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Résumé

Le but de cette these est de développer des intégrateurs variationnels synchrones
ou bien asynchrones, qui puissent étre utilisés comme des outils pour étudier des
structure complexes composées de plaques et de poutres soumises a de grandes
déformations et sous contraintes.

Les modeles de poutre et de plaque sont les modeles géométriquement ex-
acts, dont ’espace de configuration sont des groupes de Lie. Ils sont adaptés
a la modélisation d’objets soumis a de grandes déformations, ou ’énergie de
déformation élastique choisie convient pour les types de matériaux correspon-
dant & notre domaine d’étude (isotropes, ou composites).

Les travaux de J. E. Marsden, de ses doctorants et post-doctorants, ont servi
de base pour développer des intégrateurs variationnels, qui sont symplectiques
et conservent parfaitement les symétries. En outre, par une bonne discrétisation,
I'objectivité des modeles de poutre et de plaque étudiés est conservée.

L’idée qui sous-tend ce travail est de tirer profit des propriétés de ces
intégrateurs pour définir la position d’équilibre des structures, que ’on ne con-
nait généralement pas a priori, ainsi que pour déterminer les contraintes, tout
en conservant les invariants de la structure.

Parallelement a la résolution de cette problématique, nous poursuivons la
démarche de J.E. Marsden qui consiste a poser les bases d’'une mécanique
discrete, avec ses théoremes, ses axiomes, ses définitions qui ont la méme valeur
que les lois de la mecanique des milieux continus mais pour un domaine dis-
cret. C’est a dire que les trajectoires discretes d’'un mouvement obtenues par
ces intégrateurs variationnels vérifient ces lois discretes.

Mots clés : poutre, plaque, intégrateurs mécaniques, principe d’Hamilton,
conservation des symétries, mécanique discrete, réduction, intégrateur asyn-
chrone
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Abstract

The purpose of this thesis is to develop variational integrators synchronous or
asynchronous, which can be used as tools to study complex structures composed
of plates and beams subjected to large deformations and stress.

We consider the geometrically exact models of beam and plate, whose con-
figuration spaces are Lie groups. These models are suitable for modeling objects
subjected to large deformations, where the stored energy chosen is adapted for
the types of materials used in our field (isotropic or composite).

The work of J. E. Marsden, and of his doctoral and post-doctoral students,
were the basis for the development of variational integrators which are sym-
plectic and perfectly preserve symmetries. Furthermore, discrete mechanical
systems with symmetry can be reduced. In addition, by a "good discretiza-
tion”, the strain measures are unchanged by superposed rigid motion.

The idea behind this work is to take advantage of the properties of these
integrators to define the equilibrium position of structures, which are generally
unknown, as well as to determine the constraints, while preserving the invariants
of the structure.

Along with solving these problems, we continue to develop the ideas of J.E.
Marsden who laid the foundations of discrete mechanics, with its theorems,
axioms, and definitions, which parallel those in continuum mechanics but for
a discrete domain. That is, the discrete trajectories of a motion obtained by
variational integrators satisfy these discrete laws.

Keywords : beam, plate, mechanical integrators, variational principles,
conservation properties, discrete mechanics, symmetry, reduction, asynchronous
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Introduction

This work can be seen either in the context of solving complex problems of
applied mechanics, or, equally well in the perspective of the development of the
theory of discrete mechanics.

The first point of view is ontologically linked to the origin of the thesis
project, that is, the desire to explore complex forms composed of multiple sin-
gular points and free forms with multiple contact points. The aim is to find the
equilibrium position as well as to calculate the stress to which the material is
subjected. Indeed, these forms are so complex and flexible that we cannot guess
at first glance their equilibrium positions.

The second perspective is directly related to the properties enjoyed by the
mathematical objects we develop, namely, the conservation of symmetries and
the study of the statics and the dynamics of the material. The mathematical
objects with which we work are worth studying and naturally fit the objects
under study.

This thesis further develops the subject of Lie group and Lie algebra vari-
ational integrators as it applies to exact models of beams and plates subject
to large deformations. Moreover, additional topics connected with discrete me-
chanics will be developed since they are needed in our development.

The point of view taken in this thesis is that we do not discretize the equa-
tions but the problem itself. This is achieved by discretizing space and time in
the setup of the of the studied object. We will use variational principles for all
the problems that we considered and hence the goal is to discretize the vari-
ational principle in order to get discrete equations of motion. Then, we shall
formulate theorems in this discrete setting that are analogues of the classical
continuous time and space statements.

A very successful and well developed technique in numerical analysis is the
finite element method. It uses a simplicial decomposition of the given domain
and discretizes the local law of the continuous problem. Thus, for many impor-
tant problems, especially long time simulations for conservative systems, the
development of stable finite element methods remains extremely challenging
or even out of reach, the underlying geometric or variational structures of the
simulated continuous systems being often destroyed. We believe that this prob-
lem can be circumvented by the use of variational integrators. The geometric
formulation of the continuous theory is used to guide the development of dis-
crete analogues of the geometric structure, such as discrete conservation laws,

xiii



xiv Introduction

discrete (multi)symplectic forms, and discrete variational principles.

The past years have seen major developments in discrete variational mechan-
ics and corresponding numerical integrators. The theory of discrete variational
mechanics has its roots in the optimal control literature of the 1960’s. The
variational view of discrete mechanics and its numerical implementation has
been developed in the past ten years mainly by Jerrold Marsden of Caltech, his
students, postdocs, and collaborators.

Discrete mechanics was born as a result of the interplay of classical the-
oretical mechanics, numerical analysis, and computer science. It has become
increasingly important in concrete applications as different as the modelisation
of specific physical systems, animation, computer vision and graphics, image
processing, shocks between elastic solids, atmospheric and oceanographic sim-
ulations of Lagrangian coherent states, spacecraft mission design, and many
others. Remarkably, to our knowledge, there is no major application of these
discrete mechanics techniques to civil engineering. In particular, we are not
aware of any application of discrete mechanics to the study of surfaces formed
by plates tied by multi-edges and exhibiting sharp corners.

Understanding and controlling many physical systems typically requires nu-
merical simulations of dynamics that occurs over a wide range of time and space
scales.

Recent years have seen an explosive growth of discrete mechanics, discrete
exterior calculus, and corresponding integrators preserving various geometric
structures. There has been a growing realization that stability of numerical
methods can be obtained by methods which are compatible with these struc-
tures in the sense that many discrete variational integrators are symplectic-
momentum methods, that is, they preserve the symplectic structure on phase
space and momentum maps arising from the symmetries of the system (see e.g.
Marsden, and West [90]).

A large number of mechanical systems in nature are governed by Hamil-
ton’s variational principle. The basic idea of underlying discrete variational
integrators is to discretize the variational principle rather than discretizing the
equations of motion themselves which is the standard approach taken by the
finite element method.

Furthermore, a well-known result Ge, and Marsden [35] states that integra-
tors with fixed time step typically cannot simultaneously preserve energy, the
symplectic structure, and all conserved quantities. But one can still achieve this
if one uses time step adaptive schemes as in Kane, Marsden, and Ortiz [56] and
Lew, Marsden, Ortiz, and West [69] who developed the theory of AVIs based
on the introduction of spacetime discretization allowing different time steps for
different elements in a given finite element.

The first mathematical model expressed in terms of discrete mechanics uses
discrete variational integrators; see Marsden, and West [90]. However, in order
to have the flexibility to focus on parts of the phase portrait where dynamics is
more complicated, asynchronous variational integrators (AVIs) have proved to
be more effective. These integrators are based, as mentioned earlier, on the in-
troduction of spacetime discretization allowing different time steps for different
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elements in a finite element mesh along with the derivation of time integration
algorithms in the context of discrete mechanics, i.e., the algorithm is given by a
spacetime version of the discrete Euler-Lagrange (DEL) equations of a discrete
version of Hamilton’s principle.

The advantage of these discrete variational integrators is that they pre-
serve the symplectic structure (a classical property of mechanical systems), and
preserve momenta for systems with symmetry, have excellent energy behavior
(even with some dissipation added), and allow the usage of different time steps
at different points. These properties significantly enhance the efficiency of these
algorithms. We shall use discrete variational integrators in the study of beams
and shells.

The second mathematical model used to study thin-shells is based on the
mathematical formulation of three dimensional elasticity as developed, for ex-
ample, in Marsden, and Hughes [83]. This approach tightly links elasticity the-
ory with geometric mechanics and symplectic geometry (see, e.g., Abraham,
and Marsden [1]).

Unfortunately, our knowledge of nonlinearly elastic, laminated, or compos-
ite materials, their dynamics, and their behavior near corners is very limited.
Standard demonstrations of the utility of a given rod or shell theory for ef-
fectively approximating a limited number of problems should not lead to the
impression that all of these problems have good numerical simulations. Much
recent work on rod and shell theory has been motivated by developments in
numerical analysis and computational techniques.

Advantages of the discrete mechanics point of view. The finite element
method is an important computational tool to study the dynamics and the
statics of beams and plates. However, even with significant advances in error
control, convergence and stability of these finite approximations, the invariant
geometric structures can be lost. For example, in a finite element approximation
of the motion of the free rigid body, one can gain or lose momentum and thereby
fail to preserve fundamental geometric and topological structures underlying the
continuous model. The main problem with this method is that it discretizes the
differential equations of continuum mechanics in order to obtain a position,
a discrete trajectory, a moment, or other relevant quantities relevant to the
motion of the system. It is not at all sure that the solutions thus obtained
satisfy some of the fundamental properties of the continuum mechanical model.

A key point of this thesis is to work both on a discrete theory of mechanics
and to use these results to study beams and plates. That is, as soon as one uses
a variational integrator, the theoretical results are checked, something that is
far from being trivial since this work involves, for example, reduction theory,
an indispensable tool in the study of stability of relative equilibria, and multi-
symplectic theory, where one replaces the discrete time point with a mesh in
spacetime thus allowing different time steps for different elements of the mesh
when asynchronous variational integrators (AVI) are used. Thus, in this thesis
we continue modestly the work begun by J. Marsden and his PhD students,
that is, to develop the general theory of discrete mechanics.
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From theory to algorithm. One chooses a configuration space @) with co-
ordinates {¢’} that describes the configuration of the system under study. The
discrete version of the tangent bundle T'Q) of the configuration space @ is @ X Q.
Given an a priori choice of time interval Atg, a point (¢",¢') € @ x @ corre-
sponds to a tangent vector at g. Given a smooth Lagrangian L : TQ)Q — R,
usually the kinetic minus the potential energy, one associates to it a discrete
Lagrangian Ly : Q X @@ — R and a discrete action functional

N—-1
Sa=>_ La(d, ¢, Aty).
=0

The discrete variational principle states that 6S; = 0, which means that one
seeks sequences {¢’ }ren for which the functional S, is stationary under varia-
tions of ¢/ with fixed endpoints ¢° and ¢~. As in the smooth case, the discrete
variational principle leads to the discrete Euler-Lagrange equations

DaLa(¢’ ', ¢7, Aty 1) + Dy La(¢’, ¢, Aty) = 0,

where Dy denotes the kth partial derivative, & = 1,2. In this way an update
rule (¢71,¢7) = (¢, ¢’ 1) is obtained; this is the variational integrator.

If one uses time step adaptive schemes as in Kane, Marsden, and Ortiz [56]
we obtain a variational integrator for conservative mechanical systems that are
symplectic, energy, and momentum conserving. Indeed, whatever the choice of
the discrete Lagrangian, for the non-dissipative and non-forced systems, varia-
tional integrators are symplectic and conserve the symmetries. The symplectic
nature of the integrator is given by the conservation of the discrete two-form
Qg = D1DsLgdg? Adg? T on Q x Q, which appears as integrand in the boundary
terms of the discrete variational principle when endpoints are allowed to vary.
Moreover, the energy behavior is remarkably stable in the conservative case, as
proved by Hairer, Lubich and Wanner [41].

In describing the dynamic response of elastic bodies under loading, one
begins by selecting a reference configuration B C R3 of the body at initial
time ty. The motion of the body is described by the deformation mapping
¢ : B — R3. Let T be a triangulation of B. A key observation underlying the
formulation of variational integrators is that, owing to the extensive character
of the Lagrangian, the following element-by-element additive decomposition

holds:
L= Lk,
KeT

where L is the contribution of the element K € T to the total Lagrangian L.

Another key feature is the existence of asynchronous variational integrators
where the elements K and nodes a defining the triangulation of the body are
updated asynchronously in time; each element K carries its own set of time
steps Ok, which induces a set of time steps ©, for each node a. The discrete
Euler-Lagrange equations Do Lg(x% ™1, x7) + D1 La(x%,xJ71) = 0 are applied to
each node a, where xJ is the position of the node at time t € ©,. One obtains
an update rule associated to this node and thus the discrete trajectories of the
system.
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Method used to study complex structures. The principle is to consider
the studied object as a system oscillating about the equilibrium position under
the influence of its load. After applying a certain kind of dissipation which
conserve the symmetries, we get equilibrium position. Then we obtain the strain
and the stress for the obtained deformation.

The objects studied are the exact nonlinear models of beam and plate of
Simo, where the space configuration is a Lie group, that is SE(3) or SO(3) x R3.
For the spatial discretization of this model we take into account the develop-
ments in [24] to obtain perfect objectivity.

We will develop Lie group and Lie algebra variational integrators for a given
classical discrete Lagrangian, i.e., it equals kinetic minus potential energy. These
algorithms are obtained by forming a discrete version of Hamilton’s variational
principle. For dissipative or forced systems, one uses the Lagrange-d’Alembert
principle.

Variational integrators exhibit remarkable properties. For non-dissipative
and non-forced problems, no matter the choice of the discrete Lagrangian, they
are symplectic and momentum conserving. Moreover, with a ”good ” dissipa-
tion, the momentum maps are conserved. In addition, variational integrators
have remarkably good energy behavior (see Hairer, Lubich, and Wanner [41]).

Organization of the thesis. The thesis consists of nine chapters.

In the first chapter, the theory of discrete mechanics is reviewed and the
necessary background is developed. In the second and third chapters, we present
two simple examples, the spherical pendulum and the spring pendulum, in
order to familiarize the reader with variational integrators. We also compare
two different time discretizations.

Chapter four is devoted to the numerical study of the Simé beam model. We
develop several Lie group variational integrators, with two different time dis-
cretisations, both for synchronous and asynchronous integrators. In chapter five,
we develop a discrete version of affine Euler-Poincaré equations, extending dis-
crete Euler-Poincaré equations for semi-direct products to the case of an affine
representation of the Lie group configuration space on the vector space. This
yields a variational integrator for beams. Associated to this theory, a discrete
Lie-Poisson reduction for semi-direct products is also developed. In chapter six,
we develop a discrete Lie algebra variational integrator motivated by the fact
that, if applicable, these integrators are easier to implement than the Lie group
variational integrators. We apply it to the Simé beam model in this chapter
and to the Sim6 plate model in chapter seven. In this second example, we need
to handle also a natural holonomic constraint inherent to the model.

In chapter eight, we address the problem of dissipation. We construct a
specific discrete model of dissipation such that energy is dissipated but angu-
lar momentum is conserved. We also establish a discrete affine Euler-Poincaré
reduction with forces. This theory is applied to beam and plate models.

Up to this point, all mechanical systems considered had as configuration
space a Lie group, possibly infinite dimensional. Chapter nine addresses the
general problem and is devoted to the discretization of the reduction process
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for mechanical systems whose configuration space is a general manifold. In this
context, the standard continuous theory uses in an essential manner a connec-
tion on a principal bundle. Thus, we introduce the discrete mechanical con-
nection which enables us to split the discrete trajectory into its horizontal and
vertical parts, thereby obtaining a pair of discrete Lagrange-Poincaré equations.
This also allows us to study the stability of the motion and, in particular, to
dissociate mechanical instabilities from instabilities due to the implementation.
Examples of splitting of discrete trajectories are given.



Chapter 1

History and background

1.1 History

During the last decade, major developments have been done in the area of
discrete variational mechanics and their corresponding numerical integrators.
The theory of discrete variational mechanics has its roots in the optimal control
literature of the 1960’s. For instance systems described by non-linear difference
equations, by Jordan and Polak [54], maximum principle by Hwang and Fan [47],
discrete calculus of variations by Cadzow [20]. In addition, studies relevant to
the discrete mechanics began in the 1970’s : discrete time systems by Cadzow
[21], invariance properties of the discrete Lagrangian by Logan [77], discrete
Lagrangian systems with symmetries by Maeda [79; 80; 81], time discretization
by Lee [63].

This theory was then developed in a systematic way. A formulation of the
discrete Hamilton’s principle, discrete symplectic form, discrete momentum map
and Noether theorem were given by Wendlandt and Marsden [115; 116], and the
time step adaptation in order to get symplectic-energy-momentum preserving
variational integrators by Kane, Marsden and Ortiz [56]. Discrete analogues
of Euler-Poincaré and Lie-Poisson reduction theory with discrete Lagrangian
were developed by Marsden, Pekarsky and Shkoller [86], a discretization of the
Lagrange d’Alembert principle as well as a variational formulation of dissipation
by Kane, Marsden, Ortiz and West [57], long time behaviour of symplectic
methods by Hairer and Lubitch [40] backward error analysis by Benettin and
Giorgilli [5], Hairer [38], Hairer and Lubitch [39], Reich [98]. And to conclude
this period, Marsden and West [90], gave an important review of integration
algorithms for finite dimensional mechanical systems, that are based on the
discrete variational principle.

