . Now for all these “special” sets

T ′ we ensure these balancing requirements by adding the following constraints.∑
j∈T ′

∑
Mi∈ML

xi , j =
∑

j∈T ′

∑
Mi∈MR

xi , j ∀“special” sets T ′ with even
∣∣T ′∣∣

∑
j∈T ′

∑
Mi∈ML

xi , j = 1+ ∑
j∈T ′

∑
Mi∈MR

xi , j ∀“special” sets T ′ with odd
∣∣T ′∣∣

3.5 Computational Results

In this section we present our computational results. We solved all real-world instances

provided by our industrial partner within minutes, with all constraints of the extended PMP

and some additional constraints that we describe later. The most difficult instance has 177

tasks and needs 16 machines. The period lengths are almost harmonic (see details below).

Instances of this size are far beyond of what the time-indexed formulation and the congruence

formulation can solve in a reasonable amount of time. However, the special design of the

bin-formulation allowed to solve the instances within 15 minutes.

For benchmarking purposes, we first analyze how our different models perform on random

instances. Moreover, we study the quality of solutions obtained by a First-Fit heuristic. The

heuristic orders the tasks by period length and execution time and greedily assigns them
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to the first machine where it can find a suitable start offset. Note that for the basic PMP

in the harmonic case, this is already a 2-approximation algorithm (see Section 2.3.2). In

the non-harmonic case, the algorithm tries all possible (integer) offsets and is thus only of

pseudopolynomial running time. Reflecting the theoretical results, our benchmarking shows

that First-Fit has a good performance in the basic PMP. However, as we will see, it does not

cope well with the additional constraints of the extended PMP.

Due to the novelty of our problem, there is no existing standard set of instances for bench-

marking. Therefore, we must rely on generating random instances. We consider two ways

of generating random instances: purely random instances and random perturbations of

real-world instances arising at our industrial partner. We will call the latter instances the

real-world perturbed (RWP) instances. There are four different settings: for the basic PMP,

we consider the non-harmonic case with purely random instances, the harmonic case with

purely random instances, and the harmonic case with RWP instances. For the extended PMP,

we benchmark only with RWP instances in the harmonic case. All computations were done on

a two-processor machine with Intel Xeon 2.66 GHz CPUs with 8 GB of RAM, running Linux.

We used CPLEX release version 12.1.0.

We remark that additionally we introduce some cuts to the IP formulations. If for two

tasks, the sum of their execution times exceeds the greatest common divisor of their pe-

riods, Lemma 2.2.4 implies that they cannot be assigned to the same machine. Thus we can

add separation constraints for these tasks similar to those used in the extended PMP model.

Moreover the utilization bound from Lemma 2.2.5 provides knapsack type constraints. Notice

that in all our IP-formulations we need an upper bound on the number of machines. This was

obtained by first running the First-Fit heuristic.

Non-harmonic Case

In the non-harmonic case we benchmark the following IP-formulations and algorithms: the

time-indexed-formulation (TIF), the congruence-formulation (CF), and the First-Fit heuristic

(FF). For each purely random instance we drew five different period lengths from the set{
2x ·3y ·50 | x ∈ {0, . . . ,4}, y ∈ {0, . . . ,3}

}
uniformly at random. This is a typical number of period

lengths in real-world instances. For each task τ j , its period length p(τ j ) is chosen uniformly

at random from one of the five period lengths. (In our experiments we observed that larger

values for the number of period lengths in an instance result in instances which are harder to

solve; however, the relation of the running times between the three IP-formulations remains

the same.) Its execution time is drawn from an inverse exponential distribution, i.e., c(τi ) =
p(τ j ) · e− ln p(τ j )·x . This results in realistically small execution times in comparison with the

period length and hence mimics the real instances from our industrial partner. We created

200 random instances each for the case of 10, 20, 30, 40, and 50 tasks. Whenever ten runs in a

row did not finish before the timeout of 30 minutes or ran out of memory, we did not consider

the respective formulation any further (denoted by dashes in the table).
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IP-formulations Heuristic
# tasks CF TIF FF

10 0.11s 98% – 0% 2.99%
20 2.52s 92% – 0% 2.23%
30 277.41s 42% – 0% 1.92%

Table 3.1: Computational results for the purely random instances in the non-harmonic case.

Table 3.1 shows our computational results. In all our tables, for each IP-formulation the left

column shows the average running times in seconds1. The right column shows the percentage

of instances that could be solved to optimality within the time limit. For the First-Fit algorithm,

we show the average relative error (in %) of the solutions with respect to the optimal solution.

The running time of First-Fit is negligible.

Discussion. The First-Fit heuristic apparently performs very well, obtaining the optimal

solution most of the time regardless of the number of tasks. This is somewhat surprising given

that the problem is almost intractable in terms of approximation algorithms (i.e., N P-hard to

approximate within a factor of |T |1−ε), see Chapter 2. However, the instances created in that

reduction are very special and not likely to arise in our random draws. We notice that TIF is

impractical even for small instances due to the huge number of integer variables involved in

the formulation. In comparison, CF does much better and is able to solve most instances with

up to 30 tasks in reasonable time (less than 30 min.).

Harmonic Case

In the harmonic case we benchmark the following IP-formulations/algorithms: the time-

indexed-formulation (TIF), the congruence-formulation (CF), the bin-formulation (BF) and

the First-Fit heuristic (FF). In the harmonic case, the purely random instances were created

by first generating a harmonic sequence of five periods in the following way: We start with

period length 50 and successively generate the other periods by multiplying two, three, or

six to the previous period. The periods and execution times for the tasks are drawn as in the

non-harmonic case. The RWP instances were created by taking tasks uniformly at random

from a large harmonic instance from our industrial partner, and perturbing execution time

and – for the extended PMP – the memory requirements randomly by up to 25 %. The other

extended constraints remain unchanged.

For the purely random instance we consider the basic PMP only. When running the RWP

instances we consider both the basic and the extended PMP. Tables 3.2, 3.3, and 3.4 show our

computational results for the harmonic case. For the IP-formulations the value in parenthesis

denotes the ratio between the respective running time and the time needed by the bin-

1We use the shifted geometric mean of running times ti calculated by
(∏n

i=1(ti +1)
)1/n −1. We use the shift in

order to decrease the strong influence of the very easy instances in the mean values.
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IP-formulations
# tasks BF CF TIF FF

10 0.28s (1×) 99% 0.25s (0.9×) 97% – 0% 0.00%
20 1.8s (1×) 100% 6.54s (3.6×) 90% – 0% 0.27%
30 8.2s (1×) 97% 369.39s (45.1×) 32% – 0% 0.06%
40 36.64s (1×) 80% – 0% – 0% 0.70%

Table 3.2: Computational results for the purely random instances in the harmonic case (basic
PMP).

IP-formulations Heuristic
# tasks BF CF TIF FF

10 0.01s 100% 0.35s (33.1×) 100% 2.79(265.5×) 98% 0.00%
20 0.19s 99% 32.51s (174×) 66% 260.3(1393×) 50% 1.26%
30 0.45s 99% 487s (1072×) 3% – 0% 0.76%
40 1.17s 98% – 0% – 0% 1.36%
50 2.96s 98% – 0% – 0% 0.63%
60 7.25s 97% – 0% – 0% 0.85%
70 12.76s 95% – 0% – 0% 0.00%
80 28.47s 94% – 0% – 0% 0.09%
90 45.58s 89% – 0% – 0% 0.00%

100 113.89s 90% – 0% – 0% 0.00%
150 977.97s 74% – 0% – 0% 0.00%

Table 3.3: Computational results for the RWP instances (harmonic case) for the basic PMP.

formulation.

Discussion. In the three settings of the harmonic case, the bin-formulation clearly outper-

forms the two other IP-formulations. While for small instances the congruence formulation

is still competitive, as the number of tasks increases, the bin formulation becomes superior.

The time-indexed formulation failed to find an optimal solution before the timeout even on

small instances with ten tasks. This shows that taking the bin structure into account in the

bin-formulation allows a significantly better running time in comparison with the other for-

mulations. In contrast to the congruence formulation, integer variables are always “binary”. As

state of the art solvers cannot handle non-binary integer variables well, this is one advantage

of the bin formulation. Also, the number of variables is a lot smaller than in the time-indexed

formulation.

The First-Fit heuristic performs very well for the basic PMP and finds an optimal solution

for most instances. Even though theoretically First-Fit is only a 2-approximation algorithm,

it performs much better in practice. However, for real-world data we need to consider the

extended PMP. In these instances First-Fit mostly missed the optimum by a significant margin.

Also, it cannot provide a certificate of optimality and hence, in real settings one has to resort
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IP-formulations Heuristic
# tasks BF CF TIF FF

10 0.09s 100% 0.2s (2.4×) 100% 5.03(58.7×) 100% 4.02%
20 2.16s 99% 19.96s (9.2×) 85% 29.19(13.5×) 15% 15.15%
30 19.8s 99% 119.22s (6×) 20% – 0% 27.81%
40 97.02s 93% – 0% – 0% 25.13%
50 401.75s 62% – 0% – 0% 28.40%
60 655.06s 30% – 0% – 0% 14.12%
70 644.54s 8% – 0% – 0% 33.33%

Table 3.4: Computational results for the RWP instances (harmonic case) for the extended PMP.

to IP-formulations. Nevertheless, First-Fit can be used as a fast heuristic which computes an

upper bound on the number of needed machines.

Real-World Instances

We solved each real-world instance from our industrial partner in less than 15 minutes to

optimality. The most challenging one consists of 177 tasks, and an optimal solution uses

16 machines. The arising period lengths were 50, 100, 200, 400, 800, 1000, and 2000. Note

that this instance is not harmonic. Nonetheless, the number of tasks having one of the

problematic period lengths (that is, 1000 and 2000) were very small (three and six respectively).

We transform the instance to be harmonic by taking the 3 tasks with period length 1000 and

changing their periods to 200, and changing the 6 tasks with period 2000 to have period length

400. Note that a solution of the modified instance can easily be converted to a solution of

the original instance. On the other hand, we could prove that the optimal solution of the

restrictive instance is also optimal for the original instance since the separation constraints

already contained a set of 16 tasks that had to be assigned to different machines.
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4 Resource Constrained Scheduling:
Computing Schedules Offline

4.1 Introduction

Modern computer architectures allow for a high degree of parallelization: Multi-core CPUs

and GPUs provide dozens (in the case of GPUs even hundreds) of parallel processing units.

However, these processing units cannot operate fully independent of each other. An example

for such a shared resource is the cache of a multi-core processor. Now suppose that we are

given a set of jobs that should be executed on these processing units. We would like all of

these jobs to be finished as soon as possible, which requires to make efficient use of our given

system. In other words, we would like to compute a schedule that assigns to each job a time

interval of sufficient length on one of the processing units for exclusive usage in such a way

that the time where the last job finishes is minimized. The fact that the processing units share

a common resource adds additional complexity to the problem. When active, a job requires a

certain part of the resource. The scheduler must ensure that the total resource requirement of

jobs that are active simultaneously never exceeds the given limit.

In this chapter we characterize the algorithmic complexity of this problem similar to what we

did for the periodic maintenance problem in Chapter 2. We study approximation algorithms

and inapproximability results for several variants of the problem to get an overview over

its complexity landscape. Unlike the periodic maintenance problem, there already exists a

substantial amount of previous work in that direction. We give an overview, review some of

the results in more detail and improve on others.

The problem has versatile applications, not only to model shared memory on parallel proces-

sors as previously mentioned. For example it could also be used to assign a limited amount

of workers to different maintenance tasks, or to cope with the limited energy available for

computing tasks. Next to the practical applications, the problem is also quite intriguing from a

theoretical perspective. It can be seen as a hybrid of two classical problems from two different

domains. On the one hand, one obtains classical minimum makespan scheduling problems if

all resource requirements are zero. On the other hand, the well known BIN-PACKING problem

is a special case of the resource constrained scheduling problem. The hybrid nature of the
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problem is also reflected in our algorithms. To tackle the problem, we combine ideas and

techniques from both domains.

We assume that all jobs are known ”in advance“ and we seek to find a good schedule before

the system is actually running. This is known as offline scheduling. A fundamentally different

concept is online scheduling. Here the jobs are not known in advance, but we rather learn

about them over time, when execution of some jobs has already started. Initially only a subset

of jobs is known, and we can compute a schedule for them. If at some point in time t , we learn

about a new job, we are allowed to recompute the schedule. However we are not allowed to

alter the schedule for the time before t . Online scheduling requires fundamentally different

ways of treatment which we discuss in Chapter 5.

4.1.1 The Model and Basic Notation

We now define the problem more formally. In the resource constrained scheduling problem, one

is given a set J of n jobs and a set of m machines. Every job j comes with a processing time

p( j ) and a resource requirement r ( j ). A schedule assigns to each job a time interval of length

(at least) p( j ) on one of the m machines for exclusive usage. The makespan of the schedule is

the largest endpoint of one of the intervals, i.e., the finishing time of the last job. The resource

requirement specifies the amount of the common shared resource the job requires while it is

active (i.e., during the time-interval it got assigned by the schedule) in order to work properly.

For a time-index t , the resource usage at t is the sum of resource requirements of jobs active

at time t . A schedule is feasible if the resource usage never exceeds a given limit. We always

assume that this limit is 1. Note that this is without loss of generality this can always be ensured

by scaling all resource requirements uniformly. The goal is to compute a feasible schedule

of minimum makespan. For notational convenience, we usually denote an instance for the

problem just by the job set J , implicitly assuming that m, p and r are given as well. For a set

of jobs J ⊆J , we use the shortcut p(J ) :=∑
j∈J p( j ) for its total processing time.

This is the standard model that we will be concerned with in most of this chapter. However

there exist several variations and generalizations that have been studied as well. One variation

is regarding the type of schedule. The way it is defined above, each job has to be executed

in one single run without interruptions. These kind of schedules are called non-preemptive.

In contrast, preemptive schedules allow that jobs can be interrupted: their execution can be

fragmented as long as these fragments sum up to the total processing time. If parts of the same

job are even allowed to run on different machines, one says that the schedule allows migration.

We stress that it is not allowed though that several parts of the same job are executed in

parallel. A generalization of the model is regarding the machines. So far we assumed that all

machines are identical, i.e., processing time and resource requirement of a job is independent

of the machine it is assigned to. In contrast, for unrelated machines, the processing time

and resource requirement of a job depends both on the job and the machine. There is no

relation whatsoever between processing time/resource requirement of the same job on two
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different machines. Another generalization is regarding the number of resources. Instead

of one kind of resource, one can consider several independent ones. Each job then has a

resource requirement for each of the resource types, and the scheduler must ensure that for

none of the resource types, the sum of the respective resource requirements of simultaneously

active jobs exceeds the limit of 1. Unless stated otherwise, when talking about the resource

constrained scheduling problem, we always refer to the standard model (identical machines,

no preemption, one resource).

4.1.2 Related Work

To give an extensive overview over the history of the problem and also to see how the com-

putational complexity of the resource constrained scheduling problem relates to the basic

problem of makespan minimization scheduling, we first discuss the latter before turning our

attention to related work for the resource constrained scheduling problem.

The basic problem: Makespan minimization scheduling

When ignoring the resource constraint (or having all resource requirements set to zero),

one obtains a classic combinatorial optimization problem, the (makespan minimization)

scheduling problem on identical machines. As shorthand, from now on we will refer to this

as the basic problem. It is a widely studied problem, and we only cite literature that is most

relevant here. A seminal approximation algorithm for the problem is a greedy list scheduling

algorithm by Graham [Gra66, Gra69]: On input J , the algorithm constructs a schedule ϕ

iteratively by adding the jobs one by one in some order: while there is an unscheduled job,

find the earliest time where a machine turns idle and allocate an interval of suitable length for

that job on this machine. Graham has shown that this simple algorithm is a 2-approximation

algorithm. He also showed that if the jobs are added in non-increasing order of the processing

times, one obtains a
(4

3 − 1
3m

)
-approximation algorithm.

This is not the best approximation algorithm known in the literature. After a series of improve-

ments, Hochbaum and Shmoys present a PTAS [HS87] for the problem. This is best one can

hope for as the problem is NP-hard [GJ79] even in the strong sense. Already for instances

where the number of machines is bounded by a constant, the problem is NP-hard (not in the

strong sense though) [GJ79]. For this simpler case, there is an FPTAS by Sahni [Sah76].

Changing the machine model from identical to unrelated machines increases the compu-

tational complexity: Lenstra, Shmoys and Tardos [LST90] have shown that it is NP-hard to

approximate the problem on unrelated machines with a factor better than 3
2 . At the same time,

they give a 2-approximation algorithm for this variant in [LST90]. As for identical machines, if

the number of machines is upper bounded by a constant, there is an FPTAS by Horrowitz and

Sahni [HS76].
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Resource constrained scheduling

Also the resource constrained scheduling problem is quite a classic problem and there is a

substantial amount of literature related to it. Again we restrict to work that is most relevant

for our purposes. The problem was first studied by Garey and Graham [GG75], even in the

more general variant of having several types of resources. For s different resource types, they

show that greedy list schedulers obtain an approximation ratio of s +2− 2s+1
m . For the single

resource case this ratio is 3− 3
m . The algorithm is explained in Section 4.2.1 as it is used as

a subcomponent in our new algorithms. Garey and Johnson showed that the problem is

NP-hard in the strong sense, even if the number of machines is bounded by a constant [GJ75].

Jansen and Porkolab studied the variant where both preemption and migration is allowed,

also in the setting with several resources. They show that if s, the number of resource types,

is bounded by a constant, then there is a polynomial time approximation scheme for the

problem [JP06]. If the number of machines is upper bounded by a constant, the problem can

even be solved optimally in polynomial time [BLK83].

