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Abstract

The current context leads energy system design to very demanding objectives, due
to their variety. Indeed, despite an increasing energy demand, environment indi-
cators are becoming always more important. So that for a given service, emission
(and then associated consumption as well) is desired to decrease. Improving sys-
tems e�ciencies is then a important step.
Such a problem is formulated as an optimization. It is based on numerical models.
Every models di�ers by de�nition from reality. This di�erence can be translated
into uncertainties. Usually, they are considered at their most probable value. How-
ever, their variation can lead to consequences between a performance decrease and
plant inoperability. It is then critical to take into account the deviation due to
uncertainties when optimizing an energy system.
The optimization problem will be described. It will introduce the description of
functions and variables involved in energy system design. The formulation of the
optimization under uncertainty will be developed, as well as mathematical meth-
ods for uncertainty propagation. Finally, an innovative method taking advantage
of the high number of iterations due to the chosen solver will be described.
In this study, pinch analysis has been applied. Its limits related to uncertainties
treatment will be presented.
Methods described here will be applied to an hybrid system of a fuel cell coupled
with gas turbines. Results will be compared to a conventional optimization solu-
tions. It will demonstrate that, despite sub-optimal objectives, the sensitivity of
the system to uncertainties has been improved

Keywords: Optimization, stochastic, uncertainty, propagation, moments method,
orthogonal polynomials, pinch analysis, energy system
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Résumé

Le contexte actuel pousse la conception de systèmes énergétiques vers des objectifs
exigeant par leur diversité. En e�et, malgré une demande d'énergie grandissante,
les critères environnementaux revêtent une importance croissante. Ainsi, pour un
même service, la diminution des émissions, et donc de la consommation et recher-
chée. L'amélioration des rendements de tout systèmes ayant trait à l'énergie est
donc une étape essentielle.
Ce type de problème se présente sous la forme d'une optimisation. Ils reposent sur
des modèles numériques. Hors, tout modèle comporte par dé�nition un décalage
avec la réalité. Ce décalage se traduit sous forme d'incertitudes. Dans bon nombre
d'approches, elles sont considérées à leur valeur la plus probable. Cependant la
variation de tels paramètres peut conduire à des conséquences allant d'une simple
baisse de performance jusqu'à l'arrêt d'une installation. Il apparaît donc crucial
de prendre en compte la variation due aux incertitudes lors de l'optimisation d'un
système.
Une présentation du problème d'optimisation au sens mathématique sera faite.
Elle permettra de décrire les fonctions et variables impliquées dans la conception
de systèmes énergétiques. Puis la formulation du problème d'optimisation sous
incertitudes sera exposées, ainsi que les di�érentes méthodes mathématiques per-
mettant de les propager au travers du modèle. Finalement, une nouvelle méthode
béné�ciant du nombres élevé d'itérations liés au solver choisi sera décrite.
Dans cette étude, l'analyse de pincement a été appliquée. Ses limites concernant
le traitement des incertitudes seront détaillées.
Les méthodes présentées seront appliquées à un système de pile à combustible
coupée à des turbine à gaz. Les résultats seront comparés à ceux d'une optimisa-
tion conventionnelle. Ils démontreront que malgré des objectifs optimaux à priori
moins performant, la sensibilité du système aux incertitudes en a été améliorée.

Mots-clés: Optimisation, stochastique, incertitude, propagation, méthode des
moments, polynômes orthogonaux, méthode du pincement, système énergétique
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Chapter 1

Introduction

Importance and in�uence of uncertainty in engineering will be outlined in the
context of global warming perspective and focused on CO2 emissions. Predictive
aspect and uncertainties on present data leads to important variability of
predictions. This underline the necessity of developing tools allowing engineers to
take decisions considering uncertainties in�uence. Speci�cations and challenges
for such methods will be described. Finally, the structure of this report will be
summarized in the end of this chapter.

1.1 Motivation

In energy system design domain the main engineers' task is to design technologies
providing several services or products based on given resources and subject to a
number of constraints (equipment availability, cost of resources,...). This means
to take decision based on results of models simulation and optimization. The
consequence of taken decisions may have a great in�uence on economy, politics,
environment, comfort of living. However, uncertainties may a�ect such procedures
leading to wrong estimations and suboptimal decisions.
By example, �gure 1.1 represents the di�erent scenarios for the future global CO2

emissions related to energy and industry [60]. They take several of factors into
account such as global population, economic growth, technologies development
and social tendency to global or local interaction. There is 4 families of scenarios:

1



2 CHAPTER 1. INTRODUCTION

family
economic
growth

global popula-
tion

technologies evolu-
tion

global/local

A1 rapid
peak at mid cen-
tury

rapid global

A2 slow increasing slow local

B1 rapid
peak at mid cen-
tury

rapid,clean and e�-
cient

global

B2 intermediate
increase smaller
than A2

less rapid than B1
and A1

local

Table 1.1: IPCC scenarios classi�cation in 4 families

These families correspond to 6 groups, one group per family for A2, B1 and
B2, and 3 groups in A1 which are:

� A1FI which is highly dependent to fossil fuels (comprising the high-coal and
high-oil-and-gas scenarios).

� A1T which is predominantly non-fossil.

� A1B which is balanced between fossil and non-fossil.

The amount of CO2 emissions at a given time varies depending on the assumptions
and the uncertain parameters of the models. It appears clearly in �gure 1.1 that,
even if an average value can be found, it is hard for policymakers to evaluate the
�nal emissions rates, due to predictive nature of the problem and to the number
of factors. The two extreme cases being on one hand an optimistic interpretation,
assuming a strong decrease of emissions, and on the other hand a pessimistic one,
with an emissions rate ten times higher in 2100 than in 1990. Hence, interpretation
of data by the decision maker (DM) becomes crucial and may in�uence a lot of
decisions, like research funding, choice of energy conversion system at state level,
support of private initiative for more e�cient energy system, public transport
development.
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Figure 1.1: IPCC scenarios for CO2 emissions from energy and industry area [60]

Space heating: 37%

Domestic hot water: 6%

Process heating: 12%

Light: 3%

Air conditioning, ventilation
and building services: 3%

IT and electronic media: 1%

Industrial drives
and process: 9%

Mobility: 28%

Others: 2%

Figure 1.2: End-use energy consumption statistics for Switzerland (2010) [51]

One of the factors in table 1.1 in which engineers may play an important
role is the technologies evolution. The following example shows the link between
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uncertainty on CO2 emissions and energy system design. As it can be seen in
�gure 1.2, 37 % of the consumed energy is used for space heating, this means
300.3 PJ/year for Switzerland.
This shows the great need for e�cient and well integrated heating system.
The second point of table 1.1 for which engineering can help decision-making is
the trade o� between global and local interactions, at least at energy system level.
It has been demonstrated that replacing local boilers in buildings by a district
heating may reduce CO2 emissions [31]. This is due to the fact that on one hand
space heating is mainly based on fossil fuels combustion (more than 75 %, see �gure
1.3), and on the other hand Swiss electric mix is poor in carbon dioxide emission.
Taking into account the presence of lakes in cities area that can be used as cold
sources for heat pumps, all conditions are satis�ed to build heating networks.

Oil: 54%

Natural gas: 21.1%

Coal: 0.2%

Electric heating: 5.1%

Wood: 9.6%

District heating: 3.6%

Electrically driven
heat pump: 2.0%

Surrounding conditions
heat: 4.2%

Solar: 0.2%

Figure 1.3: Energy sources for space heating of private households (2010) [51]

Despite obvious reason for considering a district heating, its installation is
highly dependent on the building owner to accept being linked to the network.
Refusal may be due to several reasons like the loss of autonomy, the fear of new
technologies or simply a lack of trust in industrial services. Fortunately, most of
them accept generally. This behaviour may be modeled as a binomial distribution.
The one shown in �gure 1.4 is based on 100 owners with a probability of 85 %
for each of them to accept. If, for example, the DM accepts to build the energy
system if at least 85 % of the buildings may be connected to the network, it means
that there is in fact 50 % of chance to be achieved.



1.1. MOTIVATION 5

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of buildings

P
ro

ba
bi

lit
y 

to
 a

cc
ep

t

Figure 1.4: Binomial distribution for the district heating example

Adding to this, other uncertainties increase the problem complexity. They may
be, non-exhaustively:

� The fuel and electricity cost

� The equipment constraints and performances

� The operating conditions (outdoor temperature, building needs varying with
renovation,...)

� The eventual future building linking or renovation (implying changes in heat-
ing temperature)

� The uncertainties of the decision-making tool parameters

EPFL is based on a centralized heating system. It is a good example of well
predicted context. Campus growth has been taking into account. Moreover, it is
operating at low temperature allowing good exergetic e�ciency. This is done by
two networks: a medium temperature one design at 28 ◦C and low one at 26 ◦C.
Finally higher temperature needs are ful�lled locally to ensure �exibility of the
system.
In the same area, Lausanne district heating has been designed for 160 ◦C way out
and 120 ◦C way in. Such high temperatures come from a bad estimation of future
needs. Moreover, inability to adapt installation to actual requirement makes it
ine�cient during its whole lifetime.
Through such examples, it can be seen that uncertainties may lead to wrong
decisions at any steps from the designer to the policymakers. It demonstrate the
need for a systematic approach to design energy system under uncertainty in order
to minimize CO2 emissions as well as operating cost.
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1.2 Issues and objectives

Through the example of section 1.1, Designing an energy system consists in making
a decision based on a context by using numerical models. However, context as well
as model may be subject to uncertainties.

� Energy systems are often strongly related to time dependent parameters.
However, in a design procedure, dynamic simulation is often too compu-
tationally consuming and a static or quasi-static approach is considered.
Variation in time are then used to build a probability distribution around
a nominal value. This concerns for example some operating conditions like
outdoor ambient temperature or energy prices.

� On another time scale, a lot of energy system imply predictive aspect, like
technologies in development or used in a non-usual range. In such cases,
an additional di�culty is to de�ne a distribution since no information is
available.

� Modeling is by de�nition an approximation of real phenomenon, what imply
necessarily di�erences between model and reality which are translated in
uncertainties on model parameters. Most of approaches constitute a trade
o� between accuracy and necessary computational means. By example, heat
exchanger network area estimation through energy integration technique will
not provide a result as detailed as a �owsheet simulation. However, its ability
to be included into a great superstructure optimization and its computational
e�ciency make it very useful in complex systems design.

� Hardware is subject to uncertainty too. This includes energy technologies,
measurement tools as well as regulation.

� At least but not last, human factor is a highly unpredictable element, as it
has been shown in district heating example. A major di�culty is to model
it, since it is di�cult to measure (and statistics are subject to interpretation)
and could be very complex in case of multi-agent system.

Usually, models are adapted to avoid managing uncertain variables in the design.
For example heating system are treated as multi-period problem with a average
outdoor temperature for each period. In some other cases, uncertainties are con-
sidered as not signi�cant and the most probable value of uncertain parameters is
used. An exception in determining the mean value concerns the case when state
variables (i.e. the variable describing the thermodynamic state of the system) may
be measured directly on site. Here, the uncertain parameters mean value shall be
computed by data reconciliation technique [66]. To express the advantage of such
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approach, let's de�ne a set of measurement mi, i = 1; ...;Nm of a variable xj; the
mean is given by the average:

m̃ =

∑Nm

i=1mi

Nm

(1.1)

However, this value may be biased. As an example, a badly calibrated instrument
may lead to a wrong mean despite a small standard deviation. Such principles
are illustrated by the scheme of �gure 1.5. The assumption is that the perfect
measurement is situated at the origin.

−2 −1 0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

 

 
Precise and Accurate

Not Precise but Accurate

Precise but Not Accurate

Not Precise and Not Accurate

Figure 1.5: Scheme of the notion of precise/accurate measurement [44]

The �nal goal of data reconciliation is to evaluate accuracy ( i.e. determining if
measurements systematically biased) and spread (given by great variation in case
of constant operation condition) and take measure to improve them.
Several methods ([2, 52]) may be used to detect errors taking into account related
parameters. In this study, it will be assumed that such analysis has already been
carried out and that the distribution of uncertain variables is known.
Hence, based on a set of uncertain variables and their related distributions, several
questions related to their in�uence on energy system design raise:

� What is the standard deviation of system performances due to uncertain vari-
ables? Are the uncertain variables more in�uent than the decision variables,
i.e. can the studied system be optimized or is it not enough well de�ned?
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� What is the in�uence of uncertain variables on decision variables? Do they
lead to similar decisions? Do all the decision variables have the same impor-
tance when taking into account uncertainties?

� What is the in�uence of uncertain variables on objectives? Shall uncertainties
indicators be taken into account?

� How to express the notion of risk, reliability, �exibility, feasibility in the
context of energy system design?

� How to propagate uncertainty through the model in an e�ective manner?

The purpose of this thesis is to answer these questions as far as computational
means allow it, and provide methodology to the DM . Moreover, the techniques
that will be used must have the following speci�cations [29]:

� It shall be exhaustive, covering the whole variables space.

� Accuracy is an important factor, since uncertainties related to numerical
evaluations shall be decreased as much as possible

� Computational e�ciency is crucial. Indeed, standard optimization consumes
a lot of computational resources, so that uncertainties processing shall not
imply too much more resources.

� By implementing it in a generic manner, proposed method may be used to
any other problems or solver.

Finally the goal is to develop the methods that will be implemented in OSMOSE

[13], a platform developed in LENI.

1.3 Outline of the report

The chapter 2 will compare the mathematical formulation of the problem, with
the practice in energy system design. The conventional optimization problem will
be presented, with an exhaustive description of its functions and variables. This
will lead to a short description of di�erent types of solver. Optimization under
uncertainty problem will be de�ned, and di�erent methods for uncertainty propa-
gation will be detailed.
In the chapter 3 the system used as example in this study will be described. It
consist in an innovative hybrid system composed by a fuel cell and two gas tur-
bines. Moreover, the approach to solve this problem by energy integration will be
commented as well as its consequence on uncertainty propagation.
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The chapter 4 will show conventional optimization results. They will not be de-
tailed since they can be found in literature. They will be compared with optimiza-
tion under uncertainty results.
In the chapter 5, a new method for optimization of energy systems under uncer-
tainty will be described. Its ability to explore the uncertain space will be demon-
strated. Its results will be compared with standard optimization ones.
Finally, the chapter6 will applied a method of uncertainty propagation on opti-
mization. This method is valid as well for solver demanding not much iterations.
Results will be compared to stochastic and standard optimization, and a detailed
analyses of performances variance will be presented.
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Chapter 2

State of the Art and Innovation

The aim of this chapter is to establish the theoretical concept of this thesis. The
�rst section de�nes the energy system design mathematical formulation. The
second section describes di�erent optimization approaches and the one chosen. In
the third section, optimization under uncertainty will be exposed from an
analytical point of view on one hand and by comparing energy systems resolution
methods on the other hand [18]. It has already been studied in several domains,
like �nance or continuum mechanics. Speci�cities of systems design problems will
be described, leading to the choice of appropriate methods. Finally, they will be
extended with innovative concepts. Other methods in use will be exposed and
discussed. The review of the methods describe here is one of the main
contributions of this work, since designing energy systems under uncertainty
remains a mathematical challenge. Indeed, there is no established method up to
now.
In this section, the state of the art will be jointly exposed with the problem
formulation in order to simplify lecture.

2.1 Optimization Problem Formulation

2.1.1 Optimization problem

Energy system design is de�ned as an optimization problem. Usually, DM con-
siders objectives as investment or operating cost, e�ciency, environmental impact
(through life cycle assessment methods) or simply the maximization of desired
service or product.
A formalism has been developed [10, 12, 11] to translate system design into a math-
ematical formulation. Such generic approach o�ers the advantage that it may be
applied to any system [86, 35, 37, 5] and with any solver.

11
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Moreover, looking back at theoretical form of the problem remains important since
it allows to study limits of numerical model as it will be described in this section.
The most global formulation for an optimization problem is:

min
z

y = f(z) (2.1)

With f : Rn → R called the objective function and z ∈ Rn the decision variables.
The de�nition of optima for problem 2.1 are given by the optimality conditions.
For z∗, a local minimum of f , the necessary optimality conditions is given by:
The �rst order condition, for f di�erentiable in an open neighborhood of z∗,

∇f(x∗) =


∂f(z)

∂z1
...

∂f(z)

∂zn

 = 0 (2.2)

And the second order condition, for f twice di�erentiable in an open neighborhood
of z∗, ∇2f(x∗) is positive semide�nite, meaning:

∇2f(z∗) =


∂f(z)

∂z21
· · ·

∂f(z)

∂z1∂zn
...

. . .
...