From this time, based on different variational formulations (e.g. Lagrange,
Hamilton, Lagrange-d’Alembert, Hamilton-Pontryagin, etc.), variational inte-
grators have been developed in various fields :

e The integrators have been extended to non smooth framework by Kane,
Repetto, Ortiz and Marsden [58], by Fetecau, Marsden, Ortiz and West [30],
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and by Pandolfi, Kane, Marsden, and Ortiz [96].

e The theory of Lagrangian mechanics on Lie groups, with discrete La-
grangian reduction, discrete Euler-Poincaré equations, and semi-direct product
was developed by Bobenko and Suris [11; 12], and by Marsden, Pekarsky and
Shkoller [87]. Thereby Lee, Leok and McClamroch studied variational approach
on the Lie group of rigid bodies configurations, for example, under their mutual
gravity in [64].

e In multisymplectic geometry, Marsden, Patrick and Shkoller [85] have
investigated a spacetime multisymplectic formulation. And a new class of asyn-
chronous variational integrators (AVI) for non-linear elastodynamics has been
introduced by Lew, Marsden, Ortiz and West [71; 70].

e A Lie-Poisson integrator for Lie-Poisson Hamiltonian system was devel-
oped by Ma and Rowley [78].

e In stochastic mechanics a discrete Lagrangian theory for stochastic Hamil-
tonian system has been exhibited by Bou-Rabee and Owhadi [14].

e In order to solve optimal control problems for mechanical systems, Ober-
Blobaum, Junge and Marsden [94] proposed optimization algorithm, which lets
the discrete solution directly inherit characteristic structural properties from the
continuous one. Furthermore Kobilarov and Marsden [60] constructed necessary
conditions for optimal trajectories, with mechanical systems on Lie groups.

e To study mechanical systems with holonomic and non holonomic con-
straints, where there are abundance of important models, Kobilarov, Marsden,
and Sukhatme [59] proposed a vertical and horizontal splitting of the variational
principle with non-holonomic constraints. And, with holonomic constraints, us-
ing the discrete null space method, Leyendecker, Marsden, and Ortiz [74], as
well as Leyendecker, Ober-Blobaum, Marsden, and Ortiz [76] have eliminated
the constraint forces and reduced the system to its minimal dimension.

e Multiscale systems with fast variables which have a computational cost
determined by slow variables were examined by Tao, Owhadi, and Marsden
[114].

As a consequence of these developments, variational integrators have become
increasingly important in concrete applications such as animation, computer vi-
sion and graphics, image processing, shocks between elastic solids, atmospheric
and oceanographic simulations of Lagrangian coherent states, spacecraft mis-
sion design.

In particular, we mention the works of Gawlik, Mullen, Pavlov, Marsden,
and Desbrun [31], and those of Pavlov, Mullen, Tong, Kanso, Marsden and
Desbrun [97] in fluid mechanics; that of Ryckman and Lew [103] in contact
problems; and one of Bergou, Wardezky, Robinson, Audoly and Grinspun [6] in
computer science.

However, these new tools have not yet been fully explored in the context
engineering sciences and this work aims to contribute in this direction.
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1.2 Discrete Lagrangian mechanics

In this section we briefly review some basic facts about discrete Lagrangian
mechanics, following Marsden, and West [90].

Let @ be the configuration manifold of a mechanical system. Suppose that
the dynamics of this system is described by the Euler-Lagrange equations as-
sociated to a Lagrangian L : T(Q) — R defined on the tangent bundle of the
configuration manifold ). Recall that these equations characterize the critical
curves of the action functional associated to L, namely

d oL 0L T
——— = —=0&9 L(q(t),q(t))dt =0,

e 5 | zaw.iw)

for variations of the curve vanishing at the endpoints. Recall that the Legendre
transform associated to L is the mapping FL : TQ — T*Q that associates
to a velocity its corresponding conjugate momentum, where T%(@ denotes the
cotangent bundle of @. It is locally given by (g, ¢) — (q, %).

Symmetries of the systems are given by Lie group actions ® : G x Q — @,
(9,9) = ®4(¢) under which the Lagrangian is invariant. In this case, the Noether
theorem guarantees that the associated momentum map J : T*Q — g*, given
by

(3(00), &) = (ag,E0la)) ag€T*Q, €€g (1.2.1)

is a conserved quantity, where g denotes the Lie algebra of the Lie group G, g*
its dual, and the vector field {g on @ is the infinitesimal generator of the action
associated to £ € g, that is,

= — P
fQ(q) de - exp(sf)(q)a

where exp : g — G is the exponential map of the Lie group G.

Discrete Euler-Lagrange equations. We shall now recall the discrete ver-
sion of this approach (see e.g. [90]). Suppose that a time step At has been
fixed, denote by {t; = jAt | j = 0,...,N} the sequence of time, and by
qa : {tj}j»\;o = @, qa(tj) = ¢/ a discrete curve. Let Ly : Q x Q@ — R,
Lg = Lq(¢?,¢’T1) be a discrete Lagrangian which we think of as approximating
the action integral of L along the curve segment between ¢/ and ¢7*!, that is,

we have )
t.7+1

Lald, g+ ~ / Liq(t). 4(t))dt,

tJ
where q(#7) = ¢’ and q(t/T1) = ¢?T1. The discrete Euler-Lagrange equations are
obtained by applying the discrete Hamilton’s principle to the discrete action

N-1

Salga) = Y Lald’,a’™").

Jj=0
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The resulting equations
DoLg(¢" 7', ¢))+ D1La(¢’, ) =0, forj=1,.,N—1. (1.2.2)

are called the discrete Euler-Lagrange equations.
The discrete Legendre transforms F¥Lg,F~ Ly : Q x Q — T*(Q associated
to Ly are defined by

F*La(¢’,¢*") := DoLa(¢’, ') € Tj1Q
F~La(¢?, /") = —D1La(¢? . ') € T5Q, (1.2.3)
so that the discrete Euler-Lagrange equation can be equivalently written as
FrLg(¢’ ', ¢°) =F Lg(¢’, ¢ ), forj=1,..,N —1. (1.2.4)

If both discrete Legendre transforms are locally isomorphisms (for nearby ¢’
and ¢/*1), then we say that Lg is regular.

When the discrete Lagrangian L, is regular, the discrete Euler-Lagrange
equations define a well-defined discrete Lagrangian evolution operator

Xp, QxQ—(@xQ) x(QxQ), Xp, (@ "¢)= (") (™),
and a well-defined discrete Lagrangian flow
Fr, QxQ—=QxQ, Fr,(@ Y¢)=(¢™).

Similarly as in the continuous case, the discrete Lagrangian one forms @zd
and ©7 on () x () are obtained by pulling-back the canonical one-form © on
T*@Q via the Legendre transform, that is

o1, = (F*Ly)" o, (1.2.5)

where we recall that © is defined by (O(ay),wa,) = (Tmg(wa,), ag), With
mg : T*Q — @ the cotangent bundle projection. We thus have the local formulas
o7, (¢,¢*") = DaLa(¢’, ¢ 1)dg’

La 1202 S (1.2.6)
07, (¢, ¢’™) = =DiLa(d, ¢’ )dd,

where @zd (¢7,¢"") € Ty Q and ©F (¢7,¢"th) € T;;Q. Note that dLq =
GJer —O7, so that d@fd = dO7 . Thus there only one single discrete Lagrangian

symplectic two form Qp,, = —d@}:d = —dO7 and we have
Qr, = (F¥Ly)" Q, (1.2.7)
where ) = —dO is the canonical symplectic form on 7*Q, and where both

F*+L; and F~ Ly can be used to define Q.
Amap f: Q@ xXxQ — Q x @ is said to be a special discrete symplectic
map if f*O7 =©O7 and f*@Jer = @j—:d. It is called a discrete symplectic map
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if f*Qr, = Qr,. For example, the discrete Lagrangian flow Fp,, is a discrete
symplectic map:
(FLJ)*QLd =,

The discrete Hamiltonian map FLd : T*Q — T*Q is defined by FLd =
F*LgoFy, o0 (F£Lg)~", where Fr, is the discrete Lagrangian flow. The fact that
the discrete Hamiltonian map can be equivalently defined with either discrete
Legendre transform is a consequence of the fact that the following diagram
commute.

Fr, . . Fr, L Fr, ) .
e ——T"Q (@) —— (¢, ) —= (@ p)
wl DA | D] T
F Ld F Ld ]F_Ld ]F_Ld ]F_Ld
@xQF~>0QxQ (¢ ¢) > (¢ ) = (@)

Figure 1.2.1: Properties of the discrete Legendre transforms and discrete flows

Discrete Lagrangian systems with symmetries. Let ® be a group action
of a Lie group G on @ with the infinitesimal generator £g(g) associated to the
Lie algebra element £ € g. There is a naturally induced action on @ X @ given
by

(I)?XQ(qjvqurl) = ((I)g(qj)vq)g(qj+1)) )

with the infinitesimal generator

axQ(d d*) = (¢a(d'), €ald™™) -

Given a discrete Lagrangian Ly : @ X @ — R (not necessarily G-invariant), the
discrete Lagrangian momentum maps sz, Jr, Q@ x Q — g are defined by
I (@), ) = (0] (¢, qj“) Coxa(d, ™))
<F+Ld 7, qﬁ“) Sald’™)
(I, (@,d™),€) = (0 . éoxa(d,d)
= (F~ L (@, qj“) €al(d’)) -

(1.2.8)

Note that we have
J7, = (F*La)" J,

where J : T*Q) — g* is the cotangent lift momentum map given by (J(ay), &) =
(g, €0 (a))-

It is important to note that if the discrete curve {qj o verifies the discrete
Fuler-Lagrange then we have the equality

5@ @) =37, (, ), forall j=1,.,N —1. (1.2.9)
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* J * * * ] — ]
T"°Q ——g g —>g (=) ——— (1)
_ i, I
FEL, s Iz, Iz, JLdT JLdT
©xQ QxQ 7 @xQ (@) 5~ (™)

Figure 1.2.2: On the left: the definition of the discrete momentum maps. Two
diagrams on the right: illustration of the equality (1.2.9)

When G acts on Q x @ by special discrete symplectic maps, that is, if
(©9x?)*©7 = OF , then the discrete Lagrangian momentum maps are G-
equivariant, that is,

JP 0®9%9 = Ad; .},
J, 0®97¢ =Ad; T .

This happens for example if the discrete Lagrangian L, is G-invariant, since
in this case @?XQ is a special discrete symplectic map. Moreover, in this case
the two momentum maps coincide: J}fd = Jp,, and therefore, from (1.2.9) we
obtain the discrete Noether’s theorem.

1.2.1 Theorem (Discrete Noether’s theorem) Consider a given discrete
Lagrangian system Lg : Q x Q@ — R which is invariant under the lift of the left
action ® : G x Q — Q). Then the corresponding discrete Lagrangian momentum
map I, : Q X Q — g* is a conserved quantity of the discrete Lagrangian map
FLd : Q XQ—>Q XQ, that is, JLdOFLd :JLd-

1.3 Energy computation

Review of geometric mechanics. Given the Lagrangian L : TQ — R we
define the action A : TQ — R, v, — (FL(v,),v,) with v, = (q,q), and the
energy by E = A — L.

The Lagrangian L is said hyperregular if the Legendre transform FL is a
diffeomorphism. Then we have the following theorem

1.3.1 Theorem The hyperregular Lagrangians L onT'Q and hyperreqular Hamil-
tonian H on T*Q correspond in a bijective manner : H is constructed from L
by means of H = E o (FL)™', and L from H by means of L = A — E =
A—Ho (FH) !, where FH : T*Q — T**Q ~ TQ is the fiber derivative of
H:T*Q — R.

Thus, in this case, we can calculate the energy of the system, at time ¢, both
using the energy E as well as the Hamiltonian H with the same result.

But with the discrete configuration @ x (Q we cannot define a discrete action.
On the other hand we can add the discrete kinetic energy with the discrete po-
tential energy and obtain in someway a discrete energy. However if the discrete
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Lagrangian is regular, we can go from the discrete structure in time on @ x @
to the continuous structure in time on T'Q) by the discrete Legendre transform
and we obtain the discrete energy E; or the discrete Hamiltonian Hy.

In this case if we want to do this process properly, it seems necessary to
define the general framework in terms of chain complexes.

Chain complexes. Let a set S = {ao,...,a,} of p+ 1 independent points in
R™. The geometric p-simplex in R™ is the set of all points of the p-dimensional
hyperplane H?, containing S, for which the barycentric coordinates with respect
to S are all non-negative. The p-simplex, with an ordering of its vertices, is
denoted AP = (ay, ..., ap).

We obtain a geometric A-complez X by quotienting a collection of disjoint
simplices identified by some faces via homeomorphisms preserving the ordering
of vertices. The A-complex are denoted simplicial complex when simplices are
uniquely determined by their vertices.

Then we consider a particular set of morphisms o; : AP — X, for all p €
{0, ...,n}, which is the orientation of the faces of the simplexes with respect to
each other in X, such that

ai(AP) = AP,

A p-dimensional chain on the A-complex X with coeficients in a group G is
a function ¢, on the oriented p-simplexes of X with values in the group G
such that if ¢,(AY) = g;, then ¢,(—A?) = —g;. The collection of all such p-
dimensional chains on X is denoted a p-chain complez Cp(X,G).

This p-chain complex C,(X,G) provided with the boundary operator 9, :
A,(X) = Ap_1(X), which verify 9,_1 009, = 0, forms an object of the category
of the chain complexes Ch. Where the morphisms ¢, : Cp,(X1,G) = Cp (X2, G)
of this category are the morphisms of abelian groups such that the commutative
relation 0,(¢p(cp)) = @p—1(0p(cp)) holds for each chain ¢, € Cp(X1,G). We
have the commutative diagram in Figure (1.3.1).

A p Op_
oS O (X9, R) — 2> Cp g (X, R) ——> -

S‘JPT ‘PplT
Op+1 Op—1

ap
T CP(le]R) - P—l(XlaR) —

Figure 1.3.1: Chain complex Ch

1.3.1 Discrete energy

Let a configuration @ : C*°(D, G), where D is a compact with piecewise bound-
ary, and GG a given Lie group. Let an hyper-regular Lagrangian L : TQ — R. We
assume that there is a G-invariant Riemannian metric v on the configuration
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space @, and that the Lagrangian is of the form

. 1.
Llg,d) = 57(d,4) = V()
for a potential V' : @ — R. The associated Legendre transform FL : TQ — T*Q
becomes in this case

(FL(vq), wq) = v(vg, wg)-

After spatial discretization of D, we obtain a set of oriented simplices A}
with nodes a, that we will denote for simplification by K. Given the config-
uration g, € @ at nodes a € K, we get by interpolation an hyper-regular
Lagrangian Lg : TQQ — R on K as

. r ...
Li(qr.dx) =Y 3al(das da) = Vi (4r),
acK

where i = {¢a }ack. Such that we have the approximation

/D (;y(q, q) — V(q)) dV ~ Z Z %’Ya(q.a;(h) - VK(QK)'

KeT aeK

The set of simplices K correctly assembled, together with the Lagrangian L
taking values in R, forms a n-chain complex 7 € C,(D,R), where the mor-
phisms are the maps which take an oriented simplicial complex at time ¢/ and
brings it at time #/*!, and which may be continuous or not.

Then we apply a temporal discretization by constructing an increasing se-
quence of times {#/ = jAt | j =0,, N} C R from the time-step At, and obtain

the discrete regular Lagrangian Ld(qg(,q}';rl) : Q X @ — R which is a time

+1 . . ; .
discretization of ftt]] Lk (qk,qr)dt, with g} = gk (), and q?l = qr (t7+1),

it
La(qk, %) = / Lk (qx,qx )dt.
ti
In such a way that Ly as well as Lg are defined on 7. Furthermore, because

of the discrete regularity of L4, there exists a local isomorphism (F~Lg)* :
{¢} x Q@ = T,;Q, and another one (FTLg)* : Q@ x {¢/*'} = T,;+1Q, where
f:7T"Q — TQ is the inverse of the index lowering operator b : T,Q) 3 v —
(v,-) € T;Q. See diagram (1.3.1).

+r

:
RetlQx@Q—ttt _pog—=10Q LR (1.3.1)
b

Thus we can define an energy Fq = A — Lk on TQ at time ¢/ for a simplex
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e
(o (1),

- (ena () () = (e ()
SRR (CONCT)

(o - 2), ) = { ()

with FELY, := FEL(¢7, qJ:H). Moreover an energy, at time /!, can be equiv-
alently defined with F+ L.

#

a

) + Vi (qh), (1.3.2)

with

1.3.2 Discrete Hamiltonian

We know that a variational integrator on Q) x @Q preserves the discrete symplectic
form Qg = (F¥Ly)*Q, where  is the canonical two-form on T*Q. Then the dis-
crete Hamiltonian flow Fy, ,=FtLyo(F~Lg)~! will preserve the pushforwards
of these structures (see Marsden and West [90]).

Therefore the discrete Hamiltonian flow

(@, F~La(¢’, @) = (¢ F Lalg’, ¢’ )

is symplectic with respect to the Poisson bracket {-, -} on T*@Q. And it is possible
to define an Hamiltonian function Hy = E4o0 (FLx)™! on T*Q such that

Hgy (q%}, <F_L£)K)
_ ;{ <(]F*Lil>a, (FLx) ™ (F7L}) ) — Li (q?« (I“@)L)

% S ((F L) o FLo™ (FLh) )+ Vic(ah). (1.3.3)
acK

An Hamiltonian function, at time #/*!, can be equivalently defined with
F+ LY. Moreover we know by (1.3.1) that the discrete energy and the discrete
Hamiltonian have the same value for a given discrete Legendre transform F+ L.

Almost-conservation of energy. The main feature of the numerical scheme
(@71, ¢7) = (¢7,¢"t1) given by solving the discrete Euler-Lagrange equations
is that the associated scheme (¢7,p’) — (¢7+1, p’*1) induced on the phase space
T*@Q through the discrete Legendre transform defines a symplectic integrator.
Here we supposed that the discrete Lagrangian Ly is regular, that is, both dis-
crete Legendre transforms F¥ Ly, F~ Ly : @ xQ — T*Q are locally isomorphisms
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(for nearby ¢/ and ¢/*1). The symplectic character of the integrator is obtained
by showing that the scheme (¢7~1,¢%) — (¢7, ¢’ ') preserves the discrete sym-
plectic two-forms Qi = (F*Lg)*Qean, where Qq,, is the canonical symplectic
form on T*Q, so that (¢/,p’) — (¢!, p/T1) preserves Q.q, and is therefore
symplectic, see Marsden, and West [90], Lew, Marsden, Ortiz, and West [70].

It is known, see Hairer, Lubich, and Wanner [41], that given a Hamiltonian
H, a symplectic integrator for H is exactly solving a modified Hamiltonian sys-
tem for a Hamiltonian A which is close to H. So the discrete trajectory has
all the properties of a conservative Hamiltonian system, such as conservation of
the energy H. The same conclusion holds on the Lagrangian side for variational
integrators (see e.g. Lew, Marsden, Ortiz, and West [70]). This explains why
energy is approximately conserved for variational integrators, and typically os-
cillates about the true energy. We refer to Hairer, Lubich, and Wanner [41] for a
detailed account and a full treatment of backward error analysis for symplectic
integrators.