Coming back to non-preemptive schedules, but altering the machine model to unrelated

machines, there is related work by Grigoriev, Sviridenko and Uetz. The problem they consider

is a generalization of the resource constrained scheduling problem (with one resource). Here

the scheduler is allowed to determine the resource requirement of each job. Its running time

then depends on the amount of resource assigned. They give 3.75-approximation algorithm

for the setting of unrelated machines [GSU07]. Keller has studied their problem on identical

machines and gives a (3.5+ε)-approximation scheme [Kel08].

There are classifications for a multitude of further variations and restrictions in NP-hard or

polynomial time solvable problems. We refer to [GJ75] and in particular [BLK83] for an exten-

sive overview. Finally, there is another generalization of the resource constrained scheduling

problem that is a very active subject of study: the Resource Constrained Project Scheduling.

This problem however is defined in such generality that a theoretical study of this problem

class is next to impossible. More practice oriented research branches however heavily work on

this problem class. As computational studies are not or focus here, we refer to [ADN10, HB10]

for surveys on this problem.

4.1.3 Our Contribution

Our new results are concerning the non-preemptive resource constrained scheduling problem

on identical machines, i.e., the standard model. Our main result is a (2+ ε)-approximation

scheme. This improves on the approximation bound of 3 by Garey and Grahams list sched-

uler [GG75]. If m, the number of machines, is upper bounded by some constant, this can

even be improved to a PTAS. We also obtain a PTAS if we have no restriction on the number of

machines, but require that the number of different resource requirements is upper bounded

by a constant.
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We also show that the problem is hard to approximate with a factor better than 3
2 . The reduction

is pretty straightforward though, for that reason it is surprising that it was not published before.

However to the best knowledge of the author, this is not the case. This also shows that our

(2+ε)-approximation narrows the gap between inapproximability and best approximation

factor significantly.

Regarding the unrelated machine model, as mentioned previously, Grigoriev, Sviridenko and

Uetz [GSU07] have shown that there is a 3.75-approximation algorithm for an even more

general problem. In independent work, we have shown that there is a 4-approximation

algorithm for the resource constrained scheduling problem on unrelated machines. Although

being outperformed by [GSU07], we present our independent 4-approximation algorithm

here anyway. The ideas for both algorithms are similar, but as we deal with a special case of

the problem, our algorithm and its analysis is less technical. We also discuss how to transfer

an insight from [GSU07] to turn our algorithm into a 3.75-approximation, achieving the same

approximation ratio.

The complexity landscape

Similar to the theoretical analysis of the periodic maintenance problem in Chapter 2, we are

interested in a rigorous account on the complexity landscape of the variants of the resource

constrained scheduling problem by assessing lower and upper bounds on the best approxima-

tion ratio. As it might have become apparent to the reader in the discussion of related work,

there are a lot of variants of the problem, and many of them have been studied intensively.

In order to keep the presentation simple, we restrict to three dimensions of variants. We

differentiate between the identical and unrelated machine model, consider preemptive and

non-preemptive schedules and distinguish between the case where the number of machines

is upper bounded by a constant or there are no restrictions on the number of machines.

So in total we consider 8 different variants of the resource constrained scheduling problem.

We list the known results for these variants in Table 4.1. For each variant, the table lists the

best inapproximability and best approximation factors that where known before or that we

found. Our new results are printed in bold face. We stress that for the preemptive cases, we

allow migration in the case of identical machines, but do not allow it for unrelated machines.

The reason is that this better reflects the properties of the real-world systems. For identical

machines like multi-core processors, allowing migration is usually not more “costly” than

allowing preemption. This is usually different on heterogeneous hardware that is modeled by

unrelated machines.

Comparing resource constrained scheduling with basic problem

We now briefly discuss on how the computational complexity changes by adding the resource

constraint. In the case of identical machines with preemption and migration, the basic

problem can be solved easily with a greedy type algorithm. Here we observe an increase in
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Constant no of machines Arbitrary no of machines

Identical parallel machines
Preemp./Migr. Polytime solvable [BLK83] N P-hard, PTAS [JP06]

Non-preemptive N P-hard [GJ75], PTAS ( 3
2 −ε)-hard to approximate

(2+ε)-approximation algorithm
Unrelated parallel machines

Preemptive N P-hard [GJ79] ( 3
2 −ε)-hard to approximate [LST90]

3.75-approximation algorithm [GSU07]
Non-preemptive N P-hard [GJ75] ( 3

2 −ε)-hard to approximate [LST90]
3.75-approximation algorithm [GSU07]

Table 4.1: The complexity landscape of the resource constrained scheduling problem.

complexity as the resource constrained scheduling problem is NP-hard. In the non-preemptive

version, an FPTAS [Sah76] is known for the basic setting if the number of machines is constant,

and a PTAS [HS87] is known for the unbounded case. For both variants, the complexity

increases with the introduction of the resource constraint, as now the constant-machine case

is already strongly NP-hard, and the unbounded machine variant is APX-hard.

For the machine model of unrelated machines, there are no new inapproximability bounds

for the resource constrained scheduling problem. They come from the basic setting [LST90].

However, while there is are 2-approximation algorithm for the basic setting, only a 3.75-

approximation algorithm is known for the resource constrained setting. In the case of constant

number of machines, the difference is more drastic: While there is an FPTAS [HS76] for the

basic setting, we only have the 3.75-approximation for the resource constrained scheduling

problem from the unbounded machine setting. The computational complexity increases here

as the resource constrained scheduling problem is strongly NP-hard on a constant number of

machines, because this is true already on identical machines.

4.1.4 Outline

The organization of this chapter is as follows. We first deal with the (standard) machine

model of identical machines (Section 4.2). After giving a formal definition of the resource

constrained scheduling problem and introducing some basic notation used throughout the

chapter, in Section 4.2.1 we review Garey and Grahams classical list scheduler algorithm which

achieves an approximation guarantee of 3. This can be seen as a warm-up for the highlight

of this chapter, the (2+ ε)-approximation scheme which we present in Section 4.2.2. It is

followed by a short discussion of (rather straightforward) reductions that lead to the claimed

inapproximability bounds (Section 4.2.5). We then turn our attention to the machine model of

unrelated machine and present the 3.75-approximation algorithm in Section 4.3. We conclude

the section with a discussion on generalizations and further research questions in Section 4.4.
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4.2 Scheduling on Identical Machines

Before discussing the identical machines case, we introduce some more notation to formally

describe schedules. A slot is a time-interval [t1, t2) with t2 ≥ t1. With [m] := {0,1, . . . ,m −1}, a

machine slot (k, t1, t2) ∈ [m]×Q≥0 ×Q≥0 :=S is a slot assigned to a machine k. We call S the

set of all machine slots. For notational convenience we often identify machine slots s with

the interval they represent: We write |s| instead of |[t1, t2)|, and t ∈ s instead of t ∈ [t1, t2). The

same applies for unions and intersections of machine slots.

A schedule is a mapϕ : J →S that assigns a machine slot to each job j ∈J . We call a schedule

feasible, if the length of the machine slot assigned to each job is sufficient, assigned machine

slots on the same machine are pairwise non-intersecting, and the resource constraint is

satisfied. Formally, a schedule is feasible if |ϕ( j )| ≥ p( j ) for all j ∈J , we have thatϕ( j )∩ϕ( j ′) =
; for all j , j ′ ∈J assigned to the same machine, and

∑
j∈J : t∈ϕ( j ) r ( j ) ≤ 1 for all t ∈Q≥0. If not

noted otherwise, when talking about schedules we always mean feasible schedules. With our

definition of schedules, the makespan is then T (ϕ) := sup
⋃

j∈J ϕ( j ). As before, with OPT (J )

we denote the optimal makespan of an instance J .

This definition of schedules via machine slots might appear unnecessarily complicated to the

reader at first sight. However, it will turn out to be quite natural when discussing the main

result, the (2+ ε)-approximation scheme for resource constrained scheduling on identical

machines. For the sake of consistent notation, we use it throughout the whole section.

4.2.1 List Scheduler: A 3-Approximation Algorithm

Already in 1975, Garey and Graham [GG75] presented the following simple list scheduling

algorithm and proved that it achieves an approximation ratio of 3. On input J , the algorithm

iteratively computes a schedule by adding the jobs one by one as follows. While there are

unassigned jobs, determine the smallest time t a yet unassigned job could be placed into the

schedule without making it infeasible. If there are several candidate jobs, pick a job according

to some priority ordering. Assign the job by allocating a suitable machine slot (k, t , t +p( j ))

on an idle machine k. A more formal description of the algorithm can be found in Listing 2. It

is easy to see that this algorithm has polynomial running time and that it produces a feasible

schedule. Garey and Graham [GG75] have shown that it is a 3-approximation algorithm, no

matter which priority ordering is chosen. To be more precise, the statement from their paper

actually is weaker: They state that for any instance of the problem, the schedule generated by

the list schedule using the worst ordering is at most 3 times longer than the one generated

using the best ordering. Unlike the basic setting without the resource constraint, this does

not automatically imply that it is a 3-approximation algorithm: unlike the basic setting, there

are instances where no ordering produces a schedule with optimal makespan. The reason is

that there are instances where every optimal solution requires to introduce some idle times on

some processors despite the fact that jobs of suitable resource requirement are waiting. These

idle times cannot be enforced in schedules generated by list schedulers. However, reviewing
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Algorithm 2 A list scheduler for resource constrained scheduling

L ← ( j1, j2, . . . , jn) {Jobs given in some order}
t ← 0
while L has unscheduled jobs do

for i = 1 to n do
if ji is yet unscheduled and r ( ji ) does not lift resource usage above 1 then

if ∃ machine k idle at time t then
Allocate machine slot (k, t , t +p( ji )) and assign it to job ji .

end if
end if

end for
t ← next finishing time of a job.

end while

the proof of Gary and Graham the stronger statement easily follows.

Although the approximation quality of this algorithm is dominated by the (2+ε)-approximation

scheme, it is still interesting for us as it will be used as a sub-component in the approxima-

tion scheme. Next we will prove that, when using the resource requirements to determine

the priority ordering, the list scheduler is a 3-approximation algorithm. This is a slightly

weaker statement than what follows from Garey and Grahams proof (which works for arbitrary

priority orderings), but the proof is much simpler. Along the way we show better tailored

approximation guarantees for special kinds of instances, which will be very useful for the

(2+ε)-approximation scheme later. To this end, consider a schedule ϕ computed by the list

scheduler for an instance J , when using the resource requirements as priority ordering, jobs

of largest resource requirement having best priority. Let j∗ be a job that finishes last, i.e., a

job that determines the makespan. We first discuss the (easy) case that j∗ is a job using more

than half of the resource.

Lemma 4.2.1. If r ( j∗) > 1
2 , then the schedule is optimal, i.e., T (ϕ) =OPT (J ).

Proof. Let j1, . . . , jk be the jobs with r ( ji ) > 1
2 (sorted by resource requirement). Observe that

the algorithm schedules these jobs sequentially in that order: At time 0, job j1 is scheduled as

it has the largest resource requirement. Whenever a job ji finishes, there is enough resource

available for job ji+1. Also, at that time, ji+1 is the job of highest resource requirement not yet

scheduled and is hence chosen to be scheduled next.

We conclude that j∗ = jk . As the optimal schedule also has to schedule the jobs j1, . . . , jk

sequentially, we conclude that our schedule is optimal.

We now deal with the case that r ( j∗) ≤ 1
2 . The analysis of the algorithms performance guar-

antee is based on two simple lower bounds on the makespan of an optimal solution (which

already where introduced by Garey and Graham). One bound is given by the total processing
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time of the instance: Per time unit, every schedule can “process” at most m units of processing

time by keeping all machines busy. Hence, to process all jobs completely, every schedule needs

at least
∑

j∈J p( j )/m time-units. For the second bound, define the resource consumption of a

job j as the resource/processing product r ( j ) ·p( j ). As the resource usage of every schedule

at all times is at most 1, a schedule can “process” only one unit of resource consumption

per time-unit. Consequentially, every schedule needs at least
∑

j∈J r ( j ) ·p( j ) time-units to

process all the resource consumption of the instance. We conclude:

Lemma 4.2.2. We have the following lower bounds for the optimal makespan:

OPT (J ) ≥ P̄ (J ) := ∑
j∈J

p( j )/m, OPT (J ) ≥ R̄(J ) := ∑
j∈J

p( j ) · r ( j )

We now analyze the structure of the computed schedule. It is easy to see that for each time-

index t < T (ϕ), we are in at least one of the following three cases:

(a) all machines are busy,

(b) not all machines are busy and job j∗ is not active,

(c) job j∗ is active.

Let β := min
{1

2 ,max j∈J r ( j )
}
.

Lemma 4.2.3. The total time spent in case (a) is at most P̄ (J ). The total time spent in case (b)

is at most 1
1−β R̄(J )

Proof. If all machines are busy for P̄ (J ) time-units, then the total amount of processing done

is m · P̄ (J ) = p(J ). Hence all jobs are finished afterwards. We conclude that all machines can

be busy simultaneously only for at most P̄ (J ) time units and the bound for case (a) follows.

To deal with case (b), we show that for each time-index t spent in case (b), the resource usage

at that time exceeds 1−β. First assume that r ( j∗) ≤β. Now assume that at time t in case (b),

the resource load is at most 1−β. Then job j∗ (or some job with higher resource requirement)

could and would have been scheduled to one of the available machines, thus ending up in

case (a) or (c). Hence if r ( j∗) ≤ β, then the resource load is always more than 1−β. On the

other hand, if r ( j∗) >β, then by definition we have β= 1
2 and hence r ( j∗) > 1

2 . As seen in the

proof of Lemma 4.2.1, this implies that there is always a job of resource requirement of more

than 1
2 running throughout the schedule, and hence the resource usage is more than 1

2 = 1−β.

Now we know that during case (b), the resource usage is always at least 1−β. Let t1 be the total

time spent in case (b). We conclude that the total resource consumption “processed” during

case (b) is at least t1 · (1−β). On the other hand, the schedule does not process more resource

consumption than R̄(J ) and the bound for case (b) follows.
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This already implies that the algorithm is at least a 4-approximation. Depending on the pa-

rameters of the instance, the approximation guarantee can be much better, which will actually

be exploited when the algorithm is used as a sub-procedure for the (2+ ε)-approximation

algorithm.

Lemma 4.2.4. Algorithm 2 is a 4-approximation algorithm. Let τ := max j∈J p( j ) and β :=
min

{1
2 ,max j∈J r ( j )

}
. More precisely, the makespan of the schedule computed by the algorithm

is at most

P̄ (J )+ 1

1−β R̄(J )+τ.

Proof. With Lemma 4.2.3, we get that the total time spent in cases (a) and (b) together is at

most P̄ (J )+ 1
1−β R̄(J ). The total time of case (c) is p( j∗) ≤ τ. This implies the approximation

ratio of 4 using the bounds from Lemma 4.2.2, together with the fact that τ ≤ OPT and

β≤ 1
2 .

With a more careful analysis, one can also show that the algorithm is a 3-approximation

algorithm. This will not be relevant for the (2+ ε)-approximation algorithm. However we

present the proof for the sake of completeness.

Lemma 4.2.5. The time spent in cases (b) and (c) together is at most 2 ·OPT .

Proof. If r ( j∗) > 1
2 , the statement is trivially true as by Lemma 4.2.1, the length of the total

schedule is OPT . So we assume that r ( j∗) ≤ 1
2 . Consider a time-index t of case (b). The total

resource load at time t must be more than 1− r ( j∗), as otherwise j∗ (or some job with higher

resource requirement) could and would have been scheduled to one of the available machines,

thus ending up in case (a) or (c).

Let t1 (t2) be the total time spent in case (b) (case (c) respectively). Clearly t2 = p( j∗) ≤OPT .

Let ` ∈ [0,1] be so that t2 = ` ·OPT . Then the total resource consumption of case (b) and (c)

together is at least t1 · (1− r ( j∗))+ t2 · r ( j∗). With Lemma 4.2.2 we conclude that

OPT ≥ R̄(J ) ≥ t1 · (1− r ( j∗))+ t2 · r ( j∗) = t1 · (1− r ( j∗))+` · r ( j∗) ·OPT.

We rewrite this to

(1−` · r ( j∗)) ·OPT ≥ t1 · (1− r ( j∗))

and conclude

t1 ≤ 1−` · r ( j∗)

1− r ( j∗)
OPT =

(
1+ (1−`)

r ( j∗)

1− r ( j∗)

)
·OPT ≤ (2−`) ·OPT,

the last inequality being due to the fact that r ( j∗) ≤ 1
2 . Finally

t1 + t2 ≤ (2−`) ·OPT +` ·OPT = 2 ·OPT.
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With Lemma 4.2.3 and Lemma 4.2.5 we conclude that the algorithm is a 3-approximation

algorithm.

Theorem 4.2.6. Algorithm 2 is a 3-approximation algorithm.

A generalization

We will use this algorithm also in a small adaptation: Instead of computing a schedule from

scratch, we start with a feasible schedule ϕ′ for a subset of J ′ ⊆J of jobs of the instance. The

algorithm gets this schedule as input and is asked to complete it by adding the remaining jobs

of the instance. The algorithm works exactly the same way as before: As long as not all job are

scheduled, the earliest time t where some job can be scheduled is computed. Then the algo-

rithm schedules the job of largest resource requirement that is possible. The implementation

details differ slightly from Listing 2, but it is straightforward to do the necessary adaptations to

obtain a polynomial time algorithm.

An activation point of a schedule ϕ is a time-index t where some machine becomes busy

that was idle before, or the resource usage increases. Let A(ϕ′) denote the number of activa-

tion points of the partial schedule ϕ′. Also let τ := max j∈J \J ′ p( j ) be the largest processing

time of a job not scheduled by ϕ′. Moreover let β := max j∈J \J ′ r ( j ) be the largest resource

requirement. We can bound the makespan of schedules generated by the algorithm as follows:

Lemma 4.2.7. Let J , J ′, ϕ′, τ and β be as defined above. In polynomial time we can compute

a schedule for J with T (ϕ) ≤ max
{

T (ϕ′), P̄ (J )+ 1
1−β R̄(J )+ (A(ϕ′)+1) ·τ

}
.