∂f(z)

∂zn∂z1
· · ·

∂f(z)

∂z2n

 > 0 (2.3)

The su�cient optimality conditions is the same as equation 2.2 for the �rst order.
For the second order, it stipulates that ∇2f(z∗) is positive de�nite:

∇2f(z∗) > 0 (2.4)

So, the main di�erence between necessary and su�cient conditions is the case
∇2f(z∗) = 0.
In energy system design, most of the problem are constrained so that they are
formulated as:

min
z

y = f(z)

s.t. h(z) = 0

g(z) 6 0

(2.5)

The function f is the objective function of the model. In others, it represents
the performance indicator allowing to compare an energy system with another. A
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multi-objective optimization may be used, especially to point up trade o� between
objectives. So, y may be a vector with y ∈ Rm. In this study, m 6 4, since greater
number of objectives may be induces too much computing facility needs.
Together with the constraints h and g, they constitute the model, i.e. they are the
set of mathematical equations representing the physical and economic behaviour
of the model (thermo-chemical property of each streams, mechanical and thermal
units speci�cation, price of resources,...). Most of these problems are mixed integer.
In case of a linear problem (LP ), the equation 2.5 can be formulated as:

min
t

cT z

s.t. h(z) = Az − b = 0

z > 0

(2.6)

In that case, there are three types of solutions:

(a) Real solution (b) In�nite number of solutions

(c) In�nite solution

Figure 2.1: Linear problem

(a) There is one real solution. It consist in a vertex formed by the intersection of
several boundaries of the research domain.

(b) There are an in�nite number of solutions. Such case appears when the con-
straints form an edge or a surface orthogonal to the steepest descent.



14 CHAPTER 2. STATE OF THE ART AND INNOVATION

(c) There is one not real solution which is ±∞. In that case the search space is
not bounded in the steepest descent direction.

A non-linear (MINLP ) can have too many di�erent forms to be described
explicitly in a general expression.
The optimality conditions for problem 2.5 is determined by the Karush-Kuhn-
Tucker (KKT ) conditions. The Lagrangian L is de�ned as:

L(z, λ, µ) = f(z) + λTh(z) + µTg(z) (2.7)

With h : Rn → Rp and g : Rn → Rq. Moreover, h and g shall be continuously
di�erentiable and linearly independent. There exists unique λ∗ and µ∗ so that:

∇zL(z∗, λ∗, µ∗) = 0 (2.8)

µ∗j > 0, j = 1, ..., p (2.9)

µ∗jgj(z
∗) = 0, j = 1, ..., p (2.10)

Equation 2.10 is used to ensure that only active constraints will be considered in
2.8. As a reminder, a constraint g(z) > 0 is called active in z∗ if g(z) = 0.
If f , h and g are twice di�erentiable:

CT∇zzL(z∗, λ∗, µ∗)C > 0, ∀C 6= 0 so that

CT∇hi(z∗) = 0, i = 1, ...,m

CT∇gi(z∗) = 0, i = 1, ..., p

(2.11)

and if z∗ is a strict local minimum,

CT∇zzL(z∗, λ∗, µ∗)C > 0, ∀z 6= 0 (2.12)

Di�erence between a minimum and a strict minimum is that the optima z∗ is
unique in its neighborhood.
Verifying KKT conditions relies on derivative estimation. In case of explicit form
for f , h and g, no problem shall be encountered. However in case of numerical
models, what concerns most of cases in energy system design, several approach may
be considered. First, numerical derivative may be used. But the computational
cost they imply may be too high compared to the information they provide, i.e.
the assurance to be at a local optima. Another possibility is the use of surrogate
model, which may be built by gaussian quadrature [67], neural network [80] or
any other interpolation technique [71], which will add a layer of uncertainty on the
model. As well as in the �rst proposition the computational cost to train surrogate
models during optimization is not worth enough. Indeed, most of numerical solvers
have either a stopping-criteria or may be stopped once the user estimate that the
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optimal solution is reached.
Hence, there is no analytical way to verify optimality of the solution. However,
optimization can be carried out anyway since great improvements can be noticed.
Moreover, previous considerations underline the importance on one hand of the
optimization solver and on the other hand of the model used. Section 2.1.2 presents
more in depth usual functions in energy system, especially used at LENI. Section
2.1.3 proposes a detailed classi�cation of the related variables.

2.1.2 Typical Function in Energy System Design

In this study, the function f , g and h are included in the structure represented in
�gure 2.2. Such approach has been already applied at LENI in several di�erent
domains like fuel cells [56, 5], carbon capture [9], pulp and paper industry [66] and
biomass conversion [30].

Physical Model

MATLAB function Flowsheeting software

Energy Integration

MILP/MINLP solver based software

Performances Evaluation

MATLAB function Flowsheeting software

Figure 2.2: Resolution sequence

The model structure described in �gure 2.3 is strongly related to the process
design procedure. In energy system design, such approach has been studied and
de�ned as an onion layer scheme [49, 55]. The principle is to start as close as
possible of the process (chemical reaction) and to end by the heat recovering as
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the most external layer. This way, the process can be designed and optimized �rst
and then the utilities are treated.

Heat RecoveringHeat Recovering

Utilities

Separation
Recycling

PUO

Chemical Reactions

Figure 2.3: Onion representation

The physical model: It describes the thermodynamic state of the problem
based on a set of input variables. Its role is to provide information to energy in-
tegration (mainly a list of hot and cold streams) and performances evaluation. It
includes the chemical reactions, the physical unit operations, and eventual recy-
cling or separation from �gure 2.3.
A generic framework has been developed at LENI (OSMOSE), it uses MATLAB or
�owsheeting software models. VALI 1 has been used in this study. This software
can be used for modeling as well as for data reconciliation. It is a time and mem-
ory consuming task for several reasons. First, the model is solved based on an
equation solver approach, implying several iterations to converge to the solution.
Moreover, data transfer between �owsheeting software and the rest of the model
is very demanding, since results �les have to be written.
However every physical informations are calculated and can be accessed, whereas
in a MATLAB model built by the DM , only important variables will be computed.
Despite this drawback for computing performances, it o�ers the advantage of al-
lowing to recover any value, and not only those chosen a priori by the DM .

The energy integration: The principle of energy integration (or pinch analysis)
is to design and estimate a rational use of energy for a given system (provided by
physical model). It consists in:

1http://www.belsim.com/
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� Determining the Minimum Energy Requirement (MER)

� Computing the necessary utilities to satisfy MER.

� Selection and sizing of common equipment used to ful�ll energy needs (boiler,
rankine cycle, heat pump, steam network,...).

� Design of heat exchanger network (HEN)

� And computation of all necessary information for the performance evaluation
(energy consumed or delivered and HEN cost based on area)

It should be noticed that most of these elements are MILP problem and can be
solved with a low computational cost. However, a special attention should be given
on the HEN . Its cost and e�ciency can be calculated in three steps ([62, 63, 64]),
each of them providing a more detailed view than the previous one.
The �rst one is based on the MER [54] and provides a total heat exchanger area
estimation and the pinch points location. It shall be noticed that only the ∆Tmin
is considered as decision variables at this level.
The second one is the Heat Load Distribution (HLD [27]), which is focused on
determining which streams shall exchange together and what will be the heat loads
and mass �ows. This means that the streams involved in each heat exchange are
identi�ed, but that the physical options to connect them have still not been stud-
ied.
Those two previous problems are linear. However, the third step, the Heat Ex-
changer Network Synthesis (HENS [25]) is aMINLP problem, increasing greatly
the computational cost. It solves the heat exchanger problem by providing a de-
tailed superstructure.

Performances evaluation: It consists in ranking a solution based on thermo-
dynamical, economical or environmental factors.
Of course, di�erent resolution sequences may be chosen. However, in any case,
complex superstructures remain resource consuming, what makes them the bot-
tleneck of optimization. Such problems are MINLP problems and there is in
most of cases no analytical formulation available. Hence the number of model
evaluations is limited by computation means.

2.1.3 Variables Classi�cation

This section details the variables related to energy system design. Indeed, the
decision variables z in problem 2.1 is only one part of the variables involved in
the problem. They can be classi�ed in four types, the decisions variables z, the
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parameters θ and the dependent variables d [1, 34, 36, 40, 26]. The description
represented in �gure 2.4 considers these contributions and goes one step further,
describing possible uncertainties in an exhaustive manner:
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It should be noticed that the variables are classi�ed here based on their role
in the optimization problem. So, uncertainties are considered independently from
their sources (model, measurements,...). They can be described as follows, x rep-
resenting any variables of the problem:

� Decision variables z and their related space Z: the variables whose value will
be adapted in order to minimize the objective function. The decision variable
set results from the degree of freedom analysis. The decision variables may
be separated into:

� Design variables, zv: continuous variables characterizing the design, for
example size of equipments.

* Certain design variables zcv: design variables that have no or almost
no risk of failure. For example, a mass�ow controlled by a vane has
a standard deviation so small compared to equipment e�ciency
that it can be considered certain.

* Uncertain design variables zuv: design variables that may be dif-
ferent than the result of optimization. For example, the e�ective
nominal power of a compressor may vary in a given range from the
value speci�ed in catalog. To distinguish desired value zuv from its
deviation z̃uv, zuv is de�ned as zuv = zuv + z̃uv.

� Operating variables, zo: describe the operation of the plant such as
pressures, temperatures, or �ow rates. At the system level approach
considered here, the details of automatic regulation is not modeled,
since the model considers only steady-state or quasi-static behaviour. zo
is then the set point of measured values, whereas manipulated variables
are considered as dependent variables. For example, zo may be the
temperature of a hot stream whereas the real manipulated variables is
the cooling water �ow rate.

* Every operating variables are uncertain in reality due to measure-
ments errors and regulation system, or bad representativity of the
measurement. A limit based on a maximum acceptable deviation
should be de�ned between zco and zuo to establish their di�erence.
However, since such statistics may be hard to evaluate without a
detail transient model, resulting information and results should be
used very carefully. As for design variables, zuo = zuo + z̃uo.

� Design decisions, zd: integer variables characterizing the design, indi-
cating the selection of a technology for example.

* Certain design decisions zcd are decisions that shall be taken with-
out any a priori opinion of the DM . In other words all of them
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are equally probable. This leads to a standard scenario approach.

* Probable design decision zud includes decision related to a given
probability. For example, in case of a district heating, this may
be the probability of a household to accept to be connected to the
network. In such cases, stochastic process [74] may be considered.

� Parameters, θ associated to space Θ: the models parameters are not variables
stricto sensu. Their distinction is however necessary for the de�nition of
uncertainty. They are divided into two categories:

� The certain parameters θc, which can be considered as �xed or which
variation can be neglected.

� The uncertain parameters θu which are themselves classi�ed into two
types:

* The short term uncertainties θus are the parameters that will be
known once the energy system will be built. As an example, the
exact installation cost of a unit is known once it is bought.

* The long term uncertainties θul, which will remain uncertain even
during plant operation, as ambient temperature for example. They
are themselves separated in two sets: the time dependent and in-
variant long term uncertainties.

· The time dependent θult are continuous and can be de�ned as
uncertainties related to a duration. For example, for a heating
system, the probability of having a given outlet temperature is
strongly linked to the total time this temperature will happen
during the year. In that case, it is a yearly period, but it de-
pends on the uncertain parameter nature. The probability to
be in maintenance may be considered on the whole lifetime for
example.

· The time invariant θulti are discrete event variable. The prob-
ability of one equipment failure due to default is one example.

� Dependent variables, d from space D are resulting from the resolution of the
equality constraints h(z, θ, d) = 0 once the value of the decision variables is
�xed. Then, problem 2.5 becomes:

min
z

y = f(z, θ)

s.t. h1(z, θ) = 0

g(z, θ) 6 0

(2.13)
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Where h1 is the equality constraints that are not related to dependent vari-
ables d. For notation issue, consider that from now X = Z ∪ Θ and h is in
fact h1.

Moreover, the space U gathering spaces of all uncertain variables z̃uv, z̃uo, θus, θult is
de�ned. Its related variables ~u = [u1, ..., unu ] represents the vector of zuv, zuo, θus, θult
(nu = nzuv +nzuo +nθus +nθult being the number of uncertain variables). By oppo-
sition, the space C = X−U includes all certain variables which will be generically
called ~c. It can be noticed that zud and zulnp is not included in ~u. Indeed, discrete
uncertain variables will be treated in a scenario approach, so that the method
presented here focus on continuous random variables, i.e. on the resolution of one
scenario.
�Uncertain variables� are in fact random variables from a mathematical point of
view. They will be called �uncertain� in this study for a readability reason.
The role of these variables in the energy system design problem depends strongly
on the development progress. Figure 2.5 shows above the time axis, the period
while uncertain variables remain uncertain. Below time line is represented the
period while decision variables can still be modi�ed.
It is important to notice that the framework in this study appears at the beginning
of the design procedure, so that a relevant preliminary design provides guidelines
that can make following steps considerably easier. Moreover, at this level, there is
a maximum number of degrees of freedom (zv, zd and zo) available, and then more
opportunity to improve performances.

Figure 2.5: In�uence of decision variables and uncertainties in time
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Several gray area appears in shaded tons. Indeed:

� Short term uncertainties θus may become certain during prototype phase
like an investment cost. By de�nition long term uncertainties θult remain
uncertain after system commissioning. However, they can become �less�
uncertain. For example, average maintenance time can be deduced by a
statistic analysis on previous years.

� Design decisions and variables may be �xed during prototype phase too.
This depends on the possibility to rethink decisions already taken.

It should be noticed that in the approach proposed here, every operating variables
zo are assumed to be able to compensate the in�uence of any uncertain variables
u to maintain f(zo, u) = ynominal. If one operating variables zo,i has in fact no
in�uence on the objective submitted to uncertain variables uj, operating strategy
will consider other variables zo,k. If zo,i may compensate uj, it will be considered
anyway, even if it is not the case in reality. A typical example is time scale issue:
the thermostat of a residential building is supposed to regulate boiler fuel inlet
to maintain house comfort temperature. However, it can not deal with rapid
temperature variations (like window opening to ventilate). Such problem may be
solved by using dynamic models. However, this study is restricted to static or
quasi-static model.
Uncertain variables description can not be separated from their in�uence. They
represent a risk that can be classi�ed in three seriousness degrees (from the lightest
consequence to the worst):

1. Performances may change due to unpredicted parameters. They can be
improved (if an e�ciency is better than what was forecasted for example),
but most of time they are lowered. This is due to:

� A non-adapted control strategy

� A non-adapted design and a decrease of performances since equipments
are used out of their nominal point

2. A soft constraint violation. Such constraint can be overridden but it induces
penalty. For example if the colder hot stream of a process is colder than the
cooling water in use, a refrigerating system shall be used, what is possible
but increase investment and operating costs. Such behaviour describes the
degree of �exibility of the system [1].

3. A hard constraint violation. It �xes the limit beyond which system can not
be operated. It is the case of the previous example, it is illustrated in case
that there is no possibility for buying a refrigerating system. This boundaries
is the feasibility limit of the system [1].
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From a mathematical point of view, case (1) and (2) are similar. For exam-
ple, performances decrease can be compensated, most of time by an additional
consumption of resources, what is a penalty. However, they will be considered
di�erent, since in case (2) superstructure is modi�ed by adding new equipments.
It must be noticed that all uncertain variables are considered independent. If it
is not the case, other variables shall be found or the model shall be adapted. In-
deed, some variables may be independent depending on the modeling scale. Such
a condition is related to the joint probability formulation:

p(~u) = p([u1, ..., unu ]) = p(u1|...|unu) (2.14)

Which in case of Independence does not include covariance terms and is simply
given by:

p(~u) = p(u1) · ...· (unu) (2.15)

2.2 Optimization problem resolution

2.2.1 Chosen solver

Based on equation 2.5, a great amount of optimization methods have been devel-
oped depending on the type of problem. Good overviews and perspective can be
found in literature [10, 33]. They are classi�ed in three types: gradient based,
heuristic and mixed.
Gradient based methods are not the most recommended here since models con-
sidered in energy design can have a lot of local optima and discontinuities due to
integer variables. A lot of starting points would then be necessary. Moreover, since
most of energy problems are multi-objective, partial derivative estimation may in-
crease greatly computational cost. Hence, the relevance of such methods depends
highly on the studied problem (number of objectives, size of the superstructure,
monotonicity of the model,..) [69].
A heuristic method based on an evolutionary algorithm has been chosen. It o�ers
greater chances to reach global optimum and use of such algorithms is now wide
spread. The one used in this study has been developed especially for energy system
design [58, 53]. Clustering methods allow to conserve also non-optimal solutions
until the end of optimization so as to compare them with �nal solutions. For ex-
ample, if three technologies can provide the same service and that one of them is
systematically worst than two others, the solver may maintain it alive to compare
its best performances with the two options to be kept. It necessitates a lot of
iterations what can be a disadvantage from computing time point of view but an
advantage since stochastic methods developed here may need a lot of iteration to
ensure the complete exploration of uncertainty space.
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Of course some hybrid methods are more e�cient as Sequential Approximate Op-
timization (SEQOPT)[50]. However, such an approach relies on surrogate models.
Their error have to be quanti�ed and compared to uncertainties taken into ac-
count. Heuristic models are based on deterministic models what makes study of
uncertain variables easier despite they are more �brutal�.
Finally, method for uncertainty processing developed here shall be generic and not
depend on solver.