1.3.3 Discrete energy on () x () and extended variational
principle

We can also calculate the energy on @ x @, by extending the configuration in

time, in the framework of the multysymplectic geometry, (see Marsden, Patrick,

and Shkoller [85], Lew, Marsden, Ortiz and West [69; 70] among other papers).
The discrete Lagrangian is now defined on QQ x @ x R

Ld(qj7qj+17tj+1 *tj) QX QxR —R.

Then we extend the discrete variational principle using positions and time, and
we get a system of two equations

D2Ld(qj717 qjvt] - tjil) + DlLd(qj7qj+17tj+1 - t]) = Oa
DsLg(q¢? Y, ¢ 7 —t77Y) — D3Ly(¢?, ¢ 9T — 7)) = 0.

The second equation means that following energy Eé defined at time t7 is con-

served ‘ o 4 4
B = —D3La(¢, ¢t ¢ —t9). (1.3.4)

This discrete energy generally represents the sum of discrete kinetic and poten-
tial energy. And we note that this definition is more general than previous ones
as it does not require the discrete regularity of L.

1.4 Discrete forced Lagrangian systems

To integrate discrete Lagrangian with discrete external forcing it is possible
to extend the discrete variational framework to include forcing, as was done
in Marsden, and West [90]. In presence of an external force field, given by a
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fiber preserving map F : TQQ — T*(@Q, Hamilton’s principle is replaced by the
Lagrange-d’Alembert principle

5 / Liq(t), 4())dt + / F(g(t), d(t)) - 6qdt = 0,

where F(q,q) - dq is the virtual work done by the force field F' with a virtual
displacement dq. This principle yields the Lagrange-d’Alembert equations

Review of discrete forced Lagrangian systems. As with other discrete
structures, there are two discrete Lagrangian forces

Ff.QxQ—1TQ,
which are fiber preserving in the sense that
g © F(f = 7r$,
where g : T*Q) — @ is the cotangent bundle projection and 7725 QxQ—Q
are defined by

mo(d @) =¢ and wh(d,¢t) =g

Thus, in local coordinates, we have
F (@) = (¢ Fy (¢, ™) and Ff (¢, ¢"Y) = (@ FF (¢, 7))

We now recall from Marsden and West [90] the discrete Lagrange-d’Alembert
principle.

1.4.1 Theorem (Discrete Lagrange-d’Alembert principle) Let Ly : Q X
Q — R be a discrete Lagrangian, and consider the discrete Lagrangian forces
Fdi :Q X Q = T*Q. Then the following are equivalent:

(i) The discrete curve {¢’} satisfies the discrete Euler-Lagrange equations for
Ly with forcing:

DyLa(¢’ ™', ¢") + DiLa(¢, @) + Ff (¢ ) + E (¢, ¢ F1) = 0,
forallj=1,...., N —1.
(ii) The discrete Lagrange d’Alembert principle

N—
(Fy (¢, @t - 6¢ + Ef (¢, ") - 6¢7T] =0,
=0

Jun

N—-1
0> La(d,q"™) +
j=0 J

(1.4.1)
holds for variations 6¢° with fired endpoints 6¢° = dg™ = 0.
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Note that in the discrete Lagrange-d’Alembert principle, the two discrete
forces F an F; combine to give a single one-form Fj; : Q x Q — T*(Q x Q)
given by

Fu(d, ) - (647,647 = EF (¢, ¢ T) - 6T + Fy (¢, ") - 6¢.

The forced discrete Euler-Lagrange equations implicitly define the forced dis-
crete Lagrangian map Fr,: Q x Q = Q x Q.

Although in the continuous case we used the standard Legendre transform
for systems with forcing, in the discrete case it is necessary to take the forced

discrete Legendre transforms to be
F* La(¢’.¢’™) = (¢, —DiLa(¢’, ¢ ™) + Fy (¢, ¢ ™)) (1.42)
F™ La(@, @) = (¢, DaLa(¢, /) + Ff (a7, 47*1)) . h

As in (1.2.4), the discrete Euler-Lagrange equations with forces can be equiva-
lently written as

FErLa(¢? Y, ¢7) =FF~Lg(¢?, ¢ Y), forj=1,..,N—1.

The forced discrete Hamiltonian map is defined by
- -1
Fr, = F* Lyo Fr, o (FFiLd) '

We thus have (¢!, p/+1) = Fp,(¢7,p7) where

P’ =-DiLa(¢,¢*")=F; (¢/,¢*") and p’™ = DoLa(¢’, ) +FS (0, d).

Discrete forced Noether’s theorem. Consider an action ® : G x Q — @,
and let Ly : @ x @ — R be a discrete Lagrangian. In the presence of forcing,
the discrete momentum maps are defined by

<de+ (qj,qj+1),§> = <IFF+Ld(qJ'7 qj+1)’§Q(qj+1)>

Note that these expressions recover (1.2.8), when the forces are zero. If the
discrete force Fy is orthogonal to the group action, so that (F,,{gxg) = 0, for
all £ € g, then we have

I = (1.4.3)
and we denote by JIL?d : @ X @ — g* this unique map. With this notation, we
have the following result, which is the discrete analog of Theorem 8.1.1.

1.4.2 Theorem (Discrete forced Noether’s theorem) Let® : GXQ — Q
be an action and let Ly : QX Q — R be a G-invariant discrete Lagrangian system
with discrete forces Fj, F; :QxQ — T*Q, such that (Fg,&gxq) = 0, for all
& € g. Then the discrete momentum map de QX Q — g will be preserved
by the discrete Lagrangian map, so that de oFr, = de.



Chapter 2

Spherical pendulum

Introduction

The spherical pendulum is composed of a single mass which is fixed to a pivot
point. This is a simple example where the potential We,; is completely deter-
mined by the external gravitational field and the symmetry is about the vertical
axis. During the motion, the mass spins around the vertical axis while oscillating
between two parallel circles of the sphere.

Thus we develop a geometric variational discretization especially well-suited
for systems on Lie groups. Based on Moser, and Veselov [93], discrete Euler-
Lagrange equations for systems on Lie groups, and the associated discrete La-
grangian reductions have been carried out in Bobenko, and Suris [11; 12], Mars-
den, Pekarsky, and Shkoller [86], and further developed in Lee [66] and applied
to many examples. These integrators are referred to as Lie group variational
integrators. See also Iserles, Munthe-Kaas, Norsett, and Zanna [50] for a related
approach for solving differential equations on Lie groups.

With this simple example we highlight the properties of variational integra-
tors. That is, we observe the conservation of symmetries (i.e., of the momentum
maps) and the almost constant behavior of the total energy in time. Moreover,
with respect to the work of Lee [66], we paid special attention to the discretiza-
tion of the Lagrangian, in particular, to the speed (2.2.8) that remains in the
Lie algebra after discretization.

One of the beautiful and important things about discrete mechanics is that
it permits to switch from the discrete to the continuous world by the Legendre
transform. This is what we did in writing the Hamiltonian equations from the
discrete variational point of view.

2.1 Lie group variational integrator

We recall briefly the Lie group variational integrator presented in Bobenko and
Suris [11].

13
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2.1.1 Lie group variational integrator

Let a configuration space @ = C>°(D, G) > g which is a Lie group, and where D
is a compact domain. We suppose that G acts on @) by left translation, which
is a smooth mapping

:GxQ—=>Q (h,g)— D(h,g)=:hg, (2.1.1)

such that (i) for all g € Q, ®(e,g) = g, where e is the identity element of G,
and (i) for every hy, hy € G, ®(hy, ®(ha,g)) = ®(h1ha,g) for all g € Q.

Let L : TQ — R be a smooth regular Lagrangian defined on the tangent
bundle T'Q to the Lie group Q.

From now on, by convenience, we denote in this subsection the configuration
space by G instead of (). And, for convenience, we translate the vector g € T,G
to (9,97 1g) € G x T.G, by left trivialization as described in Bobenko and Suris
[11]. We recall that T.G =: g is the Lie algebra of the Lie group G.

By vector bundle isomorphism we trivialized the Lagrange function L by
pull-back through G x g > (9,97'g) — g € TG, which induces £ : G x g — R
defined by

L(9,€) == L(g,9), g 'g:=¢ (2.1.2)

Given an interval of time [0, 7], define the path space to be
C(G)=¢([0,T),G)={g:[0,T] = G | gis a C? curve}.

Then a curve g € C(G) is said to be a solution of the Euler-Lagrange equations
in terms of L, if g satisfies

d (0L L 0L 0L

—\ 57 ) —ade 57 =9 5

dt \ 9& o& dg

It is important to note that by trivialization we carry ¢ € T,G to g g € g,
which is expressed in body coordinates (see Abraham and Marsden [1]).

By spatial and temporal discretization we get, on the interval of time [/, /1],
the discrete trivialized Lagrangian £} := La(¢?, f7) : G x G — R, with
=) 1g*.

Let Cq(G) = {94 : {tj}ﬁ-vzo — G, tI+— g7 = g(t!)} be the discrete path
space. The discrete action map S4(Ly) : Cy(Q) — R is defined by

N-1 ) )
Sa(La) ==Y Lalg’, ).
=0

Let g be a deformation of g/ in Ca(G), such that g% = g% and g& = ¢" for any
€ in an open interval | — A, A\[ and ¢} = ¢’ for all j =0,1,...,N. . Let

. d
j.— &
dg’ : e

gl € TG
0

e=
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be the corresponding variation 6¢g7 = ¢'n’, and §f7 = —nf f + fini*! where
n? € g. The endpoints are fixed when we have n° = n™ = 0.

We compute the derivative of the discrete action map

N-1
d ,
as(en) anst = 4| X alol 67
e=0 k=0
N—-1 ' . ‘ | ‘ |
= 2 DyiLalg’ ') -3¢ + DysLalg’, f) - 67,
k=0

denoted §6&, for simplification. The calculation gives

N-1
L) = Ad{psyr (TiLy (D £3)) 17 + Ti Ly (Dya ) -39+
7=0
N-1 _
Z {TILfJ 1 Df] IE ) Ad(f]) 1 (TILf](DfJL )) + TI (ngl:fi)} '77'7
j=1

+{Ti Lo (Dyo £3) = Adfoys (Ti Lo (Dyo£)) - 1°
—+ TI*LfN—l(DfN—lﬁélV_l) ~?’]N.

A discrete path gg € C4(Q) is said a solution of the discrete Euler-Lagrange
equations if for all variations dgq € Ty,Ca(Q) we have

TiLyi (D £57) = Adf gy (T,Lf](DfJ,c )) + Ti Ly (Dy L)) =

(2.1.3)
The discrete Lagrangian one-forms @i G xG— G xg*are

@Zd(gj, f]) = (TI*ij (ijﬁg)) uj'H,
o L (214)
O7,(07, 1) = (=T Ly (D ) + Adi gy (TiL (Dgs £))) )

The discrete Legendre transforms F/jj : G x G — G x g* have the expressions
FLalg’, ) = (¢ T s (D))
F~La(g, f7) = ( AL (T*ij(ijcg)) T} L, (Dy, c]))

And the discrete Euler-Lagrange equations (2.1.3) can be written as

F~La(g’, ) =F Lalg’ " 7).

2.1.2 Discrete momentum map

Given the left Lie group action ® as defined in (2.1.1), and £ € g, the infinites-
imal generator g(g) of the left translation of G on itself is given by

€a(g) = (9,€9)- (2.1.5)
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And the infinitesimal generator £gxe — T(G X G) to be
ngG(gj, fJ) = (gj’ gg], fj7 0)
2.1.1 Remark We note that £ = a(g?)(¢?) " € g represent the infinitesimal

generator £(g’) in space coordinates, which is due to the right translation by
¢’, and J, (g7, f7) is the space discrete momentum map.

Given variations (6g7,0f7) and the discrete Lagrangian one-forms @%d al-
ready given in (2.1.4), we have

Of (¢, 1) - (697, 617) = (F*La(g’, 1), W'*1)
(T7Lp (D £5). ()78 + Adggoy1(9') 047 )
07, (g 1) - (097, 617) = (F~Lalg’, 7). )
(Adipoyr (T*Lys(Dys £9)) = Ti Ly (D £5), (67)7 1097

Then by pairing @fd (¢7, f7) and €gxq(g?, f7) we obtain
JE (. 1) ¢= <T1Lf7(Df7£ ), Ad(gs+1)- 1€>
I, (N Fi) . ¢ = <Ad;ffj),1 (T*ij (ijagl)) T} Ly (Dyi £5), Ad(gj)flg>,
Thus the discrete momentum maps de : G x G — g are given by
£ ) = Adigseny (TiLys (Dyah))

2,0, 1) = Adjgiyr (Adpsyo (T*Lps (D £))) = Ty Lys (Dgs £3))
(2.1.6)
which are the expression of the discrete momentum maps in space coordinates.
The discrete momentum maps in body coordinates, denoted Hfd (g7, f7) € g%,
are given by the coadjoint action

IO} (o7, ) == Adj Jf (07, 1),
., (¢, f7) = Ady, Iz (7, f).

And the discrete Euler-Lagrange equations (2.1.3) can be expressed in terms of
discrete body momentum maps 1%, as

oyl (¢ ' A7 =1, (¢, f7).

(2.1.7)

Discrete Lagrange-d’Alembert equations. As shown in Marsden, and
West [90], in the presence of discrete Lagrangian forces F7 : G x G — T*G
(which are fiber preserving maps), it is possible to define a discrete Lagrange-
d’Alembert equation. With the discrete trivialized Lagrangian L5 : G x G — R
on a Lie group G, we define the discrete Lagrangian forces as follows

Filg, )= Fi (¢, 9" € TG,
f;(gj+1afj) = F;_(g 79j+1) € Tg*j+1G~
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The discrete Lagrange principle for Lie group variational integrator becomes in
this case

N—-1 N-1
8 Lalg, f)+ Y (Fy (g, 1) -0¢7 + Fi (g, ) - 69 T) =0,
j=0 j=0

for all variations 6g7 = ¢gn?, with 7 € g vanishing at endpoints. Taking into
account the variation §f7 = —n/ f7 + fin*1 and isolating the quantities 77, we
obtain the discrete Lagrange-d’Alembert equations

() Dystch = Adfpays ()" D) + () Dy £
+ ()T F G T+ (@) T FL (L ) =0

with ¢/ = ¢~ fi~1 for fixed endpoint conditions, that is n° = n™¥ = 0.

(2.1.8)

2.2 Simple spherical pendulum

2.2.1 Geometric mechanics

The configuration space of the simple pendulum, we consider, is the special
orthogonal Lie group @ = SO(3). * We suppose that SO(3) acts on Q by left
action.

The gravitational potential of a pendulum with length ¢, for a mass m,
is mg (Ap, E3), where A € SO(3), E3 is the unitary vector which indicate the
vertical, and p = (E3. We denote by w € R? the convective variable & := ATA,
where we use the standard Lie algebra isomorphism, the hat map, ~ : (Rg, ><) —

(s0(3),[,]) given by

k! ~ 0 —k® k2
Q=8| =0=( ¥ o —&]. (2.2.1)
2 k2 K0

As seen in (2.1.2) the Lagrange function L : T'SO(3) — R is trivialized
by pull-back, through SO(3) x s0(3) 2 (A,w) — (A,A) € TSO(3). Thus the
trivialized Lagrangian £ : SO(3) x s0(3) — R is given by

. 1 R
£OATR) = 5 [ @plPdm +mg (Ap.Ba)

1
= inJw +mg (Ap, E3) (2.2.2)
where the Riemannian metric is
(@,9) =wlJy with ©,7 €s0(3), and Jy € s0*(3).

We note that the Lagrangian L is S'-invariant with respect to the vertical axis.
The Lie algebra g =2 R of G = S is the set of vectors along Es.

1t is also possible to consider that the configuration space is Q = S2 thus defined in [82].
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Equations of motions Given an interval of time [0,7] and the action map
&(L):C([0,T],50(3)) = R to be

S(L)(A) = /0 LA, w)dt.

Given A € SO(3),@ € 50(3), 7j € 50(3), where w € R? and 7 € R3, the variations
0A, 0w and dw are

oA = Ap, ow=n+wxn.

Computing the variation of the action map &(L) gives
T
5S(L)(A) = / (Jwdw + mgl (Ey, SAEs)) dt
0

= /OT <(Jw) X w— Jw —2mgl ((EgEgTA)(A)>V> -ndt
+(Jw) -],

)

where ¥ is the inverse map of the hat map ~ as defined in (2.2.1).
Thus the Euler-Lagrange equations for stationary values of the action inte-
gral & = 0 are

(Jw) X w — %(]w) —2mgl ((E3E§A)(A))v =0, (2.2.3)

Momentum map. The Lagrangian one-form on SO(3) x s0(3) is
Or(Aw) = (Jw)p,
which verifies
(O£(A,w), (A, 0w)) = (FL(A, w),n) = (FL(A,w), AT 0A)
where FL : SO(3) xs0(3) — SO(3)xs50*(3), (A,w)+— (A, Jw), is the Legendre

transform.
For ¢ € so0(3), the infinitesimal generator £o(A) of the left action @ is

Eo(A) = EA, as seen in (2.1.5). Thus the infinitesimally equivariant momen-
tum map Jz : SO(3) x 50(3) — g* associated to the Sl-invariance, is given
by

<J£(Aaw)a§> = <F[’(A7w)7A_1§SO(3)(A)>7
with £so3)(A) = G/E\gA7 where 6 € R. Thus we obtain

Jo(Aw) = (AJw,E3) € R.
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2.2.2 First temporal discretization

The trajectory of the pendulum describes the motion of a single point which is
the center of gravity of the mass m. Thus the system should not be discretized
spatially, but only temporally.