Proof. If T (ϕ) = T (ϕ′), then the statement is obviously true. Otherwise, we again bound the

makespan of the total schedule by bounding the makespans of certain sub-parts separately.

To this end, we introduce a forth case:

(d) ϕ′ has an activation point in the interval [t , t +τ).

Observe that we are always in one of the cases (a) - (d). Clearly the total time spent in case

(d) is at most A(ϕ′) ·τ. If we are not in case (d), note that the algorithm behaves exactly as the

original variant (that started with an empty schedule). Hence, by the lines of the proofs of

Lemma 4.2.3 and Lemma 4.2.4, we can show that the time spent in case (a) - (c) and not (d) is

bounded by

P̄ (J )+ 1

1−β R̄(J )+τ.

Hence in total we get the claimed bound.
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0 ε

J`

p( j )

Figure 4.1: An illustration of the proof of Lemma 4.2.9.

4.2.2 The 2-Approximation Scheme

We now discuss the main result of this chapter, a family of (2+ε)-approximation algorithms

for the standard model of resource constrained scheduling: for each constant ε> 0 there is

a polynomial-time algorithm with an approximation-guarantee of 2+ ε. To this end, fix a

constant ε> 0. For the sake of non-ambiguous notation, if we write O(1), we mean a constant

that is independent on the constant ε. We write Oε(1) for a constant that does depend on

ε. The second form of notation is useful to hide the exact dependence on ε where it is not

needed, e.g., in running times of sub components of algorithms. The first form of notation is

used when the exact dependence of the constant on ε is important, e.g., when computing the

makespan of certain schedules.

We actually present a polynomial time algorithm with the following property. For any instance

J with OPT (J ) ≤ 1, it computes a feasible schedule of makespan at most 2+O(1) ·ε. Such an

algorithm can then easily be turned into a (2+ ε)-approximation algorithm using standard

techniques like a binary search framework. To not distract from the more relevant ideas

of the algorithm, these standard techniques are discussed in more detail at the end of the

presentation of the algorithm in Section 4.2.4. We simplify the problem even further by

considering only instances that are (γ, M)-restricted.

Definition 4.2.8. Let 1 ≥ γ> 0 and M > 1. An instance J is (γ, M)-restricted if for each job j it

holds that either p( j ) ≥ γ or p( j ) < γ/M.

In (γ, M)-restricted instances, we classify jobs j with p( j ) ≥ γ as large and jobs j with p( j ) <
γ/M as tiny. Every large job is at least M times as long as any tiny job. This fact will be crucial

for our algorithm later. For a (γ, M)-restricted instance J , let Jlarge be the set of large and

Jtiny be the set of tiny jobs respectively. The following lemma justifies to reduce to restricted

instances as it allows us to make every instance restricted by removing a set of jobs that can be

scheduled separately using negligible makespan.

Lemma 4.2.9. For any choice of constants ε > 0 and M > 1, there is another constant γ∗ε,M

such that for any instance J , in polynomial time we can find a value γ≥ γ∗ε,M and a partition

of the instance J = J1∪̇J2 so that J1 is (γ, M)-restricted and for J2 the list scheduler from

Section 4.2.1 computes a schedule of makespan at most O(1) ·ε ·OPT (J ).

Proof. Let K := d1/εe be a constant. Consider the sequence of points ε ·M−` for `= 1, . . . ,K as

illustrated in Figure 4.1. These points define K many disjoint (half open) intervals with the

property that the right endpoint is M times larger than the left endpoint. Let J` be the set of
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1+ε 2+2 ·ε

Figure 4.2: A conceptual schedule computed by the (2+ ε)-approximation algorithm. The
striped jobs are the ones assigned in step 1a. The hatched ones are those assigned in step 1b.
The dotted ones are assigned in step 2a, and the dark ones are added in step 2b.

jobs whose processing times are contained in the `th interval. By some extended pigeonhole

principle we can show that for one of the K intervals, say the `th, both resource consumption

and processing load are low, i.e., R̄(J`) ≤ 2
K R̄(J ) and P̄ (J`) ≤ 2

K P̄ (J ). (Recall the definitions

of P̄ and R̄ from Lemma 4.2.2.) The argument is as follows: As the intervals are disjoint, for

at least K /2 of them, their resource consumption cannot exceed 2
K R̄(J ), as otherwise their

resource consumption would sum up to more than the total resource consumption of the

instance. Amongst those K /2 many intervals, by the pigeonhole principle there must be one

that has processing load at most 2
K P̄ (J ).

For this interval `, observe that by construction also p( j ) ≤ ε for all j ∈J`. Hence Lemma 4.2.4

tells us that the list scheduler invoked on instance J` computes a schedule of makespan at

most O(1) ·ε ·OPT (J ). Hence setting J2 :=J`, J1 :=J \J2 and γ to the right endpoint of

J` given the desired partitioning. Note that γ≥ γ∗ε,M := ε ·M−d1/εe and γ∗ε,M is constant.

We set M := ε−3. For the remainder of this section, let J be a (γ, M)-restricted instance with

OPT (J ) ≤ 1. The algorithm to schedule restricted instances is in itself composed of several

steps. The rough outline is as follows. We first consider only the large jobs. We compute a

schedule of makespan 1+ε for all except a constant number of those jobs. Next we compute

a set of candidate schedules for the remaining large jobs. Each of them has makespan 1+ε
as well. We can guarantee that for at least one of the schedules, all tiny jobs can be added

without increasing the makespan (we do not know which one though, so we try them all). As

the problem of adding the tiny jobs is N P-hard on its own, we again rely on approximations

by allowing the makespan to increase “a bit”. Adding tiny jobs takes place in two steps. First,

for each candidate schedule we add the fat jobs, i.e., tiny jobs of “large” resource requirement.

This is successful at least for one candidate. We then concatenate the successful schedule with

the separate schedule that we computed in the first step. Finally we complete the schedule by

adding the so far not yet scheduled thin jobs, i.e., tiny jobs with “small” resource requirement,

using the list scheduler from Section 4.2.1. In total this will result in a schedule of makespan

2+O(1) ·ε. Figure 4.2 illustrates the schedule.

In summary, we have the following steps.
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Figure 4.3: A feasible schedule scaled by a factor of 1+ε. The inner black boxes within the slots
depict the processing time of the jobs assigned to the slots. The difference between slot-width
and job-width illustrates the slack.

Step 1a: Compute schedule ϕ1 for “almost” all large jobs.

Step 1b: Compute set of candidate schedules for remaining large jobs.

Step 2a: For each candidate, try to add tiny fat jobs.

Concatenate ϕ1 with successful schedule from step 2a.

Step 2b: Add tiny thin jobs to concatenation using the list scheduler.

We proceed by discussing each step in more detail.

Step 1a: Scheduling “almost” all large jobs.

Scheduling large jobs is done using a combination of enumeration and linear programming

techniques. To make the enumeration work, we discretize the scheduling decisions for large

jobs as follows. We set δ := ε ·γ/2 and require that the machine slots assigned to large jobs

start and end at integer multiples of δ. I.e., for each j ∈Jlarge, its machine slot should be of

the form (k,`1 ·δ,`2 ·δ) with `1,`2 ∈N0. We call schedules whose large jobs have this property

δ-atomic. Note that we do not pose any restrictions on non-large jobs in δ-atomic schedules.

The following lemma justifies that it is sufficient to consider this type of schedules.

Lemma 4.2.10. There exists a δ-atomic schedule for J whose makespan is at most (1+ ε) ·
OPT (J ) ≤ 1+ε.

Proof. Take an optimal schedule ϕ. Define another schedule ϕ′ by setting ϕ′( j ) := (k, (1+
ε) · a, (1+ ε) · b) for each ϕ( j ) = (k, a,b). Observe that ϕ′ is feasible: No slots assigned to

the same machine overlap and the machine slots assigned to jobs are at least as large as in

ϕ. Also the resource constraint is satisfied as any set of machine slots active at time t in

ϕ′ are active at time (1+ ε)−1 · t in schedule ϕ. By construction, the makespan is at most

(1+ε) ·T (ϕ) = (1+ε) ·OPT (J ).

We now turn ϕ′ into a δ-atomic schedule. See Figure 4.3 for an illustration of ϕ′. For every

large job j ∈Jlarge, its machine slotϕ′( j ) has length |ϕ′( j )| = (1+ε) · |ϕ( j )| ≥ p( j )+2δ. The last

inequality is by the fact that j is large and hence ε ·p( j ) ≥ ε ·γ= 2δ. Hence, we can round the
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starting times of large machine slots up and their ending times down to multiples of δ without

decreasing their length below p( j ). This way we obtain a feasible δ-atomic schedule.

Aiming for δ-atomic schedules, there is only a constant number of possible starting times for

each job. Still, enumerating all possible starting times for all jobs would lead to an algorithm

with exponential running time. Our way around this is to enumerate machines slots without

job assignment (which can be done in polynomial time), and then assigning jobs via a linear

program. We call a set of |Jlarge| many machine slots (without job assignment) a template.

It is called feasible if it corresponds to a feasible schedule (i.e., there is a feasible schedule

that uses the slots from the template). To compute a schedule for the large jobs, we will

first find a feasible template, and later assign jobs to its slots. More precisely, we want to

find the template corresponding to the schedule of makespan 1+ε from Lemma 4.2.10. To

do so, we partition the time-line [0,1+ ε) into frames F` := [δ · (`−1),δ ·`) for ` ∈N and set

F := {
F` : 1 ≤ `≤ ⌈1+ε

δ

⌉}
. Observe that all large machine slots in our δ-atomic schedule are

unions of consecutive frames from F . Note that since γ≥ γ∗ε,M (and γ∗ε,M is a constant), we

have that |F | = ⌈1+ε
δ

⌉= ⌈
1+ε
ε·γ/2

⌉
=Oε(1) is constant. This allows us to find a feasible template

by enumeration.

Lemma 4.2.11. In polynomial time we can compute a polynomial number of candidate tem-

plates. At least one of them is feasible.

Proof. In a feasible δ-atomic schedule of makespan 1+ε there are at most |F | many large jobs

on a single machine. This is because the processing times exceed the frame length. For each

job, start and end frames are chosen from |F | many possibilities. Hence, there are at most

Q := (|F |
2

)|F |
feasible combinations of machine slots for one machine. Up to permutation of

machines, we can describe every template by specifying how many machines use each of the

Q possibilities. This results in at most mQ = mOε(1) many candidate templates. One of them

must correspond to the δ-atomic schedule from Lemma 4.2.10 and is thus feasible.

To compute the schedule, we repeat the following procedure for each of the candidate tem-

plates. It will be successful for any feasible template. Let T be a template. We use a linear

program to compute an assignment of large jobs to machine slots from T . Let I denote the

set of all slots from T (i.e., the time intervals without the machine assignment). For each

interval I ∈I , let µI denote the number of machines slots from the template T that use it.
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We model the problem of assigning jobs to intervals with the following linear program.

∑
I∈I , |I |≥p( j )

x j ,I = 1 ∀ j ∈Jlarge (4.1)∑
j∈Jlarge

x j ,I ≤µI ∀I ∈I (4.2)∑
I∈I ,F⊆I

∑
j∈Jlarge

r ( j )x j ,I ≤ 1 ∀F ∈F (4.3)

x j ,I ≥ 0 ∀ j ∈Jlarge ∀I ∈I

The variables x j ,I model the assignment of jobs to intervals, where x j ,I = 1 means that job i is

assigned a machine slot with time interval I . The constraints of type (4.1) ensure that every

job gets assigned a slot. The constraints (4.2) make sure that we do not use more slots of the

respective types than are available in the template. Finally the constraints of type (4.3) ensure

that during each frame, the resource constraint is satisfied. Of course we cannot hope for

finding an integer solution for this LP in polynomial time. However we can find a solution

that assigns most of the jobs integrally as we show next. A fundamental property of the set

of feasible solutions of a linear program is the following. If there is a feasible solution, then

there is a feasible solution whose number of nonzero variables is bounded by the number of

constraints (ignoring non-negativity constraints). This solution is called a basic solution or

extreme point solution. In this LP, the number of constraints is “low”, which implies that most

jobs get assigned integrally as we show next. For later steps, we also need to keep track of the

number of activation points this schedule has. Recall the definition of activation points from

Section 4.2.1 as time-indexes where a machine turns busy from idle, or the resource usage

increases.

Lemma 4.2.12. Given a feasible template, in polynomial time we can compute a δ-atomic

schedule of makespan (1+ε) that schedules all except for |I |+|F | many large jobs. The schedule

has at most O(1) · 1
ε·γ activation points.

Proof. Observe that the number of constraints (without the non-negativity constraints) is

k := |Jlarge|+ |I |+ |F |. Hence an extreme point solution of the above linear program has at

most k many non-zero entries. Due to Constraints (4.1), every job j ∈Jlarge has at least one

non-zero variable. We conclude that at most |I |+ |F | jobs are fractionally assigned. Given

the template, it is straightforward to turn the integral sub-assignment of the LP solution into a

feasible δ-atomic schedule for the integrally assigned jobs. Since it is δ-atomic, there are at

most |F | many activation points.

Note that |I | = Oε(1). We have seen before that |F | = Oε(1) as well. Hence all except for a

constant number of jobs are scheduled.
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Step 1b: Scheduling the remaining large jobs.

If there are only constantly many large jobs to schedule, we can enumerate all possible δ-

atomic schedules in polynomial time. It will be crucial later that one of these schedules is

extendable:

Definition 4.2.13. Let J be a set of jobs and let ϕ be a schedule for a subset J ′ ⊆ J . The

schedule ϕ is extendable for J if the jobs J \ J ′ can be added to ϕ without increasing the

makespan.

Lemma 4.2.14. Let J ′
large ⊆J be a set of large jobs with |J ′

large| =Oε(1). In polynomial time

we can compute a set of δ-atomic schedules of makespan 1+ε. Each of them is feasible for the

sub-instance J ′
large. At least one of them is extendable for J . The number of activation points

of each schedule is at most O(1) · 1
εγ .

Proof. Observe that it is sufficient to restrict ourselves to the first min
{

m,
∣∣∣J ′

large

∣∣∣} = Oε(1)

machines. Now for each job, we can choose one of those machines, a start- and an end-frame

from F . Hence there are Oε(1) · (|F |
2

)
many possibilities per job. As there are only constantly

many jobs, in total there are only constantly many combinations to consider. Hence we

can check all of them in polynomial time, keeping only feasible ones as candidates. One of

them must be the sub-schedule for J ′
large of the δ-atomic schedule from Lemma 4.2.10 (up to

permutation of machines). We conclude that this schedule is extendable. Again, the bound

on the number of activation points follows from the fact that the generated schedules are

δ-atomic.

Step 2a: Adding tiny fat jobs.

We now describe how to add tiny jobs to a δ-atomic schedule for large jobs. As mentioned

previously, there are two kinds of tiny jobs that need to be treated differently. Define β := ε. We

say that a tiny job j is fat if r ( j ) ≥β. Otherwise it is thin. We are now in the following situation:

We consider a sub-instance J ′ ⊆J consisting of some large jobs J ′
large and all tiny fat jobs

J ′
tiny. We stress that J ′

tiny does not contain the tiny thin jobs. Given a schedule ϕ2 for J ′
large

of makespan 1+ε, and we want to add the tiny fat jobs J ′
tiny. For simplicity we assume that

ϕ2 is extendable and show that in this case, the algorithm is successful. The road-map is as

follows. We first round the resource requirements so that only a constant number of different

values remain. We then compute an “optimal invalid” schedule for a transformed instance. It

is invalid because it allows preemption, migration and parallelization. However, in the end

this invalid schedule allows us to compute a “good” feasible schedule for our instance.

The resource rounding is done with a linear grouping technique similar in spirit as the

technique employed in [FdlVL81] for BIN-PACKING. We first sort the jobs from J ′
tiny non-

decreasingly by resource requirement. Let J ′
tiny = { j1, . . . , jn} be in this order. For K := ⌈

1/ε2
⌉

,

we divide the jobs into K groups as follows: Figuratively, we take a schedule where the jobs
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from J ′
tiny are scheduled sequentially in the order from above, slice it into K intervals of equal

length and define that Ji is the group of jobs that are completely contained in interval i for

each i = 1, . . . ,K . Group J0 is the set of jobs that are cut when defining the intervals. Formally,

define

Ji :=
{

jk : (i −1) ·p(J ′
tiny)/K ≤

k−1∑
`=1

p( j`) ≤ i ·p(J ′
tiny)/K −p( jk )

}

for i = 1, . . . ,K and J0 :=J ′
tiny \

⋃K
i=1 Ji . By construction, we obtain the following properties

of the set system. We skip the straightforward proof.

Lemma 4.2.15. We have |J0| ≤ K , p(Ji ) ≤ p(J ′
tiny)/K for all i = 1, . . . ,K , and for any two jobs

j ∈Ji and j ′ ∈Ji ′ with 1 ≤ i < i ′ it holds that r ( j ) ≤ r ( j ′).

Based on this grouping, we define a set of jobs J̃ ′
tiny := {g1, ..., gK−1} by setting p(gi ) :=

p(J ′
tiny)/K and r (gi ) := max

{
r ( j ) | j ∈Ji

}
for each i ∈ {1, ...,K −1}. For the resulting instance

J̃ ′ :=J ′
large ∪ J̃ ′

tiny, we later compute an “invalid” schedule. The jobs gi are going to act as

placeholders to fill in the jobs from Ji in the final solution later. The groups J0 and JK are

treated differently. They can be scheduled separately:

Lemma 4.2.16. The jobs in J0 ∪JK can be scheduled with makespan O(1) ·ε.