2.2.2 Evolutionary algorithm

In this section, evolutionary algorithm used here [58, 53] will be shortly described.
Such algorithms are inspired by Darwin theory: �Survival of the �ttest�. Fitness
is given by the objective functions. The solver makes an initial population evolve
to reach optima. Once the initial population is generated, the next generation are
obtained by:

� Crossover: At least two parents are chosen to create a child based on their
decision variables.

� Mutation: The decision variables of only one parent are slightly changed.

� Parents: The �ttest parents may be maintained alive from one generation to
another to ensure that created points from crossover and mutation shows a
real improvement compared to previous generation.

The details on children creation and generation size criteria will not be given here.
The two main parameters chosen by the user are the size of initial population and
the maximal number of iterations.

2.3 Optimization under Uncertainty

2.3.1 Uncertainty problem formulation

Dealing with uncertainty has always been a great challenge in energy system de-
sign. However, computer science progress o�er new possibilities in uncertainty
processing. Number of examples can be found with di�erent complexity levels.
Linear problems [40, 12, 1] are easier to study. Indeed, as well as every mono-
tonic functions [26], objectives or constraint variations are limited by uncertainty
boundaries or activated constraints as represented in �gure 2.6(a).
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(a) Function or constraint monotonic in ui (b) Function or constraint non-monotonic
in ui

Figure 2.6: Monotonicity issue

Figure 2.6(b) shows a non-monotonic function. It is exaggerated to present
both minimum and maximum out of ui boundaries. In such cases, simulating the
models for ui,min and ui,max do not allow to �nd fui,min and fui,max. This situation
is common in energy system. An example can be an uncertain demand for a
load following facility. The e�ciency is optimal in nominal conditions (standard
demand dst), but varies as soon as the produced power changes. In such case, the
uncertain variables corresponding to the best e�ciency is not at a boundary, so
that dmin < dst < dmax.
Quadratic formulation [72, 12] allows easy implementation too since convexity can
be veri�ed. A special case to notice is the availability of an analytical form of
the functions and constraints, what allows exact derivative estimation and can
improve model computing time [1, 26].
In addition to non-monotonicity and non-analytical models, this study focus on
non-linear problems, with a great number of equations and variables and multi-
objective problems. With respect to these conditions, this section �rst presents
the mathematical formulation of energy system design under uncertainties. Then,
numerical techniques to solve it will be described, as well as their limits.

General formulation with recourse: The principle in such approach is to
decompose the problem in two layers. The design decisions and variables zd and
zv are involved in the �rst-stage, whereas the operating variables zo have a role
in the second-stage. Such approach allows to consider the ability of operating
variables to compensate uncertainties even during plant operation. Then, problem
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2.5 becomes:

min
zcv ,zuv ,zd

E
z̃uv ,z̃uo,θu

 min
zco,zuo

f(z, θ)|g(z, θ) 6 0︸ ︷︷ ︸
(2)


︸ ︷︷ ︸

(1)

(2.16)

With E(x) = µx being the expected value de�ned for discrete case: In other words,
problem (1) and (2) can be formulated as:

� (2) For a given design and known uncertainties, �nd the best control strategy
by searching optimal zco, zuo.

� (1) Finding the best design given by zcv, zuv, zd, knowing that the system is
able to gives the best possible performances for any uncertainty z̃uv, z̃uo, θu.

In literature [40, 1, 70, 34], equation 2.16 may be called two stages programming
problem. It is subject to:

∀(z̃uv, z̃uo, θu) ∃(zcv, zuv, zd)|g(z, θ) 6 0 (2.17)

Where equation 2.17 is known as the feasibility constraint. This key notion repre-
sents the hard constraints, or the limit of installation operability. Such problem
may be called reliability analysis in other domains like continuum mechanics.
It should be noticed that feasibility constraint 2.17 does not have to be studied on
the whole domain. Indeed, it can be demonstrated [39] that satisfying the most re-
strictive variables is su�cient, what leads to the problem 2.18 (for ng constraints):

max
z̃uv ,z̃uo,θu

min
zco,zuo

max
j∈[1,...,ng ]

gj(z, θ) (2.18)

This expression remains hard to verify since usual models have no explicit formu-
lation of constraints.
The problem 2.16 is known as in�nite. Indeed, expected value relies on the whole
uncertain variables space. Its discretization leads to the multi-period formulation.
It should be noticed that even if the formulation is closed to the conventional
multi-period problem used in energy systems, it does not necessarily re�ect real
duration. For ns samples:

min
~c,z1co,...,z

ns
co ,z

1
uo,...,z

ns
uo

ns∑
j=1

pjf(~c, ~uj) (2.19)

With c and u gathering respectively the certain and uncertain variables as de�ned
in section 2.1.3. The goal of such formulation is to consider the second stage of
equation 2.16. It computes the ability of the system to adapt to uncertain variables
variation in order to:
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� avoid to reach the feasibility limits, in other words to maintain the system
operable

� keep the performances optimal. This is related to the variance of objective
functions, and may be found in literature as second moment analysis.

This leads to �exibility de�nition. Despite there is several ways to expressed it in
literature, the global sense remains the same. For ui ∈ [ui − δ, ui + δ], a �exibility
index F could be given as [10]:

F = max δ

s.t. max
z̃uv ,z̃uo,θu

g(z, θ) 6 0

δ > 0 ∈ R

(2.20)

2.3.2 Uncertainty propagation

Principle in uncertainty propagation is to obtain a measure of uncertain variables
e�ect on a performance y.
First level of propagation which is used in conventional design is based on mean
value of uncertain variables. In best cases data reconciliation can be applied to
determine µu.
Since all ui are supposed independent:

p(µu) = p(µu1) · ... · p(µunu
) (2.21)

Such approach is relevant for the most probable case. However, occulting other
possibilities means being not prepared in case they happen.
Three types of results [77] may be used when propagating uncertainties as ex-
pressed in �gure 2.7.
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Figure 2.7: Uncertainty propagation output

1. Mean and variance gives information on function variability. Skewness may
be useful in case of asymmetric pdf .

2. Quantile are used to measure probability of violating a constraint or proba-
bility for a solution to be better than another.

3. Finally, the probability density function itself is considered as the maximum
information that may be obtained, allowing to compute moments as well as
quantile.

Monte-Carlo simulation: First logical attempt to include uncertainty in en-
ergy system design is to use Monte-Carlo simulation. Its main advantage is that
it totally relies on the deterministic model simulation. However, the number of
necessary evaluations makes it a bad approach to be included in an optimization
procedure for the problem treated here. For example, the mean usually converges
as 1/

√
neval for one dimension [24]. Moreover, the number of function calls in-

creases exponentially as a function of nu, the number of uncertain variables. Some
more e�cient techniques have been developed to optimize the number of model
evaluations and maintain a good representativeness of the uncertain space. Most
common are Latin Hypercube Sampling (LHS) [43, 77], Hammersley [76, 87, 17]
or Sobol [77] sequences.
Such approach is similar to scenario or multi-period approach (equation 2.19). The
underlying principle is to discretize continuous uncertain space [38] and ensure fea-
sibility of the solution [1].
Moreover, the question of non-injectivity should be underlined. Considering that
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two uncertain variables can compensate their respective e�ect on objective func-
tions, it means that two di�erent sets of uncertain variables ~us1 and ~us2 can lead
to the same performance y1 as in �gure 2.8.
This implies that the probability of y1 to occur p(y1) 6= p(~us1) 6= p(~us2). The
probability p(y1) is actually given by all sets ~usi|y1 leading to y1 so that:

p(y1) =
∑

p(~usi|y1) (2.22)

Where ~usi = [u1, ..., unu ].

  

u⃗s1
y⃗1

y⃗2

Uncertain variables
set space

Performances 
space

u⃗s2

u⃗s3

Figure 2.8: Non-injectivity problem representation

Which can be an in�nite integral in case of continuous distribution. Hence,
Monte-Carlo simulation does not allow an easy extrapolation of the objective dis-
tribution function. Complex methods as polynomial orthogonal may be used and
will be discussed below. Another possibility is to consider kernel density estima-
tion [69], but this method is non-parametric. On one hand, it is an advantage
since it tolerates multi-modal distribution. On the other hand, its moments are
di�cult to compute, whereas they are necessary for optimization as performance
indicators.
However, Monte-Carlo may be useful to study or validate solutions for one set of
decision variables, but related conclusions shall be interpreted carefully. Estima-
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tors are computed as follows (with nmte, the sample size):

µ̃y =

∑nmte

i=1 yi

nmte

σ̃y =

√∑nmte

i=1 (yi − µ̃y)2

nmte − 1

γ̃1,y =

1

n

∑nmte

i=1 (yi − µ̃y)3

σ̃3
y

γ̃2,y =

1

n

∑nmte

i=1 (yi − µ̃y)4

σ̃4
y

(2.23)
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Figure 2.9: Convergence of Monte-Carlo simulation

Despite methods exist to pre-de�ne sample size, here the stopping-criteria has
been de�ned for a maximum deviation of the estimator between one iteration and
another:

max

(
(µ̃y|i − µ̃y|i−1)

µ̃y|i
;
σ̃y|i − σ̃y|i−1

σ̃y|i
;
γ̃1,y|i − γ̃1,y|i−1

γ̃1,y|i
;
γ̃2,y|i − γ̃2,y|i−1

γ̃2,y|i

)
< εmte

(2.24)
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With εmte = 0.01 for example.
Figure 2.9 shows convergence for a model of fuel-cell coupled with a gas turbine
[5, 23].

Orthogonal polynomials: Continuum mechanics di�ers from the present prob-
lem in the sense that it implies di�erential equations. However some approaches
in uncertainty analysis may be relevant for this study.
An alternative to �nite-element or �nite-di�erence is spectral methods, which have
a more local character. Principle is to �nd a Hilbertian basis (constituted by poly-
nomials) to express f(~u). An analogy can be done by considering a geometric basis
B ∈ R3:

B =

1
0
0

 ,

0
1
0

 ,

0
0
1

 (2.25)

So, as well as the basis B, the hilbertian basis is normalized, orthogonal and allows
to express any functions of L2. As a reminder, L2 is all the functions F so that∫
R |F (x)|2dx <∞. Orthogonality is expressed from the fact that the multiplication
of two vectors of the basis B is 0 unless one vector is multiplied by itself. For a
Hilbertian basis it is expressed in the sense of its inner product:

〈ψk(x), ψl(x)〉 =

∫ ∞
−∞

ψk(x), ψl(x)w(x)dx = δkl (2.26)

Where ψk(x), ψl(x) are two members of the basis, w(x) is the appropriate weighting
function and δkl the Kronecker symbol.
Details of polynomial chaos expansion will not be exposed here, since the goal is
to study their suitability for energy system design problems.
So the expansion of y = f(~u) is:

y =
∑
~α∈Nnu

c~αΨ~α(~u) (2.27)

The principle is to expand y, considering a Hilbertian basis αi associated with
each uncertain variable ui. The notation ~α is not totally correct, since it does not
describe exactly a vector, but all the possible combination between the elements
of each basis αi. It can be summarized by considering a sum of truncated series
and an error term ε.

y =
m∑
j=0

cjΨj(~u) + εm+1 (2.28)

Where m is the number of possible combinations between the elements of the nu
Hilbertian basis.
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Assuming that the coe�cients cj are known, it becomes possible to compute desired
values related to y distribution. The pdf itself can be extrapolated by Monte-Carlo
simulation associated with kernel smoothing techniques [77]. This requires a lot of
iterations, but is possible, since polynomial chaos expansion deliver an analytical
form of y.
the statistical moments may be computed as:

µy,PC =c0

σ2
y,PC =

m∑
j=1

c2j

γ1y,PC =
1

σ3
y,PC

m∑
i=1

m∑
j=1

m∑
k=1

dijkcicjck

γ2y,PC =
1

σ4
y,PC

m∑
i=1

m∑
j=1

m∑
k=1

m∑
l=1

dijklcicjckcl

(2.29)

Where dijk = E [Ψi(~u)Ψj(~u)Ψk(~u)], respectively dijkl = E [Ψi(~u)Ψj(~u)Ψk(~u)Ψl(~u)],
which can be computed analytically [78] as a function of i, j, k and l for kurtosis
in case of Hermite expansion.
Hence, the issue is to �nd an e�cient manner to compute coe�cients cj of equation
2.28. Two approaches are used in continuum mechanics:

� The Galerkin or intrusive approach, which will not be considered here since
its formulation is speci�c to each case. So, this method does not �t the
objective of this study to deliver a generic algorithm.

� The Non-intrusive approach, which is based on a series of call of the deter-
ministic model, and that will be considered here. It can be itself divided in
two types of methods:

� The projection methods. Their starting point is the fact that:

c~α = E [yΨ~α(~u)] (2.30)

This mean can be computed in an empirical manner by simulation or
by using Gaussian quadrature to compute the integral of the expected
value. Both of these methods necessitate a great amount of calls to the
model to converge to an accurate solution.

� The regression methods. It consists in minimizing the mean square
error εm+1 of equation 2.28:

min
cj , j=1,...,m

E [y − cjΨj(~u)] (2.31)
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Here again, the expected value may be solved by simulation or Gaussian
quadrature.

The bottleneck of this approach is the number of model evaluations. In simulation
methods, it is related to Monte-Carlo simulation, or any more e�cient sampling
methods. In Gaussian quadrature, it is related to the number of collocation points.
The relevance of such approach is then determined by the advances in sampling
techniques. One of them, which has not been investigated in this study but would
deserve attention is sparse grid [6, 84]. It is based on Smolyak algorithm [73],
which allows to avoid the curse of dimensionality, i.e. the number of knots growing
exponentially with the number of dimensions.
It shall be noticed that the weighting function in equation 2.26 is linked with
uncertain variables pdf . Indeed, in case w(x) = p(x), the orthogonality formulation
is similar to moment de�nition. It is possible to consider a mix of several types of
polynomials [85] if the uncertain variables do not have all the same distribution,
as described in table 2.1.

Distribution Polynomials

Normal Hermite
Gamma Laguerre
Uniform Legendre
Beta Jacobi

Table 2.1: Distribution and related orthogonal polynomials

However, the convergence of the expansion will be deteriorated, so that a higher
order (implying more iterations) will have to be considered.

Moments method: Such approach is widely used in continuum mechanics [46,
57] and starts being used in aerodynamics [45] and is also known as perturbation
method. The principle of moments methods is to extrapolate performances pdf
from their partial derivative in ui. Concretely it means estimating mean µ and
standard deviation σ (even skewness γ and kurtosis β). However, due to non-
injectivity they can not be calculated directly. Moments method is based on Taylor
expansion series of objectives.
For a constant set of certain variables ~c = cst second order Taylor expansion in
~u = µ is expressed as:

y = f(~u) ∼= f(~u)µ+
nu∑
i=1

(
∂f(~u)

∂ui

)
µ

·(ui−µui)+
1

2

nu∑
i,j=1

(
∂2f(~u)

∂ui∂uj

)
µ

·(ui−µui)·(uj−µuj)

(2.32)
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Where subscript µ means �evaluated in E(~u)�. Moreover, to simplify notation, f(~u)
will be written as y for equation 2.33 and 2.34. Mean and standard deviation are
expressed as:

µy = yµ︸︷︷︸
1rst order

+
1

2

nu∑
i=1

(
∂2y

∂2ui

)
µ

· σ2
ui︸ ︷︷ ︸

2nd order

σ2
y =

nu∑
i=1

(
∂y

∂ui

)2

µ

· σ2
ui︸ ︷︷ ︸

1rst order

+ y2µ +
nu∑
i=1

(
y
∂2y

∂u2i

)
µ

· σ2
ui

+
nu∑
i=1

(
∂y

∂ui
·
∂2y

∂u2i

)
µ

· γui − µ2
y︸ ︷︷ ︸

2nd order

(2.33)

Such approach has already been used in energy system design [50]. However third
moment (skewness) may give useful information on pdf asymmetry. It is expressed
as:

γ1y =y3µ +
3

2

nu∑
i=1

2y

(
∂y

∂ui

)2

+ y2
∂2y

∂u2i


µ

· σ2
ui

+
nu∑
i=1

2y

(
∂y

∂ui

)3

+ 3y
∂y

∂ui
·
∂2y

∂u2i


µ

· γui − µ3
y − 3µy · σ2

y

(2.34)

Formulation for kurtosis of a Taylor series expansion is di�cult to determine, so
that only �rst order will be considered [88]:

γ2y =

(
∂y

∂ui

)4

· γ2ui (2.35)

As a reminder, numerical derivative (central) is given in equation 2.36.