Let C4(SO(3)) = {Aa : {/}}y = SO(3), t/ +— AJ:= A(t7)} the discrete
path space. We apply to the velocity w(A,t) the following temporal discretiza-
tion

A7 A7 ¢ s0(3), (2.2.4)

, , AL AJ Fi_]
s0(3) > @7 ~ (AT ( > = 3

where F/ = (A))TAI*1. (We note that £°5lt is not an element of the Lie
algebra s0(3), while w/ € s0(3). )

Thus we obtain the discretized trivialized Lagrangian defined on the interval
of time At = ¢/T1 — ¢J

Lq(N,FI) = K(F7) - V(A F7)
= iTr[(Fﬂ' — I3)Ja(F? — I3)T] + At mgt (M E3, E3)

2At

= A%Tr[(f3 — F9)Jy) + At mgl(E3)T AV Es,

where Jy is the non-standard inertia matrix which verify
jc\d =wJdg+ Jd@,
and where we used the following properties

Tr [FIJg(FD)T] = Te [Jo(FD)TFI] = Tr [Jg]  and  Te[Jo(F2)T] = Te[FJ Jy).

Variational integrator

A discrete path Ag € Cq(SO(3)) is said to be a solution of the discrete Euler-
Lagrange equations if we have (2.1.3).

In order to obtain the discrete Euler-Lagrange equation it is necessary to
achieve a number of intermediate calculations. Before computing these equa-
tions concretely, we recall that we identify the dual space s0(3)* with so(3) via
the natural pairing of R?, i.e.

1
V,W):=v-w= 3 Tr (vI'Ww).
Given F7 € SO(3) and its variation 6F7 = FIg € Tp; SO(3), we have
Dyl Fig = —— Ty [6F7 Jy]
d At
1 N
- J
N [Jd F 4

1 1 . . ~
= —ETr [2 (Ja FI = (F))TJq) 5] :
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. 1 _ , .
Tj Ly (Dps £3) = 57 (Ja 7 (FI)TJ5)" € R ~ s0(3),
and
* * j 1 g G\T\ VY
Adipsy-r (T7 L Dies ) = 55 (FV Ja = Ja(F7)7)

The derivative of Lé with respect to A7 is

Dpi L) - 5N = At mgl Tr[6AVEs3(E3)7]
= At mgl Tr[Es(E5)TA¢]
. \Y%
= —22t mgt ((Es(Eg)"A)) ¢

‘ ) v
Tj Las(Das £)) = =2t mgt ((Es(Bq)"07) ™)

Thus the discrete Euler-Lagrange equations of the discrete trivialized La-
grangian are

L

A7 (a7 = (P -

(FI g — Ja(F)T)"

(At)
— 2AL mgl ((EgEgTAj )<A>)

\

We note that the first line of the previous equation divided by At is the
discrete equivalence of the term (Jw) X w — Jw in (2.2.3). And the second line
concerning the contribution of the potential energy is unchanged with respect
to continuous formulation.

However the first line, that can be written as follows

ﬁ (((JdFj_l)(A))v + ((Jd(Fj)T)(A))V> )

is too symmetrical to really bring up the term (Jw) X w. Therefore, in what
follows, we will discretize time in a different way.

Discrete momentum map

Given (2.1.6) the discrete momentum maps de : SO(3) x SO(3) — s0(3)*
associated to the Lie group action ® to be

o . 1 . . v
JE (N, F9) = Adfyanyr (At (Ja FI - (FJ)TJd)) :
1

\%
Iz, (N, F) = Adjyr <At (F9 g = Ja(F7)T) + 2458 mgt <E3E3T“)(A)> ’

which are the expression of the discrete momentum maps in space coordinates.
The body discrete momentum maps are

O} (N, F7) = Adj; J] (N, F7)
IO (A, F7):= Ady, Jp (N, F7),
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where HZ (A7, F7) € s0(3)* are more precisely the angular momentum maps.

The discrete momentum maps associated to the symmetry group S! are

2
JE, (W FT) = <Aj+1 (Alt (Ja F7 — (Fj)TJd)> ,E3>,

o /1 . . _ v
I, (N, ) = <AJ (At (FIJg — Ja(F)T) + 24t mgl (E3E3TAJ)(A)) ,E3> .

Discrete energy defined on SO(3) x SO(3). The discrete energy Eg :
SO(3) x SO(3) — R at time t/, seen as the sum of the discrete kinetic energy
and the discrete potential energy, to be

EJ(N, FI) = ﬁﬁ[(h — F)Jg] — mgt(E3)T AV Es. (2.2.5)

Discrete Hamiltonian on trivialized cotangent bundle SO(3) x so(3)*.
By cotangent lift, we trivialize the cotangent bundle T*SO(3)

SO(3)xs0(3)* > (¢, T* L, F~ La(g?, ¢'*")) = (¢, F~ La(¢’, ¢’ ™)) € T*SO(3).

We take into account the results of Bobenko and Suris [11], where it is proved
that o _ _ _

T*LyF~ La(g’, g™ =F La(g’ ", (6" '),
and, that the discrete Hamiltonian flow (g7, F~L4(g?, f7)) = (¢ TH, Ft La(g?, 7))
is symplectic on SO(3) x s0(3)* with respect to the following Poisson bracket

{f,h} = —(T"Ly(Dyf), Duh) + (T*Ly(Dgh), D, f) + (. [Dyu f, Dyhl) , (2.2.6)

for any C! functions f,h : SO(3) x s0(3)* — R.
Thus we can define the discrete Hamilton function Hyq : SO(3) x s0(3)* — R
such that

#a (o (578)) = ((F23) . B0yt (5 03)) (gj, (F—gg)“)
S ((Fct), ®o) (Fo))) + Vi),

and, a Hamiltonian, at time #/*1, can be equivalently defined with IF*ﬁgl.

Thus, for a spherical pendulum, we obtain a discrete Hamiltonian Hg :
SO(3) x s0(3)* — R, as

Mo, (IT,) ) = (00,)7) " ()7 ()™ — mgt(B) AB,. (227)

where II; (A7, F7) is the body angular momentum map, defined in (2.1.7).
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Given Hamiltonian function H4, and the Poisson bracket (2.2.6). The fol-
lowing formula

f=A{fHa} = Xa,[f), forall f:SO(3) x 50(3)" = R,

which is the directional derivative of f along the flow of X4, allows to get the
Hamilton’s equations. If we let f by each of the canonical coordinate in turn,
we obtain

(N, Ha} = —AjD(njﬁd)—Hd(Aj’ (I,) ),
(I, )™, Ha} = (M) 7' Dy Ha(A, (T, )7).
Thus the Hamilton’s equations are
A= —A(J)7,
IT = 2mgl(A) ! ((EgEgTA) (A))V .

Initial conditions

In many case, it seems easier to initialize the simulation by prescribing the posi-
tion ¢(t°) and the speed ¢(t°) in the tangent bundle T(10)@ to the configuration
space @, instead of initialize the simulation by giving two successive positions
q° and ¢' at time #° and ¢! in the discrete setting Q x Q.

Thus, for the spherical pendulum, we take into account the initial continuous
speeds @(t%), in body configuration, at time t and at point A® = A(¢°).

To incorporate the boundary conditions into the discrete description, we
take into account the following relationship at time t° when the trivialized
Lagrangian £ and its discretize version L4 are regular. We have the formula

F~La(A° FO) = FL(A(t),6(1°)),
represented by

-4

SO(3) x {A%) 5L S0(3) x s0(3)* <TE— SO(3) x s0(3),

which can be expressed as follows for the spherical pendulum
1 M\
<At (FOJg — Ja(FO)T) + 2At mgl (E5ELTA%) )) = Jw(t°),
= (FOJy — Jo(FO)T) = At Jw(0) — 2(At)*mgl (BsETAY)™

And the initial energy Ej, corresponding to the initial conditions (A(t%),&(tY)),
is calculated from the continuous Lagrangian as defined in (2.2.2). Its value is

By = 3(@(t) " Ju(t) — mgt(B)A()Bs.
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2.2.3 Alternative temporal discretization

Instead of a linear interpolation in time between ¢/ and t/+1, as we did in (2.2.4),
we now consider an interpolation preserving the group SO(3). We thus consider
the interpolation

j t—t &
A(t) = A exp mqj ,

between A7 and A7, where exp(¥7) = (A7)TAI+E = FJ. As a consequence,
we get the following approximations of & at time t/:

Nl

s T .
50(3) > w! = (AJ) AN =~ m

€ 50(3). (2.2.8)

Now the discrete Lagrangian can be written, on the interval of time At =
ti+tl — 13 as follows

1

Laa(N, ) = 2AL

(THT TV + At mgl(Ez)T MV E3.

Variational integrator

It is particularly convenient (and computationally efficient) to approximate the
exponential by the Cayley transform, i.e. U9 = cay~'(FJ) = 2(FI — I)(FJ +
I)~!. To obtain discrete Euler-Lagrange equations (2.1.3), we calculate the
variations of U/ and FJ to be

§UI =6 cay N(F7) = (2 — UW)SF/(F/ +1)™', and O6F/ = Fig.

~ A\ (A) —
We recall that (Jd\I/J) = %J Wt and we perform intermediate calculations

Dypil, - 6F7 = é Tr (5@de(\sz)T) = —%é Tr (ﬁiﬁij)

1 . — o ]
_ J -1 _ J
= oA Tr ((F + I) WAV (2] \\ )6F )

| RN I
- —%At Tr (((FJ + D)L (2] — xIﬂ)FJ) 5) .

Therefore,

%

! (((Fj 1) T (2] — @')Fﬂ‘)(A)> ,

Ty Lps(Dps L£,) =

At
Adfpoyr (T, Ly (DchdQ)) == (F (Fi +1)~'Jwi (2] — ¥ )) .
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The derivative of E&Q with respect to A7 is unchanged with respect to the first
time discretization. The discrete Euler-Lagrange equations are then

1 - —— S @Y
~ ((FJ D)L wI (2] — By R )

- é ((Fj(Fj + D)L (2] — \Tﬂ'))(A)>v

— 2At mgl ((EgEg“AJ‘)(A))V

2.2.1 Remark Given F7 = cay(07) which is comutative we observe that

&l
+
=
|

—

I
VR
|
NI

~__—
: L
/N

~

+
SIS
~__—

+

~

|
[NCR
/N

|
0| €
~__—

Then we get
b= (FJ (F9 4+ 1)L Jwi (2] — \Iﬂ))
— 1 . 1 . o
= JWI 4 5 (W x JW) " 4 2 (99T 0) W,
which may be written equivalently as
_ 1 _ 1. _ _
B(V) = J¥ + 5 (W x J¥7) + Z\Iﬂ (J¥)-¥7) —b=0,
with the Jacobian DA(¥7) given by
4 1~ 1—~i 1 _. i 1_. .7
DB(97) =J+ §\IJJJ— §J\II + Z(\Iﬂ (JUINT + 5\111(\113) J.

Discrete momentum map

Given the infinitesimal generator g (A7) = (A-j,gA-j), the discrete Lagrangian
momentum maps de : SO(3) x SO(3) — s0(3)*, in spatial coordinate, from
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(2.1.6), become

o ‘ — (AN Y
J7, (N FI) = Ad{psayr (Alt ((FJ + 1) Wi (21 — \I/J)FJ) ) ,

_ o . 1 oo 1 ~ .\ (4)
I, (N F7) = Ad{pyr <At (F](FJ +1) J‘I”(QI—‘I’]))
\4
T 47\ (4)
+ 2At mgl (EsE3A) .

In body coordinates, the discrete angular momentum map H%d are defined
in the same way as for the previous discretization, that is as (2.1.7).

Total energy

Considering that discrete energy Eg : SO(3) x 50(3) — R, at time t/, is simply
the kinetic energy plus the potential energy as in (2.2.5), then we get

j 1

By = 2(A1)2 (UL JW — mgl(Bs)TAVE;, with T/ = cay L (FY).

And, as in (2.2.7), we can define a discrete Hamiltonian Hge : SO(3) x
50(3)* — R, as follows

Hao (N (10,)7) = 3 ((0,)7) ()7 ()™ — mgt(B5)7 AV,

N —

Initial conditions

As we take into account the initial continuous speeds @(t"), in body configura-
tion, at time t and at point A® = A(¢"), and given the temporal discretization
as defined in (2.2.8), we obtain just the value of the discrete speed at time t°,
that is R

U0 = Ato(t%).
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2.3 Example
The physical constants for the 3D pendulum are chosen as
m=1kg, ¢=03m, J=diag[0.13,0.28,0.17] kgm?.
And the initial conditions are chosen as

A’ =1, w(t®) =[4.14,4.14,4.14], with time step At = 0.01.

About the results. The momentum is perfectly preserved with the two dis-
cretizations. On the other hand we observe that the trajectory obtained by the
second time discretization is more symmetrical than the first discretization, as
seen in Fig.(2.3). In this vein, it would be interesting to compare these trajec-
tories with the one obtained with a multisymplectic variational integrator, that
is when adapting the time step for a perfect conservation of energy.

Otherwise the behavior of the energy is very good. Moreover we note that
there is a particular phenomenon of symmetry for E; and Hy. So that if one
averages the two values we get almost a constant. (See Fig. (6.4).)

4} Momentum JF . Momentum

100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

3D-pendulum, - trajectory

3D-pendulum - trajectory

Figure 2.3.1: On the left : the first discretization, on the right : the second dis-
cretization. From top to bottom : a) spatial momentum map i, b) trajectory
after 9s. With time step At = 0.01.
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Discret Energy (blue), Discret Hamiltonian (red) Discret Energy (blue), Discret Hamiltonian (red)
2
2| o 500000 2| o~ o 0
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1 1
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1 — 1 7 _
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Figure 2.3.2: On the left : the first discretization, on the right : the second
discretization. From top to bottom : a) discrete Energy on SO(3) x SO(3)
(2.2.5) and discrete Hamiltonian on SO(3) x s0(3)* (2.2.7) after 20s; b) average
of the discrete energy and the discrete Hamiltonian; ¢) ratio of the average
energy with initial energy Ey. With time step At = 0.01.






Chapter 3

Spring pendulum

Introduction

In this chapter, we consider the spring pendulum where the mass is attached
to the point pivot by a spring. This time, the potential energy of the spring
pendulum is not only given by the exterior gravitational field, giving rise to the
exterior gravitational potential We,¢, but also of an internal potential

1
Wspring = §I€AX2 ’

where Ax is the elongation of the spring, and k is the spring constant. This
internal energy is similar to the energy due to the elongation of the beam

96,
or ’

1
Welongation = §EA <

where 0¢, /0x is the longitudinal strain of the beam in a point z of the line of
centroids, F is the Young modulus, and A is the cross-sectional area.

For physicists, the behavior of the elastic spherical pendulum is quite sim-
ilar to the molecular oscillations of C'O5 and with 2nd harmonic generation in
nonlinear laser optics. (See Holms [45].)

As for the spherical pendulum, the configuration space is a Lie group, so we
develop a Lie group variational integrator to study the spring pendulum. This
example is slightly more complicated than the spherical pendulum, because the
configuration space changes from SO(3) to SO(3) x R3. Moreover, this model
is fitted with the internal energy Wypring. We shall use a Lie group variational
integrator to simulate the motion of the spring pendulum.

As in the case of the spherical pendulum, we ensure that the discretization
of the speed (2.2.8) remains in the Lie algebra after discretization.

29
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3.1 Pendulum attached to the origin by a very stiff spring

3.1.1 Geometric mechanics

In this section we consider the direct product SO(3) x R?® of Lie groups, with
group multiplication and inversion given by

(A1, #1) (A2, y) = (A1h2, by +5), (A,) ' = (A", —9).

The configuration of the spring pendulum is completely determined by the
maps A and ¢ in the configuration space

Q=0C% ([0,6],50(3) X R) > (Aa¢)7

with the standard metric. We denote r(s,t) = A(t)@(s,t), such that ¢(s) =
¢(s)E3, where E3 is an unitary vector in R®, as the vertical direction, and
¢(0,t) = 0 for all ¢.

We denote w the skew matrix w = A=A, and ¢, = ¢(¢). The kinetic energy
to be

- 1 . . .
T(A ¢,A, ¢) = §m<A¢e + Ay, MA@y + Ady)
1 . . .
= o (gl + 10l + 20w, 30)) = T(A, 6,0, 9).
To see this, note that

<w¢£,@> —Tr [we(@)ﬂ = (¢odbe)Tr [WESEL] = 0.

Let IT;,; is the elastic internal energy, and Il.,; is the gravitational potential
for a mass m. The potential energy may be written as

Y4
(A, 0) + e (80) = [ GEA(/(9)] = 1)7ds — mg (A, By).

The trivialized Lagrangian of the beam is given by
L A -
‘c(Aa (ba W, (b) = 5 <wT ((g) J) W+ m||¢€||2> - Hint(Ay ¢>) - Hewt(A7 ¢)

1 N .
= §m (TT [W¢e(w¢4)T] + ||¢eH2) —int (A, @) — Tewt (A, @),
(3.1.1)

where & € 50(3), and J is the spherical pendulum inertia matrix of length ¢. We
2

note that ((‘ZZ) J > represents the inertia value of a pendulum with respect

to its length ¢y. The Riemannian metric in (A,x) € SO(3) x R? is given by

(@0 0V =7 (5[ 7) 7+ 07w,
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with (w, U), (7, V) € 50(3) x R?, and (Jw, mV) € s0%(3) x R3. The Legendre

transform is thus
2
FL(A, 6,0, ) = ((< ) ‘]>“’>

me,

We note that the trivialized Lagrangian may be expressed in R? as

N‘%

LA 6,0,9) = gm (oo x ol + 13el”) ~ Tine(A, 6) — Teae(A, 6).

Euler-Lagrange equations For the interval of time [0, 7] we get the Euler-
Lagrange equations by the condition

T .
- / LA, 6, $)dt =
0

where the variation (JA,d¢) is over smooth curves in @ with fixed endpoints
dA(0) = 0A(T) = 0, and 6¢(0) = dp(T) = 0. Given A € SO(3), @ € s0(3),
7 € s0(3), where we use the standard Lie algebra isomorphism, the hat map,
~:(R3,x) = (s0(3),[,]) defined in (2.2.1).