Proof. Because the jobs in J0 are tiny we have p(J0) ≤ K · γM = O(1) · ε. For JK , recall the

resource consumption R̄ from Section 4.2.1. Using the lower bound from Lemma 4.2.2 and

the fact that the jobs are fat, we get

1 ≥OPT (J ′) ≥ R̄(J ′) ≥ R̄(J ′
tiny) ≥β ·p(J ′

tiny) ≥β ·K ·p(JK ) ≥ p(JK )/ε.

Hence the total processing time of jobs from J0 ∪JK is negligible. We conclude that if we

schedule the jobs J0 ∪JK sequentially on one machine, the makespan is O(1) ·ε.

We remark that this is the only point in the proof where we needed that the jobs we consider

are fat. We now discuss how to compute the “invalid” helper schedule. We call it a relaxed

schedule. In relaxed schedules, we allow jobs to be preempted, migrated, and executed in

parallel. However the same rules for feasibility apply as for “real” schedules, i.e., each job gets

assigned sufficient exclusive processing time on the machines, and the resource constraint

is not violated. For simplicity of presentation, we refrain from a formal definition of relaxed

schedules. We first prove the existence of a relaxed schedule for J̃ ′.

Lemma 4.2.17. If ϕ2 is extendable for J ′, then it is extendable (as a relaxed schedule) for J̃ ′.

Proof. Let ϕ̄2 be an extension of ϕ2 for J ′. Recall the illustration of slicing a sequential

schedule for J ′
tiny into K equally sized intervals. To construct a relaxed schedule for J̃ ′, for

each i = 1, . . . ,K −1 we use the jobs Ji+1 from interval i +1 as a template to fill in the job gi .

Note that this might include some fractions of jobs from that interval which are not included
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in Ji but in J0. The processing times of these jobs are then split accordingly. This way, for

each job gi we have the “right” amount of processing time p(gi ) = p(J ′
tiny)/K available. Also

the resource constraint stays satisfied because the resource requirement of job gi is no more

than the resource requirement of any job from interval i +1 being replaced. The jobs from the

first group J1 are not used and are simply removed from the schedule.

After proving the existence, we now show how to compute such a relaxed schedule for J̃ ′.
We again resort to linear programming. Note that in order to extend ϕ2 we can use only

resources “left over” by the large jobs J ′
large. Based on ϕ2, for each frame F ∈ F let r (F )

denote the amount of resources available for non-large jobs, and let m(F ) denote the number

of machines available. Note that these quantities are the same throughout a frame as the

schedule ϕ2 is δ-atomic. We will use these remaining resources to schedule tiny jobs of the

instance.

For each schedule extending ϕ2, every possibility of jobs g1, . . . , gK−1 being simultaneously

active during frame F ∈F can be described by a characteristic vector χ ∈ [m]K−1 such that∑K−1
i=1 χi r (gi ) ≤ r (F ) and

∑
i χi ≤ m(F ). For each job gi , the entry χi specifies the number of

machines used for executing job gi in parallel. Let C (F ) be the set of all such vectors. We

call a vector χ ∈ C (F ) a job configuration. This allows us to formulate a “configuration-LP”

that packs job configurations to frames and ensures that all tiny jobs are covered. Denote by

CONF-LP the following linear program.∑
F∈F

∑
χ∈C (F )

χi xFχ ≥ p(gi ) ∀i = 1, . . . ,K −1 (4.4)

∑
χ∈C (F )

xFχ ≤ δ ∀F ∈F (4.5)

xFχ ≥ 0 ∀F ∈F ∀χ ∈C (F )

The variable xFχ models for how much time configuration χ should be used within frame F .

The constraints of type (4.4) ensure that each job gi gets assigned enough processing time.

The constraints of type (4.5) ensure that the total amount of configurations assigned to each

frame does not exceed the frame size, i.e., they ensure that we have a valid packing.

Observe that a feasible relaxed schedule extending ϕ2 gives rise to a solution of CONF-LP

in a straightforward way. Hence with Lemma 4.2.17 we know that CONF-LP has a feasible

solution. As mentioned before, a basic fact from linear optimization is that if a linear program

has a feasible solution, then there is an extreme point solution, i.e. a solution whose num-

ber of nonzero variables is bounded by the number of constraints (ignoring non-negativity

constraints). An extreme point solution hence fulfills the properties of the following lemma:

Lemma 4.2.18. In polynomial time we can compute a solution to CONF-LP with at most

K +|F | non-zero variables.

It remains to construct a non-relaxed schedule ϕ′
2 for J ′ from the solution to CONF-LP. We
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Figure 4.4: Illustration of the construction of a non-relaxed schedule from an LP-solution.

now describe this construction. It is also illustrated in Figure 4.4. We partition each frame

F ∈F into sub-frames, each sub-frame corresponds to a positive variable xFχ and has length

xFχ. The packing constraints (4.5) ensure that we can do that. Now for each sub-frame and

each i ∈ [K ], create χi many machine slots (assign them to free machines greedily) and reserve

them for jobs of group Ji . The machine slots created in this way act as placeholders and, to

avoid confusion, we will refer to them as placeholder slots. Our construction ensures that if

we pack jobs of group Ji arbitrarily to its reserved placeholder slots, we will not violate the

resource requirement (as by Lemma 4.2.15, the resource requirement of all jobs from Ji is at

most r (gi )). As the covering constraints (4.4) are satisfied, the total amount of execution time

reserved for each group Ji is at least p(gi ) which by definition and Lemma 4.2.15 is at least∑
j∈Ji

p( j ).

Now for each group Ji , i = 1. . .K −1 and each job j ∈ Ji , select an arbitrary placeholder

slot reserved for group Ji which has a positive amount of space left and assign j to it. We

stress that we assign j even if the positive amount of space is less than the jobs processing

time. By the observations from above, it is clear that this algorithm manages to assign all jobs.

However, it might produce an infeasible solution as some placeholder slots might be over-

packed. We can repair this as follows: For each sub-frame (i.e., for each positive variable in the

LP-solution), and for each placeholder slot belonging to this sub-frame, pick the job added

last and remove it. Now the placeholder slots are not over-packed anymore, i.e., the resulting

schedule is feasible. For the removed jobs, observe that those that are taken from the same

sub-frame can be scheduled in parallel. Hence, because they are tiny, we can schedule them

separately in a time-frame of γ/M time-units. As there are at most |F |+K many nonzeros the

LP solution due to Lemma 4.2.18, we conclude that the increase of the makespan is at most

γ/M · (|F |+K ) ≤ γ/ε−3 ·
(

1+ε
ε ·γ/2

+1/ε2 +2

)
=O(1) ·ε.

Hence, in summary we get the following result:

Lemma 4.2.19. Given ϕ2, in polynomial time we can compute a schedule ϕ′
2 for J ′ with

T (ϕ′
2) ≤ 1+O(1) ·ε. Moreover we have A(ϕ′

2) ≤O(1) · 1
ε2γ

.

Proof. The makespan increase due to the above procedure, as well as the length of the sched-

ules for J0 and JK , is bounded by O(1) ·ε. To see the bound on the activation points, assume
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that the jobs in each slot of each sub frame are placed in non-increasing order of their resource

requirement. Then only one new activation point can only be introduced per sub-frame from

the construction above. As ϕ2 has at most O(1) · 1
ε·γ activation points by Lemma 4.2.14 and the

number of sub-frames is bounded by |F |+K =O
(

1+ε
ε·γ/2 +1/ε2

)
, the bound on the activation

points follows.

Step 2b: Adding tiny thin jobs.

Let ϕ1 and ϕ′
2 be the schedules obtained due to Lemma 4.2.12 and Lemma 4.2.19, respectively.

Observe that if we concatenate ϕ1 and ϕ′
2, we obtain a schedule of makespan 2+O(1) ·ε that

schedules all jobs from J except for the tiny thin ones. The number of activation points of

this schedule is O(1) ·1/(ε2γ).

We use the list scheduler from Section 4.2.1 to complete the schedule. Applying Lemma 4.2.7

in this situation, we can set τ := γ/M . Hence we obtain a full schedule of makespan

T (ϕ) ≤ max

{
2+O(1) ·ε, P̄ (J )+ 1

1−β R̄(J )+O(1) · 1

ε2γ
γ/M

}
≤ max

{
2+O(1) ·ε,1+ 1

1−ε +O(1) · 1

ε2γ
γ/ε−3

}
= 2+O(1) ·ε.

Putting all the steps together, we obtain the (2+ε)-approximation algorithm.

Theorem 4.2.20. There is a (2+ε)-approximation algorithm for the non-preemptive resource

constrained scheduling problem on identical machines.

Proof. We recap all the steps of the algorithm. Given an instance J with OPT ≤ 1, with the

constants defined throughout the section we partition the instance J =J1 ∪J2 as indicated

in Lemma 4.2.9. J2 can be scheduled separately with the list scheduler and has a makespan

of O(1) ·ε. J1 is (γ, M)-restricted. We now compute a δ-atomic schedule ϕ1 of makespan 1+ε
for all but a constant amount of large jobs by enumerating all templates from Lemma 4.2.11

and applying the algorithm from Lemma 4.2.12. It is successful for at least one template. For

the remaining large jobs not scheduled in ϕ1, we compute a set of candidate schedules as

explained in Lemma 4.2.14. For each of them, we try to extend it by adding all the tiny fat

jobs. As at least one candidate is extendable, by Lemma 4.2.19, this is successful for at least

one candidate and we obtain a schedule ϕ′
2 of makespan 1+O(1) ·ε. Concatenating ϕ1 and

ϕ′
2, we obtain a schedule of makespan 2+O(1) ·ε that schedules all large jobs and all tiny fat

jobs. We add the remaining tiny thin jobs greedily using the list scheduler. As seen above, the

resulting schedule has makespan 2+ c ·ε for some constant c =O(1). To compute a schedule

of makespan 2+ε, set ε′ := ε/c and run the algorithm with parameter ε′ instead of ε.

Finally to turn this algorithm into a (2+ε)-approximation algorithm, we use a standard binary
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search framework. We sketch it here, but refer to a presentation in full detail to Section 4.2.4.

First we find suitable lower and upper bounds L and U on the optimal makespan. Then set

M := U+L
2 . This is our “guess” on the optimal makespan. Rescale all processing times by 1/M ,

then apply our algorithm. If it returns a feasible schedule of makespan at most 2+ε for the

scaled instance, we know that OPT ≤ (2+ε)·M and can set U := M . Otherwise, if our algorithm

fails, we know that OPT ≥ M and can set L := M . We iterate this procedure until U −L is below

some suitable margin. The total number of iterations is polynomial in the input size because

the length of the interval [L,U ] decreases exponentially.

4.2.3 Polynomial Time Approximation Schemes for Special Cases

We can improve the approximation guarantee of the previous algorithm if we restrict ourselves

to special cases. We will deal with two cases. The first is that m, the number of machines,

is upper bounded by a constant. The second case is that the number of different resource

requirements in the instance J is upper bounded by a constant. In both cases we will modify

the algorithm from above to get a polynomial time approximation scheme, i.e., for each

constant ε> 0 we can get a (1+ε)-approximation algorithm.

Essentially there are two steps of the algorithm that need to be improved. The first one is

the way we deal with large jobs: Instead of creating two schedules of makespan 1+ ε and

concatenating them, we need to treat all large jobs together. The second issue is the use of

the list scheduler to schedule the thin tiny jobs: No matter how we tweak the parameters, this

algorithms performance guarantee will not get better than 2+ε. Both issues will be addressed

for both special cases, but in different ways. As before, we assume the instances J we consider

have an optimal solution of makespan at most 1, i.e., OPT (J ) ≤ 1.

Constant number of machines

We now assume that all instances for the resource constrained scheduling problem have the

property that there is a universal constant C > 0 so that the number of machines m is upper

bounded by C . We also assume (without loss of generality) that 1
ε ≥C . Adapting the way on

how we treat the large jobs is very easy using the following insight. If there is a schedule of

makespan at most 1, how many large jobs can it have? As every large job has processing time

at least γ, an optimal schedule can process at most 1/γ many jobs per machine. As there are at

most C machines, there are at most C /γ, i.e., constantly many, large jobs. Hence to treat the

large jobs, we simply skip step 1a. Lemma 4.2.14 guarantees that in polynomial time we can

compute a candidate set of feasible δ-atomic schedules of makespan 1+ε for all large jobs

Jlarge of the instance, where at least one of them is extendable to a full schedule for J .

To deal with the tiny jobs, we need to recall why the distinguishment of fat and thin jobs

was made in the first place. Recall that in the process of dealing with fat jobs, we removed

two subsets of jobs and scheduled them separately (namely the sets J0 and JK ). We argued
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that they can be scheduled separately using only a negligible, i.e., O(1) · ε amount of time.

Particularly, the argument for JK was that as the jobs are fat, only 1/β, i.e., constantly many,

of them can run in parallel. Now, only constantly many of them can run in parallel anyway

because we have only at most C many machines. Hence we do not need to distinguish between

fat and thin jobs anymore and treat all tiny jobs as described in Step 2a. We need however a

new proof for Lemma 4.2.16.

Lemma 4.2.21. Consider the linear grouping process as described in Section 4.2.2, where the

linear grouping is done with all tiny jobs. The jobs in J0∪JK can be scheduled with makespan

O(1) ·ε.

Proof. The proof for the jobs from J0 is as in Lemma 4.2.16: There are at most K many jobs,

so their total processing time is a most p(J0) ≤ K · γM ≤O(1) ·ε. For JK , recall the load bound

P̄ from Section 4.2.1. Using that at most C jobs run in parallel, we get that

1 ≥OPT (J ) ≥ P̄ (J ) ≥ P̄ (Jtiny) ≥ p(Jtiny)/C ≥ K /C ·p(JK ) ≥ p(JK )/ε.

We conclude that if we schedule the jobs J0∪JK sequentially on one machine, the makespan

is O(1) ·ε.

Thus for the special case of constant number of machines, we have a PTAS, simply by using

only a subset of components from the main algorithm.

Theorem 4.2.22. For any constant C and ε> 0, there is a (1+ε)-approximation algorithm for

all instances J with m ≤C .

Proof. We follow the steps of the (2+ε)-approximation algorithm presented in Section 4.2.2. In

particular, using the same constants as before, we again restrict to the case of (γ, M)-restricted

instances with OPT (J ) ≤ 1. As observed above, the total number of large jobs in J is constant.

Hence with Lemma 4.2.14 we can compute a candidate set of feasible schedules for Jlarge.

One of them is extendable to a full schedule for J of makespan 1+ε.

We then apply the algorithm from Step 2a for all tiny jobs. Lemma 4.2.21 and Lemma 4.2.19

guarantee that we will find a schedule for J of makespan 1+O(1) ·ε.

Constant number of different resource requirements

We now assume that there is a universal constant C > 0 so that for each instance J , there

are at most C different resource requirements: There are numbers R1, . . . ,RC so that r ( j ) = R`

for some `= 1, . . . ,C for all j ∈J . To deal with large jobs, we proceed as follows. Recall the

templates from Step 1a. We noted that given a feasible template, it is NP-hard to assign the

jobs to the machine slots in the template so that we get a feasible schedule. In this special case

we can circumvent this as follows. We define a colorful machine slot as a pair (s,`) ∈S × [C ].
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I.e., a colorful machine slot is a “regular” machine slot s that is reserved for a job with resource

requirement R`. Analogous, a colorful template is a set of |J | colorful machine slots without

a job assignment. It is feasible if there is a feasible schedule that uses the colorful machine

slots from the templates for jobs of corresponding resource requirement. Unlike the regular

templates, it is now easy to determine whether a template is feasible and to compute a feasible

schedule from a feasible (colorful) template: If a template is feasible, the following greedy

algorithm successfully computes a feasible schedule: While there is an unassigned job, choose

the one of largest processing time and assign it to any machine slot of its resource requirement

whose length is sufficient. We skip the straightforward proof. Similar to Lemma 4.2.11, in

polynomial time we can enumerate a set of candidate templates:

Lemma 4.2.23. In polynomial time, we can compute a set of colorful templates. At least one of

them is feasible and extendable.

Proof. This proof is essentially by the lines of the proof of Lemma 4.2.11. For a colorful

machine slot, we can choose the resource group, the start and the end interval. Also there

are at most |F | many large jobs on each machine. Hence there are at most Q :=
(
C · (|F |

2

))|F |

many combinations of colorful machine slots for a fixed machine that could lead to a feasible

schedule. We can now describe a template by specifying for each possibility, how many of

the m machines use it. We conclude that (up to permutation of machines), there are at most

mQ many colorful templates that might be feasible. We can enumerate them all. One of them

corresponds to the feasible δ-atomic schedule from Lemma 4.2.10 and is hence feasible and

extendable.

This shows that in polynomial time, we can compute a schedule ϕ1 of makespan 1+ε for all

large jobs Jlarge. Moreover, ϕ1 is extendable, i.e., we can add all tiny jobs without increasing

the makespan. It remains to deal with the tiny jobs. As in the case of constant number of

machines, we will not distinguish between thin and fat jobs. Instead we will modify the

grouping procedure. Recall that in Step 2a, we grouped the tiny fat jobs into K +1 groups

J0, . . . ,JK and rounded the resource requirement. Now we instead define C many groups

J1, . . . ,JC by resource requirement, i.e.,

J` := {
j ∈Jtiny : r ( j ) = R`

}
Analogous to Step 2a, we now construct a helper instance �Jtiny := {g1, . . . , gC }. We set p(g`) :=
p(J`) and r (g`) := RC . We observe that as ϕ1 is extendable, ϕ1 is also extendable as a relaxed

schedule for J̃ :=Jlarge∪ �Jtiny. The proof is a simplified version of the proof for Lemma 4.2.17

and we omit the details. Now we can argue by the lines of the description of Step 2a that

CONF-LP finds a good extreme point solution which we can turn into a full schedule for J of

makespan 1+O(1) ·ε. We conclude:

Theorem 4.2.24. For any constant C and ε> 0, there is a (1+ε)-approximation algorithm for

all instances J where the number of different resource requirements is bounded by C .
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4.2.4 A Binary Search Framework

Recall that for the (2+ε)-approximation scheme shown in Section 4.2.2, we actually only pre-

sented an algorithm that for any instance J with OPT (J ) ≤ 1, finds a schedule of makespan

at most 2+ε. We then claimed that this algorithm can be turned into a (2+ε)-approximation

scheme using a standard binary search framework. For the sake of being self-contained, we

now describe this framework in more detail.