∂y

∂ui
= f ′(ui) = lim

h→0

f(ui + h/2)− f(ui − h/2)

h

∂2y

∂u2i
= f ′′(ui) = lim

h→0

f(ui + h)− 2f(ui) + f(ui − h)

h2

(2.36)

Despite such estimation is better for h → 0, it should be determined carefully.
Indeed, software used for modeling are based on a given precision. In particular,
�owsheeting and energy integration software results are strongly related to their



36 CHAPTER 2. STATE OF THE ART AND INNOVATION

convergence, what leads to di�erent values for the same input parameters. For
example, VALI allows a precision up to e = 10−9. This means that the closer h
will be to e, the less stable will be the derivative estimation. In the present case,
a margin of two order of magnitude has been considered since 10−7 is still wide
enough compared to objective order.

Pearson system: Results of propagation methods may be post processed to ob-
tain an analytical distribution function of the perfromances. Table 2.2 summarizes
the results of the methods described previously:

Method Result

Monte-Carlo
Samples of uncertain variables and cor-
responding performances
Moments estimators of the perfor-
mances by simple post-processing

Orthogonal polynomials
Polynomial interpolation of model re-
sponse to uncertain variables
Moments interpolation
pdf of performances providing supple-
mentary model evaluations and post-
processing

Moments method Extrapolated moments

Table 2.2: Propagation methods results

It can be observed that all of them allow to compute moments. It gives infor-
mation on dispersion and asymetry of the pdf . However, an analytical formulation
of the probability density function of y may be useful, to compute quantile for
example.
Several methods allow to do this [3]. Johnson systems associates quantiles to well
known distributions [47]. Hence it do not �t here since quantiles are not available
for every propagation methods. Generalized lambda distribution is a simple and
�exible approach, but Pearson systems [48, 65] will be considered since they are
well known and have already been applicated in other �els [45]. Principle is to
de�ne a standard distribution based on the four �rst moments. Despite such ap-
proach is not recent [65], it is still relevant and used in aerodynamics area [45] for
example. It consists in a map as the one represented in �gure 2.10.
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Figure 2.10: Pearson system

In �gure 2.10, β1 and β2 are given by:

β1 =γ21
β2 =γ2 + 3

(2.37)

It must be noticed that all the possible zones are not represented in 2.10. So,
Pearson's system can lead to the following six types of distributions:

I: Beta distribution

II: Symmetric Beta distribution

III: Gamma distribution

IV: 4th type is not a standard distribution and won't be described here (see
appendix A.1)

V: Inverse gamma distribution

VI: F-distribution

Without describing such approach in depth, this method consists in solving the
di�erential equation (with p(u) the density):

p′(u)

p(u)
= −

x+ a

c0 + c1u+ c22
(2.38)

Values of a, c0, c1 and c2 depend on β1 and β2. Their results give the type of
distribution (and the related parameters).

At this stage, it is then possible to extrapolate density function of y based on
the uncertain variables as represented in �gure 2.11.
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Figure 2.11: Propagation by moments method

However, this does not take into account �exibility, i.e. the second stage of
problem 2.16. Next section gives a proposition to solve it.

2.3.3 Proposition for second stage resolution

The energy system di�ers from other �elds like continuum mechanics due to their
ability to adapt to uncertain conditions, at least partially, even after the plant
installation.
First issue is the fact that no dynamic model is available, so that regulators and
their related transfer functions are not considered.
Moreover, designing an optimal control under uncertainty for a given process costs
a lot in terms of computational resource. This is mainly due to the fact that
such method implies a sampling to de�ne scenarios and then solve a multi-period
problem [61]. The combination between the manipulated variables, the measured
variables (zo) and the di�erent uncertainties leads to a great number of periods,
despite usage of e�cient sampling techniques like LHS [59].
The goal here is then to �nd an estimation of �exibility of the system without
going into the details of control optimization.
Figure 2.12 and 2.13 shows schematically the e�ect uncertainties on objective
function with and without operating strategy.
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Figure 2.12: Normal distribution and potential compensated area

In �gure 2.12 the colored area de�nes objective variations that can be com-
pensated by an appropriate control of the system. This limits is de�ned by the
operable range of operating variables [zo1, zo2]. It should be noticed that this
range is not the same that [zo,min, zo,max], the limits considered for optimiza-
tion. Indeed, �rst case is the variation tolerated for a built installation, whereas
second one is the panel of possibilities proposed on the market, what implies
[zo1, zo2] ∈ [zo,min, zo,max]. Hence, zo may compensate uncertainties in�uence on
objective as long as zo1 < zo < zo2, as represented in �gure 2.13.
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Figure 2.13: Variance decrease e�ect

The compensated area has become a partial Dirac delta function δ ·Acomp. Its
area Acomp is the same as the one of the light gray one in �gure 2.12 and is given
by the cumulative distribution function. The dark gray area in �gure 2.13 is the
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case when operating variables regulation is not su�cient to compensate objective
variation. Its area Aleft is such that Acomp + Aleft = 1.

2.3.3.1 Second stage for moments method

A �rst attempt to evaluate operating variable adapting to uncertainties has been
to take part of the 2nu + 1 model evaluations of moments method. Principle is
two generate three sets of operating decision variables per uncertain variables as
explained in �gure 2.14. This allows the optimizer to consider di�erent operating
variables depending on uncertainties values. Critical points of this approach are:

� The h parameter in equation 2.36 is critical. Indeed, it shall be small enough
to represent well enough the derivative, but big enough to notice a signi�cant
di�erence in operating decision variables.

� The advantage of this method is that no more function evaluation is needed
than partial derivative estimation. However, it implies 3 · nu times more
decision variables, hence a greater computer resource consumption during
optimization. It is hard to deduce the number supplementary iterations when
using heuristic algorithm, so that this number will be found by experiment.

y
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Figure 2.14: Propagation by moments method including �exibility

This method did not succeed for several reasons:

� It multiplied by 3 the number of operating decision variables, and the search
space as well. The number of model evaluations per iteration do not increase.
However, the number of iterations for the optimization to converge becomes
too high.
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� Any operating variable is not necessarily in�uent on any uncertain variables.
Hence some optimal value may be search by the solver for zco,1,zco,3, zuo,1
and zuo,1 in �gure 2.14 whereas there is no solution. This may be changed
by allowing the solver to manage the list of operating variables zo to take
into account for uncertainty ui. However, this has not been further studied.

2.3.4 Stochastic programming

A new way in optimizing an energy system design under uncertainty is proposed
[19]. It takes advantage of the evolutionary algorithm property of demanding a lot
of iterations. Despite its accuracy is not proved mathematically, it will be shown
that such approach can lead to changes in �nal solutions.
The principle is summerized in �gure 2.15. At each model evaluation, uncertain
variables are drawn based on their probability law.

Model

MOO
Random Sample 

Generation

Performances

Decision 
Variables

Set of uncertain 
variables

Figure 2.15: Stochastic programming optimization

Three results shall be obtained as represented in �gure 2.16. This example
is based on an analytical test case (Himmelbau) used in the development of the
solver itself [53].
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Figure 2.16: Stochastic optimization results

The blue Pareto front results from a conventional optimization. It is the limit of
the feasible domain, considering each uncertain variables ui at their most probable
value (the mode) p̂ui . Green points are obtained from algorithm in �gure 2.15.
They present better performances, since some uncertain variables draw may allow
to improve objective function and then to go further than the limit given by the
blue points. These points can be recomputed, considering uncertain variables at
their mode p̂ui instead of the value they had during the optimization, leading to
red points.
In that case, as it can be seen in �gure 2.16, cluster 2 is the most a�ected by
uncertainties. Despite this approach can not quantify in�uence of uncertainties
on the objectives, it allows to study the in�uence of uncertainties on decision
variables. Its main interest is that it does not necessitate more model evaluations
than conventional optimization.
As a reminder, the mode may be di�erent than the mean µui . This two estimators
are the same for symmetric de�nition like normal or uniform, but their di�erence
appear important in the following example. The e�ciency of an equipment is
decreasing over its lifetime (for any reason, like structure weakening or wear).
This can be modeled by an exponential distribution as a function of time, as the
one in �gure 2.17.
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Figure 2.17: Di�erence between mean and mode

Most of pre-design are based on new equipment performances. However, this
means that the older the equipment will be, the further it will be from original
design. Designing a system considering the mean of an uncertain variable may
allow to ensure higher average performances on the whole life time, despite lower
performances right after the installation.

2.4 Other approaches

The following section describes brie�y other methods which have not been inves-
tigated here.

FORM/SORM: This states for �rst/second order reliability methods [16] are
used to study constraints violation. In other words, reliability is translated in
a measure of non-failure probability. Here, decision variables z are considered
as constant, so that the constraint g(u) < 0 is only function of the uncertain
parameters (u = u1, ..., unu). This de�nes:

g(u) < 0 Success
g(u) = 0 Limit state
g(u) > 0 Failure

(2.39)

Considering a joint probability distribution p(u), reliability is given by:

R =

∫
u|g(u)<0

p(u)du (2.40)

First step in this method is to project g in a standard normal space using iso-
probabilistic transforms [68]. Thus, u becomes u̇ and g, ġ. The normalized space
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is characterized by the fact that the mean values of any u̇i is 0 with a variance
σu̇i = 1. Assuming that mean value is not in the failure domain (i.e. g(µu) < 0),
the most signi�cant point of the constraint is the closest to the origin u∗ as rep-
resented in �gure 2.18. Methods to �nd this point can be found in literature [16].
The size of the vector between origin and u∗ is β. It is designed by the reliability
index. FORM assumes a linear constraint (normal to ~u∗ ) whereas SORM is
based on a quadratic one.

Figure 2.18: FORM principle

Despite such approach necessitates one optimization (to �nd β) at each model
evaluation and that g(u) shall be rede�ned for each set of decision variables, it
remains more e�cient than Monte-Carlo [77].
However, it has not been further investigated in the present study since Pearson
system allows to recover an analytical expression for the distribution function.
Moreover, modelisation proposed here o�ers the advantage to compute constraints
value as well as objective functions. So that uncertainty propagation can be applied
on g(x), and reliability can be de�ned by quantile:

R =

∫ 0

min(g(x))

p(g(x))dx (2.41)

Which is represented in the gray area in �gure 2.19.
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Figure 2.19: Reliability de�ned by quantile

Fuzzy programming [8]: This approach focus too on reliability. Its main char-
acteristic is that it tolerates constraints violation, linking it to a membership func-
tion which is typically (for a constraint g(x) < c):

m(x) =


1 ifg(x) 6 c

1−
g(x)− c

∆c
ifg(x) ∈ [c, c+ ∆c]

0 ifg(x) > c

(2.42)

Maximizing m(x) should then be added to other objectives. However, this has not
been considered here. Indeed, in energy system design, cost related to overridden
constraints is generally already taken into account in objective function, unless
it concerns hard constraints. As an example, a boiler may be activated or not
depending on ability of hot streams of the systems to ful�ll heat needs of the cold
streams. Investment and operating cost of this boiler gives more useful information
than a membership function, which is not linked with concrete consequences.

2.5 Conclusion

2.5.1 Methods comparison

The energy system design problem as been established as an optimization problem.
Its mathematical formulation has been described and detailed. The models that
lie behind the functions of the mathematical formulation have been exposed. In
LENI, they consist in a sequence of several softwares. This is one of the bottleneck
of the optimization since it consumes a lot of computational resource for great
superstructure simulation.
Functions de�nition can not be dissociated from the related variables description.
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A classi�cation has been presented, in relationship with the development stage in
which they are crucial or not. In future work, this classi�cation should be enriched
by linking uncertain variables with operating variables able to compensate, i.e.
working in the same time scale.
Techniques for optimization problems resolution have been brie�y described since
there is already good reviews in literature. In the proposed approaches,heuristic
methods have been chosen. One of their main advantage is that they rely only
on the deterministic model, avoiding to introduce uncertainties due to a surrogate
model. Moreover, a software and a related syntax has been developed at LENI,
based on a evolutionary algorithm.
Optimization under uncertainty formulation has been exposed. The two stages
programming problem has been detailed with the key notions of feasibility and
�exibility. Hence, the issue of considering the ability of the system to adapt has
been emphasized. However, the type of treated problems has demonstrated the
di�culty to use approach like multi-period for example. Advanced mathematical
methods to propagate uncertainties have been studied and compared. They allows
to solve the �rst stage of the �two stages programming problem�. Three methods
have been proposed:

� Monte-Carlo simulation

� Orthogonal polynomials

� Moments methods

Monte-Carlo simulation imply a number of calls to the model increasing exponen-
tially with the number of uncertain variables. So, they are too consuming to take
place in an optimization procedure. However they remain useful to assess results
of other methods for one set of decision variables, or one point of the Pareto curve.
Orthogonal polynomials may be a good alternative, but estimating the coe�-
cient for polynomial chaos expansion is computationally expensive with simula-
tion method (collocation methods may be compared to Monte-Carlo simulation)
or gaussian quadrature. Smolyak algorithm may make this type of propagation
competitive. However, this is hard to evaluate since the number of model evalu-
ations necessary to expand the model with orthogonal polynomials is highly case
related.
Moments methods are based on derivative evaluations, increasing he number of
evaluation to 2nu+1. This approach will be applied here. Moreover a new method
has been proposed to include the second stage in the derivative estimation.
A stochastic programming has been de�ned allowing to optimize a system taking
into account its uncertain variables without additional iterations. However, this
method concerns only the heuristic solvers demanding a lot of iterations, like most
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of the heuristic approach.
These methods can be compared based on several criteria:

� Propagation: Method allows to propagate objectives pdf at each model eval-
uation. This may be done by propagating moments and applying pearson
system. Stochastic programming do not deliver objectives pdf at each model
simulation, but it may allow this through statistics on the whole optimization
procedure.

� Solver: Propagation method works for any optimization solving method.
From a theoretical point of view, Monte-Carlo may work with any solver.
However, the fact that it needs a high number of samples makes it not suit
for most of the solver and models.

� Constraints: Obtained results respects constraints of the model. Orthogonal
polynomials and moment methods allows to verify it only if of an explicit
form of the constraint is available.

� Deterministic: Results rely only on model simulation.

Advantages and drawbacks of each method are summarized in table 2.3.

Methods Propagation Solver Constraint Deterministic

Monte-
Carlo

yes ∼ yes yes

Orthogonal
polynomi-
als

yes yes ∼ no

Moments yes yes ∼ no
Stochastic ∼ no yes yes

Table 2.3: Uncertainty propagation methods

Finally FORM/SORM and fuzzy programming have been described since they
are widespread in uncertainties management. They focus on constraint violation.
They have not been further explored in this thesis since propagation methods
presented here allows to retrieve analytical expressions for the pdf , making this
two approaches less e�cient.
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2.5.2 Case studied

Section 2 outlines exhaustives approaches for energy system design under uncer-
tainty. However, one case studied can not gather all the issues discussed here. Two
methods will be applied:

� The stochastic programming since it has been developped in this thesis, so
that its results still need to be assessed.

� The moments method since it demands only a small number of model eval-
utation (2nu + 1) to propagate uncertainties. For high number of uncertain
variables, orthogonal polynomials may be relevant, but they rely on sampling
methods, which competitiveness is hard to evaluate a priori.

An innovative hybrid fuel cell system [23] has been chosen as application case. It
is described in depth in section 3. It includes the following types of variables with
respect to �gure 2.4:

� Considered decision variables are design variables zv and operating variables
zo, both being certain. Design decision zd may have been used to de�ne
if a technology shall be considered or not. Instead of this, characteristic
mass�ows have been used as design variables.

� Uncertain variables are short term uncertain parameters θus and long term,
time dependent long term uncertain parameters θult

This is su�cient since the variables involved in the problem in�uence the results
interpretation but not the method choice.



Chapter 3

Model

Methods presented in chapter 2 will be applied on a solid oxide fuel cell coupled
with gas turbines [20]. Such model is a technological challenge and may o�er
great e�ciency. The key role of energy integration will be discussed, highlighting
its advantage and limits when facing problems subject to uncertainties. Finally
the model itself will be described as well as its decision and uncertain variables.

3.1 Energy integration

3.1.1 Advantages and drawbacks

The resolution sequence considered in this study has been presented in �gure 2.2.
It must be noticed that the method developed here is based on energy systems,
but does not depend on the model itself. The decomposition in three steps (phys-
ical model, energy integration and performance evaluation) is a choice that may
be discussed, but methods exposed in chapter chapter 2 are independent of the
model resolution approach under condition of a di�erentiable objective function.
Unlike �owsheeting and performance implementation which are well known, a short
reminder on the energy integration (EI) is presented here. The main purpose of
EI is to de�ne a rational use of utilities to ful�ll heating and cooling demand
by determining possible heat exchanges. They may have been de�ned directly in
the the �owsheeting software in order to bypass the second step of the resolution
sequence. Both approaches can be justi�ed with the following arguments [32]:

Flowsheeting:
Advantages:

� Each heat exchanger of the network is modeled and simulated. So, detailed
information can be obtained without requiring internal optimization, as in

49
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the case of HLD or HENS.