Given the variations dA, 0 and dw

SA =A%, D =n+on—1w, or dw=1n—+wx1n, (3.1.2)

we compute

T . .
S(L)(A, ¢) = / {mTr [00¢, (@) 7] + m(@epy, D3¢y) + My, Opy)

'l

By taking into account the formulas for 6, JA defined in (3.1.2). We isolate
the quantities 7, d¢ by integrating by parts and using the following notations

/ BA (o'l - )¢ 6¢'ds +mgTr [6A¢,EL] +mg (A, E3) }dt-

©.%) =v w= T (¥7%),

we obtain
T
56(L) = / { = (e@e)") Y = 2m (@) @)Y 7
A Ul -1, 1"
— 2mg (B A)" )-ﬁ+mgATE3~5¢é [EA P & .5¢] }dt
0

T ‘ T

(A) .
+2m <((a¢4)¢$) ﬁ> +m{@y, 5¢y)|
0
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And we get the Euler-Lagrange equations
d .
(dt (d’é) Twx (WX @) - QATE:s) -E3 =0,
d
@(Cbe X (w X @) + (W x (¢ x w)) X ¢y — gpp x ATE3 =0,
’ ’

¢l
U= ls=o=0, (¢l = 1)¢'ls=c =0,

Momentum map. The group of rotation SO(3) acts on @ by the left trans-
lation @ as

Pr:Q—Q, Pr(A @)= (RA @), where R€ SO(3).

Given £ € s0(3), the corresponding infinitesimal generator &7q : (SO(3) x R) x
(s0(3) xR) — T(SO(3) xR) x T(s0(3) x R?), associated to the action ® is given
by

£ra((8,0), (w,8)) = ((A, &), (€N, 0); (w, by), (0,0))

The Lagrangian momentum map J. : (SO(3) x R) x (s0(3) x R) — s0(3)* is
defined as

3e((0.0) 9 = 2ma  (@o00t) )

or in R3
J((A,9), (w,8) = mA (¢ x (D))

The spring pendulum is invariant under the action of S* with respect to the
vertical axis. The momentum map associated to this symmetry is

J,C((Aa ¢)7 (w7 QS)) = mA (¢€ X (&\](ﬁe)) . E3 e R.
Including external forces. In the presence of external forces, assumed to

be fiber preserving maps Fy, : TQ — T*@Q, we modify Hamilton’s principle to
the Lagrange-d’Alembert principle, where one seeks curves satisfying

T T
5 / L(A, 6, A, $)dt + / Fr(A 6, A,) - (5A,60) dt = 0,
0 0

with fixed end-points.
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3.1.2 Lie group variational integrator

Spatial discretization. We discretize the string by a one-dimensional line
element. The unstreched length of element is £. A natural coordinate is defined
by

6(s) = (1= 7)60+ e, where s € [0,0], (3.13)
with ¢g = 0 and ¢y = ¢(¢). The spatially discretized Lagrangian is obtained by

inserting the variable considered in (3.1.3) in the continuous Lagrangian (3.1.1).
We obtain

) 1 R : bo 2
Lap(A, 6,0, d0) = 5m (1@* + 1 bel?) - { BA ( - 1) — mgAg, - Eqg
(3.1.4)
Temporal discretization. For a given time step At € R, we construct the
increasing sequence of time {#/ = jAt | j = 0,..., N}. The discrete time evo-
lution of the center of mass of the pendulum is given by the discrete curve

{(A,¢]) | ¥ € ©} in SO(3) x R3. We consider the following interpolations
over the time interval [t/, /1]

Ap(t) == AMexp (Attlffj) € 50(3),
¢ ,
$n(t) =&y + ;A0 € B,

where . ‘ . o ‘ .

A¢) = @) — ¢ and  exp(P7) := (AF)TAIHL,
Note that we consistently have Aj,(At) = A7*1 and ¢, (At) = ¢) . We know
by [24] that

. J
(An(t)) A (t) = %, for all ¢ € [0, Ad].

Thus we get the following approximations of & = (A)T A and ¢, at time ¢/

.
50(3) > W =~ AL € 50(3),
R® > @) ~ ¢4 e R

The temporal discretization, on the interval of time At, of the trivialized
Lagrangian L, (A, ¢¢,w, ¢¢), defined in (3.1.4), to be

La(N, ¢}, 7, Ay) = 2215 @6) r{@j‘]d(@j) }+2me(A¢gj)2

¢ J ’
— At{ S EA <¢;” — 1) —mgpEINE; 3

(3.1.5)
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where Jg = %TI(J )I3 — J is the non standard inertia matrix, defined in terms
of the inertia matrix J of a 3D-pendulum of length £ and mass m. We note that
the discrete Lagrangian £’ may be written concisely like

2
1 J o
La(N, ¢, W Apl) = imAt(mJ m’)— At EA <|¢£| —1> —mg(N ¢}, E3) ¢,
where
) AQSJ A¢j i .
J_ e j
= A ¢f At +3 At < %o

since we have

(Vo). A¢]) = Tr [V} (Ad)"| = (¢)A¢))Tr [ WEE]| = 0.
Lie group variational integrator of the spring pendulum We approx-
imate the exponential map by the Cayley transform for efficiency. We define
(Fi,H7) € SO(3) x R? as follows
(M,07) and (F/,H7):= (M, 6)T(M*1,077) = (A)TA7 (67 = 6])) .

For all the variations § F7 = Fjg and A7 = AJ7), with £, € R%. And given
the variation of W/ = cay ~!(F7)

. A SN N —
§U9 = § cay L(F7) = (21 — $))0FI (F7 + )Y, and (quﬂ) :%J\Ifﬂ,

we obtain

Pt sFi = L (%) n ((Fﬂ’+1)—1ﬁ(21—@j)pf))(A)§
77 At \ ’
pd Jj_ J T a g\ (A) <
Das L+ 60 = At mgo]Tr | (BsET A7) 7]
) 1 . ~ o~
Dyylh = 01T (9774897

— At {sgn(gbz)EA <|¢2| — 1) + ng3TAjE3} .
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By (2.1.3), we get the discrete Euler-Lagrange equations, for j =1,...,N —1

.\ 2
L) (e -y
1 (e : — S @Y
A ( [ ) (s n e -amnee) ™)
= —2At mgg] ((EgEgAJ’)("‘))V :
%Aqsgj - %Agﬁgj‘l - égbZTr [@J’Jd(\fﬂ')ﬂ
= —At {Sgn(¢§)EA <|¢Z| — 1) - nggAng} .

(3.1.6)

Remark about the computation. From equation (3.1.6) part 1, we con-
sider the following equation

.\ 2
b= @@) (FJ’(FJ’ + )7L (2] — @J’))(A) :

which may be written equivalently as following
, 1 , 1, . g 02
I = Jui 4 = (@I o 2w (JUI _ =
B(W) = JW + o (W x (JU9)) + 5 (W7, (J9)) T

b=0. (3.1.7)
with the Jacobian DA(W¥7) given by
; 1~ 1-— 1/W : 1.
DB(W) = J+ ~WiJ — ~JWi 4+ — ( — (JU) ) I+ -0 (W) ],
2 2 2\ 2 2
Thus to solve (3.1.7) we use Newton iterations.

Discrete momentum map. For ¢ = 0E; € 50(3) and the vertical S!-
symmetry associated. By (2.1.6) we obtain the spatial discrete momentum maps

3%, (07,60, (F7, A¢)))
\%

S\ 2
J
(o (1) )

3z, (V.6 (77, 0)))

LN\ 2
. . . 1 J
:<AJ 2At mgd] (E3E3TAJ)(A)+At (‘f’;) B 7E3>-
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where

=N
A= ((FJ+I) J\I/J(2I—\IJ])FJ)) ,

B = (FI(F + D)W (21 - ) W

Discrete energy. For the given trivialized Lagrangian (3.1.1), the discrete
energy at time t/T1 as defined in (1.3.2), to be

T

-y N (@D (A)Y) A
€a <(AJ’¢%)’F+%>: 222 ( At) 7 At
) ) ) 2
1 (Ag)" Agy ¢ 197 T A

Discrete forcing. As described in (2.1.8), there exists a discrete version of
the Lagrange-d’Alembert equations for discrete exterior forces F. jt.

Given the discrete Lagrangian L4 as defined in (3.1.5), we choose the fiber
preserving forces as follows: for a given torque 9% and force §, we set

FFHNFL @)Y, (7, 1Y) = (0,0)
Fir (A, 6]), (F9, HP)) = At (30 (M, ), (FY, HY)), 35 (A, 6]), (F9, H7)) )

€T}y, 4,503) x R.

3.2 Example

The physical constants for the spring pendulum are chosen as

1
m=1kg, (=03m, J= Wcliag[o.lza,0.28,0.17] kgm?

A =(0.01)2 m?.

We choose for the Young’s modulus E the values 10°,107 and 10°. Which cor-
responds to the transition from a soft to a stiff spring, where the coefficient of

EA _ 10°°

the equivalent spring is defined as k = = 7— E. The initial conditions are

(A°, ¢) = (I, —0), wo=10"2[4.14,4,14,4.14], 452 =0.

We implement the system of equations (3.1.6) obtained via a Lie group
integrator. For the first equation we have an implicit update to determine AJ*1
at time t/*1. For the second equation, we have an explicit update to determine
¢! at time 711, In order to solve the equation F7 = (A7)~'AJ+! € SO(3) we
used a Newton iteration scheme, as described in (3.1.7).
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About the results. When we reduce the time-step we get more informations
about the trajectory, which are lost when the time-step increase.

In Fig.(3.2.1), we note the perfect conservation of the momentum map, that
is, the conservation of the symmetry with respect to the vertical axis.

3t Spring-pendulum, . Spring-pendulum Eneray E,
0.0704 14

00704

00704

00704

00704

00704

00704
(]

200 00 600 00 1000 1200 200 400 600 00 1000 1200

Figure 3.2.1: On the left : the discrete momentum map. On the right the discrete
energy with respect to the initial energy. Young modulus = 10, time-step
=0.005.

We observe that, as the spring becomes stiffer, the trajectory becomes iden-
tical to that of the spherical pendulum, and energy becomes more stable as seen
in Fig.(3.2.2) and Fig.(3.2.3).

K, +V, (blue), Discret Energy (red) Spring-pendulum,, - trajectory

b VA S VA A e

(] 200 400 600 800 1000 1200

K, +V, (blue), Discret Energy (red) Spring-pendulum, - trajectory

N U o e

(] 200 400 600 800 1000 1200

Figure 3.2.2: On the left : the discrete kinetic plus discrete potential (blue) and
discrete Energy (red), on the right : the trajectory. From top to bottom : a)
Young modulus E = 10°, and time step At = 0.01; b) Young modulus E = 10°,
and time step At = 0.005.
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K, +V, (blue), Discret Energy (red) Spring-pendulum, - trajectory

AN e

(] 200 400 600 800 1000 1200

Ky +V, (blue), Discret Energy (red)

e~ —

o 200 400 600 800 1000 1200

Ky +V, (blue), Discret Energy (red) Spring-pendulum, - trajectory

0 200 400 600 800 1000 1200

Figure 3.2.3: On the left : the discrete kinetic plus discrete potential (blue)
and discrete Energy (red), on the right : the trajectory. From top to bottom
: a) Young modulus £ = 107, and time step At = 0.01;b) Young modulus
E =107, and time step At = 0.005; ¢) Young modulus E = 10, and time step
At = 0.002.

Conclusion We have applied discrete mechanics and Lie group theory to an
elastodynamics problem to develop of a symplectic variational integrator capa-
ble of conserving the symmetries and the energy in the absence of dissipation.
This is impossible to achieve with classical methods.

The great advantage of this integrator is its symplectic nature. The con-
sequences associated with non-symplecticity, are particularly devastating for a
pendulum, because they cannot capture the periodic nature of the motion.



Chapter 4

Lie group variational
integrator of geometrically
exact beam dynamics

Introduction

The goal of this chapter is to derive a structure preserving integrator for ge-
ometrically exact beam dynamics. We use the Lagrangian variational formu-
lation of the continuous problem to obtain a Lie group variational integrator
that preserves the symmetries and symplectic structure at the discrete level.
In addition, the algorithm exhibits almost-perfect energy conservation. The
geometrically exact theory of beam dynamics was developed in Simo [107],
Simo, Marsden, and Krishnaprasad [110]. This approach generalizes the formu-
lation originally developed by Reissner [99; 100] for the plane static problem
to the fully 3-dimensional dynamical case. It can be regarded as a convenient
parametrization of a three-dimensional extension of the classical Kirchhoff-Love
rod model due to Antmann [2]. The equations of motion of geometrically exact
beams are obtained by applying Hamilton’s principle to the Lagrangian (ki-
netic minus potential energy) defined in material representation and expressed
uniquely in terms of convective variables (velocities and strains). In this paper,
we take advantage of this geometric approach to deduce a discrete variational
principle in convective representation, thereby obtaining a structure preserving
integrator. The discretization is done both spatially and temporally in manner
that preserves the geometric Lie group structure of the problem.

We derive a numerical scheme for the geometrically exact theory of beams
by using variational integrators Marsden, West [90]. These integrators are based
on a discrete variational formulation of the underlying system, e.g. based on a
discrete version of Hamilton’s principle for conservative mechanical systems.
The resulting integrators given by the discrete Euler-Lagrange equations are
symplectic and momentum-preserving and have an excellent long-time energy
behavior.

39
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In the case of the beam, the configuration Lie group is infinite dimensional.
It contains the parametrization of the centroid line together with the orientation
of cross-sections. In order to apply Lie group variational integrator to this case,
we first spatially discretize the problem by preserving the Lie group structure.

Modelling geometrically exact beams as a special Cosserat continuum (see
e.g. Antman [3]) has been the basis for many finite element formulations start-
ing with the work of Simo [107]. The formulation of the beam dynamics as
Lagrangian system immediately raises the question of the representation of the
rotational degrees of freedom and their kinematics, which can on the one hand
be treated by a local parametrization of the the Lie group SO(3) or, on the
other hand, by using a redundant configuration variable which is subject to
constraints.

Many current semi-discrete beam formulations avoid the introduction of
constraints by using rotational degrees of freedom, see e.g. Jelenic [51], Ibrahim-
begovié¢, and Mamouri [49]. However, it has been shown by Crisfield, and Jelenic
[24], that the interpolation of non-commutative finite rotations bears the risk
of destroying the objectivity of the strain measures in the semi-discrete model.
This can be circumvented by the introduction of a director triad, which is con-
strained to be orthonormal in each node of the central line of the beam, thus
it forms the columns of the rotational matrix. The spatial interpolation of the
director triad leads to objective strain measures in the spatially discretised con-
figuration (even though the interpolated directors might fail to be orthonormal).
This idea is independently developed in Romero, and Armero [101] and Betsch,
and Steinmann [8]. Romero [102] offers an overview on the effects of differ-
ent interpolation techniques concerning frame invariance and the appearance
of singularities. Furthermore, this subject is elaborated in Betsch, Menzel, and
Stein [7], Ibrahimbegovié, Frey, and Kozar [48], Jeleni¢, and Crisfield [52; 53],
Bottasso, Borri, and Trainelli [13]. The constrained formulation is particularly
popular when the beam is part of a multibody system, where further constraints
representing the connection to other (rigid or flexible) components are naturally
present. One formulation that is popular is the so called absolute nodal coor-
dinates formulation based on works like Shabana [104], Shabana, and Yacoub
[106]. Recently, Lie group formulations are becoming more and more important
in multibody dynamics, see e.g. Briils, and Cardona [17], and Briils, Cardona,
and Arnold [18]. To the author’s knowledge, none of the present works on beam
dynamics simulations uses a discrete dynamics approach which is variational
both in time and in space. However, Jung, Leyendecker, Linn, and Ortiz [55]
derives a purely static discrete equilibrium for Cosserat beams using a discrete
variational principle in space.
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4.1 Lagrangian dynamics of a beam in R?

4.1.1 Basic kinematics of a beam

We review below the kinematic description of a beam in the ambient space R?
following Simo [107], see also Simo, Marsden, and Krishnaprasad [110]. The
static version of the beam model summarized below goes back essentially to
Reissner [100] who modified the classical Kirchhoff-Love model to account for
shear deformation.

The configuration of a beam is defined by specifying the position of its
line of centroids by means of a map ¢ : [0,L] — R3 and the orientation of
cross-sections at points ¢(.S) by means of a moving basis {d(S), d2(S5),ds(S)}
(sometimes called directors) attached to the cross section. The orientation of
the moving basis is described with the help of an orthogonal transformation
A :[0,L] — SO(3) such that

d;(S) = A(S)E;, I=1,2,3,

where {Eq, Eo, E3} is a fixed basis referred to as the material frame. The con-
figuration of the beam is thus completely determined by the maps ¢ and A in
the configuration space

Q=0C>([0,L],SO3) x R*) 2 & = (A, ¢).

If boundary conditions are imposed, then they need to be included in this
configuration space. For example at S = 0, one can consider the boundary
conditions ¢(0) = 0, A(0) = Id, that is, the point ¢(0) of the centroid line is
fixed (e.g stays at the origin) and the cross-section at the point ¢(0) is fixed.
One can also add the ¢'(0) = AEj3, for an arbitrary A > 0, which means that
the centroid line at ¢(0) is orthogonal to the plan defined by E; and E5. At the
other extremity S = L similar boundaries conditions can be imposed.

Figure 4.1.1: Tllustration of the boundary conditions: A(0) = Id, ¢(0) = 0 (left),
and A(0) = Id, ¢(0) =0, ¢'(0) = E3 (right).

Suppose that the beam is in the configuration determined by (A,¢) € Q
and that its cross section is given by a compact subset A C R? with smooth
boundary, then the set occupied by the beam is

Bz{X6R3

2
X = ¢(S) + Z E*A(S)E,, with (¢',¢%,5) € Ax [0,L] } .
a=1
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For simplicity, we assume that ¢(S) is passing through the center of mass of
the cross section A.

The time-evolution of the beam is described by a curve ®(t) = (A(¢), #(t)) €
@, in the configuration space. The material velocity Vg is defined by

Z2(S.) = (A(S, 1), (S, t)) ;

and thus belongs to the tangent space T @ to @ at ®. Before defining the con-
vective angular and linear velocities, we first recall some notations concerning
the Lie algebra of SO(3).