Given an instance J , first we compute suitable lower and upper bounds L and U on the

optimal makespan. For example, we can set L := P̄ (J ) = 1
m

∑
j∈J p( j ) and U := ∑

j∈J p( j ).

One could find even better bounds, but they serve the purpose. Now while the difference

between U and L is above some margin, we repeat the following procedure. The goal is

to decrease the distance of U and L while keeping the invariant that (2+ ε) ·U and L are

upper/lower bounds for the optimal makespan (for some constant c). Set M := U+L
2 , scale

all processing times of the jobs from J by 1
T , and run the algorithm from Section 4.2.2. If

the algorithm returns a schedule of makespan at most 2+ε, we can easily translate it into a

schedule of makespan (2+ ε)T for the unscaled instance. Thus we can set U := M and the

invariant still holds. Otherwise, if the algorithm fails to compute such a schedule, we know

that the optimum makespan for the scaled instance is at least 1. This translates to the fact that

in the original instance, the optimal makespan is at least T . Hence we can safely set L := M

without invalidating the invariant.

When do we stop? Let g := gcd j∈J p( j ). We claim that the optimal makespan is an integer

multiple of g . Assume otherwise, i.e., consider an optimal schedule whose makespan is not

a multiple of g . Then there must be a job that does not start at at multiple of g . Amongst all

such jobs, let j∗ be one with the smallest starting time. We can then round down the starting

time of j∗ to the nearest multiple of g without changing feasibility of the schedule, because all

starting and ending times before are multiples of g . Iterating the argument leaves us with a

schedule where all starting and ending times are multiples of g . Moreover this construction

did not increase the makespan. Hence the schedule is still optimal. Also as all ending times

are multiples of g , the makespan is a multiple of g . A contradiction.

As the optimal makespan is an integer multiple of g , we know that we can stop if U −L < g . To

see this, let L̃ be L rounded up to the nearest multiple of g . We know that L̃ ≤OPT ≤ (2+ε) ·U .

If L̃ =OPT , then our algorithm on input J scaled by L̃ will compute a schedule of makespan

at most (2+ε) ·OPT . Otherwise, by the termination criterion we have that OPT ≥ L̃+ g >U .

As U always corresponds to a successful run of the algorithm, we have a schedule of makespan

at most (2+ε) ·U ≤ (2+ε) ·OPT . In both cases we have a (2+ε)-approximation. See Listing 3

for a more formal description of the algorithm.

Lemma 4.2.25. Given a makespan minimization instance J and oracle access to the (2+ε)-

decision algorithm ALG from Section 4.2.2, the algorithm from Listing 3 computes a schedule of
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Algorithm 3 The binary search framework.
Input: J , L, U ,ALG
γ← gcd{p( j ) : j ∈J }
ϕ← ALG(J ,U ).
while U −L > γ do

M ← U+L
2

ϕ′ ← ALG(J , M)
ifϕ′ = FAIL then

L ← M
else

U ← M
ϕ←ϕ′

end if
end while
L̃ ← L rounded up to nearest multiple of γ.
return best of {ϕ,ALG(J , L̃)}

makespan (2+ε) ·OPT (J ) Its running time is

O
((

log(U −L)+ log(1/γ
) ·TALG (J )

)
,

where TALG (J ) is the running time of the algorithm from Section 4.2.2 and γ= gcd{p( j ) : j ∈
J }.

Proof. With the discussion from above, it is obvious that the algorithm computes a schedule

of makespan (2+ε) ·OPT (J ). It remains to show the bound on the running time. Let Lk and

Uk be the bounds U and L after the k-th execution of the while loop. In particular, let L0 and

U0 be the original bounds. Observe that Uk −Lk = 1
2 (Uk−1−Lk−1) for all k ∈N, i.e., the interval

[L,U ] is halfed in each iteration of the loop. The algorithm terminates if Uk −Lk ≤ γ, i.e., if

γ≥ 2−k (U −L)

or equivalently

k ≥ log(1/γ)+ log(U −L)

It remains to argue that the running time is polynomial in the encoding length of the input.

Each processing time p( j ) is a rational number, therefore its encoding is given by two numbers

a j ,b j ∈ Z so that p( j ) = a j /b j . Let B := ∏
j b j . Observe that U = A/B , where A is a number

whose absolute value is bounded by n ·m ·B ·max j |a j |. We conclude that the binary encoding

length of both A and B , and therefore U , is bounded by a polynomial in the encoding length

of the original instance. The same trivially holds for L. Also for γ, an upper bound for the

absolute of its denominator is given by B and an upper bound for the absolute value of its
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nominator is given by n ·m ·B ·max j |a j |. We conclude that the Algorithm from Lemma 4.2.25

has polynomial running time.

4.2.5 Inapproximability

At the end of this section we ask for lower bounds on the approximability of the resource

constrained scheduling problem. We show that the problem is NP-hard to approximate with a

factor better than 3
2 . This shows that the computational complexity of the problem actually

increases when adding the resource constraint, as there is a PTAS for the basic problem [HS87].

The result is established via a straightforward reduction from the NP-hard PARTITION problem.

Here one has given a set of n items with item sizes a1, . . . , an ∈ N. The question is whether

these items can be partitioned into two sets, so that the total item size of each set is the same.

For the reduction, let B := 1
2

∑n
i=1 ai . For each item ai , we introduce a job of processing time 1

and resource requirement ai /B . Observe that there is a schedule of makespan 2 if and only if

the items can be partitioned into two sets of equal size B . Also observe that if this partitioning

does not exist, the shortest possible non-preemptive schedule has makespan 3. We conclude:

Theorem 4.2.26. For the resource constrained scheduling problem there is no approximation

algorithm with an approximation factor better than 3/2 unless P = N P.

4.3 Resource Constrained Scheduling on Unrelated Machines

We now focus on the case of unrelated machines. To this end, we alter notation slightly to

account for this more general model. Given an instance J with n jobs and m machines,

execution times p( j ,k) and resource requirements r ( j ,k) are now given for each job/machine

pair ( j ,k). It means that if a job j ∈J is assigned to machine k, it requires a processing time

of p( j ,k) and has a resource requirement of r ( j ,k) when active. The definition of schedules

as maps that assign machine slots of suitable length to the jobs remains unchanged. As

before, the goal is to compute a feasible schedule of minimum makespan. We present a 3.75-

approximation algorithm. It computes a non-preemptive schedule. However in the analysis

we compare its performance only to optimal preemptive schedules, which implies that this

algorithm is a 3.75-approximation algorithm both in the preemptive and non-preemptive

setting.

The algorithm works in two phases. In the first phase, only an assignment of jobs to machines

is computed. Then in in phase two we compute the actual schedule based on the machine

assignment. The first phase essentially consists of using an algorithm by Shmoys and Tar-

dos [ST93] that computes a schedule for a variation of makespan minimization scheduling

they call scheduling with costs, invoked with the “right” parameters. The schedule generation

in the second phase is done with a list scheduler.

The presentation of the algorithm is structured as follows. We first introduce the scheduling

problem with costs and state the approximation algorithm by Shmoys and Tardos for this
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problem (Section 4.3.1). We then present a 4-approximation algorithm in Section 4.3.2. Here

we explain the two phases in more detail and analyze the approximation guarantee of the

algorithm. Finally in Section 4.3.3 we discuss a variation of the algorithm and show that it is a

3.75-approximation algorithm.

As mentioned previously, there is a 3.75-approximation algorithm by Grigoriev, Sviridenko and

Uetz [GSU07] from 2007 for the even more general problem of scheduling jobs with resource

dependent processing times. The 4-approximation presented in Section 4.3.2 was found

independently. Nevertheless, the basic idea of having a two-phase approach is quite similar:

also Grigoriev et al. first compute a machine assignment and then the actual schedule. As

they deal with a more general problem, the subproblem to solve in the first phase is also more

general, and they provide their own algorithm rather than being able to use [ST93] as a black-

box. The subproblem that remains in the second phase is similar to ours and they also employ

a list scheduler. Details however differ from our list scheduler. While our 4-approximation

from Section 4.3.2 is independent work, the adaptation to turn it into a 3.75-approximation

presented in Section 4.3.3 is based on insights from [GSU07].

4.3.1 Scheduling on Unrelated Parallel Machines with Costs

For the moment, forget about the resource constraint and consider the basic problem of

scheduling jobs on unrelated parallel machines, minimizing the makespan. As mentioned

previously, Lenstra, Shmoys and Tardos [LST90] constructed a 2-approximation algorithm for

this problem. More precisely, given an instance and makespan bound T , their algorithm either

asserts that there is no schedule of makespan at most T , or provides a schedule of makespan

2·T . The main idea is to consider some linear programming relaxation for this problem. Based

on an optimal extreme point solution, a rounding technique is employed to find a feasible

integer solution of required quality. The rounding technique is based on finding a matching in

a certain bipartite graph. Given the algorithm to decide this decision variant (with input T ), a

standard binary search framework as already explained in Section 4.2.4 can be used to turn it

into a 2-approximation algorithm.

Shmoys and Tardos also studied a generalization of the problem, which they call the scheduling

problem with costs. Here, in addition to the processing times, one gets costs c( j ,k) as input for

each job/machine pair ( j ,k). When a job j is assigned to machine k, it incurs a cost of c( j ,k).

Given a makespan bound T , the goal is to find a schedule of makespan at most T of minimum

cost. Shmoys and Tardos designed a “2-approximation” algorithm for this problem [ST93].

The exact statement is as follows:

Theorem 4.3.1 ([ST93]). Consider an instance of the scheduling problem with costs for which

there is a machine assignment with makespan at most T and total cost C . Let

τ := max
j ,k : p( j ,k)≤T

{p( j ,k)}
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denote the largest processing time of any job on any machine. Given the instance and the value

of T as input, the polynomial time algorithm in [ST93] computes a machine assignment of

makespan at most T +τ and cost at most C .

The technique employed to prove the result is essentially a generalization of the LP-rounding

technique via finding a matching in a certain helper graph as described above.

4.3.2 A 4-Approximation Algorithm

We now come back to the resource constrained scheduling problem on unrelated machines,

and describe our 4-approximation algorithm. As mentioned before, the algorithm works in

two phases. In the first phase, an assignment of jobs to machines is computed. Afterwards,

based on this assignment, in phase two we compute the actual schedule using a list scheduler.

Let σ : J → [m] denote a machine assignment. We can lower bound the makespan of every

feasible schedule using this assignment as follows. Note that the assignment σ completely

determines the processing time and resource requirement of a job. For notational convenience

we set p( j ) := p( j ,σ( j )) and r ( j ) := r ( j ,σ( j )). We can now derive a lower bound on the

makespan in terms of total processing time and resource consumption similar to the case of

identical machines in Lemma 4.2.2. We define the resource consumption of a job j (under σ)

as the resource/processing product r ( j ) ·p( j ).

Lemma 4.3.2. Let ϕ be a schedule using machine assignment σ. Then

T (ϕ) ≥ R̄(J ) := ∑
j∈J

r ( j ) ·p( j ).

Proof. As the resource usage of ϕ is limited to 1 at all times, the schedule can “process” only

one unit of resource consumption per time unit. We conclude that the schedule needs at

least R̄(J ) time units to “process” the total resource consumption of J , which implies the

makespan bound.

Another simple and obvious lower bound on the makespan of a schedule using σ is the

maximum load of a machine, i.e., the sum of execution times of jobs assigned to it. We skip

the proof for triviality.

Lemma 4.3.3. Let ϕ be a schedule using machine assignment σ. Then

T (ϕ) ≥ max
k∈[m]

∑
j : σ( j )=k

p( j ).

These bounds give an indication on how to design the first phase of our algorithm: The

machine assignment should be in such a way that both the machine load and the total resource

consumption is “low”. We take this into account when computing the machine assignment in

71



Chapter 4. Resource Constrained Scheduling: Computing Schedules Offline

the first phase. These bounds are also crucial in the analysis of the approximation guarantee

in the second phase.

Phase 1: Assigning jobs to machines

As just explained, our goal for phase one is to compute a machine assignmentσ for which both

resource consumption and processing load is low. To do so, we construct a suitable instance

for the scheduling problem with costs introduced in Section 4.3.1. We will use the algorithm

from Theorem 4.3.1 as a black-box to compute a machine assignment. To that end we model

the costs as the resource consumption of the jobs: for each job/machine pair ( j ,k) we set

c( j ,k) := r ( j ,k) ·p( j ,k).

Reversing the argument from Lemma 4.3.2, we can upper bound the cost of any schedule of

makespan T :

Lemma 4.3.4. If there is a schedule of makespan T for the resource constrained scheduling

problem, then there is a solution to the scheduling problem with costs of makespan T and cost

at most T .

Proof. As the schedule processes only one unit of resource consumption per time-unit, and it

is finished at time T , the total resource consumption of the instance cannot be more than T .

By construction, this implies that the cost of that schedule is at most T .

With the properties of the algorithm of Shmoys and Tardos from Theorem 4.3.1 we can then

conclude:

Corollary 4.3.5. If there is a schedule of makespan T for the resource constrained scheduling

problem, the Shmoys-Tardos algorithm determines a machine assignment of the jobs with

machine load at most (T +τ) and total resource consumption at most T .

Proof. By construction and by Lemma 4.3.4, if there is a schedule of makespan T for the

resource constrained scheduling problem, there is a solution of makespan T and cost at most

T for the scheduling problem with costs. Hence the algorithm from Theorem 4.3.1 finds a

solution as stated.

It remains to find the right T . Our goal is to find a machine assignment with the properties

from Corollary 4.3.5 for some T ≤OPT (J ). This is done using the binary search framework

explained in Section 4.2.4: for all T ≥OPT (J ), Corollary 4.3.5 guarantees that the algorithm

succeeds. Hence using suitable lower and upper bounds on T , e.g., min p( j ,k) and
∑

p j ,k we

can find the desired T via binary search in polynomial time.
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Corollary 4.3.6. Let

τ := min

{
OPT (J ),max

j ,k
p( j ,k)

}
.

In polynomial time we can compute a machine assignment σ with machine load at most

(OPT (J )+τ) and total resource consumption at most OPT (J ).

Phase 2: Computing the schedule

Based on the machine assignment σ from Corollary 4.3.6 we now want to compute a schedule.

To simplify notation, we define processing times and resource requirements for each job as

implied by the machine assignment σ determined in Phase 1:

p( j ) := p( j , σ( j )) r ( j ) := r ( j , σ( j )) ∀ j ∈J .

The schedule is generated using a greedy list scheduler. We sort the jobs non-increasing by

their resource requirement r ( j ) and create an ordered list

L = ( j1, j2, . . . , jn) (4.6)

of all jobs with the property that for any two jobs ja , jb with a < b we have r ( ja) ≥ r ( jb). The

list defines job priorities for our phase-two algorithm, with the leftmost entry (i.e., the one

with the highest resource requirement) having best priority and the rightmost entry having

least priority. The list scheduler always assigns the job j with the best priority that is available

at given time t , meaning that the following two conditions must be satisfied:

(a) Scheduling the job at time t does not lift the resource usage above 1.

(b) The job j has to be ready. We call a job j ready at time t , if every job j ′ with σ( j ) =σ( j ′)
and r ( j ′) > r ( j ) has finished at time t . (This can be seen as implicit precedence constraints

between jobs on the same machine which enforce that jobs assigned to the same machine

are always processed in the order given by their resource requirement.)

The full algorithm is presented in Listing 4.

The analysis

We first show that Algorithm 4 runs in polynomial time. As listed, Phase 1 assumes that the

value of T is known and makes only one call to the procedure of Theorem 4.3.1. As discussed

above, we can compute this number T via binary search using polynomially many calls to

this polynomial-time procedure of Theorem 4.3.1. For the second phase, the while loop is

executed at most once for each job completion, i.e., n times; during each iteration, the inner

for loop can clearly be implemented to execute in polynomial time.
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Algorithm 4 Scheduling resource-constrained jobs

{Phase 1: assign jobs, assuming minimum makespan T ≤OPT (J ) is known}
σ← ST ({p( j ,k)}(n×m), {r ( j ,k) ·p( j ,k)}(n×m),T )
{Phase 2: generate the schedule}
L ← ( j1, j2, . . . , jn) {as defined in (4.6)}
t ← 0
while L has unscheduled jobs do

for `= 1 to n do
if j` is unscheduled and available at time t then

Schedule job j` on processor σ( j`) at time t by allocating suitable machine slot
end if

end for
t ← next finishing time of a job.

end while

It is obvious that Algorithm 4 computes a feasible schedule. It remains to show the claimed

approximation guarantee, i.e., that the schedule has makespan at most 4 ·OPT (J ). Define

β := min

{
1

2
,max

j ,k
r ( j ,k)

}
.

We will show that the schedule computed by our algorithm consists of two regions: In the

first region, the resource usage is always high. More precisely, the resource usage is always

at least 1−β. In the second region however, the resource usage is always below 1−β. As a

consequence we can show that in the second region, there are no idle times due to resource

limitations. In the end, this allows us to bound the total makespan of the computed schedule

by separately computing the makespan of the two regions, using the resource consumption

bound from Corollary 4.3.5 for the first region, and the processing load bound for the second

region.