� It allows part load simulation, considering changes on performances for a
designed heat exchanger (HEX).

� Each HEX can be considered separately, allowing di�erent types of heat
exchangers.

Drawbacks:

� Proposed heat exchanger network relies on assumption made by the decision
maker. Hence, such a con�guration is speci�c and hard to optimize by hand,
even for one process con�guration.

� Due to previous point, HEN can not be adapted to the process in a generic
manner. It is then hard to optimize a process, since heat exchanger network
performances (mainly cost and e�ciency) are computed for a �xed (and not
optimized) design.

One option could be to optimize it simultaneously with the rest of the system.
However, increasing the number of integer variables enlarges the complexity of the
problem.

Energy Integration:
Advantages:

� It allows to balance heat recovery and electricity production. For example
steam network (STN) design shall be given by trade o� between the purchase
price of hot utilities and the sale price of electricity.

� It gives a global view of the process through pinch analysis (to avoid heat
exchange across the pinch point for example).

� Performances are adapted to any con�guration of the superstructure, allow-
ing optimization solver to take into account HEN .

Drawbacks:

� HEN network is design after targeting. In other words, energy integration
has to be computed after �owsheeting and MER de�nition. A simultaneous
approach would allow to earn computing resources, specially since HENS
is non-linear.
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� Energy integration �ts only for steady state operation. Moments methods
evaluates function f(u) for ui−h/2 and ui+h/2. So, energy integration will
consider a di�erent HEN for f(ui − h/2) and f(ui + h/2), while the same
one shall be considered, but in di�erent operating conditions. This issue is
a complicated problem which will be discussed further in section 3.1.3.

3.1.2 Composite curves

Bases of pinch analysis will be brie�y exposed here to facilitate reading the results.
Input of this method is a list of all streams of the process to be studied. Each
heat exchange is modeled in the �owsheeting software as represented in �gure 3.1.
Only one of the two material streams is de�ned, so that energy integration is free
to �nd an optimal way to ful�ll heating or cooling needs.

  

ṁ

Q̇

Pinlet

T inlet

ṁ

Poutlet

T outlet

Figure 3.1: Heat exchange de�nition

Streams are separated into two groups:

� Hot streams, which need to be cooled (in red in �gure 3.2).

� Cold streams which need to be heated (in blue in �gure 3.2).

They are characterized by their inlet and outlet temperatures and their heat load.
Constant speci�c heat (cp) is assumed. The example in �gure 3.2(a) shows four
streams, two hot and two cold ones. It should be noticed that they can be placed
anywhere on the horizontal axis, since their heat load is given by an enthalpy
di�erence, which is independent of the considered reference.



52 CHAPTER 3. MODEL

  

T

Q

T s1 ,i

T s1 ,o

T s2 ,i

T s2 , o

T s3 ,o

T s3 ,i

T s4 , o

T s4 ,i

(a) Streams

  

Δ Tmin

MER hot

MER cold

T

Q

(b) Composite curves

Figure 3.2: Composite curves construction

To obtain composite curve of �gure 3.2(b), several steps are necessary.

1. Considering either hot or cold streams, the heat load of each streams is
cumulated in each temperature range.

2. A ∆Tmin/2 is de�ned for each stream. So that ∆Tmin in �gure 3.2(b) is the
sum of ∆Tmin,hot/2 and ∆Tmin,cold/2, for the hot and cold streams involved in
the pinch. If ∆Tmin of the system is bigger than the assigned value, the cold
stream will have to be translated to the right (or the left for hot streams).

3. Based on the value of ∆Tmin, the minimum energy requirement can be de-
termined (for hot and cold utility). This energy is the minimum energy
necessary for the process to be operated assuming that all thermodynami-
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cally possible heat exchange are considered. In other words, it describes the
case where most of the internal heat exchanges of the process are achieved.

Such a graphical approach is very useful since it allows to identify quickly what
are the critical streams by locating the pinch points.

3.1.3 Uncertainties on heat streams

Pinch analysis can provide more or less detailed information on the system heat
exchanges. As a reminder of section 2.1.2, the steps to design a heat exchanger
network are:

� Determining the MER and computation of the necessary utilities to satisfy
it.

� Heat load distribution to de�ne streams involved in each heat exchange.

� Heat exchanger network synthesis to design the heat exchanger network.

One condition for applying moments method is that the objective function f(u)
shall be continuous and di�erentiable.
Several objectives like heat exchanger area or total investment cost can be com-
puted by HENS and HLD. However, theses methods are not continuous. This
is due to the integer variables , for example, the minimum number of streams con-
nections or restriction on heat exchanges [7]. Methods for �exible heat exchanger
network have been developed [79, 22], but they are mainly based on scenario ap-
proach. Thus, they are di�cult to use to propagate a continuous distribution
function unless propagation is performed for each scenario, what takes too much
computing time.
So, minimum energy requirement will be considered in this study. Assuming that
it is possible to build an ideal, totally �exible heat exchanger network, MER be-
comes a good indicator of thermodynamic performance of the system. However,
it should be analyzed carefully.
Figure 3.3 shows the in�uence of Ts4,i variations, while all other heat loads and
temperatures are kept constant (with the value they had in �gure 3.2(b)). It shows
the direct linear relationship between uncertainties and MER.
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Figure 3.3: Composite curve under uncertain temperature

This is valid as well for ∆Tmin, heat loads, and temperature variations under
the conditions that pinch do not switch to other streams (�gure 3.4).
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Figure 3.4: In�uence of pinch

In such conditions, the function MER = m(u) may become at least not di�er-
entiable, and even not monotonic.
In conclusion, MER is an indicator that can be propagated by moments methods
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despite their changes due to the system uncertainties under the following condi-
tions:

� There is no pinch point activation or deactivation due to the uncertain con-
ditions in the neighborhood of the the studied solution.

� Activated pinch points always involve the same streams.

3.2 Fuel cell - gas turbine model

The system considered here is an innovative concept of fuel cell coupled with a gas
turbine [23] as represented in �gure 3.5. Such combination has already been stud-
ied [4, 5, 50]. However, pressurizing fuel cell is a crucial issue. The main interest
of this system is that gas turbine system is compatible with fuel cell working at
atmospheric pressure. Moreover, simulation allows to forecast better performances
than other published results [23].
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Figure 3.5: Global superstructure

Fuel is processed in the reformer by shift and steam reforming reactions.

Shift (-41 [kJ/mol]):

CO +H2O � CO2 +H2 (3.1)

Steam reforming (+206 [kJ/mol]):

CH4 +H2O → CO + 3H2 (3.2)
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The resulting syngas composition is given by the reforming temperature, �xing the
balance between the shift (exothermic) and the steam reforming (endothermic).
The fuel cell considered is a solid oxide fuel cell (SOFC). One of its main char-
acteristics is its high operating temperature. The cathode and anode outlet are
injected into an inverted Brayton cycle, so that working �uid is expanded to sub
atmospheric pressure before being compressed.
In the present case, pure oxygen has been considered for the post-combustion. It
has been taken into account in the e�ciency based on cryogenic air separation
with a consumption of ĖO2 = 1080 [kJ/kgO2 ] [41].
A constant power of 10 [kW ] has been �xed for the total system, air and fuel �ow
rates being adapted to satisfy this condition.
Section 3.2.1 and 3.2.2 describe more in detail the fuel cell and gas turbine mod-
els. Decision and uncertain variables will be listed as well. Two uncertain variables
concern both part of the system. They are the ∆Tmin/2 for liquid water (low) and
for all other streams (high).
In system integration, ∆Tmin/2 shall be optimized to gives the best compromise
between heat exchanger cost and utility needs [28]. However, in the present case,
cost have not been estimated. Indeed, such system is still at the conception stage
so that there is no relevant cost estimation available. Hence, ∆Tmin/2 has not been
optimized but �x at the mean value given in table 3.1. It should be noticed that
two di�erent values have been considered. ∆Tmin,high is used for heat exchange
involving water condensation or evaporation, ∆Tmin,low being considered for any
other stream.
However non-constant cp, uncertainty on heat transfer coe�cient and all approxi-
mation related to a 1D steady state model leads to assuming an uncertain ∆Tmin/2.
Its distribution and parameters are hard to quantify, since they are highly depen-
dent on the studied case. Values assumed here are given in table 3.1.

Variable Minimum Mean Maximum Distribution

∆Tmin,low/2 2 3 4 Uniform
∆Tmin,high/2 3 5 7 Uniform

Table 3.1: ∆Tmin/2 distribution and parameters

The objectives used for optimization are:

� The e�ciency ε given by:

ε =
(ṁng,FC + ṁng,boiler) · LHVng + ĖO2

ĖFC + Ėa + Ėc
(3.3)
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With ṁng,FC and ṁng,boiler the natural gas �ow rate in the fuel cell and the
possible additional boiler, LHVng the natural gas lower heating value and
ĖFC the electricity production of fuel cell, respectively Ėa and Ėc for the
anodic and cathodic inverted Brayton cycle.

� The anodic pressure ratio πa. The cathodic one has not been chosen since it
is less in�uent. Moreover, due to sub atmospheric conditions, high πa re�ect
system complexity. Finally, they also imply greater volume and then so that
pressure ratio is also an indication for investment cost.

3.2.1 Fuel cell

The �gure 3.6 shows a scheme of fuel cell. This study is based on planar cells,
but tubular design may be found. Oxygen (or air) enters in the cathode. Fuel is
injected in the anode. SOFC are usually fed withH2 and CO, however, other fuels
(like CH4) may be used indirectly, by adding �rst a fuel processing step. So residual
fuel, H2, CO, water and carbon dioxide may be found at the fuel cell inlet. Both
electrode are electronically conductive, whereas electrolyte is an ion conductive
membrane. It results from this that chemical potential di�erence between anode
and cathode drives oxygen ion through the electrolyte. This behaviour is a great
advantage of fuel cell since it allows to convert chemical energy into electrical
energy without passing by thermal and mechanical energy.
Size of each layer in �gure 3.6 are not scaled since thickness of each component
may vary depending on the element chosen as mechanical support (leading to so-
called anode- cathode- or electrolyte-supported fuel cell). Interconnect design is a
great challenge which goal is to optimize oxidant and fuel distribution and avoid
pollutant deposition.
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Figure 3.6: Fuel cell scheme

Such cells are mounted in series to form a stack so that the number of cells
in�uence the tension, not the current.
Model used for the fuel cell has been developed in [82]. The power produced by
the fuel cell is:

ĖFC =−∆Ġtot −RtotI
2 − (ηa + ηc + ηdiff,a + ηdiff,c)ncellsI

I =i · A =
ṅO2,membrane4F

ncells

(3.4)

Where I is the current, i the current density, A the cell area, ncells the number of
cells, ṅO2,membrane the amount of pair of oxygen ion passing through the electrolyte
and F the Faraday constant. In the current case, area is considered constant (200
[cm2]) whereas the number of cells is adapted to de�ne the optimal design. It has
been treated as a continuous variable. It may have been relevant to consider a �x
number of cells and a varying area, but it would not have been possible to compare
the results with previous work [23].
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The available Gibbs free energy is given by:

∆Ġtot = (Ġc,out + Ġc,out)− (Ġc,in + Ġa,in) (3.5)

The losses are induced by resistance (electric and ionic), and by kinetics of the
reaction. The are separated in two groups the ohmic losses (proportional to I2)
and non-ohmic loses proportional to I. This is the reason why fuel cell are not
operated at 100 [%] of fuel utilization. Indeed, in such condition (with high current
density), ohmic losses becomes too important. The ohmic losses Rtot is composed
by the interconnect and electrolyte resistive loss:

Rtot =Ri +Re

Ri =ncells ·
Ri,a +Ri,c

A

Re =fCCncells ·
Le

σeA

σe =σ0,ee

− EA,e

R · TFC



(3.6)

With EA,e the electrolyte activation energy, TFC the fuel cell temperature and fCC
being an adjustment factor. Butler Volmer overpotential ηa and ηc can be found
by solving the equation 3.7:

i =i0,c ·

e
ηc F

2 ·R · TFC


− e

−

ηc F

2 ·R · TFC




i =i0,a ·

e
ηa 2F

R · TFC


− e

−

ηa F

R · TFC




(3.7)

Where:

i0,c =
σc2 ·R · TFC

F

σc =σ0,ce

−

 EA,c

R · TFC

 (3.8)
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Respectively:

i0,a =
σa2 ·R · TFC

3F

σa =σ0,ae

−

 EA,a

R · TFC

 (3.9)

Polarization losses ηdiff,a and ηdiff,c is given by:

ηdiff,a =−
R · TFC

2F
· log (1− fu)

ηdiff,c =−
R · TFC

2F
· log

(
1−

fu

λ

) (3.10)

Considered decision variables for the fuel cell are:

Variable Minimum Maximum Unit

ξH2O,c 0.7 3.5 [−]
Tref 973.15 1073.15 [K]
TFC 973.15 1073.15 [K]
λ 2 10 [−]
fu 0.7 0.8 [−]
i 0.3 0.5 [A/cm2]

Table 3.2: Fuel cell decision variables

With:

� ξH2O,c being the steam to carbon ratio in the reformer.

� Tref the reformer temperature.

� λ =
ṅin,c,O2

ṅin,c,O2 − ṅout,c,O2

de�ning the air usage of the fuel cell.

� fu =
ṅfuel,FC,in − ṅfuel,FC,out

ṅfuel,FC,in
the fuel utilization.

Based on this model, uncertain variables considered are the activation energy EA,
the conductance proportional factor σ0, and the interconnect resistive losses Ri,a
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and Ri,c. They have been calibrated on data provided by SOFCpower 1. It is a
company manufacturing high temperature cells for SOFC. They perform tests on
500 clusters of 6 cells each. For each cluster, average tension has been measured
for 3 di�erent fuel utilization. These statistics have not been carried out especially
for this study, so that every measurements have been taken in the same conditions
(see table 3.3). A better approach would be to consider a design of experiment
approach [14], allowing to determine each uncertain variable in�uence.
It should be noticed that fuel cells performance is highly depending on their design.
However, models used here are not enough detailed to include cell geometry and
have been �tted on other cells. So, despite average performance di�ers between
statistics and the present model, the purpose here is to adjust model's variance
to measurements variance. This is done by successive Monte-Carlo simulation,
changing boundary of each uncertain variables until the same order of magnitude
can be reached.

Variable Value Unit

TFC 1023.15 [K]

Fuel composition
0.6 H2 [−]
0.4 N2 [−]

Fuel �ow rate 1.5 [Nl/min]
Cathodic air �ow rate 15 [Nl/min]

Table 3.3: Fuel cell test conditions

Fuel cells are characterized by their current-tension curve (�gure 3.7). The
three fuel utilization and corresponding current are:

� OCV , or open current voltage.

� 60 % fuel utilization, meaning 0.43 [A/cm2]

� 75 % fuel utilization, meaning 0.54 [A/cm2]

The box plot in �gure 3.7 represent the following values. The red line is the median.
The blue box de�nes the 25 % and 75 % boundary. Black segments shows extreme
values, and red cross are the outliers.

1http://www.sofcpower.com/
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Figure 3.7: Statistics on SOFC characterization

It can be noticed that statistics for 60 and 75 [%] fuel utilization are similar.
OCV has not been considered due to model instability close to fu boundaries.
Figure 3.8 shows an histogram of the �rst case statistics. Its asymmetry appears
clearly.
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Figure 3.8: Current-Tension statistics for 60 % fuel utilization

Table 3.4 compares statistics estimators of SOFCpower data and Monte-Carlo
simulation on studied models.
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Parameter Experimental data Modeled uncertainties

Variance σ2 2317 2284
Lower deviation µ− Umin 258 170
Upper deviation Umax 101 75

Table 3.4: Statistics comparison

So that probability distribution considered for each uncertain variables is given
in table 3.5 and 3.6.