V@(S, t) =

Notations. We denote by s0(3) the Lie algebra of SO(3) consisting of skew
symmetric matrices endowed with the Lie bracket [A,B] = AB — BA. The
adjoint representation of SO(3) on its Lie algebra is given by by AdAA =

AAA~!, where A € s0(3) and A € SO(3). We have the identity Ads Q = AQ.
¢

The convected angular velocity and convected linear velocity are the R3-
valued map w,~ : [0, L] — R3 defined by

G:=ATA and ~:=AT¢. (4.1.1)

4.1.2 Kinetic energy

The kinetic energy is found by integrating the kinetic energy of the material
points over the whole body. Given D = [0, L] x A, we have

70 6.0, 0) = 5 [ |6+ €+ €da] (5,61, ¢2)asaetae?
3 [ [lo+ 03 B+ €Ba)| 5.1, ¢2)asietae?
=5 [l + 19 (€Br+ B | st pasastag,

where p(9) is the mass density and where we used the fact that the mid-line ¢
passes through the center of mass, i.e.

/ /A (E'Ey + €2By) (5. €, €2)de de? = 0

For simplicity, we assume that p(S) = po is a constant. Using the relation
AB = —BA we get

T(A, ¢, A, ¢) = ;/OL [M Hg;HZ —&—wTJw} ds (4.1.2)

where M = pg x area(A) is the distributed loads per unit length, and J is the
inertia matrix in the body fixed frame defined as

7= ‘/ po(E1E: + €2By) de'de?.
A
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Note that the kinetic energy can also we written explicitly in terms of & as
oo 1 L 12
T(A, 6, A, ¢) = 5/ [M H¢H Ty (@TJd@)] ds (4.1.3)
0
where the (non-standard) inertia matrix Jy is defined by

h:%kﬂé&+§&ﬂ#&+§%f@wﬁ

Note that the kinetic energy T is SO(3)-left invariant, since

(WA)" 8, (WA) = ATO,A, and (WA)" 8, (W) = ATd,¢, for all ¥ € SO(3).

4.1.3 Potential energy

The potential energy is given by the sum of interior potential energy (bending
energy) and exterior potential energy (gravitational energy and energy created
by external force and torque).

Bending energy. Given a configuration (A, ¢) € @, the deformation gradient
is defined as

_9
- o5

As in [107], we use the convective variables ,T : [0, L] — R3 defined by

F(S,t) = ®'(S,t) := (N'(S,4),¢(S, 1)), where (.)':

Q:=ATA and T:=AT¢. (4.1.4)

The bending energy is assumed to depend on the deformation gradient only
through the quantities 2 and T, that is, we have

L
mmmwszmmmw,
0

where U;,,,(2,T') is the stored energy function.

We assume that the unstressed state is undeformed. That is, we have ¢'(S,t =
0) = Es and A(S,t = 0) = Id, for all S € [0, L]. Also by considering that the
thickness of the rod is small compared to its length, and that the material is ho-
mogeneous and isotropic, we can interpret, as in Simo, and Vu-Quoc [111] and
Dichmann, Li, and Maddocks [26], the stored energy by the following quadratic
model

qlznt(Q7F) = Q

DN | =

(T —Es)" OT)Diag (GA, GA, EA EIL, EI, G.J) (F_E?’),

where the elastic coeficients are GA1, GAs, EA, El\,Ely,GJ, with A; = Ay =
A, J =1 + I,. Here A = area(A) is the cross-sectional area of the rod, I
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and Iy are the principal moments of inertia of the cross-section while J is its
polar moment of inertia, E is Young’s modulus, G = E/[2(1 + v)] is the shear
modulus, and v is Poisson’s ratio.

With this stored energy function the internal energy may be written as

1 L
ine (A, ¢) = 3 /0 (T —E3)"C(T — E3) + Q7 C20Q] dS, (4.1.5)

where we defined the matrices
C, :=Diag (GA; GA; EA) and C,:=Diag(FIl; EI, GJ).

Note that the internal energy is invariant under the left action of elements
of SE(3).1

Exterior potential energy. We consider the potential energy

L
Moue(6) = / (a.6) dS, (4.1.6)

created by the exterior conservative forces q per unit length.

Stresses. The stresses along the beam are defined by
n:i— 8\I/int
’ or
where the E;- and Es-components are the shear stresses and the Es-component
is the stretch stress. The momenta along the beam are defined by
m — 8\11’Lnt
' o0
where the E;- and Es-components are the bending momenta, with respect to

the principal axes of the cross-section, and the Es-component is the torsional
moment.

=C, (' — E3), (4.1.7)

= C,Q, (4.1.8)

4.1.4 Equation of motion

We now derive the equations of motion by computing the Euler-Lagrange equa-
tions associated to the Lagrangian of the beam L : TQ — R given by

L(A, ¢, A, ) :% /OL {M H¢>H2 erTJw} ds
;/L [(I — E3)"Cy(I' — E3) + Q7 C,0] dS/L (q, ¢) dS,
’ ’ (4.1.9)

1For all rigid motions of (A, ¢) given by the transformation (A, ¢) = (RA,v 4+ R¢), where
R € SO(3), and v € R3, we have ;4 (A, ¢) = ;e (A, ¢), since

(K)T (K)' —ATA/, and (K)T (5)/ —AT¢', forall R and v.
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where we recall that & = ATA, O = ATA’ and T = AT /.
The Euler-Lagrange equations are obtained by applying Hamilton’s principle
to the action .
S(1.0) = [ L (A0, 40),6(0)) dr
to
Consider variations & — (Ag, ¢¢) of the curves (A, ¢) with fixed endpoints.
The infinitesimal variations are denoted by

oA = —

e e

d
AEa 6¢ = dig
e=0

e=0

and vanish at the endpoints. Since the Lagrangian is expressed in terms of the
auxiliary variables w, Q, and T' it is useful to compute the variations dw, 62
and 0I" induced by the variations 0A and d¢. A direct computation shows that

we have R
dw=n+wxn=n+wn

Q=0 +Qxn=n+0n (4.1.10)
T = AT5¢' +T x 1,
where 7 = AT6A. We compute

t1
06 =/
to

/L (M¢')T (&;5) + wTJ(Sw) s — /L (T = Bs)"C16T + QT C100) dS
0 0

L
— / qlég dS] dt.
0

Taking into account the expressions for dw, dT', 6 in (4.1.10), we isolate the
quantities 7, ¢ by integrating by parts and obtain

t1 L
/t VO (—MéTé(/)—&-(—o'JTJ—i-wTJ@)n)dS

g T T/ T Tc 1L
+/ (0 —E3)"'CiA") 6¢dS — [(T — E3)" C1AT6¢]

0

L L
- / ((cl(r —E3) x D) +07C,0 — (QTCQ)') ndsS — [QTCQn]g — / q’ 6¢d51 dt.
0 0
We thus obtain the Euler-Lagrange equations
an—i—w XJw+Ci(T—E3) xI—QxCyd—CoY =0
M¢— (ACy(I' —E3)) +q=0 (4.1.11)

with boundary conditions
(I' = Es3)|g_o =0
(I' -E3)|g_, =0 (4.1.12)
Q0) =Q(L) =0.
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The condition (I' — E3)|q_, = 0 means that the mid-line remains orthogonal
to the cross section at point ¢(0) at all time. The condition ©(0) = 0 means
there is no bending or torsion at the end boundary.

We note that the equations (4.1.11) can be written as follows
Jot+twxJwu+nxI —Qxm-—m' =0,

M(ﬁ—A(an)—An’—l—q:O,

where m and n are the stresses and the momenta as defined in (4.1.7) and
(4.1.8). These are the statements of balance of angular, mass and linear mo-
mentum in the convective description, as in Simo, Marsden, and Krishnaprasad
[110].

Including external forces and torques. In presence of external forces F' :
TQ — T*Q the equations of motion are given by the Lagrange-d’Alembert
principle

b /: L (A(t)7¢(t),A(t)7¢5(t)) dt + /tt F (A(t),g;(t),A(t),g;(t)) (5A(), 66(1)) dt = 0.

Writing the force as

F(A0.4,0) = (m(8,0.4,6) .5 (A 0.4,9)) (4.1.13)
we get the forced Euler-Lagrange equations
Jw~+ w x JW+Cl(F—E3) xI'—=Qx CQQ—CQQ/:Ailm
Mé— (AC1(I' —E3)) +q=73
We observe that these equations are the Euler-Lagrange equations with forcing

term added. Note that different kinds of forcing is possible like dead loads,
configuration-dependent follower forces or velocity-dependent dissipative forces.

4.2 Lie group variational integrator for the beam

4.2.1 The Lie group structure and trivialization

The goal of this section is to develop a Lie group variational integrator for the

beam. This can be done by identifying the configuration space @ of the beam

with the infinite dimensional Lie group G = C*([0, L], SE(3)), with group

multiplication given by pointwise multiplication in the group SE(3), that is
(A1, 1) (A2, d2) = (A1A2, 1 + Aroha) .

Recall that the inverse of an element is (A, ¢)_1 = (A‘l, —A‘l¢) and that the

tangent lift of left translation reads (A17¢1)(A2,¢2) = (AlAg,Alq-Sg), so that

the convective velocity can be written as

(@7) = (A, )7 (A, 9). (4.2.1)
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It is important to observe that, in this setting, if boundary conditions have to be
imposed on the configuration space, they have to preserve the group structure.
For example, both boundary conditions considered in Fig. 4.1.1 preserve the
group structure of G.

Trivialized Euler-Lagrange equations on Lie groups. When we consider
below the spatial discretization of the Lagrangian, it will be convenient to refer
to its trivialized expression.

Recall that, given a Lagrangian L = L(g,g) : TG — R defined on the
tangent bundle of a Lie group G, its trivialized expression £ = £(g,&) : Gxg —
R is defined by

‘C(gag) = L(gag)a where g = gf

The Euler-Lagrange equations for L, written in terms of £, read

d (0L 9L _ 0L
dt \ ¢ a9 By

as a direct computation shows. In the G-invariant case, we have 9L/0g = 0, so
that these equations recover the Euler-Poincaré equations, see [89].

The trivialized Lagrangian of the beam. In the case of the beam, the
Lie group is G = C*([0, L], SE(3)), therefore, we have g = (A,¢) and & =
g g = (A, ¢)" (A, ¢) = (©,7) and the trivialized expression associated to the
Lagrangian (4.1.9) reads
. I 2 IR .
L"(Avgbaw?f}/) = 5 M ||’Y|| ds + 5 w'Jw dS — Hznt(Av(b) - Hext(¢)-
0 0
(4.2.2)

4.2.2 Spatial discretization

Discretization of the variables. We decompose the interval [0, L] into N
subintervals K = [S,, So+1] of length lx = S,41 — So. We denote by T the set
of all elements K that subdivide the interval [0, L]. The configuration of the
beam at the node a is given by A, := A(S,) and x, = ¢(S,).

Given the configurations (A, X,) and (Aqy1,Xq+1) of the beam at the nodes
a and a + 1, we consider the following interpolations over the subinterval K

S~ S
An(9)| K = Agexp <l1/1a> and on(S)|k == xq + Z—Axa, (4.2.3)
K K

where S € [0, k], and
Ax, = Xq41 — X, and exp({ﬁ\a) = ATAL . (4.2.4)

Note that we consistently have Ap(lx) = Agt1 and xp(Ix) = Xq4+1. This inter-
polation was considered by Crisfield, and Jelenic [24] in order to obtain a spatial
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discretization that preserves the objectivity of the strain measures 2 and I" 2.
Note that, for simplicity, we parametrize the element K using S € [0, k] instead
of S € [Sa, Sat1]-

The associated convected variables @y (S), v, (.5), Qh(S), and T',(S) are ob-
tained by using the approximations ¢,(S) and Ay (S) instead of the original
variables ¢(S) and A(S) in their definitions. We thus get

(:Jh(S) = A}L(S)TAh(S)’

(S) = An(S)Tén(S) = An(S)T (o + SAXa/lx), (4.2.5)

0 () = An(S)TAR(S) = Pu/lic, B
(S) )" o

Th(S) = An(S)T ¢, (S) = An(S)T Axa/lx.

Note that by considering S = 0 and S = [, we obtain that at each node the
relation (4.2.1) between the material and convected velocities is preserved, that
is,

T A T A T, T :
Wa =Ny Ao, wat1 =Agp A1 and Yo = AgXa, Ya+1 = Agp1Xat1-

We use the notation A = (Mg, Aus1)?, xx = (Xa,Xas1)T, and similarly
for Ag, XK, wi, YK, to denote the variables associated to an element K with
nodes a and a + 1.

The boundary conditions in Fig. 4.1.1 are given by A,, = Id, X, = 0, or
Aoy =1d, X, =0, Ax,, = AE3, A > 0.

The discrete Lagrangian. The spatially discretized Lagrangian is obtained
by inserting the variables considered in (4.2.5) and Ay, ®; in the continuous
Lagrangian (4.2.2) and by considering approximations.

For the kinetic energy, we make the following approximations on an element
K of length lk:

1 [ Ik
5 MIP()IPdS ~ M (el + ).
1 lr T 5% T T
5/ (wi(S)" Jwi(S)) dS ~ o (wa Jwa + Wiy Jwatt) -
0

Concerning the potential energy, the expression obtained by using Aj; and
¢y, instead of A and ¢ is denoted by

Vik(Ak,xK) ::/KV;I(S)dS,

2Consider a rigid motion of (A,¢) given by the transformation (7&, %) = (RA,v + R9),
where R € SO(3), and v € R3. Since (Aq)TAgt1 = ATAgy1 and ATAX, = AT Ax,, the
strain measures are unchanged by this transformation.
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where Vi, (S) := Wint (AR (S), 0n(S)) + Yert (Pn(5)), see (4.1.5) and (4.1.6). We
approximate the potential energy Vi with the expression Vg defined by

Vi (Ak,xK) = %( (Vn(0) + Vi(lx))

T
(AZ Al;(a - E3> C, <AaT Al:l - E3>

_lx
T

Ax, T Ax, 2
+ (A= —Es) Ci (AL =" —Es)+ 5 ®a) Cata
Ik Ik (Ix)

+ Z?K <qa7xa> + lg <qa+17Xa+1> )
(4.2.6)
where we recall that Ax, = X441 — Xq, and &a =exp H(ATAyy1). In this last
expression, the exponential map can be approximated by the Cayley transform

cay : g — G defined by
A = cay (ﬁ) = (1 - ?2/2)71 (I+ 6/2)

with inverse R
Q=cay '(A)=2A-D)(A+1)"".
As a consequence, the spatially discretized Lagrangian Ly : TSE(3)? — R
and its trivialized form Lx : SE(3)? x s¢(3)? — R, over an element K of length
li, are given by

L l . .
Lic (e, xx, A, a) = M ([%al® + (%ot %)

l
+ ZK (wa Jwa + wey 1 Jwart1) (4.2.7)

— Vi (xk,Ax) = Lx(Ak, XK, WK, VK )-

The spatial discrete Lagrangian L of the total system is obtained by summing
over all the elements K, that is L = ), Lx. Assuming that all elements
K have initially the same undeformed length /i and taking care of boundary
notes ag and ay, we get

L. l . l
L((AavxaaAavxa)aeN) = Z <§M|Xa2+§wg']wa>
a€int(N)

ZK . lK
+ ) (4M||xa||2+4wfjwa) (4.2.8)
a€ON

— > Vi(xk, Ak),

KeT

where N denotes the set of all nodes, ON = {ag,an} is the set of boundary
nodes, and int(N) = {as, ....,an—1} denotes the set of internal nodes.
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Discrete stresses. Similar to with (4.1.7) and (4.1.8), the discrete stresses
along the beam are defined by

)%
n, = 871“2 = Cl(Fh - E3).

Given an element K, the associated discrete stress is defined by

1 1 Ax, Ax,
ng = =(0,(0)+nu(lx)) = = [ C1 (Ae=o2 —Eg ) + Cy (Ags1 2 — Es
2 2 Ik 5%

2.9)
The discrete momenta along the beam are defined by
oVy,
= —— = Gy,
my, 2, 28y
As before, the discrete momenta associated with K read
1
mg = §(mh(0) +my(lg)) = Cothy/lk. (4.2.10)

4.2.3 Lie group variational integrators

The Lie group variational integrators have already been presented in §(2.1.1),
but in a slightly different way. In particular we calculated the discrete momen-
tum map using the discrete one forms Gfd.

Discrete Euler-Lagrange equations on Lie groups

Lie group variational integrators, originated in the work of Moser, and Veselov
[93], were developed in Bobenko, and Suris [11; 12], Marsden, Pekarsky, and
Shkoller [86] for the numerical treatment of mechanical systems on finite di-
mensional Lie groups, by using a discrete analogue of Lagrangian reduction.
These methods were further developed and exploited in Lee [66]. In this ap-
proach, given a Lagrangian L : TG — R defined on the tangent bundle T'G of
a Lie group G, the discrete trivialized Lagrangian L4(g7, f7) : G x G — R is
defined such that the following approximation holds:

i+l

Lalg? ) ~ / L(g(t), g(t))dt,

ti

were ¢(t) is the solution of the Euler-Lagrange equations with g(¢/) = ¢ and
g(t’t1) = ¢gItl = g7 f7. For simplicity we use the notation £ := L4(g’, f7).
The discrete Euler-Lagrange equations are obtained by extremizing the discrete

action functional
N-1

Salga) = D, Lalg’, f)

J=0
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over variations of the discrete curve g7, j = 0, ..., N with fixed endpoints g°,
g~. Denoting these variations by d¢7 = ¢’n’, we have §f7 = —nf fi 4 fipit!
and the associated discrete Euler-Lagrange equations read

(P D7) = Adipy s ()7 (D) + (07 (Dgr ) =0
(4.2.11)
with ¢/ = g/ 1771,

see Proposition 3.2 in Bobenko, and Suris [11]. We review below the derivation of
these equations in the more general context of the discrete Lagrange-d’Alembert
equations. Note that given (g7~ !, f7~1), we obtain ¢ = ¢/~!f/=1 from the
second equation, and we solve the first equation to find f7. This yields a discrete-
time flow map (¢~ %, f/71) e Gx G~ (¢/,f1) €eGxG,j=1,..,N.

Notations for Lie groups. Left and right multiplication by g € G are de-
noted by Ly, Ry, : G — G, Ly,(f) = gf, Ry(f) = fg. The tangent lifted ac-
tions TLy, TRy : TG — TG are sometimes denoted as gvy := TLy(vy) and
veg := TRy (vy) for simplicity, where vy € T'G. Similarly, the cotangent lifted
actions T*L,—1,T*Ry—1 : T*G — T*G is denoted by

gag:=T"Ly,1(ay) and oapg:=T"Ry-1(ay), oy € TG,

for simplicity. This notation is used in (4.2.11).