We start with a basic observation regarding the structure of this schedule:

Lemma 4.3.7. Consider a schedule computed by the algorithm. If job j ∈J is unfinished at

time t in the schedule, there is a job j ′ ∈J with r ( j ′) ≥ r ( j ) that is active at time t .

Proof. Assume that t∗ is the smallest time-index where the theorem is not true. I.e., a job j ∈J

is unfinished, but all active jobs at time t∗ have resource requirement strictly smaller than j . If

there are several jobs with that property, let j be the one of largest resource requirement r ( j ).

First of all we observe that t∗ > 0 as the job of largest resource requirement is always scheduled

at time 0. As the statement is true at time t∗−ε for every small enough ε> 0, we conclude that

there is a job j ′ with r ( j ′) > r ( j ) that finishes at time t∗. As no job of resource requirement

at least r ( j ) was scheduled at time t∗, we conclude that none of those jobs was available.

In particular, j was not available. As the resource requirement of r ( j ) would not lift the

resource usage above one, we conclude that the resource limitation is not the reason for j
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being unavailable. Hence it follows that j is not ready, i.e., a job of larger resource requirement

on the same machine is still unfinished. This is a contradiction to the choice of j as the

unfinished job of largest resource requirement.

We now show the previously mentioned structural property of the generated schedule. Once

the resource usage of the schedule drops below 1−β, it will never rise above this threshold

again.

Lemma 4.3.8. Consider the schedule generated by the algorithm. For a time-index t , let J (t )

denote the set of jobs that are active at time t . Let

t̂ := min

{
t :

∑
j∈J (t )

r ( j ) < 1−β
}

.

Then
∑

j∈J (t ) r ( j ) < 1−β for all t ≥ t̂ . Moreover, at every time-index t ≥ t̂ , a machine is idle only

if all of its jobs are finished.

Proof. Observe that Lemma 4.3.7 implies that all jobs with r ( j ) ≥ 1
2 are finished before time t̂ :

If there is such a job, then β= 1
2 . As long as there is an unfinished job of resource requirement

at least 1
2 , there is also an active job of that resource requirement. Hence the resource usage is

at least 1
2 = 1−β.

We conclude that after time t̂ , only jobs of resource requirement at most β are active. This

implies that a machine k that is idle at time t̂ has no more jobs to process: If there would be jobs

left, at least one of them would be available and therefore get scheduled. As by construction of

the algorithm, the resource requirement of each single machine is monotonously decreasing,

we conclude that the resource usage of the schedule after time t̂ is monotonously decreasing

and the resource usage statement follows.

As the resource usage at all times t ≥ t̂ is at most 1−β, with the same argument as before we

see that at time t , only machines that have no more job left to process are idle.

We are now ready to prove the following approximation guarantee for our algorithm:

Theorem 4.3.9. Algorithm 4 is a ρ-approximation algorithm, where

ρ := 1

1−β +
(
1+ τ

OPT (J )

)

Proof. Let t̂ be as in Lemma 4.3.8. The lemma states that for each t ∈ [0, t̂), the resource

consumption is at least 1−β. On the other hand, we have seen in Corollary 4.3.6 that the total

resource consumption of all jobs is at most OPT (J ). Hence t̂ · (1−β) ≤OPT (J ) holds which

implies

t̂ ≤ 1

1−βOPT (J ).

75



Chapter 4. Resource Constrained Scheduling: Computing Schedules Offline

After time t̂ , Lemma 4.3.8 shows that the resource constraints are not a limitation anymore:

Each processor is busy until all of its jobs are finished. Hence, an upper bound for the

makespan of the schedule starting at time t̂ is given by the processing load bound from

Corollary 4.3.6: OPT (J )+τ.

As τ≤OPT (J ) and β≤ 1
2 , we get the following corollary.

Corollary 4.3.10. The algorithm is a 4-approximation algorithm.

We conclude the section briefly discussing the case where preemptive schedules are allowed.

Algorithm 4 computes a non-preemptive schedule. However, observe that for the scheduling

problem with costs, it does not matter whether we allow preemptive schedules or not. The

minimum makespan is the same in both cases. We conclude that the derivations in Corol-

lary 4.3.5 and Corollary 4.3.6 hold true even if OPT (J ) denotes the optimal makespan of a

preemptive schedule. We conclude that our algorithm is also an approximation algorithm

for preemptive schedules with same approximation factors as stated in Theorem 4.3.9 and

Corollary 4.3.10.

4.3.3 Improving the Approximation Ratio to 3.75

We now describe a few adaptations on the algorithm to improve the approximation guarantee

to 3.75. As mentioned previously, unlike the 4-approximation algorithm from Section 4.3.2,

this is no longer independent work as the ideas for the improvement are taken from Grigoriev

et al. [GSU07]. We present it anyway for the sake of completeness. Also the analysis of

our modified algorithm appears to be simpler than the case based analysis of Grigoriev et

al. [GSU07].

To improve the approximation guarantee, both phases of our algorithm need to be modified.

We first discuss the second phase. Recall that we argued that up to some time t̂ , the resource

usage in the schedule is always at least 1−β ≥ 1
2 . We would like to have a stronger bound

than 1
2 . To achieve this, we change the definition of availability slightly. Recall that a job

was available to be scheduled at a time by the list scheduler, if all jobs with larger resource

requirement assigned to the same machine are finished, and scheduling the job at time t does

not violate the resource constraint. For jobs whose resource requirement is less than 1
3 , we

add a third condition: for such a job to be available at time t , all jobs of resource requirement

at least 1
3 must have been scheduled already at time t . We stress that they do not need to be

finished already at time t , but all of them must be assigned to the schedule by that time.

The effect of this is as follows. As before, first all jobs of resource requirement of more than 1
2

are scheduled sequentially. In parallel, there might be some other jobs of resource requirement

at least 1
3 active, but no jobs of resource requirement less than 1

3 by the new definition of

availability. Once all jobs of resource requirement more than 1
2 are finished, and there are at

least two jobs of resource requirement at least 1
3 that are unfinished, at least two of them get
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executed in parallel. If there is at most one unfinished job left of resource requirement at least
1
3 , the remaining jobs get scheduled as before in the old algorithm. In terms of resource usage,

we can now show the following:

Lemma 4.3.11. Consider a schedule generated by the modified algorithm. Let t1 be the time

where the last job of resource requirement more than 1
2 finishes. Let t2 ≥ t1 be the smallest time

index where the resource usage drops below 2
3 . Then at every time-index t ≥ t2, a machine is idle

only if all of its jobs are finished.

Proof. By construction of the algorithm, at time t2, there is at most one unfinished job of

resource requirement at least 1
3 left. Otherwise the algorithm would schedule two of those

jobs in parallel, raising the resource usage above 2
3 . We conclude that after time t2, the only

jobs left to schedule are jobs of resource requirement at most β := 1
3 . By the lines of proof

of Lemma 4.3.8, we conclude that a machine can only be idle because all of its jobs are

finished.

Observe that the benefit we get from the modified algorithm is a better bound on the resource

usage: during time interval [t1, t2), the resource usage is at least 2
3 . However, the resource usage

in time interval [0, t1), i.e., where jobs of resource requirement of more than 1
2 are running, can

still be arbitrarily close to 1
2 . We have no control over that. This is where a modification of the

first phase comes into play, more precisely a modification of the costs. Recall that we set the

costs for the algorithm by Shmoys and Tardos (Theorem 4.3.1) to the resource consumption.

The idea of Grigoriev et al. [GSU07] is to increase the weight of the jobs of resource requirement

of more than 1
2 . If σ is the machine assignment for a solution of makespan T , then∑

j∈J : r ( j ,σ( j ))> 1
2

p( j ,σ( j )) ≤ T,

as none of these jobs can run in parallel. From Lemma 4.3.4 we know that the total resource

consumption also cannot exceed T :∑
j∈J

r ( j ,σ( j )) ·p( j ,σ( j )) ≤ T.

We conclude that the solution then also satisfies the following conic combination of the two

inequalities from above:

3

2

∑
j∈J

r ( j ,σ( j )) ·p( j ,σ( j ))+ 1

4

∑
j∈J : r ( j ,σ( j ))> 1

2

p( j ,σ( j )) ≤ 7

4
T (4.7)

Redefining costs based on this, we get the following lemma.
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Lemma 4.3.12. Given an instance J , define costs

c( j ,k) :=
3

2 r ( j ,k) ·p( j ,k), if r ( j ,k) ≤ 1
2

3
2 r ( j ,k) ·p( j ,k)+ 1

4 p( j ,k), else

for each job/machine pair. If there is a schedule of makespan T for the resource constrained

scheduling problem, then there is a solution to the scheduling problem with costs of makespan

T and cost at most 7
4 T .

Proof. The costs are defined in such a way that the solution with machine assignment σ from

the discussion above resemble the left hand side of the valid inequality (4.7).

The new approximation algorithm now runs the algorithm from Theorem 4.3.1 with the

modified costs, then runs the modified algorithm for Phase 2. We claim that this algorithm is a

3.75-approximation algorithm.

Theorem 4.3.13. The algorithm is a 3.75 approximation algorithm.

Proof. Assuming that T is the “right” guess for the makespan, letσ be the machine assignment

computed in the first phase. Let t1 and t2 be as in Lemma 4.3.11. Let `1 := |[0, t1)| and `2 :=
|[t1, t2)| and ` := `1 +`2. Also let C be the total amount of resource consumption processed by

the algorithm during the time interval [0, t2). As by Lemma 4.3.11, the resource usage during

interval [0, t1) is at least 1
2 , and during [t1, t2) it is at least 2

3 we conclude

C ≥ 1

2
`1 + 2

3
`2 = 2

3
`− 1

6
`1.

We reformulate this to

`≤ 3

2
C + 1

4
`1.

With Lemma 4.3.12 we know that Equation (4.7) is satisfied. Note that C = ∑
j∈J r ( j ,σ( j )) ·

p( j ,σ( j )) and `1 =∑
j∈J : r ( j ,σ( j ))> 1

2
p( j ,σ( j )). We conclude that

`≤ 7

4
T.

The rest of the proof is by the lines of Theorem 4.3.9. After time t2, Lemma 4.3.11 shows that

the resource constraints are not a limitation anymore: Each processor is busy until all of its

jobs are finished. Hence, an upper bound for the makespan of the schedule starting at time t2

is given by the processing load bound from Corollary 4.3.6, i.e., 2 ·T .

We conclude that the total makespan of the algorithm is at most `+2 ·T = 3.75 ·T .

78



4.4. Further Research Questions

4.4 Further Research Questions

For the machine model of identical machines, we have matching approximation and inap-

proximability results for most cases. Only for the variant of finding non-preemptive schedules

where we have no restriction on the number of machines, a small gap remains. Here we know

that it is NP-hard to approximate the problem with a factor between than 3
2 . Our algorithm on

the other hand only achieves an approximation guarantee of 2 (asymptotically). As this variant

probably is the most interesting one, it would be very desirable to close this gap. Moreover,

the approximation scheme is a purely theoretical construction, and totally insufficient for any

practical purposes. It would be very interesting to see an efficient combinatorial algorithm

that beats Garey and Grahams classic list scheduler [GG75].

Unlike in the identical machine model, the gap between best known inapproximability bound

and best approximation algorithm is quite large, i.e., 3
2 vs. 3.75. For that reason it would be

desirable to narrow this gap, either by proving better hardness bounds or by finding better

approximation algorithms. Also, as the approximation algorithm produces non-preemptive

schedules and works for an arbitrary number of machines, it might be worth checking whether

the approximation guarantee can be improved for the other cases exploiting the fact that

preemption is allowed or the number of machines is bounded by a constant.

In related work, the problem is often considered in a more general setting where there are s

independent resources that are used by the jobs, and the schedule must make sure that for

none of the resources, the respective resource requirements of active jobs exceed the limits.

This rises the question whether our (2+ε)-approximation scheme can be generalized to this

setting as well. If s is upper bounded by a constant, some of the sub-components of the

algorithm generalize nicely, while others do not. Already looking at the natural generalization

of the analysis of the greedy list scheduler when dealing with tiny/thin jobs however suggests

that the best we can hope for following this approach is a (s +1+ε)-approximation scheme.

Considering that Garey and Graham have a s +2, approximation algorithm, the difference gets

negligible for larger s. Thus it is probably not worth the effort to study this generalization of

the algorithm, but rather new concepts are needed. Note that a special case of our problem

with s resources is the s-dimensional vector bin packing problem (just like BIN-PACKING is

a special case of the (standard) resource constrained scheduling problem). If s is bounded

by a constant, there is a O(log(s))-approximation algorithm by Chekuri and Khanna [CK04].

Bansal et al. [BCS06, BCS09] give a randomized approximation algorithm with approximation

ratio arbitrarily close to ln(s)+1. Already for the case that s = 2, Woeginger [Woe97] shows

that there is no asymptotic PTAS for s-dimensional BIN-PACKING unless P = N P . If s is not

bounded by a constant, the problem is NP-hard to approximate within a factor of s
1
2−ε [CK04].

So something one could aim for is a log(s)-approximation for our problem with s resources,

where s is a constant.
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5 Resource Constrained Scheduling:
Computing Schedules Online

5.1 Introduction

In Chapter 4 we discussed approximation algorithms that compute offline schedules for the

resource constrained scheduling problem. The approximation algorithms had full knowledge

of the instance J when computing a schedule. This assumption however is not always realistic.

For example, computation servers might run for a long time, even years. By the time these

machines are turned on, it is not known yet which jobs they will have to execute during their

lifetime. Instead the system learns about them over time and needs to adapt to them online,

still making efficient use of the resources available without being able to change scheduling

decisions of “the past”. Algorithms to compute schedules under these restrictions are called

online algorithms, and this chapter is devoted to the study of these.

Online algorithms are particularly interesting as they have immediate consequences for certain

real-time scheduling problems, where tasks periodically generate jobs that need to be finished

within a certain amount of time. This is because every online algorithm can be used also as a

scheduler for the real-time task systems. Before we discuss any more details, we introduce our

models of study more formally.

5.1.1 The Model

We assume that the reader is familiar with concepts and notation from Section 4.1.1. As in

Chapter 4, an instance is given by a set of jobs J and m machines, where each job j ∈ J

has a processing time p( j ) and a resource requirement r ( j ). Additionally, every job now also

comes with a release date r el ( j ) and a deadline d( j ). The goal is to find a feasible schedule for

the jobs J on m machines, with the additional constraint that every job j ∈J is executed

only during the time interval [r el ( j ),d( j )). We assume that all release dates and deadlines are

integer.

As the problem of computing these schedules is NP-hard, we again resort to the study of
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approximation algorithms. To to so, we need the concept of machine speedup. A machine of

speed α can process jobs α times as fast, meaning that in a feasible schedule, it is sufficient to

assign exclusive running time of p( j )
α units instead of p( j ) to each job j . For some α≥ 1 we say

that an algorithm is an α-approximation algorithm, if for every instance J that has a feasible

solution on m speed-one machines, it finds a solution on m speed-α machines.

As mentioned previously, in this chapter we focus on the study of online algorithms. This

is modeled as follows. In contrast to the offline case, an online algorithm learns about the

existence of a job j ∈ J only at its release date r el ( j ). It is allowed to modify the schedule

when it learns about a new job. However, only modifications to time-slots after time r el ( j )

are allowed. Albeit having less information about the instance than offline algorithms, when

assessing the performance of an online algorithm, it is customary to compare to optimal

offline schedules. An online algorithm is α-competitive, if for every instance where there is a

feasible (offline) schedule on m speed-one machines, it finds a feasible online schedule on

speed α machines.

Unlike the previous chapter, the standard model we consider here allows preemptive and

migratory schedules, i.e., the execution of jobs can be interrupted and continued on other

machines. The reason is that the non-preemptive case is “not interesting” in terms of approxi-

mation algorithms: already in the absence of the resource constraint it is folklore that there is

no algorithm of bounded competitive ratio for non-preemptive schedules.

The real-time scheduling problem that we study here is different from the periodic mainte-

nance problem discussed in Chapter 2 and Chapter 3. As in the periodic maintenance problem,

an instance consists of a set of tasks T and m machines. Now each task τ ∈T is characterized

by an execution time c(τ), a minimum inter-arrival separation s(τ) and a (relative) deadline

d(τ). Each task releases jobs over time, possibly infinitely many. However the interval between

the release of two jobs from the same task has length at least s(τ). Each job released by task

τ has an execution time of c(τ) and a deadline that is d(τ) time units after its release time.

This model is called the sporadic task model. The goal is to have an algorithm that adaptively

computes a feasible schedule on speed-α machines, provided that a schedule on speed-one

machines exists, where α should be as small as possible. As in the online scheduling model,

preemption and migration is allowed. In real-time scheduling literature, such an algorithm is

usually referred to as an algorithm that is optimal on speed-α machines. For a more extensive

introduction into real-time scheduling problems, we refer to part four of a book by Leung et

al. [LKA04].

We consider the resource constrained real-time scheduling problem where every task τ also

has a resource requirement r (τ). A job released by τ inherits this resource requirement, and

a feasible schedule has to obey the resource constraint, enforcing that the resource usage of

simultaneously active jobs never exceeds 1.

Observe that real-time scheduling algorithms are somewhere in between offline and online
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algorithms. On the one hand, they know the full real-time scheduling instance in advance.

In particular they know which types of jobs to expect. On the other hand however, they do

not know in advance when exactly the jobs are released, but rather learn about them online.

Clearly, every online algorithm can be used also as a real-time scheduling algorithm, by simply

ignoring the additional knowledge about the task system. In particular, an α-competitive

online algorithm is a real-time scheduling algorithm that is optimal on speed-α machines.

The converse of course is not always true.