Variable Units Minimum Mode Maximum a b

EA,c [J/mol] 82988 1.012 · 105 1.082 · 105 6 2.9444
σ0,c [S/cm] 7.2472 8.602 9.5482 6 4.4921
EA,a [J/mol] 94340 1.06 · 105 1.227 · 105 2 2.4318
σ0,a [S/cm] 3.6483 · 105 4.3303 · 105 4.8066 · 105 6 4.4921
EA,e [J/mol] 70786 79535 92062 2 2.4318
σ0,e [S/cm] 313.69 372.33 413.29 6 4.4921
Ri,a [Ω] 0.0178 0.02 0.02315 2 2.4318
Ri,c [Ω] 0.0267 0.03 0.034725 2 2.4318

Table 3.5: Fuel cell uncertain variables (beta distribution, a and b parameters)

Variable Minimum Maximum

fCC 3 5

Table 3.6: Fuel cell uncertain variable (uniform distribution)

3.2.2 Gas turbine

For hybrid systems, fuel cell is usually operated at high pressure by compressing
air and fuel inlet in order to burn and expand hot exhaust gases [5, 19]. Here, an
inverted Brayton cycle has been considered [81]. In this con�guration, fuel cell is
operated at atmospheric conditions as in a standalone case. Di�erence lies in the
fact that the outlet stream of the burner is directly expanded to sub-atmospheric
pressure, cooled and compressed afterwards.
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Figure 3.9: T − s diagram of an inverted Brayton cycle

The model includes two cycles, expanding anode and cathode outlet. In the
�rst case, heat is provided by burning the residual fuel in a post-combustion. An-
odic turbine inlet temperature is limited to 1573 [K] (assumed ceramic turbine
tolerance). To achieve this, an optional heat exchanger is considered to avoid tur-
bine damaging. In the second case, depleted air is heated before being expanded,
energy integration determining if hot utility is necessary. Table 3.7 shows decision
variables for the gas turbine part of the model.

Variable Minimum Maximum Unit

Tin,turb,c 1073.15 1573.15 [K]
Tin,burner,H2O 374.15 973.15 [K]
Tin,comp,a 298.15 343.15 [K]
Tin,comp,c 298.15 343.15 [K]
πa 2.5 10 [−]
πc 2.5 10 [−]
ξH2O/a,out 0 2 [−]

Table 3.7: Anodic and cathodic gas turbine

With:

� ξH2O/a,out =
ṀH2O,in,burner

Ṁa,out

de�ning the amount of water injected in the

burner.
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Here, turbomachinary e�ciency have been considerd uncertain. Same e�ciency
have been considered for turbine and compressor, for the anodic cycle as well as
the cathodic one.

Variable Minimum Mode Maximum a b

εT ,εC 0.79 0.85 0.86 6 1.83

Table 3.8: Gas turbines uncertain variables (beta distribution, a and b parameters)

3.3 Conclusion

The resolution sequence used in this study has been detailed in chapter 2. Here,
a particular attention has been paid on energy integration.
First, its advantage and drawbacks has been discussed and compared with a �ow-
sheeting approach. Energy integration has been chosen here since it is well adapted
to an optimization solver needing a lot of iterations. Indeed, it allows to estimate
heat exchanges in an e�cient manner without simulating the network in depth.
Then, main issues about energy integration under uncertain streams and ∆Tmin
has been exposed. It shows that it is di�cult to propagate uncertainties through
heat load distribution or heat exchanger network synthesis. It would be possible by
considering a scenario approach, but this would highly increase the computational
resource needed. However, MER remains relevant in such method, considering
that it is piecewise di�erentiable. Hence, the solutions of the Pareto curve close
to pinch activation may not be considered but uncertainties can be propagated in
all other cases.
The application case used here is a solid oxide fuel cell coupled with gas turbines.
The proposed con�guration is an innovative system allowing to operate fuel cells
at atmospheric pressure with a directly integrated gas turbine. The fuel cell model
has been built based on experimental data.
Boundaries for decision variables as well as probability density function for uncer-
tain variables have been described.
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Chapter 4

Optimization results

The standard optimization results will be presented here. They will be compared
in chapter 5 and 6 to stochastic programming and moments method. So only the
useful results will be commented here. Further informations can be found in [23].

4.1 Hybrid fuel cell optimization

Results presented in this section have already been published in [23]. However,
optimization have been reconducted for several reasons. First one is to ensure
reproducibility of the results. Indeed, due to some small di�erences concerning
model assumptions and decision variables range, results may slightly di�er, re-
maining in the same order of magnitude. Secondly, the main optimization results
are presented here to be compared with stochastic programming and moments
method results.
Objectives considered for the fuel cell optimization are the system �rst law e�-
ciency ε and the anodic pressure ratio πa. Among all the issues related to the
development of such technology, dealing with sub-atmospheric pressure between
turbine and compressor is a great challenge, for anodic as well as for cathodic side.
Anodic has been chosen since it is more decisive with respect to pinch analysis
as it will be described in this chapter. It should be noticed that it is a decision
variable.
Results are presented in �gure 4.1 as a Pareto front. System e�ciency (based on
lower heating value) varies from 82.5 to 83.4 [%] and πa between 2.5 and 4.8 [−].
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Figure 4.1: Optimal Pareto front for SOFC model

4.1.1 Fuel cell decision variables for standard optimization

Fuel utilization is optimal for 0.8 [−] whereas current density is maintained at its
minimum limits: 0.3 [A/cm2]. Fuel cell temperature is also optimal for its upper
boundary, at 1073 [K]. Steam to carbon ratio is increasing from 1.29 to 1.34 [−].
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Figure 4.2: Steam to carbon ratio

This is due to the fact that πa increasing. A higher H2 content in fuel imply
greater �ow rate through the turbine. in addition, more water is condensed be-
tween anodic turbine and compressor, what takes part of the fact that pumping
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water consumes less energy. So, compressor consumption increases less than it
would have been for a constant steam to carbon ratio.
Steam reforming temperature is decreasing from 1073 [K] to 1068 [K].
Air factor is decreasing as well from 3.30 to 2.94 [−], since hydrogen combustion
requires less oxygen.
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Figure 4.3: Air factor λ

4.1.2 Gas turbine decision variables for standard optimiza-

tion

A small increase can be increase can be observed for πc from 3 to 3.1 [−].
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Figure 4.4: Optimal cathodic pressure ratio

However, decrease of cathodic turbine inlet temperature from 1307 to 1311 [K]
together with the decrease of air factor justify decrease in cathodic compressor and
turbine speci�c power (respectively from 17 [%] to 15.5 [%] and from 40 [%] to 36
[%]).
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Figure 4.5: Cathodic turbine inlet temperature
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Figure 4.6: Gas turbines and compressors speci�c power

Both of the anodic and cathodic compressors inlet temperatures are constant
at 299 [K].
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Figure 4.7: Anodic and cathodic compressors inlet temperature

Finally, it can be observed that water excess is a solution that never appears
in the optimal Pareto curve. Optimal solution won't be more detailed here since
more informations can be found in [23].
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4.2 Pinch analysis

The point A in �gure 4.8 will be studied here more in detail. It is characterized
by an e�ciency of 83.0 [%] and a pressure ratio of 3.50 [−].
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Figure 4.8: Sankey diagram

Its corresponding decision variables are given in 4.1.

Variable Value Unit

ξH2O,c 1.31 [−]
Tref 1070 [K]
TFC 1073 [K]
λ 3.1 [−]
fu 0.8 [−]
i 0.3 [A/cm2]
Tin,turb,c 1314 [K]
Tin,burner,H2O − [K]
Tin,comp,a 299 [K]
Tin,comp,c 299 [K]
πa 3.5 [−]
πc 3 [−]
ξH2O/a,out 0 [−]

Table 4.1: Fuel cell decision variables for point A in �gure 4.8

One of the reason for such good e�ciency of the system presented here is almost
thermally self su�cient (what may already be achieved for SOFC in a stand alone
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usage [83]). As it can be seen in Sankey diagram presented in �gure 4.9, the order
of magnitude of the hot utility is 0.1 [%] of the total energy consumption. This
diagram has been computed based on decision variables presented in �gure 4.1.

NG FC 98.2%

NG util. 0.1%

FC 51.4%

C. turb 27.8%

A. turb 5.9%

Ox. prod 1.7%
Losses 17%

Figure 4.9: Sankey diagram

This means that heat sources (mainly reforming, fuel cell itself and post-
combustion) covers a great amount of heat needs as it can be seen in �gure 4.10.
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Figure 4.10: Composite curve (corrected temperatures)

Four pinch points can be noticed:
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� A �rst one is due to the heat sink of the cathodic inverted Brayton cycle.
It is limited by the heat stream provided by cooling of exhaust gases before
anodic compressor.

� A second pinch is related to the plateau of the assumed perfectly auto-
thermal reforming.

� The third pinch is just below the second one and is created by the cathodic
compressor inlet cooling.

� The fourth pinch occurring at the lowest temperature is due to the evapora-
tion of water during the pre-heating before the reforming.

This observation can be extended to every optimal solutions. Figure 4.11 shows
the hot utilities speci�c power Q̇hot,spec for each point of the Pareto front.
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Figure 4.11: Hot utilities speci�c power for the whole Pareto front

It can be seen that 0 < Q̇hot,spec < 0.05. This means that optimal solution are
de�ned by the limit of pinch activation without additional heat supply.
It should be noticed that in the next chapters, this optimization will be called
standard optimization.

4.3 Conclusion

The optimization of the model presented in chapter 3 has been performed, using
an evolutionary algorithm. It leads to an e�ciency varying from 82.5 to 83.4 [%]
and pressure ratio πa between 2.5 and 4.8 [−]. The results for decision variables



4.3. CONCLUSION 75

have been brie�y explained. It has been demonstrated that optimization leads to
activation of four pinch points, maximizing heat recovery and avoiding hot utilities
need.
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Chapter 5

Stochastic programming results

The results of stochastic programming will be presented here. Its Pareto front will
be compared to standard optimization results.
The representativity of uncertain variables samples will be demonstrated. The
link with two stages programming and variables classi�cation will be established.
Decision variables optimal results will be exposed. One pinch points will be
chosen and its streams variation due to uncertain parameters will be detailed.
Finally, the concept of optimality of stochastic or standard approach will be
discussed with respect to mean and mode value of uncertain variables.

5.1 Standard and stochastic optimization

The optimization results are reported in �gure 5.1. The blue points are the Pareto
obtained by standard optimization (uncertain variables considered at their mode),
as shown in �gure 4.1. It is the limit of the feasible domain for �xed uncertain
variables.
Green points are the results of stochastic programming. The uncertain variables
have the value they had during optimization procedure. This values are those ran-
domly generated following the algorithm described in �gure 2.15. This explains
why some green points present better performances than blue Pareto curve. In-
deed, depending on the generated set of uncertain variables, the limit of the feasible
can be pushed further. For example, if the value drawn for a turbine e�ciency is
better than its mode, the total system e�ciency may reach higher value than the
blue limit.
Finally, all green points have been recomputed considering same decision variables,
but using uncertain variables at their mode, which is the one considered during
standard optimization. This results is given in red in �gure 5.1. In opposition
to green points, it can be observed that they are all contains backward the blue
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points. If it were not the case, it would have meant that standard optimization
has not converged and that some additional generations are needed.
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Figure 5.1: Pareto for standard, stochastic with uncertain variables and stochastic
with uncertainties at the mode

In standard optimization of section 4, 6 ·104 model evaluations have been used.
It appears that 2 · 104 would have been su�cient since no signi�cant improve-
ment of the Pareto curve can be observed for the last generations. For stochastic
optimization, 7 · 104 iterations have been considered. Optimization convergence
can not be estimated by Pareto curve progression in that case due to uncertain
variables e�ect. However, it will be demonstrated in the next section that it is
a su�cient number of model evaluations to explore the whole uncertain variables
space.

5.2 Uncertainty representativity

Heuristic optimization algorithm have more chance than gradient based one to
�nd global optima, but the price to pay is a great number of function evaluation.
However, this may become an advantage for the stochastic programming approach
described in section 2.3.4. But the assumption of a su�cient number of individu-
als shall be veri�ed so that representativity of the uncertainties space is ensured.
Indeed, the total population size is choose by the user since there is no stopping
criteria [53].
It must be noticed that the total number of individuals gathering all generations
nind di�ers from the number of uncertain variables sample nus. This is due to the
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fact that some parents from one generation may be kept alive in the next genera-
tion. In such cases, uncertain variables generated initially for the parents are not
redrawn. This is mainly related to traceability and reproducibility reason. In this
example, the cumulation of every generation represent a total population of 85211
individuals, but only 65625 are uniques.
In the following �gures, the cumulative distribution function of the original dis-
tribution is represented in solid line. The crosses are the cumulative statistics of
uncertain variables randomly drawn during optimization, with respect to equation
5.1. For a sample u1, ...unus

c(ui) =

∑i
i=1 ui∑nus

i=1 ui
(5.1)
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Figure 5.2: Adjustment factor cdf and statistics
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Figure 5.3: Anodic conductance factor cdf and statistics

As it can be seen in �gure 5.2 and 5.3, statistics �ts with the theoretical cdf ,
independently of the type of distribution (respectively uniform and beta in these
cases). The cathode activation energy Ea,c, cathode conductance factor σ0,c, the
electrolyte conductance factor σ0,2 and high and low ∆Tmin/2 are well represented
too (results are given in appendix B).

Selection procedure of the solver (described in section 2.2.2) plays a critical role.
Due to random behaviour of the stochastic programming approach, it may happen
that a set of uncertain variables leading to bad performances is compensated by
an appropriate set of decision variables. For example, if uncertain variables lead
to a good e�ciency for fuel cell, but a bad e�ciency for the gas turbines, this may
be compensated by increasing the fuel utilization. In such cases, individual is kept
�alive�. But uncertain variables leading to sub optimal objectives for any decision
variables will be systematically �killed�.
For example, the anodic activation energy Ea,a selection will be detailed. Figures
5.4 shows a comparison between theoretical cumulative distribution function and
the statistics on alive individuals based on equation 5.1.



5.2. UNCERTAINTY REPRESENTATIVITY 81

0.95 1 1.05 1.1 1.15 1.2 1.25

x 10
5

0

0.2

0.4

0.6

0.8

1

Anode activation energy

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty
an

d 
st

at
is

tic
s

 

 Original distribution
Stat on optim

Figure 5.4: Anodic activation energy theoretical cdf and statistics on alive popu-
lation

It can be seen that statistics is biased. Figure 5.5 shows the theoretical prob-
ability distribution function with the minimum and maximum alive individuals.
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Figure 5.5: Maximum and minimum drawn and alive values

It can be seen that activation energy higher than 1.22 · 105 [J/mol] do not
allows performance good enough. It shall be expressed as physical characteristics
as maximum grain size, homogeneity, cell geometric design, but this is beyond the
scope of this study.
At this step, it is important to consider conclusion in three di�erent spaces:
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� The objectives space: The decision maker can �x a maximum tolerated per-
formances deviation by adjusting selection parameters of the solver. Indeed,
the DM may choose to stop system operation in case of too low perfor-
mances.

� The uncertain variables space: The more in�uent uncertain variables will be
identi�ed, and their extreme values with respect to the lowest performances
accepted by the decision maker. One of the advantage of this approach, is
that it �ts for non-monotonic objectives function f(u).

� The decision variables space: As a result from the previous point, the opti-
mal decision variables do not take into account �killed� values for uncertain
variables. This is due to the fact that decision variables shall be optimal
only for the acceptable performances deviation, since the system will not be
operated in other cases.

Other uncertain variables concerned are the electrolyte activation energy EA,e,
both anodic and cathodic interconnect resistance Ri,a and Ri,c and the e�ciency
of the turbomachinary εT and εC (�gure 5.7,5.8, 5.9, 5.10 and 5.11). There may
be multiple reasons why this parameters are concerned and not others. For EA,a,
its wide range induce the highest variation of e�ciency (as well as EA,e). Figure
5.6 shows a sensitivity analysis on anodic activation energy.
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Figure 5.6: Sensitivity analysis on anode activation energy

It has been computed with all other uncertain variables at their mode, and the
decision variables given in table 4.1.
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Another important factor is the independence of uncertain variables. Indeed, the
more dependent they are, the more chance there is that other drawn variables
compensate their e�ect on performances. Table 5.1 summarize the maximum and
minimum drawn values for each uncertain variables.