Discrete Legendre transforms. Recall that there are two discrete Leg-
endre transforms F¥L; : G x G — T*G associated to a discrete Lagrangian
La(g?,g7t1), see (1.2.3). We write the Legendre transforms in terms of the dis-
crete Lagrangian £4(g7, f7) used for Lie group variational integrators, by using
the following relation between Ly and L4, namely,

La(g’, f7) = La(g’, ¢’ ™") with ¢/ =g/ f7. (4.2.12)

A direct computation using (1.2.3) and (4.2.12), together with the (left) trivi-
alization T*G ~ G x g* of the cotangent bundle, yields the expressions F* L :
G x G — G x g* given by

FILy= (' f,(x))") and FLh= (¢, (x7)7), (42.13)
where Wi are the discrete body momenta defined by

(Wj)i = _(gj)ingjE(Jﬁ-Adzﬁfj)fl ((fj)ilij[rfj) and (7‘1’j)Jr = (fj)lefj[,il’
(4.2.14)
see [12]
Similarly to (1.2.4), we note that the discrete Euler-Lagrange equation
(4.2.11) can be written in terms of the Legendre transforms as

FHei' =F L), ie. g =g and (7Y = (7).
(4.2.15)
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Discrete momentum mappings and subgroup actions. Recall from (1.2.8)
that given a discrete Largangian L4(¢?,¢’™!) and a Lie group action of G' on
Q, two discrete momentum maps J fd 1@ X @ — g* can be defined.

In the present case, we shall choose a subgroup H of G and consider the
action of H on G by left translation. Using the relation (4.2.12) and the expres-
sion (1.2.8), one computes that the discrete momentum maps de :GXG = bh*
associated to the discrete Lagrangian L4(g’, f7) are given by

I ) =1 (Adyy o ()" Dpoh) )
I () =7 (7Ad§gj),1 ((ga‘)flpgj.cgl) +Ad] 1 ((fj)flpfjﬁﬁz)) ’

where i* : g* — h* is the dual map to the Lie algebra inclusion i : h — g. We
note that we have the relations

IE (g, 1) = (Ad;‘gm),l(wﬁ) and Jz (g7, f7) =" (Adzgj),l(w)—)

(4.2.16)
between the discrete momentum maps and the discrete Legendre transforms
and that the discrete Euler-Lagrange equations imply the relation

LT =3, ) (4.2.17)

in b*. The quantities Ad{y;+1)-1((77)") and Ad{, -1 ((77)7) are referred to as
the discrete spatial momenta.
We note that in the special case H = G, the relation (4.2.17) is not only
implied by the discrete Euler-Lagrange equations, but is equivalent to them.
If the discrete Lagrangian £ is H-invariant, then the two momentum maps
coincide: sz =J,, = J¢,, and (4.2.17) yields the discrete Noether theorem

I (@ 7Y =T, ). (4.2.18)

Example: G = SE(3). We compute the relation (4.2.16) for the Lie group
SE(3) because of its importance in beam dynamics. We identify the Lie algebra
s¢(3) = 50(3) ©®R3 of SE(3) with R? x R3 by using the hat map (2.2.1). Via
this identification, the adjoint action reads

Ad(a,g) (0, v) = (Au, Av + ¢ x Au).

*

Identifying the dual space se(3)* with R3 x R? via the usual pairing on R3, the

coadjoint action reads
Ad{y g)-1(m,n) = (Am + ¢ x An, An). (4.2.19)
The discrete body momenta (7/)* read

(7)™ = ()7, (I7)7) and (x/)" = ()", (I7)*),
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where (I17)* are the discrete angular momenta and (I'V)* are the discrete lin-

ear momenta. Using the notations ¢/ = (A7, x7), f/ = (F/,H’) € SE(3), the
relations (4.2.16) read

TE (A, x9), (F7, H)) = Ad{ps1 ey (TF) T, (1))

— (Aj+1(Hj)++Xj+l ~ Aj“(Fj)*, Aj+1(rj)+),
JZd((Aj’Xj)7 (Fj’ HJ)) = Ad’(kAJ',xj)*l((Hj)i’ (Fj)i)

= (NIV)~ +x/ x A7)~ AV (T9)7).

Symplecticity of the properties of the discrete flow

As we already recalled, the numerical scheme (g7~ 1, ¢7) — (¢7, g’ 1) given by
the discrete Euler-Lagrange equations yields a symplectic integrator (g7, p’) +—
(¢7 T, p? 1) on T*G by using the discrete Legendre transforms F*Ly(g7, g7 ).
This implies the same property for Lie group variational integrators, namely,
the numerical scheme (g7, /) — (g1, 7*1) induced on G x g* by using the
discrete Legendre transforms F¥L,4(g7, f7) is symplectic relative to the trivial-
ized canonical symplectic form on G x g*, see [11].

As a consequence, the Hamiltonian h : G x g* — R obtained from the
continuous trivialized Lagrangian £ : G x g — R via the Legendre transform is
approximately conserved, that is, the sequence h(g?,u’), j =0, ..., N oscillates
about the true value of the Hamiltonian.

Discrete Lagrange-d’Alembert equations on Lie groups

As recalled in the introduction, the discrete Lagrange- d Alembert principle is
formulated with the help of discrete Lagrangian forces F S N AR G X
G — T*G. In the case of Lie group variational integrators, we reformulate FF o in
terms of ¢/ and f7 as follows. We define the discrete forces F £:GxG—T*G
by

Fi (g [ :=Fi (¢, 9 e TG
‘F(;r(gi+lafi) = F+( ‘ ]+1) € T*J+1G
where g7t = g7 f7. From (1.4.1) and using these definitions, we deduce that

the discrete Lagrange-d’Alembert principle for Lie group variational integrators
is

N—-1 N—-1
8 Lalg’, 1)+ D [Fa (g, ) - 69" + FH (g™t 1) - 697 TH] =0,
j=0 j=0

for all variations §¢g’ vanishing at endpoints. We now derive the stationarity
condition. Defining 1/ := (¢7)~1dg’, we compute that the induced variation of
fr=(g") g’ is

5fj — _njfj T ij]j+1-
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Taking into account of the formulas for the d¢g7, and 6 f7, we isolate the quan-
tities 7, and obtain

N-1
084="Y DgLly-0g' + DyiLlly- 61 + Fy (g, f7)- 69" + Fi (¢, f7) - (697 ) + 976 f7)

=0

-1

B {(gj)_ngfﬁf} — Ad{ps) ((fj)_lDfﬂ'['i) + ()T Dy !

Jj=1
+ ()T FL @ P+ (gj)_lfd(9j7fj)} =0,

where we use the fixed endpoint condition, that is 7° = n’¥ = 0. We thus get
the discrete Lagrange-d’Alembert equations

(97) 7 Dyr £ = Adfpays ()7 D) + () D
+ (@) FL G P+ ()T F (L ) =0
with ¢/ = ¢/ 7171,

From (1.4.2), we obtain that the forced discrete Legendre transforms 7+ L, :
GxG— G xg*are

IF‘FJFEﬂ = (gj'H, (7r§-)+) and IF‘F_Eil = (gj, (7‘(‘7]_-)_) ,
where 7T§_— 4 are the discrete body momenta in presence of forces defined by
(me) o= (@) + () TIFL (G ) = () D L+ (7 ) T F (@ L )
(%) 1= ()" = (¢)) ' Fy (¢, f)
= () Dy £+ Adipy () D)) — (6 Fr (6, ).

As in (4.2.15), the discrete Lagrange-d’Alembert equations can be equivalently
written as

Ff+£gfl = Fffﬁé, ie. ¢ T = ¢ and (7T‘J7-_-71)+ = (71'3;_—)7.

4.2.4 Lie group variational integrator for the beam
Time discretization

Using the same notation as before, given a node a, the discrete time evolution
of this node is given by the discrete curve (AZ,x?),5 =0,..., N in SE(3). The
discrete variables g/ and f7 = (g7)"1g7*! associated to this node are (AJ,xJ)
and

(FI, H3) o= (A, )T (AL ™) = (AD)TAL, (AT (™ —x))
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where, in the last equality, we used multiplication in SE(3). We denote the
time-step by At =t/ — /=1, supposed to be of uniform size.
In terms of these variables (FZ, H7), we make the following approximations.

(AN FIT
= (M) AJ &~ (M) ( - >: p—
(a0 (AT (e X _ Ha
— (4)7 5 ~ (AD) ( )

With this approximation, the kinetic energy due to rotation, at a node a € K,
reads

(4.2.20)

#I&(Am(oﬂ) ) & thTr((F — I3)Ja(Fi — I3)T)
1 .
= o T (s = F)Ju)

where we use (4.1.3) and the following properties
Tr (FJJ(FD)T) = Tr (Ju(FH)TFI) =Tr (Jg) and  Tr(Ja(F)T) = Te(FIJy).

The discrete Lagrangian LJ%( approximating the action of the Lagrangian Ly
in (4.2.7) during the time step At is therefore

; I MI|HI|? g Te((I3 — FJ)Jy)
J L a A a
Lk _a;({ 4 At 2 At - AtV (AK’XK)

(4.2.21)

The discrete action sum which approximates the continuous action over the
time interval [0, 7] is computed as follows

Sa((Aerxa)) = D > Lk

KeT 1<j<N

ZMHJ2 Tr((I3 — F7)J,
ZZ{K 3| K((SAt)d)}

a#ag,an j=0

N-1 ; ;
Ik MIH P | 1 Te((I3 — Fi)Ja)
+ {4At +a X (4.2.22)
7=0
N-1 2 i
x MIHI? 1 Te((Is = ], )Ja)
+ ];) { I A T Al
=YY Ak (Mexd).
KeT 1<j<N

Lie group variational integrator

The discrete evolution is obtained by applying the discrete Hamilton’s princi-
ple to the discrete action (4.2.22). Equivalently this consists in computing the
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discrete Euler-Lagrange equations for each node a. From (4.2.11), we get the
following systems of discrete Euler-Lagrange equations

T;L(Fgfl,Hi;l) (DFg’I‘Cgil, DHgflL‘,g‘*1>
= Ay gy T Lrg ) (DFi‘CZ’ DHﬁﬁg) (4.2.23)
+ T L 0 (DAiﬁg, Dxécgl> —0.

for all @ € N, where £J denotes the dependence of the discrete action &y
on (AJ,x), FJ, HJ), similar for £J~!. Recall that we denote by A the set of
all nodes, by ON = {ag,an} the set of boundary nodes, and by int(N) =
{a1,....,an—1} the set of internal nodes. The equations are slightly different for
a € int(N) and a € ON. Indeed, for a € int(N) the discrete Lagrangian £J is

i e ML (s = F)

a =9 AL N Jd)_ZAtVK (Ag,xg(), (4.2.24)

K>a

whereas, for a boundary node a € N, it reads

: l[( ]\4'”.[.?[]”2 ZK TI'((I3—Fj)Jd) 1 i
j_ K all” | K a)Jd) N Apy (A%J). 422
L= "a T3 At D At (A (4.2.25)
K>a
Note that in (4.2.24) the sum in the last term involves two spatial elements K,
whereas in (4.2.25) the sum involves only one subinterval.

4.2.1 Remark (Duality pairing) Before computing these equations concretely,
we recall that we identify the dual space so(3)* with so(3) via the natural pair-
ing of R3, i.e.
1

V,W)i=v.-w= 3 Tr (vI'W), (4.2.26)
where ~: R — 50(3) is the hat map defined in (2.2.1). Recall that the tangent
space at A € SO(3) reads TASO(3) = {A£ | £ € s0(3)}. We identify the cotan-
gent space TXSO(3) with Ty SO(3) using the left-invariant pairing introduced
in (4.2.26), i.e.

(aA, VA> = <A_1aA,A_1VA> = %TI‘ ((A_lozA)TA_IVA) = %Tl“ (CV};VA) .

With this identification, the cotangent lift of left translation T L, 4) : T(*A,¢)G —
TG reads

(A, 0) " Han, (¢, v)) =T Lip,g)(an, (¢, v)) = (ATan, ATv) €5e(3). ¢
(4.2.27)

Discrete Euler-Lagrange equations for an internal node. We now com-
pute the discrete Euler-Lagrange equations (4.2.23) for an internal node a €



4.2. Lie group variational integrator for the beam o7

int(N). For £ € R3, we have

Dy (e - s () - s (1)

_kq (; (Ja FI — (F2)T 1) 5) :

At
Thus, for a node a € int(N), using (4.2.26), we get

* i l . . \V2
TiLpyDgyLh = 5, (JaFi = (F)"Ja) " € R,

where Y :s0(s) — R? is the inverse of the hat map. The derivative of £ with
respect to HJ is
. Mg
D, L] =—"XHi
Ha™a = At
Thus, denoting e = (I,0), using (4.2.27) and (4.2.19), we obtain
\4 ZKM

* ] i ZK ; T
TS L i) (DFg,ch,DHg,cg):<At (1o — (ED)" )" S () Hy>

and

. . . . I v IgM
Ad(FJ HI)- ITEL(F({’H(J;) (DFé,Cfl,DH(JZ[%) = (At (FJJd - Jd(FJ) ) ) Athjz)

The derivatives of £J with respect to A and xJ are, respectively,

DAZ;‘Cg = —At Z DAﬂVK (A;(»XJK)
K>a
DL ==At Y DV (Me,xh)

K>a

so that, by (4.2.27), we get

T! Ling sty (Dingoy £k ) = =28 S (A1) D Vic (e xko), (M) D, Vie (M, ) )
K3a
where D Vi (N, x%) € Ty, SO( ) == T); SO(3) and (A7)"D 4 Vi (A, %)) €
50(3).
Putting together the computations we made above, we obtain that (4.2.23)
is equivalent to the two equations

lﬁ j—1 J—I\T _ L J — J
AL (JdFa (F7) Jd) At (F Ja = Ja(Fy) )
\Y2
=AY ((AJ)TDAJ VK(AK»XK)) (4.2.28)
K>a
MZK T i1 MlK AV ] ]
Ty (BT HIT = TR = A ()T D Vi i)

K>3a
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The second equation can be equivalently written as

Mix ;.  Mig

A AxT - TR AR = At Y Dy V(A xi),

K>a

where AxJ := xJ*1 — xJ (not to be confused with Ax, defined in (4.2.4)).

Discrete Euler-Lagrange equations for a boundary node. They can be
computed in the same way, by using the discrete Lagrangian (4.2.25) instead
of (4.2.24). The resulting system can be obtained from the system (4.2.28) by
multiplying the left hand side by 1/2 and bearing in mind that the sum involves
only one element for boundary nodes.

Computation of the potential terms. We now compute explicitly the
terms D, Vg and Dy, Vi due to the potential energy Vg given in (4.2.6). Note
that two situations can occur for a fixed node a. Either K is the element whose
right node is a or K is the element whose left node is a. For the computation
below, we fix an element K and denote by a its left node and by a + 1 its right
node. Recall that the variable 9, in (4.2.6) is given by 1, = exp {(ATA,41).
This expression is approximated using the Cayley transformation, i.e. we write
e = cay H(ALA,41). For §A, = A & € Ta, SO(3), we have

D, %0 0 = 2(680) " Aa 1 (AL Auys + 1)
—2(Ag Aasr = D(Ag Aasr + D)7 H0A Moy (Mg Aoy + 1)1

(B2 €+ AT

So we get

[ Ax T Ax 1
Dy VK(SAa:£ AgJ_E?) Cl(SAE = +7wgC2DA ta - 0,
@ 2 5% lx Ik ‘

T
_ I ((AT2% _g,) ciaaTax, |- 2T (nga(DA Da - 5Aa))
2 5% 2l “

(4)

1 Ax T ~
=—-Tr | (AfAx, (AT==2 —E; ) C ¢
2 lg

— ot (AT " Gl (du-21)) V).

Then, using the identities

—% Tr (MAE> = (MW . ¢ and ((VWT)(A)>V = %W x v, (4.2.29)
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for all £,v,w € R? and 3 x 3 matrices M, we get

(ATDs, Vi)Y =3C <AZAZX“

+11<((I+Aa+1 «)" Cat (% ))(A)>v

K

— E3> X AzAXa

Now, given QZ,I =cay Y(ATA, 1), for SAqq1 = Aa+1§AE TA,.,50(3), we have
Diayira - 0hars =20T00 1 (AT Ay + 1)
—2(ATA o — D(AE Ay + )AL SN (AT A + D)
=(2I - Qz)\a)AgAa—s-lg(AgAaﬂ +1)7!
So we get

Ax

1 . T 1
DAa+1VK '5Aa+1 = 5 (Azj;LllK - E3) 015A3+1Axa + Ew(TC?DAaﬂ'IZ}a : 5Aa+1

1 Ax, T 1 . ~
= ——Tr( (AT, 22— By) CéAT, Ax, | - ——To (nga(DAaHz/Ja : 6Aa+1))
2 Ix Nk

A
1 T r Ax, T W
= —§Tr Ag 1A% | Ag—— In -—E3 | C; 3

1 _ - (A)
— 5 Tr (((AgAaH + 1) Coppa (21 — %)AaTAaH) 5) ;

21k
which shows, by using (4.2.29), that
1 Ax,
(Ag1Da,iy Vi)Y =§C (AaT+1 e E3> x Ag 1A%,

1 T 1~ ~ T (A) Vv
+ E ((Aa Aa+1 + I) CQwa(2I — wa)Aa Aa+1) .

The derivatives of Vi with respect to x, and x,41 are, respectively,

Dy Vi - 0%0 = (AT A%,

T
“ —E3> Ci(—ATsx,)

Ax, l
(AaTH e ES) Cl(_Ag-i-l(SXa) + ?K (Qa, 0%a)

Ax,

T
Dy, Vi - 0Xq41 = (AT —E3> C1(AT6x,41)

Ax, T l
<Ag+1l - E3> Cl(A§+15Xa+1) + ?K <Qa+1,5xa+1> .