5.1.2 Related Work

To the best knowledge of the author, there is no previous work regarding online algorithms for

the resource constrained scheduling problem. The basic problem, i.e., the online problem

ignoring the resource constraint, however has been studied intensively and still is a very

active research topic. A good overview of the “state of the art” is given in a recent survey

paper by Davis and Burns [DB11]. Here we only discuss related literature that is most relevant

to this work. The offline problem can be solved optimally in polynomial time, for example

via a linear programming formulation or even combinatorially by solving a maximum flow

problem [Der74]. (We stress again that we consider preemptive and migratory schedules.)

For online algorithms however it was shown by Dertouzos and Mok [DM89] that there is no

1-competitive online algorithm, when studying instances with more than one machine.

Two popular online algorithms are earliest deadline first (EDF) [Der74] and least laxity first

(LLF) [Mok76]. EDF schedules jobs prioritized by their deadline, jobs with earliest deadline

having best priority. In LLF, jobs are prioritized by their laxity, i.e., the difference of deadline

and remaining processing time, jobs with smallest laxity having best priority. At any time t , the

(at most) m unfinished jobs with best priority are scheduled to the m machines. Phillips et al.

have shown that both EDF and LLF are (2− 1
m )-competitive [PSTW97]. In particular they are

optimal for the single machine case, but asymptotically approach a competitive ratio of 2 for

larger number of machines. They also showed that every online algorithm has a competitive

ratio of at least 6
5 [PSTW97].

Lam and To [LT99] marginally improve lower and upper bounds by providing an online algo-

rithm that is (2− 2
m+1 )-competitive, and showing that every online algorithm has a competitive

ratio of at least 1
2
p

2−2
≈ 1.207 > 6

5 . Still, their algorithm has an asymptotic competitive ratio

of 2 just like EDF and LLF. Their algorithm is rather complex, however the basic idea is to

first compute an infeasible online schedule which they named the yardstick schedule. Based

on this, they then compute a feasible online schedule. The yardstick schedule is infeasible

because it allows jobs to be executed in parallel on several machines. This parallelization is

allowed however only under certain conditions. A nice property of the yardstick schedule is

that it is an online schedule where all jobs are processed within their release date/deadline in-

terval, even on speed-one machines. Recently, this two step idea of first computing a yardstick

schedule, and then converting it to a feasible schedule was picked up by Anand, Garg and
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Megow [AGM11] to design an αm-competitive algorithm, where αm := 1
1−(1− 1

m )m . This number

asymptotically converges to e/(e −1) ≈ 1.56.

EDF, the algorithm by Lam and To, and the algorithm by Anand, Garg and Megow have one

thing in common: Their scheduling decisions depend on the relative order of the deadlines,

but not on their actual values. Lam and To [LT99] have shown that these kinds of algorithms

have a competitive ratio of at least αm , which shows that the online algorithm by Anand, Garg

and Megow is the best possible algorithm of this kind.

The situation for the resource constrained real-time scheduling is similar. There are no

previous results regarding this problem, but the basic problem of real-time scheduling spo-

radic task systems is widely studied and still a very active topic of research. As mentioned

previously, when the system has only one machine, EDF is 1-competitive, which translates to

an optimal real-time scheduling algorithm: if there is a feasible schedule on a single machine,

EDF will compute it. As the schedule however is of infinite length, this does not automatically

imply that we can test whether a feasible schedule exists. In fact, it has been shown recently by

Eisenbrand and Rothvoß [ER10] that testing feasibility is coNP-hard. A short no-certificate

however exists for the single-machine case as shown by Baruah et al. [BRH90] which implies

that the problem is coNP-complete. In the multi-machine case, for a long time it was not even

known how to test feasibility of an algorithm, or the existence of a feasible schedule at all (no

matter which running time of the test). Recently Bonifaci and Marchetti-Spaccamela [BMS10]

found a feasibility test whose running time however is exponential in the input size. Approx-

imate feasibility tests (in the sense that they either certify feasibility on speed-α machines

or infeasibility on speed one machines) exist however. Baruah and Baker [BB08] give an
2

3−p5
≈ 2.61 feasibility test. This was later improved by Bonifaci et al. [BMSS08] to a (2− 1

m +ε)-

approximation scheme for the feasibility test. Our focus in this work is more on scheduling

algorithms and less on feasibility tests. The best known real-time scheduling algorithm for the

problem is the e/(e −1)-competitive online algorithm by Anand, Garg and Megow [AGM11]

mentioned earlier. It is notable that the best real-time scheduling algorithm known so far is

actually an online algorithm, i.e., it does not make use of any information about the real-time

scheduling instance.

5.1.3 Our Contribution and Outline

We consider the resource constrained scheduling problem in the online setting and pro-

vide an online algorithm that is (5+ e/(e −1))-competitive, which is roughly 6.582. To the

best knowledge of the author, this is the first online algorithm for the resource constrained

scheduling problem. This also translates to a real-time scheduling algorithm that is optimal

on speed-(5+e/(e −1)) machines. The algorithm is presented in Section 5.2.

We also show that every online algorithm for the resource constrained scheduling problem

has a competitive ratio of at least 4
3 , thus improving on the best known lower bound for the
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basic problem of 1.207 by Lam and To [LT99]. The bound is established in Section 5.3

Both results are proved in a rather straightforward way. They should be seen as preliminary

results it should not be too difficult to improve on. At the end of the chapter in Section 5.4 we

discuss ideas for improvements and further interesting research questions.

5.2 An Online Algorithm for Resource Constrained Scheduling

We now present an online algorithm for preemptive resource constrained scheduling on iden-

tical machines which is α-competitive, where α := 5+e/(e −1) ≈ 6.582. The main idea of the

algorithm is as follows. Jobs are classified by their resource requirement, effectively partition-

ing an instance into several sub-instances. Making use of preemption, these sub-instances

can be treated independently. Given separate schedules for each of the sub-instances, they

are merged into one schedule by executing them alternating on faster machines. This idea is

formalized in the following statement.

Lemma 5.2.1. Given an online algorithm A1 that isα1-competitive for some family of instances,

and an online algorithm A2 that is α2-competitive for another family of instances. There is an

online algorithm that is (α1 +α2)-competitive for any instance that can be written as the union

of instances from the two respective families.

Proof. Consider a feasible instance J =J1∪̇J2, where J1 and J2 are instances of the two

families from the statement of the lemma. Hence A1 computes an online schedule for J1 on

speed-α1 machines, and A2 computes an online schedule for J2 on speed-α2 machines, The

online algorithm for J now works as follows: For each unit-length time slot [t , t +1), it uses

A1 and A2 to compute their respective schedules for that time slot. It then scales the schedule

from A1 by α1/(α1 +α2) and the schedule from A2 by α2/(α1 +α2). The new schedule for that

time slot now runs the scaled schedule from A2 in interval [t , t +α1/(α1 +α2)), and the scaled

schedule from A2 in the remaining interval. Note that due to the fact that the machines the

new schedule is executed on have speed α1 +α2, exactly the same amount of processing is

done for instance J1 and instance J2 respectively as in the old schedules during the interval

[t , t +1]. Since by assumption, all deadlines are integers and in the schedule from A1 and A2

are feasible and all jobs meet their deadline, the same is true for the new schedule.

As mentioned previously, we will classify jobs by resource requirement. We have three classes

and call jobs slim, medium or thick depending on their resource requirement being at most 1
m ,

between 1
m and 1

2 , or more than 1
2 respectively. Following that classification, we partition an

instance J into three groups

S J :=
{

j ∈J : r ( j ) ≤ 1

m

}
, M J :=

{
j ∈J :

1

m
< r ( j ) ≤ 1

2

}
and T J :=

{
j ∈J : r ( j ) > 1

2

}
.

Each of these groups comes from different families of jobs that can be treated more easily. For
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each of them, we will next specify an online algorithm and give bounds on their competitive

ratios. Using Lemma 5.2.1 we can then combine them to get an online algorithm for the full

instance with the claimed competitive ratio.

Family of slim jobs

For the slim jobs, we observe that any m of them can be executed simultaneously without

violating the resource constraint. This is by construction of S J , as the resource requirement of

each job is at most 1
m . Hence, we can use any known (online) algorithm for the basic problem

to schedule the jobs. As previously mentioned, the currently best known online algorithm by

Anand, Garg and Megow [AGM11] has a competitive ratio of e/(e −1).

Family of medium jobs

Our aim here is to have an online algorithm that is 4-competitive for the family of medium jobs.

To this end, we first give an online algorithm that computes a feasible schedule on machines

with speed 2 and a total resource limit of 3
2 instead of 1. Afterwards we show how to turn this

into a feasible schedule on speed-4, resource-1 machines. The group M J is defined in such

a way that essentially we can forget about the limited number of machines. Observe that as

the resource requirement of each job is more than 1
m , we can conclude that every set of jobs

from M J whose sum of resource requirement is at most 1 can have at most m −1 elements,

thus they can always run simultaneously and even keep at least one machine idle. This will be

important later in the analysis of the algorithm that we specify next.

The jobs are scheduled using an earliest deadline first algorithm which is defined as follows. At

each time index t ∈N0, the algorithm decides which jobs to schedule during time-slot [t , t +1).

It considers all jobs that are known and unfinished at time t . The jobs are sorted by their

deadline, earliest deadline first. Now, while there is a free machine, the algorithm takes the first

job from the sorted list whose resource requirement does not exceed the available remaining

resource, and assigns it to a machine. We claim that, if there is a feasible schedule for instance

M J on m speed-1 and resource-1 machines, then this EDF-type algorithm produces a feasible

schedule on m speed-2 and resource- 3
2 machines. The analysis of the algorithm is essentially

by the lines of the analysis of Phillips et al. [PSTW97] which shows that EDF in the basic setting

is (2− 1
m )-competitive. To show our claim, we start with some trivial observations:

Lemma 5.2.2. Consider a schedule generated by the algorithm. If all machines are busy at time

t , then the resource usage at time t is at least 1.

Proof. As every job of group M J has resource requirement at least 1
m , the aggregated resource

requirement of m jobs is always at least one.

For a job j , let P ( j , t) be the amount of processing of job j done by our algorithm till time t
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in our schedule. For a job set J , let P (J , t) :=∑
j∈J P ( j , t). Similarly, let M( j , t) be the total

amount of resource consumption of job j already processed by the schedule up to time t , i.e.,

M( j , t ) := r ( j ) ·P ( j , t ) and M(J , t ) :=∑
j∈J M( j , t ).

Now consider a feasible schedule on speed-1, resource-1 machines. We define P ′( j , t ), M ′( j , t ),

etc. as the processing time and resource consumption already processed up to time t in that

schedule. We claim that at any time, our algorithm outperforms this schedule in terms of

processed resource consumption:

Lemma 5.2.3. For each time t we have M(M J , t ) ≥ M ′(M J , t ).

Proof. Assume that the claim does not hold. Let t be minimal with the property that M(M J , t ) <
M ′(M J , t ). As we have M(M J , t ) < M ′(M J , t ), there must be a job j ∈ M J with M( j , t ) < M ′( j , t ).

Consider the time interval I := [r el ( j ), t ]. By minimality of t we know that M(M J ,r el ( j )) ≥
M ′(M J ,r el ( j )) and therefore

M(M J , t )−M(M J ,r el ( j )) < M ′(M J , t )−M ′(M J ,r el ( j )) (5.1)

Let x be the amount of time in interval I where the resource used by our algorithm is at least 1.

Let y be the amount of time where the resource used is less than 1. Clearly x + y = t − r el ( j ).

At time-indexes t where the resource usage is less than 1, observe that job j must be active.

Assume otherwise. Then as observed in the beginning of this section, as the resource usage

is less than 1, at most m −1 jobs are active as every job from M J has resource requirement

more than 1
m . Also the available resource (on our resource 3

2 machines) is at least 1
2 , whereas

r ( j ) ≤ 1
2 . Finally, job j is not finished at time t . Hence the algorithm can schedule job j at time

t and therefore does so.

As j is active whenever the resource usage is below 1, we conclude that the resource usage

is at least r ( j ). Hence we can lower bound the total resource consumption processed by our

algorithm during the interval [r el ( j ), t ) as follows

M(M J , t )−M(M J ,r el ( j )) ≥ 2 · (x + y · r ( j )).

The factor of 2 comes from the fact that our machines have speed 2.

On the other hand, the optimal schedule running on speed-1 and resource-1 machines can

process at most (t − r el ( j )) units of resource consumption during that time interval

M ′(M J , t )−M ′(M J ,r el ( j ) ≤ t − r ( j ).

With (5.1) we conclude that

2 · (x + y · r ( j )) < t − r el ( j ). (5.2)
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As M( j , t) < M ′( j , t), we conclude that algorithm A′ processed more resource of job j than

algorithm A did. Hence

2y < t − r el ( j ).

Adding this with a factor of (1− r ( j )) to inequality (5.2) we get

2(x + y) < (2− r ( j ))(t − r el ( j )).

As (2− r ( j )) < 2, we get that x + y < t − r el ( j ). This is a contradiction to the definition of x and

y .

Now we can show the desired guarantee of the algorithm in terms of machine speedup and

resource augmentation.

Lemma 5.2.4. If there is a feasible schedule for M J on m machines of speed 1 and resource 1,

then our algorithm feasibly schedules the instance on m machines with speed 2 and resource

3/2.

Proof. Let 1, . . . ,n be the jobs of the instance, sorted by their deadline. The proof is by in-

duction on j = 1, . . . ,n. The induction hypothesis is that the algorithm schedules jobs 1, . . . , j

feasibly. Clearly, for j = 1 the algorithm works. Now assume that jobs 1, . . . j meet their

deadline. We want to show that job j +1 also meets its deadline. Observe that we can ig-

nore jobs j + 2, . . . ,n as they have no influence on the schedule for the other jobs in our

schedule. Observe that by induction hypothesis, at time d( j +1) all jobs 1, . . . , j are finished.

Hence we have M({1, . . . , j },d( j +1)) = M ′({1, . . . , j },d( j +1)). By Lemma 5.2.3 we have that

M({1, . . . , j , j +1},d( j +1)) ≥ M ′({1, . . . , j , j +1},d( j +1)) We conclude that M( j +1,d( j +1)) ≥
M ′( j +1,d( j +1)) = p( j +1) which shows that job j +1 is finished at time d( j +1) as well.

It remains to turn this algorithm into a 4-competitive algorithm (for resource 1 machines).

Lemma 5.2.5. There is an online algorithm that feasibly schedules the instance M J on m

machines of speed 4, provided that there is a feasible schedule for M J on m machines of speed 1.

Proof. Consider the schedule from Lemma 5.2.4. By the definition of the EDF type algorithm

from above, jobs are only preempted at integral time-steps. For each time-step [t , t +1) denote

by Jt the jobs which are executed in that time-step. As the algorithm respects the resource

constraint, it holds that
∑

j∈Jt
r ( j ) ≤ 3/2. Also, r ( j ) ≤ 1/2 for each job j ∈ M J . We claim that

we can partition Jt into two sets J (1)
t and J (2)

t such that
∑

j∈J (1)
t

r ( j ) ≤ 1 and
∑

j∈J (2)
t

r ( j ) ≤ 1.

This can be achieved in a greedy manner: consider the jobs in an arbitrary order and assign

them greedily to one of the two sets such that the total resource requirement of no set exceeds

1. Using similar reasoning as in Lemma 5.2.1, our new scheduler for speed-4 machines simply

executes the jobs J (1)
t in the first half of interval [t , t+1) and J (2)

t in the second half. Analogous
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to the proof of Lemma 5.2.1 it is straightforward to see that every job gets the same amount

of processing in interval [t , t +1) with the new schedule on speed-4 machines as in the old

schedule on speed-2 machines.

Family of thick jobs

Observe that at most one thick job can run at a time without violating the resource constraint.

Hence, if there is a feasible schedule for T J on m speed one machines, then there is a feasible

schedule on one speed-one machine. It is known that on one machine the EDF-schedule

meets all deadlines if such a schedule exists, see e.g., [DM89] or [PSTW97]. Hence, there is an

online algorithm, namely EDF, which computes a feasible schedule on machines with speed 1

(if the instance is feasible).

The full algorithm

As seen above, the jobs in S J can be scheduled online using m machines of speed e/(e −1),

the jobs in M J can scheduled online using m machines of speed 4, and the jobs in LJ can

be scheduled using one machine with speed 1, assuming that the input instance is feasible.

Applying Lemma 5.2.1 twice yields the following theorem.

Theorem 5.2.6. There is a 5+e/(e−1)-competitive online algorithm for the resource constrained

scheduling problem.

5.3 Lower Bounds on the Competitive Ratio

Lower bounds on the competitive ratio are usually established using an adversary model,

where the adversary can choose the instance depending on the scheduling decisions of an

online algorithm. To prove a lower bound ofα on the competitive ratio, we need to describe an

adversary that adaptively constructs an instance which, no matter what kind of schedule the

online algorithm produces, leads to infeasibility on machines with speed at most α. We show

that every online algorithm for the resource constrained scheduling problem has a competitive

ratio of at least 4
3 , which is slightly more than the best known lower bound for the basic setting

of 1
2
p

2−2
≈ 1.207 from [LT99].

Theorem 5.3.1. The competitive ratio of every online algorithm for the resource constrained

scheduling problem is at least 4
3 .

Proof. Consider the case of three machines of speed α, i.e., m = 3. We want to find a lower

bound on α. At time 0, three jobs 1, 2 and 3 are released with the following parameters

p(1) = p(2) = p(3) = 1, r el (1) = r el (2) = r el (3) = 0, d(1) = d(2) = d(3) = 2, r (1) = r (2) = 0.1,

r (3) = 1.