Variable Minimum drawn Maximum drawn Units

EA,c 88310 1.0762 · 105 [J/mol]
σ0,c 7.4644 9.1707 [S/cm]
EA,a 98789 1.2201 · 105 [J/mol]
σ0,a 3.7781e+ 05 4.6142e+ 05 [S/cm]
EA,e 74104 92590 [J/mol]
σ0,e 321.4 395.35 [S/cm]
Ri,a 0.01867 0.022861 [Ω]
Ri,c 0.027951 0.034557 [Ω]
fCC 3.003 4.9967 [−]
εT 0.81162 0.85964 [−]
εC 0.80818 0.85955 [−]
∆Tmin/21 2.0012 3.9977 [K]
∆Tmin/22 3.0026 6.9902 [K]

Table 5.1: Boundaries of drawn uncertain variables
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Figure 5.7: Electrolyte activation energy
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Figure 5.8: Anodic interconnect losses
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Figure 5.9: Cathodic interconnect losses
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Figure 5.10: Anodic and cathodic gas turbines e�ciency
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Figure 5.11: Anodic and cathodic gas compressors e�ciency

5.3 Decision under uncertainty

As described in �gure 4.10, four pinch points can be observed in the results of
standard optimization. Here, the higher temperature pinch point will be studied
here more in detail. It has been chosen since it implies less streams than the oth-
ers, so that they can be easily identi�ed. It is schematically represented in �gure
5.12. It must be noticed that, to improve readability, this composite curve is not
scaled.
First, the heat loads of this streams will be assumed constant. Dotted lines rep-
resent the value of the stream during the standard optimization, respecting the
color code of blue for cold streams and red for hot streams. The streams resulting
from the stochastic optimization are drawn in full lines. Each temperature is in-
dicated as Ti/Tj, Ti being temperature from the stochastic optimization (actually
their most probable value), Tj from the standard one. The temperature di�erence
∆Tmin,0 is the one considered during standard optimization, which is 10 [K].
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Figure 5.12: Uncertainties on streams involved in high temperature pinch

The fuel cell outlet temperature appears to be 3 [K] lower in stochastic op-
timization. On the hot side, the temperature di�erence between stochastic and
standard case dTpinch can be estimated at around 1.4 [K]. The total margin of
stochastic streams is then 1.4 + 3 = 4.4 [K]. As a reminder, uncertainty have been
considered on ∆Tmin/2 and it may have a maximum variation of 4 [K]. So, for
same heat loads, the limit of pinch point activation will be respected for any tem-
perature variation. However, it will be seen that heat loads change implying that
this pinch point may be activated in stochastic solution. But this demonstrates
that system is able to adapt to temperature changes.
It can be noticed that the margin is higher for the cold stream. This can be ex-
plained by the fact that the anodic turbine inlet temperature is limited at 1573
[K]. Moreover, anodic turbine pressure ratio is not subject to uncertainty. So the
only uncertain variables a�ecting Tout,turb,a is the anodic turbine e�ciency. On the
contrary the outlet temperature of the fuel cell Tout,fc su�er from all the fuel cell
uncertainties.
It can be noticed that the cathodic turbine inlet temperature is asymmetric, with a
tendency to be lower than its mean (1306 [K]). It is modeled by a Pearson IV dis-
tribution. Its mean is constant for any objectives unlike the standard optimization,
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where it vary from 1307 to 1319 [K]
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Figure 5.13: Cathodic turbine inlet temperature statistic

Tout,turb,a is the only temperature in �gure 5.12 varying in both case (stochastic
and standard). This is due to constant values for Tin,turb,a and to the fact that
it is strongly related to πa, as it can be seen in �gure 5.14. This result has
been recomputed with the uncertain variables �xed at the value they had during
stochastic optimization.
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Figure 5.14: Anodic turbine outlet temperature variation
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It is �tted by an exponential function T (πa) in red in �gure 5.14:

T (πa) =a · e(bπa) + c · e(dπa)

a =434.2

b =− 0.4936

c =1297

d =− 0.01298

(5.2)

Comparing this function with the results of standard optimization (�gure 5.15), a
temperature di�erence of 1 [K] can be computed.

2.5 3 3.5 4 4.5 5
1250

1300

1350

1400

Anode pressure ratio [−]

A
no

di
c 

tu
rb

in
e 

ou
tle

t v
ar

ia
tio

n 
[K

]

 

 
Standard opt. values
Stochastic fit

Figure 5.15: Anodic compressor outlet temperature variation: Stochastic/standard
optimization results

The second temperature of the hot stream, Tin,comp,a has less in�uence on the
high temperature pinch point since this stream has a great heat load and that
pinch occur at the hot end. Is is symmetrically distributed by a Pearson IV as
well and its mean is 307 [K].
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Figure 5.16: Anodic compressor inlet temperature statistic

Other decision variables will not be studied in detail, since the method has
been demonstrated on the high temperature pinch point.
Fuel cell most probable temperature is 1070 [K]. It is modeled by a beta dis-
tribution. Its skewness shows a great asymmetry, implying greater chance to be
lower than its mode. This may be related to previous discussion on the higher
temperature pinch point, which show a preference for lower temperature at the
fuel cell outlet.
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Figure 5.17: Fuel cell temperature statistic

As for standard optimization, cathodic compressor inlet temperature has the
same mean value as the anodic one, that is to say 307 [K]. Pearson IV is considered
here as well. It is clearly asymmetric.
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Figure 5.18: Cathodic compressor inlet temperature statistic

The cathodic pressure ratio appears to be constant as well at 2.85 [−].
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Figure 5.19: Cathodic pressure ratio statistic

Fuel utilization most probable value is 0.8 [−] as in the standard optimization.
Since it is the higher boundary, it has only more chance to be lower. It is modeled
by a beta distribution.
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Figure 5.20: Fuel utilization statistic

Current density mean slightly increase compared to standard optimization, but
it remains clearly asymmetric as fu. It shows that both variables adapt jointly to
�nd the best value on the iv curve. It is modeled as well by a beta distribution
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Figure 5.21: Current density statistic

Steam to carbon ratio appears to be constant at 1.48 [−]. Its shows a small
standard deviation (0.031). This indicates that fuel composition has a low in�uence
on adaptation to uncertain condition.
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Figure 5.22: Steam to carbon ratio statistic

In opposition, the steam reforming temperature (mean at 1057 [K]) has a
standard deviation of 4.1 [K]. Modeled by a Pearson IV distribution, it correspond
to a maximal deviation in the order of magnitude of 15 [K]. This is due to its high
temperature making it in�uent on pinch analysis.
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Figure 5.23: Steam reforming temperature statistic

Finally, the air factor appears constant as well with a mean value at 3.18 [−]
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Figure 5.24: Fuel cell temperature statistic

Standard and stochastic optimization results are summarized in table 5.2. The
value given for stochastic optimization is their mean value.

Variables
Standard optimization Stochastic optimization

Unit
Minimum Maximum Mean

ξH2O,c 1.29 1.34 1.4805 [−]
Tref 1067 1073 1057 [K]
TFC 1073 1070 [K]
λ 2.94 3.31 3.19 [−]
fu 0.8 0.798 [−]
i 0.3 0.303 [A/cm2]
Tin,turb,c 1307 1319 1306 [K]
Tin,burner,H2O − − − [K]
Tin,comp,a 299 307 [K]
Tin,comp,c 299 307 [K]
πa not reported here [−]
πc 2.97 3.13 2.84 [−]
ξH2O/a,out 0 0 [−]

Table 5.2: Comparison of standard and stochastic optimization results

Since the only decision variables in stochastic optimization which is changing
is πa, a sensitivity analysis can be performed on it, considering all others decision
variables at their mean value.
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Figure 5.25: Standard Pareto curve and sensitivity analysis on stochastic results

The angle in the Pareto curves at πa = 3.42 correspond to high temperature
pinch activation. By analyzing details of �gure 5.25, it can be seen that for πa >
3.42, hot utility is necessary. It is interesting to notice in�uence of ∆Tmin on
the stochastic solution. In �gure 5.26, the black points correspond to a fuel cell
temperature of 1070 [K] as in �gure 5.25. The red points have been computed
with a fuel cell temperature of 1073 [K], which is the value resulting from standard
optimization. The blue points have been computed at 1065 [K] for comparison.
Each of this three cases have been computed with the mean ∆Tmin and with the
higher value.
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Figure 5.26: In�uence of fuel cell temperature and ∆Tmin on stochastic solution

It can be seen that standard optimization value leads to greater variation when
exposed to the same ∆Tmin variation (around 5 times bigger) than with the tem-
perature given by stochastic optimization. Low temperature case at 1065 [K]
shows a low variation as well, but with lower e�ciency due a pinch point activa-
tion at lower πa.
This could be applied by performing Monte-Carlo on the whole uncertain space
for one point of each Pareto curve.
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Figure 5.27: Standard Pareto curve and sensitivity analysis on stochastic results
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It can be seen in �gure 5.27 that stochastic optimization leads to a smaller
e�ciency variation range, and a lower mean. Here again, di�erence between mean
and mode is important. This example shows that standard optimization gives
optimal value with respect to the mode of uncertain variables whereas stochastic
optimization is based on mean values. Table 5.3 summarize mean and standard
deviation for the two points chosen in �gure 5.27.

Optimization Estimator Value

Standard
Mean 0.805
Standard deviation 0.0202

Stochastic
Mean 0.814
Standard deviation 0.0177

Table 5.3: Mean and standard deviation comparison

This demonstrate the basic principle that, the mode, the mean is more repre-
sentative of the a distribution due to its integer formulation. As a consequence, it
shows that optimizing a system on mean values leads to better global performances
than an optimization based on the mode.
It should be noticed that the variance of stochastic solutions is not necessary lower.
Indeed, it has not been considered has an objective. So, this approach only guar-
antee a mean improvement compared to standard optimization.
Relevance of such an optimization can be discussed. Indeed insuring a gain of 1
or 2 [%] e�ciency whereas it is subject to uncertain variation of 15 [%]. However,
this is highly depending on the context. It can be observed that standard varia-
tion is in the order of magnitude of 2 [%] for the studied examples, meaning that
tails of the performance distribution may be neglected. This introduce the issue
of quantile, determining the probability to be over or below a given performances.
Despite some technologies have to insure to operate respecting performances at
100 [%], some other cases may allow lowered performances for a small period if
they are compensated during rest of time. The acceptable limit for the quantile
depends on the decision maker choice to accept a given risk is the pro�t in case
of success is su�cient. However, such decision is subject to �nancial risk analysis
which are out of the framework of this study.

Despite this approach appears to be e�cient and uncertain space representa-
tive, it can be seen that analyzing the results remains a di�cult task. This is due to
the fact that in�uence of each uncertain variables can not be clearly distinguished,
what is increased by system complexity.



5.4. CONCLUSION 97

5.4 Conclusion

Pareto curve subject to uncertain variables has been described.
It has been demonstrated that evolutionist algorithm o�ers enough model evalu-
ation to ensure the representativity of the uncertain variables space. Moreover,
the ability of the solver to evaluate maximum deviation has been exposed. This
is related to ability of the system to compensate uncertainties in�uence. This has
led to the comparison with the two stages programming problem.
Stochastic programming optimization results have been presented and compared
with standard optimization results. It has been shown that optimal temperature
can adapt to ensure heat exchange in constant load conditions. Moreover, it can
be observed that optimal decision variables lead to the best compromise between
variation of ∆Tmin and total e�ciency.
Finally the importance of di�erence between mode and variance has been high-
lighted. Indeed, stochastic optimization leads to a higher mean performance,
whereas most probable performance are better for standard optimization.
A great advantage of this approach is that continuity or di�erentiability of the
objective function do not need to be ensured.
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Chapter 6

Moments method results

Moments method will be applied to energy system design. Its computational
resource consumption will be compared with stochastic programming.
Optimal decision variables will be analyzed, and the role of the two high
temperature pinch points will be emphasized.
Finally, variance of the three solutions will be studied more in depth. It will be
shown that a great advantage of moments method is that it allows to identify
contribution of each uncertain variables in objective variance.

6.1 Optimization convergence and number of iter-

ations

The algorithm to apply moments method in optimization is given in �gure 6.1.

99
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Figure 6.1: Algorithm of moments method applied to optimization

Here variance of the e�ciency has been added as objectives. The second ob-
jective variance, the anodic pressure ratio, has not been considered here since it is
a decision variable and is not uncertain.
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Figure 6.2: Pareto front for the optimization based on moments method

It can be seen in �gure 6.3 that the optimization based on moments propagation
has converged. To improve readability, the total population has not been reported.
Its envelope has been computed based on Delaunay triangulation [15], the last
generation being the darkest. On the right, it can be osberved that the pareto
front is progressing, while on the left, the space of sub-optimal solution is becoming
smaller. It can be seen that the last generations do not show any progress, what
means that optima has been reached.
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Figure 6.3: Pareto front for moments method optimization

This models is based on 13 uncertain variables. As described in section 2.3.2 a
number of model evaluations per iteration to propagate uncertainties is 2nu + 1.
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Here, the optimization necessitates 16 ·103 iterations, what means 16 ·103 · (2 ·13+
1) = 432 · 103 model evaluations. As a reminder, stochastic optimization needed
85 · 103 evaluations. So, moments method has consumed around 5 times more
resource. However, such comparison is highly related to the model and the solver
used. Indeed, for a better convergence, moments method may become competitive.

6.2 Decision variables analysis

As it can be seen in �gure 6.4 steam reforming temperature increases with e�ciency
from 1043 to 1055 [K].
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Figure 6.4: Steam reforming temperature for moments method

It is lower than standard optimization. This is due to the fact that a margin
avoiding pinch activation is considered as it can be seen in �gure 6.5. As it will
be described further, this correspond to the fact that variance globally increases
with e�ciency.
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Figure 6.5: Composite curve for mid pressure of �gure 6.11

In a same manner, πc increases from 3.56 to 3.63 [−] (what is higher than stan-
dard optimization results) so that cathodic turbine outlet temperature Tout,turb,c
decrease.
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Figure 6.6: Cathodic pressure ratio for moments method

The e�ect of πc is increased by decreasing cathodic turbine inlet. Indeed, it
varies with e�ciency from 1338 to 1318 [K]. It remains a higher temperature than
in standard optimization. This is due to the fact that fuel cell is subject to higher
variance (�gure 6.13). Gas turbines speci�c power is then favored.



104 CHAPTER 6. MOMENTS METHOD RESULTS

0.81 0.815 0.82 0.825 0.83

1100

1200

1300

1400

1500

System efficiency [−]

T
 in

le
t c

at
ho

di
c 

tu
rb

in
e 

[K
]

Figure 6.7: Cathodic turbine inlet temperature for moments method

From that point of view, steam to carbon ratio shows a slight tendency to
decrease (from 1.61 to 1.68 [−]). However, this decrease is negligible. However, it
should be noticed that here again, this results is higher than in standard case to
increase power produced by the anodic gas turbine. Indeed, high ξH2O,c allows to
compress less air in the anodic compressor and more water in the pump, demanding
less energy to reach atmospheric pressure.
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Figure 6.8: Steam to carbon ratio for moments method

This implies a slight decrease from 2.96 to 2.72 [−] in air factor since less air
is necessary for the fuel cell to be operated.
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Figure 6.9: Air factor for moments method

Other decision variables are quite similar to standard optimization results and
are given in appendix C. Their value are summarized in table 6.1

Variables
Stand. opt. Stoch. opt. Moments method

Unit
Minimum Maximum Mean Minimum Maximum

ξH2O,c 1.29 1.34 1.4805 1.61 1.68 [−]
Tref 1067 1073 1057 1043 1055 [K]
TFC 1073 1070 1071 1073 [K]
λ 2.94 3.31 3.19 2.72 2.96 [−]
fu 0.8 0.798 0.794 0.8 [−]
i 0.3 0.303 0.3 0.32 [A/cm2]
Tin,turb,c 1307 1319 1306 1318 1338 [K]
Tin,burner,H2O − [K]
ξH2O/a,out 0 [−]
Tin,comp,a 299 307 298 302 [K]
Tin,comp,c 299 307 298 299 [K]
πa not reported here [−]
πc 2.97 3.13 2.84 3.56 3.63 [−]

Table 6.1: Comparison of standard and stochastic optimization results

It can be �rst seen that ξH2O,c is higher in both stochastic and moments meth-
ods. It is due to the fact that big steam to carbon ratio imply higher mass �ow rate
in the pump of the anodic Brayton cycle, which is less energy consuming than the
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compressor. Then, its uncertainty induce less deviation on the total performances
than compressor's one.
Uncertainties on ∆Tmin lead to supplementary �ring. It allows, in the case of
moments method, a higher cathodic turbine inlet temperature, so that bigger ca-
thodic pressure ratio are optimal.
In the case of stochastic programming approach, the opposite consequence on ca-
thodic cycle can be observed. Turbine inlet temperature is lower as well as pressure
ratio. This is due to the principle of each method. In the case of moments method,
moments are extrapolated based on the neighborhood of the mean value. Con�ict
due to impossible heat exchanges will not be detected for extreme values of uncer-
tain variables. Since stochastic programming is based only on simulation of the
deterministic model without extrapolation, such constraint will be considered as
impossible, so that Tin,turb,c will be lowered to insure that heat exchange is possible,
pressure ratio being adapted.
This underlines the importance of implementing constraint veri�cation in the mo-
ments method.

6.3 Variance analysis

First it can be observed that variance is increasing with e�ciency.
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Figure 6.10: E�ciency and its variance

In conventional optimization, the variance simulated by Monte-Carlo is in the
order of magnitude of 10−3. It can be seen here that the maximum variance
obtained by moments method is 0.6 10−4. It should be noticed that variance in
�gure 6.10 may appear to be not converged. This is due to a scaling e�ect, since
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results would have been merged with the absissa axis otherwise.
As it will be described in this section this is mainly due to the fact that pinch points
are activated, making the system more sensitive to uncertainty variation. In future
work, decision variables space shall be separated in npinch,act spaces. The variable
npinch,act. being the number of pinch that are not activated on every solutions.
This is to avoid the risk of discontinuity in derivative estimation. For example, in
equation 2.36:

∂y

∂ui
= f ′(ui) = lim

h→0

f(ui + h/2)− f(ui − h/2)

h
(6.1)

A pinch activation between f(ui + h/2) and f(ui − h/2) would lead to wrong
derivative estimation. This has not been implemented in the methods proposed
here. So, Three points of �gure 6.11 have been carefully chosen to ensure avoiding
pinch activation and analyzed.
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Figure 6.11: Points analyzed

The related performances are given in table 6.2.