At a time t ∈ [0,1), a scheduler can either run job 3, or jobs 1 and 2 in parallel. Assume that
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at time 1, the scheduler has processed a units of jobs 1 and 2, and b units of job 3. Then

a +b =α. The adversary now adds more jobs, depending on whether a or b is larger. If a ≥ α
2 ,

the adversary releases a fourth job at time 1 with parameters p(4) = 1, r (4) = 0.1, r el (4) = 1,

d(4) = 2. Job 3 requires a remaining processing time of at least 1− α
2 in the time interval [1,2),

and it cannot be processed in parallel with job 4 because of the resource requirement. So

in order to meet all deadlines, the total processing that needs to be done sequentially in the

interval [1,2) is 2− α
2 , i.e., we require α≥ 2− α

2 which is equivalent to α≥ 4
3 . On the other hand,

a feasible offline schedule on speed-one machines would be to run job 3 during time interval

[0,1), and jobs 1,2,4 during time-interval [1,2).

For the second case that b ≥ α
2 , the adversary releases two jobs 4 and 5 with parameters

p(4) = p(5) = 1, r (4) = r (5) = 0, r el (4) = r el (5) = 1, d(4) = d(5) = 2. As there are only three

machines available, jobs 1,2,4,5 cannot run in parallel. The remaining processing time of

jobs 1 and 2 is at least 1− α
2 , hence the total processing that needs to be done sequentially

in interval [1,2) is 2− α
2 , so analogous to the previous case we get α≥ 4

3 . Also here a feasible

offline schedule on speed-one machines exist by scheduling jobs 1 and 2 during interval [0,1),

and jobs 3, 4 and 5 during interval [1,2).

5.4 Further Research Questions

As the results presented in this section are quite straightforward to establish, they should

be seen as preliminary results that we want to improve on. It might be possible to improve

the competitive ratio of the online algorithm to 1+3 · e
e−1 ≈ 5.74593012 by treating the family

of medium jobs in a different way. We used EDF and showed with a modified analysis that

we get a feasible schedule on speed-2 memory- 3
2 machines. It should be possible to use the

algorithm by Anand, Garg and Megow [AGM11] instead, but adapting the analysis proves to

be more difficult. Using this algorithm would give the suggested competitive ratio. However,

to significantly improve the performance ratio, we believe that one needs to get around the

partitioning of the instance into subproblems, but rather deal with the full problem directly.

Considering that there is a huge gap between the competitive ratio of our algorithm and the

lower bound of 4
3 , and the instance that we use to obtain the bound is rather simple compared

to [PSTW97], it is likely that there is room for improvement as well.

Finally, it would be nice to have approximate feasibility tests as in the basic setting. This

question has not been studied at all so far.

Another open problem that came up recently in the real-time scheduling community is, in

a way, dual to ours. Given a sporadic real-time task system with resource requirements and

an unlimited number of machines, find a schedule on speed one machines so that the peak

resource usage of the schedule is minimized.
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6 Summary and Conclusion

In this thesis we studied several scheduling problems that arise in modern multi-processor

computer architectures. These ranged from real-time scheduling problems coming to use in

safety-critical applications for the avionics industry (Chapter 2 and Chapter 3) to makespan

minimization scheduling with shared resources to use modern multi-core computer archi-

tectures efficiently (Chapter 4). Finally we came back to real-time scheduling problems via

considering scheduling with shared resources in an online setting (Chapter 5).

For all these problems and variants, we assessed their computational complexity in a math-

ematically rigorous way, both by designing approximation algorithms and by proving inap-

proximability results. For some of the problems, this leads to a quite precise characterization

of their complexity landscape, e.g., for the periodic maintenance problem, see Table 2.1. For

other problems, e.g., the resource constrained scheduling problem, we have a characterization

(Table 4.1), which however is not yet complete: for some variants, we could narrow the gaps

between best known approximation algorithms and inapproximability results, but not quite

close it. Finally there are problems where we only scratched the surface, leaving a huge gap

between lower and upper bounds, like in the case of online resource constrained scheduling

discussed in Chapter 5. The two most notable results of this thesis are the following. First,

there is the 2-approximation algorithm for the periodic maintenance problem with harmonic

periods (Section 2.3). It is a simple combinatorial algorithm that is also efficient for practical

purposes, with an elegant analysis. Also it is a tight result in the sense that there is no polyno-

mial time algorithm with an approximation guarantee better than 2, unless P = N P . The other

notable result is the (2+ε)-approximation scheme for the resource constrained scheduling

problem (Section 4.2.2). Although the algorithm is rather complicated and the analysis is quite

involved, after almost four decades it is the first algorithm to improve on a classic result by

Garey and Graham from 1975. Also the algorithms narrows the gap to the 3
2 -inapproximability

significantly.

Next to the rather theoretic analysis of approximation algorithms, we also studied conse-

quences for practical applications arising from our theoretical work. For the periodic mainte-

nance problem, we not only provided a very efficient (in the practical sense) heuristic to obtain
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a 2-approximation. The theoretical insights gained during the analysis yielded structural re-

sults that allow for fundamentally new integer programming formulations. Commercially

available IP-solvers like CPLEX where able to deal with the new formulations much faster, ren-

dering industrial-size instances computationally solvable to optimality for the first time. Many

other algorithms presented in this work could also be applied in real-world settings as they are

also “practically efficient”, e.g., the online algorithm for the resource constrained scheduling

problem discussed in Section 5.2. Some algorithms however, like the (2+ε)-approximation

scheme for the offline setting, are purely theoretical constructs and not applicable in practice

at all.

In summary, in this thesis we were able to answer many questions regarding the problems of

study, obtaining a deeper understanding of the nature of these problems. Yet, some questions

remain open, and new questions arose during the study of the problems. This leaves space for

further research.

92



Bibliography

[ADN10] C. Artigues, S. Demassey, and E. Néron. Resource-Constrained Project Scheduling:

Models, Algorithms, Extensions and Applications. ISTE, 2010.

[AGM11] S. Anand, N. Garg, and N. Megow. Meeting deadlines: How much speed suffices?

In Proceedings of the 38th International Colloquium on Automata, Languages and

Programming (ICALP), volume 6755 of Lecture Notes in Computer Science, pages

232–243. Springer Berlin / Heidelberg, 2011.

[ASBH10] A. Al Sheikh, O. Brun, and P.-E. Hladik. Partition Scheduling on an IMA Platform

with Strict Periodicity and Communication Delays. In Proceedings of the 18th

International Conference on Real-Time and Network Systems, pages 179–188, 2010.

[ASBHP11] A. Al Sheikh, O. Brun, P.E. Hladik, and B.J. Prabhu. A best-response algorithm for

multiprocessor periodic scheduling. In 23rd Euromicro Conference on Real-Time

Systems (ECRTS), pages 228 –237, 2011.

[BB08] S. Baruah and T. Baker. Schedulability analysis of global EDF. Real-Time Systems,

38:223–235, 2008.

[BBNS02] A. Bar-Noy, R. Bhatia, J. Naor, and B. Schieber. Minimizing service and operation

costs of periodic scheduling. Math. Oper. Res., 27(3), 2002.

[BCS06] N. Bansal, A. Caprara, and M. Sviridenko. Improved approximation algorithms

for multidimensional bin packing problems. In 47th Annual IEEE Symposium on

Foundations of Computer Science (FOCS), pages 697 –708, 2006.

[BCS09] Nikhil B., Alberto C., and Maxim S. A new approximation method for set covering

problems, with applications to multidimensional bin packing. SIAM J. Comput.,

39(4):1256–1278, 2009.

[Bha98] R. Bhatia. Approximation Algorithms for Scheduling Problems. PhD thesis, Uni-

versity of Maryland, 1998.

[BLK83] J. Blazewicz, J.K. Lenstra, and A.H.G.Rinnooy Kan. Scheduling subject to resource

constraints: classification and complexity. Discrete Applied Mathematics, 5(1):11 –

24, 1983.

93



Bibliography

[BMS10] V. Bonifaci and A. Marchetti-Spaccamela. Feasibility analysis of sporadic real-

time multiprocessor task systems. In ESA 2010, volume 6347 of Lecture Notes in

Computer Science, pages 230–241. Springer Berlin / Heidelberg, 2010.

[BMSS08] V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller. A constant-approximate

feasibility test for multiprocessor real-time scheduling. In Dan Halperin and

Kurt Mehlhorn, editors, Algorithms - ESA 2008, volume 5193 of Lecture Notes in

Computer Science, pages 210–221. Springer Berlin / Heidelberg, 2008.

[BNW11] S. Baruah, M. Niemeier, and A. Wiese. Partitioned real-time scheduling on het-

erogeneous shared-memory multiprocessors. In 23rd Euromicro Conference on

Real-Time Systems (ECRTS2011), 2011.

[BRH90] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and complexity concerning

the preemptive scheduling of periodic, real-time tasks on one processor. Real-

Time Systems, 2:301–324, 1990. 10.1007/BF01995675.

[BRTV90] S. Baruah, L. Rousier, I. Tulchinsky, and D. Varvel. The complexity of periodic

maintenance. Proceedings of the International Computer Symposium, 1990.

[BT97] D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization. Athena Scien-

tific, 1st edition, 1997.

[CK04] C. Chekuri and S. Khanna. On multidimensional packing problems. SIAM Journal

on Computing, page 33:837–851, 2004.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.

The MIT Press, 2 edition, 2001.

[CPPT07] T. G. Crainic, G. Perboli, M. Pezzuto, and R. Tadei. New bin packing fast lower

bounds. Computers & Operations Research, 34:3439–3457, 2007.

[DB11] R. I. Davis and A. Burns. A survey of hard real-time scheduling for multiprocessor

systems. ACM Comput. Surv., 43(4):35:1–35:44, 2011.

[Der74] M.L. Dertouzos. Control robotics: The procedural control of physical processes.

IFIP Congress, pages 807 –813, 1974.

[DM89] M.L. Dertouzos and A.K. Mok. Multiprocessor online scheduling of hard-real-time

tasks. IEEE Transactions on Software Engineering, 15(12):1497 –1506, 1989.

[EHN+10] F. Eisenbrand, N. Hähnle, M. Niemeier, M. Skutella, J. Verschae, and A. Wiese.

Scheduling periodic tasks in a hard real-time environment. In 37th International

Colloquium on Automata, Languages and Programming (ICALP2010), volume 37

of Lecture Notes in Computer Science, pages 299–311. Springer-Verlag, 2010.

94



Bibliography

[EKM+10] F. Eisenbrand, K. Kesavan, R. Mattikalli, M. Niemeier, A. Nordsieck, M. Skutella,

J. Verschae, and A. Wiese. Solving an Avionics Real-Time Scheduling Problem

by Advanced IP-Methods. In 18th Annual European Symposium on Algorithms

(ESA2010), Lecture Notes in Computer Science. Springer-Verlag New York, 2010.

[ER10] F. Eisenbrand and T. Rothvoß. EDF-schedulability of synchronous periodic task

systems is coNP-hard. In ACM-SIAM Symposium on Discrete Algorithms (SODA10),

2010.

[FdlVL81] W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1+ε
in linear time. Combinatorica, 1:349–355, 1981.

[FH02] K. Fleszar and K. S. Hindi. New heuristics for one-dimensional bin-packing.

Computers & Operations Research, 29:821–839, 2002.

[GG75] M. R. Garey and R. L. Grahams. Bounds for multiprocessor scheduling with

resource constraints. SIAM Journal on Computing, 4:187–200, 1975.

[GJ75] M. R. Garey and D. S. Johnson. Complexity results for multiprocessor scheduling

under resource constraints. SIAM Journal on Computing, 1975.

[GJ78] M. R. Garey and D. S. Johnson. “ Strong ” NP-Completeness Results: Motivation,

Examples, and Implications. J. ACM, 25(3):499–508, 1978.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the Theory

of NP-Completeness. Freemann, 1979.

[Gra66] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Techni-

cal Journal, 45:1563–1581, 1966.

[Gra69] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on

Applied Mathematics, 17:263–269, 1969.

[GSU07] A. Grigoriev, M. Sviridenko, and M. Uetz. Machine scheduling with resource

dependent processing times. Mathematical Programming, 110:209–228, 2007.

[HB10] S. Hartmann and D. Briskorn. A survey of variants and extensions of the resource-

constrained project scheduling problem. European Journal of Operational Re-

search, 207:1–14, 2010.

[Hoc96] D. S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. Thom-

son, 1996.

[HS76] E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling

nonidentical processors. J. ACM, 23(2):317–327, 1976.

[HS87] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for

scheduling problems: Theoretical and practical results. Journal of the ACM,

34:144–162, 1987.

95



Bibliography

[JJ98] G. A. Jones and J. M. Jones. Elementary Number Theory. Springer, July 1998.

[JP06] K. Jansen and L. Porkolab. On preemptive resource constrained scheduling:

Polynomial-time approximation schemes. In Integer Programming and Combi-

natorial Optimization, volume 2337 of Lecture Notes in Computer Science, pages

329–349. Springer Berlin / Heidelberg, 2006.

[KAL96] J. Korst, E. Aarts, and J. K. Lenstra. Scheduling periodic tasks. INFORMS Journal

on Computing, 8:428–435, 1996.

[KALW91] J. Korst, E. Aarts, J. K. Lenstra, and J. Wessels. Periodic multiprocessor scheduling.

In E. H. L. Aaarts, J. van Leeuwen, and M. Rem, editors, PARLE ’91 Parallel Archi-

tectures and Languages Europe, volume 505 of Lecture Notes in Computer Science,

pages 166–178. 1991.

[Kel08] H. Kellerer. An approximation algorithm for identical parallel machine scheduling

with resource dependent processing times. OR Letters, 36:157–159, 2008.

[LGW08] K.-H. Loh, B. Golden, and E. Wasil. Solving the one-dimensional bin packing

problem with a weight annealing heuristic. Computers & Operations Research,

35:2283–2291, 2008.

[LKA04] J. Leung, L. Kelly, and J. H. Anderson. Handbook of Scheduling: Algorithms, Models,

and Performance Analysis. CRC Press, Inc., Boca Raton, FL, USA, 2004.

[LST90] J. K. Lenstra, David B. Shmoys, and É. Tardos. Approximation algorithms for

scheduling unrelated parallel machines. In Mathematical Programming 46, pages

259–271, 1990.

[LT99] T. W. Lam and K. K. To. Trade-offs between speed and processor in hard-deadline

scheduling. In Proceedings of the tenth annual ACM-SIAM Symposium on Dis-

crete Algorithms, SODA, pages 623–632, Philadelphia, PA, USA, 1999. Society for

Industrial and Applied Mathematics.

[Mok76] A. Mok. Task scheduling in the control robotics environment. Technical Report

TM-77, 1976.

[MT90] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implemen-

tations. John Wiley & Sons, revised edition, November 1990.

[New80] D. J. Newman. Simple analytic proof of the prime number theorem. American

Mathematical Monthly, 87:693–696, 1980.

[NW12] Martin Niemeier and Andreas Wiese. Scheduling with an Orthogonal Re-

source Constraint. In 10th Workshop on Approximation and Online Algorithms

(WAOA2012), 2012.

96



Bibliography

[Pap94] Christos M. Papadimitriou. Computational complexity. Addison-Wesley, Reading,

Massachusetts, 1994.

[PSTW97] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via

resource augmentation (extended abstract). In Proceedings of the twenty-ninth

annual ACM symposium on Theory of computing, STOC ’97, pages 140–149, New

York, NY, USA, 1997. ACM.

[Sah76] S. Sahni. Algorithms for scheduling independent tasks. Journal of the ACM,

23:116–127, 1976.

[SKJ97] A. Scholl, R. Klein, and C. Jürgens. BISON: a fast hybrid procedure for exactly

solving the one-dimensional bin packing problem. Computers & Operations

Research, 24:627–645, 1997.

[SL94] D. Simchi-Levi. New worst-case results for the bin-packing problem. Naval

Research Logistics, 41:579–585, 1994.

[ST93] D. B. Shmoys and É. Tardos. Scheduling unrelated machines with costs. In

Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA 1993), pages 448–454. ACM, 1993.

[Van99] F. Vanderbeck. Computational study of a column generation algorithm for bin

packing and cutting stock problems. Mathematical Programming, 86:565–594,

1999.

[Vaz01] V.V. Vazirani. Approximation Algorithms. Springer, 2001.

[VBJN94] P. H. Vance, C. Barnhart, E. L. Johnson, and G. L. Nemhauser. Solving binary cutting

stock problems by column generation and branch-and-bound. Computational

Optimization and Applications, 3:111–130, 1994.

[VdC99] J. M. Valério de Carvalho. Exact solution of bin packing problems using column

generation and branch and bound. Annals of Operations Research, 86:629–659,

1999.

[WL83] W. D. Wei and C. L. Liu. On a periodic maintenance problem. Operations Research

Letters, 2:90–93, 1983.

[Woe97] G. J. Woeginger. There is no asymptotic ptas for two-dimensional vector packing.

Information Processing Letters, 64(6):293 – 297, 1997.

[Wol98] L.A. Wolsey. Integer Programming. Wiley-Interscience Series in Discrete Mathe-

matics and Optimization. Wiley, 1998.

[Zuc07] D. Zuckerman. Linear degree extractors and the inapproximability of max clique

and chromatic number. Theory of Computing, 3:103–128, 2007.

97





Martin Niemeier

Contact
Information

Dortmunder Str. 14
10555 Berlin
Germany

|
|
|

Mobile: +49-(0)176 50352882
E-mail: martin.niemeier@epfl.ch
WWW: www.math.tu-berlin.de/?niemeier

Personal data Date of birth: 28th February 1983
Nationality: German
Other Languages: English (fluent), French (basic)
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José Verschae, and Andreas Wiese. Scheduling periodic tasks in a
hard real-time environment. In 37th International Colloquium on
Automata, Languages and Programming (ICALP2010), 2010.

[7] Friedrich Eisenbrand, Karthikeyan Kesavan, Raju Mattikalli, Martin
Niemeier, Arnold Nordsieck, Martin Skutella, José Verschae, and An-
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