Pressure ratio [−] E�ciency [−] Variance [−]

4 0.825 1.5 10−5

3.42 0.823 1.4 10−5

2.78 0.818 1 10−5

Table 6.2: Performances of studied points
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A great advantage of moments methods is that it is based on the sum of
contribution of each uncertain variables to the di�erent moments (the variance in
this case). So, by reporting this contributions, it becomes possible to study which
uncertainties in�uence the more the chosen estimator. In �gure 6.12 the variance
of the three points is given with the participation of each uncertain variable.
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Figure 6.12: Variance of the e�ciency for the selected points

It can be seen that ∆Tmin is one of the two most in�uent variables. As described
in previous chapter, this is due to the fact that the hot utility load is a linear
function of ∆Tmin. The other signi�cant variable is the adjustment factor. Finally,
compressors and turbines e�ciencies appears to be signi�cant.
In �gure 6.13, it can be seen that the most in�uent uncertain variables on fuel
cell electricity production is the anode activation energy. This may appear to be
in contradiction with the in�uence of fCC on total e�ciency. This is due to two
factors:

� Sensitivity to adjustment factor are globally bigger than variation due to
anode activation energy. However, the di�erence of sensitivity of the fuel
cell electricity production to fCC and EA,a is smaller than the sensitivity of
the total e�ciency. In other words:

∂ε

∂fCC
>

∂ε

∂EA,a

and:
∂ĖFC

∂fCC
>
∂ĖFC

∂EA,a

but:

(
∂ε

∂EA,a

)
(

∂ε

∂fCC

) <

(
∂ĖFC

∂EA,a

)
(
∂ĖFC

∂fCC

)
(6.2)
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It can be explained by the fact that total power produced by the system
is �xed at 10 [kW ]. Fuel utilization and air factor are imposed for each
solution as well. So, the only way to compensate fuel cell e�ciency decrease
is to increase air and fuel mass�ows, increasing by the way power produced
by the gas turbines. This means that the adjustment factor variation implies
bigger change in �owrates.

� As given in equation 2.33 and reported here:

σ2
y =

nu∑
i=1

(
∂y

∂ui

)2

µ

· σ2
ui︸ ︷︷ ︸

1rst order

+ y2µ +
nu∑
i=1

(
y
∂2y

∂u2i

)
µ

· σ2
ui

+
nu∑
i=1

(
∂y

∂ui
·
∂2y

∂u2i

)
µ

· γui − µ2
y︸ ︷︷ ︸

2nd order

(6.3)
So, objectives variance (as well as any other output of the model) depend
not only on partial derivative, but on the variance of each uncertain variable.
Here, EA,a variance is greater than fCC variance.

This two points conjugated lead to a higher contribution of anode activation en-
ergy than adjustment factor to fuel cell electricity production. It should be noticed
that such example demonstrate the importance of accurate input data on uncer-
tain variables. Indeed, it can be seen here that variance, and thus the chosen
distribution function, has a key role in propagation.
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Figure 6.13: Variance of the fuel cell power produced for the selected points

It can be seen in �gure 6.14 that gas turbines e�ciency is the most important
factor on anodic Brayton cycle electricity production. However, the adjustment
factor in�uence is still signi�cant for reason mentioned previously, as well as for
cathodic cycle (�gure 6.15).
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Figure 6.14: Anodic Brayton cycle power production variance

Unlike anodic cycle, most in�uent uncertain variable for cathodic cycle is the
compressor e�ciency. This is due to the fact that in previous case, the amount of
steam is gas turbine outlet is condensed and pumped. It demands then less energy
to pump liquid water than compressing gas.
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Figure 6.15: Cathodic Brayton cycle power production variance

As expected, ∆Tmin is the most in�uent factor in hot utility consumption
variance.
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Figure 6.16: Hot utility consumption variance

Energy required for oxygen production has not been studied here, since it is
not signi�cant in the total balance, neither in its variance.
Figure 6.17 summarized the variance of each power input and output contributing
to e�ciency. As it can be seen, fuel cell electricity production has the greater
variance of the three output. Anodic cycle has the lowest variance due to a limited
in�uence of uncertain compressor e�ciency. It can be seen that these variances are
translated mainly in system fuel consumption variance, with variance of additional
heat provided by hot utility depending on the pinch activated.
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Figure 6.17: Comparison of variance for each contribution to total e�ciency

6.4 Conclusion

Optimization based on moments method for uncertainties propagation has been
performed. Its convergence has been veri�ed. It has needed more model evalua-
tions than the stochastic approach. However, moments methods can �t any solver
since there is not representativity issue.
It has been shown that the two highest temperature pinch points are the more
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sensitive, what con�rms results of stochastic programming.
Finally variance of the e�ciency and energy production and consumption has been
studied. It has shown that variance of uncertain variables in�uences di�erently the
fuel cell power or the total e�ciency. This underlines the fact that on one hand,
a relevant design under uncertainty should be based on accurate distribution of
uncertain variables, and on the other hand that derivative estimation precision
plays an important role as well.



Chapter 7

Conclusion and future work

Optimizing complex energy system is a di�cult task. Great e�orts are made to
improve the research of an optimal design and the accuracy of the proposed solu-
tions. In this context, including uncertainty in the optimization procedure is not
trivial. It has been shown that uncertainty can not be considered after optimiza-
tion, but should be integrated in the problem resolution. Methods already applied
in continuum mechanics and �nance have been investigated. The �rst objective of
this thesis has been to compare on one hand mathematical approaches and on the
other hand the speci�city of energy system design. This has been done in several
steps.
First, the formulation of energy system design has been presented as an optimiza-
tion problem. It has underlined the fact that the solver used in this study, as well
as other heuristic methods, do not allow to verify the optimality conditions since
there is no derivative estimation. It means that the results shall be interpreted
carefully, and that the optimization may have to be conducted several times to
insure that the global optima is reached.
Variables involved in design problem have been classi�ed. In�uence of each uncer-
tain variables with respect to decision variables has been detailed for each step be-
tween pre-design of the system to its operation. Objective function and constraints,
incorporated in a numerical model in the current case, have been described. Here,
a decomposition in �onion� layer [49] has been chosen. Other option would have
been:

� A stages decomposition, considering a design stage and a slave problem solv-
ing the optimal control problem. Such approach would be coherent with the
two stages programming problem, on which optimization of energy system
under uncertainty is based. However, �nding an appropriate control for each
design is not possible for complex superstructure with the methods currently
available.

113
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� A physical decomposition, separating the process in several sequential part.
In the example used in this study, in may have been the fuel processing, the
fuel cell and the two inverted Brayton cycle.

� A time scale decomposition, similar to stages decomposition, but linking
uncertainties with the operating variables able to compensate them with
respect to their variation frequency.

The main goal common to these modeling approaches is to manage the trade-o�
between the number of sub-problems to be optimized and their size.
In the decomposition considered here, energy integration is an important issue
that shall be further studied in future work. Its advantages and drawbacks have
been discussed. It o�ers the possibility to estimate heat exchanger network per-
formances in an e�cient manner, but its results are not di�erentiable, and may
even not be continuous. It implies that uncertainty propagation has to be applied
piecewisely or in a scenario approach.
Once the model and the involved variables have been described, methods for un-
certainty propagation have been listed. It has been shown that Monte-Carlo is not
e�cient, despite it is widely used. Moments method and orthogonal polynomials
appear to be the most promising technique. It is a di�cult task to compare their
performances since the number of model evaluations required for the orthogonal
polynomials is related to the model complexity. However, their validity domain
should be further studied. Indeed, if derivatives estimation for moments method
is valid in a very small neighborhood of the design point, orthogonal polynomials
may allow to cover a bigger area, since they can easily consider order higher than
two. This would mean that orthogonal basis do not have to be built at each model
evaluation, sparing computing resource.
An innovative approach de�ned as stochastic programming has been described and
tested. It has shown only a slight increase of the number of iterations during op-
timization. However, this method is only valid for solver based on a great number
of iterations to ensure a complete exploration of the uncertain variables space. It
should be also noticed that stochastic programming results have not been com-
pared with a real two stages approach.
A method has been proposed for optimizing the operating variables in the same
time as the design variables. It did not succeed due to convergence problem. Most
of the methods proposed to optimize operating variables. However, in an energy
system design procedure, an indicator of the process adaptability is needed, not
necessarily a detailed control strategy. Such a value should be based on the par-
tial derivative of the objective function and on the maximum tolerated range for
operating variables.
A SOFC model has been used and optimized. The found results are coherent
with the previous studies on such systems. The critical role of the pinch analysis
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for this system has been stressed.
A stochastic optimization has been applied on this model. The representativity of
the uncertain variables space has been ensured. A default of this method is that
it can be veri�ed only after optimization. It has been observed that less e�cient
solutions are removed based on solver parameters. However, the relation between
such parameters and the acceptable deviation of objective can not be clearly de-
�ned and quanti�ed.
Such an optimization leads to distributed optimal decision variables. The model
used here presented several constant optimal values (or linear). This is practical to
study their distributions. One dependent variable distribution has been studied,
based on the variation around a �tted function. Another possible approach would
be to used the bootstrap method [21].
The di�erence between mode and variance has been highlighted. Indeed, most of
the design are based on most probable value, what will lead to worse results if any
uncertain variables deviate from their mode.
The issue of generating random numbers has not been discussed in this study. How-
ever, �true� random numbers are not easy to produce by an algorithm, composed
of deterministic operations. However, hazard is a notion di�cult to character-
ize mathematically. Here, it has been assumed that MATLAB generates numbers
�enough� random.
The moments method has been applied on SOFC case as well. Its convergence
has been veri�ed and it has been seen that it leads to similar conclusions than
the stochastic optimization concerning the pinch analysis. It has been shown that
this approach allows to evaluate the participation of each uncertain variable to the
objective variance. First, it demonstrates the importance of accurate statistic for
data input. Then, it shows that the variance of the e�ciency can not be deduced
from the variance of the members of the energy balance. This can be extrapolated
to any objectives about the dependent variables allowing to compute it.
In the case studied, the applied methods propose several action to decrease objec-
tive variance. It has been demonstrated that uncertainty on ∆Tmin is the bottle-
neck of the system. It has to be compensated by an supplementary �ring, allowing
bigger temperature di�erence. Moreover, to avoid impossible heat exchange, ca-
thodic gas turbine inlet temperature is decreased, increasing the margin on ∆Tmin
at pinch point. This can be observed in stochastic programming approach, what
emphasize the importance of verifying constraint violation in energy integration
with moments method. Finally, Greater steam to carbon ratio decrease the mass
�ow rate of anodic compressor, and then the in�uence of the uncertainty on its
e�ciency.
The model studied here is has two objectives. However, the pressure ratio serves
to explore the search space, so as not to focus on higher πa, what would be the case
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if only e�ciency was considered. It is then close to a mono objective optimization.
It should be noticed that stochastic programming has been successfully tested on
a three objectives case. It consists in a gas turbine with carbon dioxide seques-
tration. The objectives were the investment cost, the exergetic e�ciency and the
CO2 capture rate. It has not been integrated in this study since investment cost
relies on heat exchanger area estimation by energy integration. As it has been
described, this is not compatible with moments method. So the fuel cell example
has been chosen to compare results of both approach.
In the method presented in this study, each objectives variation is computed sepa-
rately. However, uncertain variables in�uent on both of the objectives is intuitively
more critical than a variables related to only one of them. An option would be
to consider that performances can vary in an ellipse around their nominal value,
and to use the area of this ellipse (given by the product of variances) as additional
objectives.
It should be noticed that all methods presented in this study are valid for uni-
modal distribution. Kernel density function [69] allows to deal with multi-modal
distribution. However, distribution in energy system are usually unimodal, and if
not, can be treated in a scenario approach.
In this thesis, the mathematical base for energy systems design under uncertainty
has been presented and discussed. Two methods have been compared. One or the
other can be chosen depending on the type of solver, so that it is not a limiting fac-
tor any more. It has been demonstrated that purchasing the optimal performances
leads to solutions only valid for the most probable case, and that no margin are
left for the operating variables to balance the uncertainties in�uence.
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Appendix A

Probability distribution function

A.1 Pearson IV

Pearson type IV is the hardest type to model. Its probability density function is
given by [42]:

p(x) = k

1 +

(
x− λ
a

)2
−m · exp(−ν · arctan(x− λ

a

))
(A.1)

Where parameters m, ν, λ and a are given by [48]:

m =
1

2c2

ν =
2c1(1−m)√
(4c0c2 − c21)

b =2(m− 1)

a =

√
b2(b− 1)

(b2 + ν2)

λ =
aν

b

(A.2)

It should be noticed that this is valid for m > 1/2. If it is not the case, one or
both of tails of the density function may have an asymptotic behaviour as shown
in �gure A.1.
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(a) m = 2 (b) m = 0.5 (c) m = 0.3

Figure A.1: Di�erent m parameter for Pearson IV distribution

The normalisation constant k can be computed based on gamma distribution
(real and complex) [75]:

k(m, ν, λ, a) =

2m−2

∣∣∣∣∣Γ
(
m+

iν

2

)∣∣∣∣∣
2

πa |Γ (2m− 1)|2
(A.3)

A.2 Beta distribution

Beta distribution is very useful since it is based on a �nite range and may represent
symetric distribution as well as asymetric (�gure A.2).
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Figure A.2: Beta pdf for several values for a and b
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Its probability density function is given by:

p(x, a, b) =
xa−1(1− x)b−1∫ 1

0
ta−1(1− t)b−1dt

=
Γ (a+ b)

Γ (a)Γ (b)
xa−1(1− x)b−1

(A.4)

Where 0 6 x 6 1, a > 0, b > 0 and Γ (c) is the gamma function given by (for
c > 0):

Γ (c) =

∫ ∞
0

e−ttc−1dt (A.5)

Its mean, mode and variance are given in table A.1.

Parameters Analytical expression

Mean µ =
a

a+ b

Mode mode =
a− 1

a+ b− 2
for a > 1 and b > 1

Variance σ2 =
ab

(a+ b)2(a+ b+ 1)

Table A.1: Parameters as a function of a and b

For a variables out of the range [0, 1], location and and scale can be change by
variable substitution, what leads to the four parameters beta distribution function.:

x′ =x(r − q) + q

x =
x′ − q
r − q

p(x′, a, b, q, r) =
p(x, a, b)

r − q

(A.6)

Its in�uence on the di�erent parameters is given in table A.2, where index 2p refers
to the two parameters distribution:

Parameters Analytical expression

Mean µ = µ2p(r − q) + q
Mode mode = mode2p(r − q) + q
Variance σ2 = σ2

2p(r − q)2

Table A.2: Parameters as a function of a and b for a four parameters distribution
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A.3 Normal distribution

Normal probability density function is an in�nite distribution. It is shown in �gure
A.3 for di�erent means and standard deviations.
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Figure A.3: Normal pdf for di�erent mean and variance

Its distribution function is given by:

p(x, µ, σ) =
1

√
2πσ2

e
−

(x− µ)2

2σ2 (A.7)

It can be observed that [−nsdσ, nsdσ] correspond to Pn % of the set with the
following value:

nsd Tolerance interval [%]

1 68
2 95
3 99.7

Table A.3: Standard deviation and tolerance interval

A.4 Uniform distribution

As represented in �gure A.4, it is only de�ned by its range.



A.4. UNIFORM DISTRIBUTION 129

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

 

 
a = −2.5, b = −1
a = −2, b = 2.5
a = 1.5, b = 2

Figure A.4: Uniform pdf for di�erent ranges

Its probability distribution function is given by:

p(x, a, b) =

 1

b− a
for a 6 x 6 b

0 for x < a or x > b
(A.8)

Its mean and variance are given in table A.4.

Parameters Analytical expression

Mean µ =
a+ b

2

Variance σ2 =
(b− a)2

12

Table A.4: Mean and variance of the uniform distribution
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Appendix B

Stochastic programming:

complementary results
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Figure B.1: Cathodic activation energy cdf and statistics
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Figure B.2: Cathodic conductance factor cdf and statistics
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Figure B.3: Electrolyte conductance factor cdf and statistics
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Figure B.4: Low DTmin cdf and statistics
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Figure B.5: High DTmin cdf and statistics
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Appendix C

Moments method: complementary

results
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Figure C.1: Anodic and cathodic compressor inlet temperature for moments
method
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Figure C.2: Fuel utilization for moments method
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Figure C.3: Fuel cell temperature for moments method
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