By making use of all the above computations, we can now write explicitly the
discrete Euler-Lagrange equations for the beam.
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Summary of the discrete Euler-Lagrange equations. Discrete Euler-
Lagrange equations for rotations:

(i) Interior nodes a ¢ {ag,an}

lK . o \% ZK . : \
F_] l_Fj INT —7F‘7 _ F]T
As (JaF} (FI~H"Jq) At< 9 Ja— Ja(F)T)
~arfJoy (A5 ) waTan 4 o (M5 ) T,
1 T\ -la (A (A"
+i (((I+Aa+1AG) Cotha (zpa _ 21)) )
1 — ~ A\
+r (((AglAa + I)_lc2wa71(2l - wafl)AZ;lAa) ) }
K t—ti
(4.2.30)
(ii) Left node a = ag
l . . Vi l . . v
oag (JaFl = (TN Ia)" = o (Flda = Ja(F)T)
Ao, (aT5%e _g,) « ATAx,
2 Ik
1 T N (@Y
1o (((I+Aa+1Aa) Coiy (1/}a - 21)) )
t=tJ
(4.2.31)

(iii) Right node a = an

Ik

, , I . ,
g (e = ELNTI) = g5 (Flda = Ju(EL)T)
1 Ax,_
- At{2 [Cl (AaT >l<a 1 _E3> " AaTAxal]
K

Ik

1 T e ~ 7 (Y
+— (((AalAa+I) Catha-1(2 = Pa-1)A 1 Au) )

t=tJ

(4.2.32)

Discrete Euler-Lagrange equations for positions:
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(i) Interior nodes a ¢ {ag,an}

kM IgM
At Ax) At Ax)
“adiae (arBXe _g ) C LA, o (a7 BXet gy
2 lK 2 lK

e (AT, 2% ) La,c, (ATE%e g,
2 lx 2 lg

—qua} (4.2.33)
t=ti
(i) Left node a = ag
M M
Y Y
Al ia,c (ATE%e _ g,
2 5%
1 Ax, l
+-Ae1Cy Af+1— -E3) - ﬁq%
2 Ik 2 i
(4.2.34)
(iii) Right node a = an
lxgM , lgM _—
N I Sy
oAt Tan T QA Taw
1 Axq
= At{ — iAa_lcl (Az—l I 1 E3>
1 Ax,_ l
~ 50 Cy <A3l;1 - E3> —ng} . (4.2.35)
t=tJ

Note that the equations for translation and rotation are fully decoupled
for the derived scheme. The later equations can be solved explicitly for the
unknown translation, while an iterative method is necessary to solve for the
unknown rotation (see Section (4.3) on examples for further details).

4.2.2 Remark (Discrete versus continuous) We compare the discrete equa-
tions of motion to the continuous equations (4.1.11). Given FJ = (AZ)TAJ*!
as a relative rotation of cross-section associated to node a between times ¢/
and /! we note that the first line of equations (4.2.30)(4.2.32) divided by
the time step At is the discrete analog of the term Jw + w X Jw of (4.1.11).
This is consistent with the analog term arising in the discrete Euler-Lagrange
equations for rigid bodies obtained by Lie group variational integrators, see
[65]. The right hand side of (4.2.30)—(4.2.32) corresponds to the contribution of
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the discrete potential force at time /. By comparing with (4.1.11), we observe
that the right hand side is the discrete analog of the potential term in (4.1.11).
The same holds for a comparison of (4.2.33)-(4.2.35) to the second equation in
(4.1.11).

Discrete body momenta and Legendre transforms

In the case of the beam, the discrete momenta read

(ﬂ—j)i = ((ﬂéo)ia ceey (WZN)i)v

where (77)* are the discrete body momenta corresponding to the node a € N.
Each of these momenta reads (77)* = ((IT2)*, (I'))*), where (IIJ)* are the
discrete body angular momenta and (I'))* are the discrete linear body momenta.
From (4.2.14) we know that these discrete momenta are given by

(m)™ = (@)~ (T%)")
= TS Ling sty (Dag £l Dy £) + Al o T Ly sy (Dieg £, Dy £1)
)" = ()T, (T)T)

= T;L(Fg—l Y (ngflﬁ'é_l, DH(JL’—lAC(J;_l) .

(73

Their concrete expression is easily obtained from the computations made above
in §4.2.4. In particular, as we already mentioned, there are some slight differ-
ences between the formulas for interior nodes and for boundary nodes.

The discrete Euler-Lagrange equations (4.2.30)—(4.2.32) can be equivalently
written as

()" =), aeN

while the discrete Euler-Lagrange equations (4.2.33)—(4.2.35) can be equiva-
lently written as . '
T T =T))", aeN.

Recall from (4.2.13) that the expressions of the momenta appear in the
discrete Legendre transforms, whose a-component read

(A, x3), ((IT) =, (T9) 7))
((AQ,xq)(F, HY), (1), (T3) 7))

(F~L3)a
(F* L))o

Invariance and discrete momentum maps

From the expression (4.2.21) of the discrete Lagrangian of the beam, we obtain
that it is H-invariant if and only if the potential Vi is H-invariant. From
(4.2.6), we see that when the conservative force q is absent, the Lagrangian is
left-S E/(3)-invariant under the action ® given by

(I)(A,v) ((Afp XZ,)GEN) = (AA(J“ v+ AXZ)GEN'
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Note that this action is the left translation by the subgroup SE(3) C SE(3)N
(diagonal inclusion). The Lie algebra inclusion 7 : se(3) — se(3)" reads i(f2, v) =
(Q,V)aen, and its dual map is given by

* (Mg, Ta)aen) = Y (Iq, Ty) € s¢(3)".

aEN

Using the general formula (4.2.16) relating the discrete momentum maps for
left translation by subgroups and the discrete body momenta, together with
the formula (4.2.19) for the coadjoint action for SFE(3), we get

TE (030, (P, 10)) = 0 (Ao ooy (AR TD0) )
= i* (AP IE) T + %7 < AP T AT DY) P aen)

- (Z ASFHIE)Y 4+ x5 AZPHTY) T, ST AT ) .

aeN aeN

Similarly, we get

I (M x7), (F7, H)) (Z AJIE)™ +x), x AT, Y AL(TY) )
aeN aeN
By the general theory developed earlier, these momentum maps coincide since
the discrete Lagrangian is SFE(3)-invariant.
The discrete Noether theorem (4.2.18) ensures that when the discrete Euler-
Lagrange equations (4.2.30)—(4.2.35) are fulfilled, then J., is conserved in
5e(3)*, ie.

JCd((‘Aj?Xj)v (Fja Hj)) = JEd((Aj_l,Xj_1)7 (Fj_l, Hj_l)).

We denote by
(7

ang>

Jizn) = Jﬁd((Aj7xj)’ (Fj,Hj)) (4236)

the discrete angular and linear momentum map.

In general, the presence of external forces breaks the SE(3) symmetry. For
example if we consider the gravity force q, = —m,gEs3, then the discrete La-
grangian is S'-invariant under the S'-action

By (AL, x2)en) = (exp(0E3) AL, exp(OE;)x] ) aen-

In this case, the Lie algebra inclusion i : R — se(3)N reads i(0) = (#Es, 0)qen,
and its dual map is given by

i* ((Haar aGN ZH c R.
aeN
Applying the same formulas as above, the discrete momentum maps are
IE (W), (F H7) = Bg - > AP (AT 4+ x s A ()
a€EN
I, (N, x7), (F/, HY)) =E3- Y AL(IV), +x) x AJ(TY) ™.
a€EN

(4.2.37)
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As above, these two momentum maps coincide and the discrete Noether theorem
ensures its conservation.

Approximate energy conservation

The spatially discretized energy is given by the Hamiltonian H associated to the
Lagrangian (4.2.8) via Legendre transformation. We work with the trivialized
expression of H given by

1 1
(%o o Tadaen) = 3 (MW+<rmMm>
acint(N) QZKM 2lK
1 1
+ (||Fa2—|—(J_1Ha)THa> (4.2.38)
a€ON lkM lx
+ Z Vi (xk,Ak).
KeT

Initial conditions

Suppose that the initial configuration of the continuous system on G is given
by (g(0),£(0)) € G x g. In order to solve the discrete Euler-Lagrange equations

g7 T =g and (TH)F = (r))7,

we have to initialize them by choosing ¢° and f°. Given the initial conditions
(9(0),£(0)) we define g° := g(0), (7)) =: 2£(g(0),£(0)), where £ is the con-

o¢
tinuous Lagrangian, and f° is defined by solving the equation
0y—1 0 0 oL
(1) DpoLals’. 1) = G 0).(0).

where the left term of the equation is defined in (4.2.14).

4.2.5 Including external torques and forces

As we mentioned in §4.2.3, external forces can be incorporated in the variational
integrator by using the discrete Lagrange-d’Alembert variational principle. In
the case of the beam, external forces are given by expressions F' of the form given
in (4.1.13). A spatial discretization yields expressions F((Aa,xa,Aa,Xa)aeN)a
at each node. The time integral of the virtual work

T
/ Z F(<Aaaxa7Aa7ka)a€N)a ' (6Aaa 6Xa)dt
0 aeN

done by these forces in the Lagrange-d’Alembert principle is then approxi-
mated via temporal discretization by an appropriate choice of the expressions
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Fi (A xI+ ) (FI HY)), and F; (A, x7),(F7, H7)),. Here for simplicity
we restrict ourselves to a one-point quadrature by choosing
fj((Aj+17xj+1)7 (FjaHj))a = (070)
Fr (N x7), (F9, 1))y = A (0 (A, x7), (7, 7)), &5 (A, ), (F7, FP))
€ (*Ag,xg)SE(?’)

According to what was recalled in §4.2.3, in presence of external forces, the
discrete body momenta (I12)* and (I'J)* are modified as follows

(1% )" = ()"
J + _ (T7iNt
(Fra)" = (1%) _ S (4.2.39)
(I )™ = (I) ™ — At(AL) "'y (A, x7), (F7, HP))
(T )~ = (T9)™ — At(AD) 1§, (A, x7), (F7, HY)).

The discrete Lagrange-d’Alembert principle yields the equations
()" = ()" and (I ,)" =(T%,)",
or, using (4.2.39), by

(IGH7T = ()™ — At(A)) ' (A, x), (F7, HY))
(D37 = (T0)™ = AuA)) 18, (A, ), (F7, HY)).

In absence of external forces, one recovers the discrete Euler-Lagrange equations
(4.2.30)—-(4.2.35).

4.3 Examples

4.3.1 Beam with deformed initial configuration

As a first example we consider a geometrically exact beam lying in the (E1, E3)-
plane with an initial deformation as depicted in the first picture of Fig 4.3.1. We
choose the following parameters: beam length L = 0.5, mass density ¢ = 1000,
square cross-section with edge length a = 0.05, Poisson ratio v = 0.35, and
Young’s modulus E = 5-107.

For the numerical simulation a constant time step At = 10~ and an equidis-
tant spatial discretization of the central line of the beam by 22 beam elements
are chosen. We consider this problem without potential or external forces, such
that ez (¢p) =0 and F =0 (in (4.1.13)).

We implemented the equations (4.2.30)—-(4.2.35), obtained via the Lie group
integrator approach. For equations (4.2.33)—(4.2.35) we have an explicit update
to determine x, at time j + 1, while for (4.2.30)—(4.2.32), one has to solve an
implicit expression of the form

(FJ - JFT) =a.
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Figure 4.3.1: Beam with deformed initial configuration: snapshots of the motion
and deformation at ¢t € {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}.

In order to solve this equation for F' € SO(3), (the vector a and the symmetric
matrix J being given), we use a Newton iteration method based on the Cayley
transformation as described in Lee [66] (§3.3.8).

Snapshots of the motion and deformation of the spatially discretized beam
are given in Figures 4.3.1 through consecutive congurations for a total simula-
tion time 7" = 1. The elements of the beam are coloured by a linear interpolation
of the sum of the norms of the stress resultants |ng|| + |[mg|| in the elements
K =1,...,22, as defined in (4.2.9), (4.2.10).

Fig. 4.3.2 illustrates the structure preserving properties of the variational
Lie group integrator. Since the scheme is symplectic, the total energy of the
beam (on the left) is not exactly preserved but numerically bounded lead-
ing to good longtime energy behavior of the simulation scheme. The plot-
ted energy is obtained by evaluating the Hamiltonian (4.2.38) on the solution
(A, xI 117, T9) e n of the discrete Euler-Lagrange equations (4.2.30)-(4.2.35).

As expected from the discrete Noether theorem (§4.2.4), the two components
(angular and linear, see (4.2.36)) of the discrete momentum map J ., associated
with SFE(3)-invariance are preserved up to numerical accuracy, as shown in the
middle and right plots of Fig. 4.3.2. Note that all momenta are zero in the
presented case.
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Figure 4.3.2: Beam with deformed initial configuration: evolution of energy
(left), angular momentum (middle), linear momentum (right).

4.3.2 Beam with concentrated masses

To demonstrate the performance of the derived Lie group variational integrator
including forces via the discrete Lagrange-d’Alembert principle, we consider a
geometrically exact beam with a concentrated mass m at the middle node and
concentrated masses M at the boundary nodes and with a three-dimensional
loading acting on the concentrated masses (as depicted in Fig. 4.3.3).

This is a standard benchmark example which has been previously addressed
e.g. in [9] with slightly different loading. The beam is initially aligned along
the E3-axis and undeformed. For this problem, the following parameters are
used: beam length L = 2, concentrated masses M = 10 and m = 1, mass
density o = 1000, square cross-section with edge length a = 0.01, Poisson ratio
v = 0.35, and Young’s modulus £ = 5-10'°. The temporally bounded external

Figure 4.3.3: Beam with concentrated masses.

loading has the form
F.(t) = f(t)Pk for k=1,2,3
with

P, =P; = —1.0E; + 1.6E, — 1.2E;
P, = 1.0E; — 1.6E; + 1.2E;
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and the function

2wt
1001 — f t < Tioa
£(t) = < (zrd)) oF 1= Hload
0

for ¢t > Tjoaq

for Tioaa = 0.1. No other external loads are present in this example. Further-
more, the beam’s initial translational velocity is linearly distributed as

1

with the function

(5) = 55—-11.05 for S<L/2
- | —14.5+11.0S for S > L/2

and the initial rotational velocity €2(S,0) is zero.
The simulation is based on a constant time step At = 107° and an equidis-
tant spatial discretization of the central line of the beam by 22 beam elements.

Snapshots of consecutive congurations for a total simulation time 7" = 0.3 are
shown in Fig. 4.3.4.

SANNaiE

AL
TS

Iy

I

X

i

J _
I

Figure 4.3.4: Beam with concentrated masses: snapshots of the motion and
deformation at ¢ € {0,0.03,0.06,0.09,0.12,0.15,0.18,0.21,0.24,0.27,0.3}.

For a comparison, the same problem is simulated using an energy-momentum
preserving time stepping scheme with finite elements in space as described in
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Leyendecker, Betsch, and Steinmann [73]. For further energy-momentum con-
serving simulations of geometrically exact beam dynamics using a finite element
space discretization see e. g. Romero, and Armero [101].

In Fig. 4.3.5 the energy and the angular momentum, and in Fig. 4.3.6, the
linear momentum (bottom) of the beam are depicted for the two methods,
the variational Lie group integrator and the energy-momentum time stepping
scheme with finite elements in space.

Figure 4.3.5: Beam with concentrated masses: evolution of energy. Left: Vari-
ational Lie group integrator. Right: Energy-momentum time stepping scheme
with finite elements in space.

Figure 4.3.6: Beam with concentrated masses: evolution of angular momentum
(top) linear momentum (bottom). Left: Variational Lie group integrator. Right:
Energy-momentum time stepping scheme with finite elements in space.

Both methods provide very similar results for the evolution of these quan-
tities: After the external loads vanish at Tjoaq = 0.1, the total energy and all
components of the angular and the linear momentum are conserved.

The evolution of the stress resultants nx (shear stresses and stretch) and
my (bending moment and torsional moment) in the spatial elements 1, 12 and
22 is depicted in Fig. 4.3.7. Again, the results obtained by the variational Lie
group integrator (left) nicely coincide with the benchmark solution obtained by
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the energy-momentum time stepping scheme with finite elements (right).

Figure 4.3.7: Beam with concentrated masses: evolution of two shear stresses
and stretch (top), two bending momenta and torsional moment (bottom)
in elements 1,12,22. Left: Variational Lie group integrator. Right: Energy-
momentum time stepping scheme with finite elements in space.

4.3.1 Remark The implementation and testing were performed by Leyen-
decker (University of Erlangen-Nuremberg) and Ober-Blébaum (University of
Paderborn).

4.4 Alternative temporal discretization

4.4.1 Lie group variational integrator for the beam

We now present an alternative temporal discretization of the variables A, (¢),
(denoted discretization d2). Instead of a linear interpolation in time between
AJ and AJT!) as we did in (4.2.4), we now consider an interpolation preserving
the group SO(3). More precisely, we use the temporal analog of the spatial
discretization we used in (4.2.3) to preserve objectivity. We thus consider the
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) — )
(Aflexp (tAtt \I/ZI), x7, tAt ),

between (AJ,x7) and (AJ+! xI+1) where exp(¥d) = (AJ)TAIT! = FJ. Note
that we didn’t change the discretization of the variable x,(t). As a consequence,
we get the following approximations of &, and 7,, at time #7:

interpolation

, . Wi
s0(3) 531 = (M) A ~ 2 € 50(3),
r_; (A)TAx]  H)
X N —
a At AL

(4.4.1)

R® 5 4] = (A)) € R

The discrete Lagrangian LJI'( approximating the action of the Lagrangian
Lk in (4.2.7) during the interval [t7,#/T!], over elements K of length I, is
therefore

: I M||Hi Wi Jwi o
@‘:Z{f HAtH+4( )At }_AtVK(AJK’X‘}f)’

where we took into account the potential energy Vi (A, xx) associated to the
element K.
Then the discrete action is as follows

lg M |H) L ZAEWAZE
S Z{ I H+2()At }

a#ag,an 1<j<N

e M|HL|? 1 (93)T05
+Z{4 At T4 A

acK

1<j<N
e M|HI|® 1 (W )T I
*Z{4 A a1 oA
1<j<N
=3 > Ar v (Mexk).
KeT 1<j<N

The discrete Lagrangians £ associated to nodes a are different for a €
int(N) and a € ON. Indeed, for a € int(N) the discrete Lagrangian £ is

. 5% ]\4“13””2 (\IJ])TJ\I” . .
L= 5 a v 2 At - D AtV (A%"XJK)’
K>a

whereas, for a boundary node a € N, it reads

e MIHD? Lk () TJ\Iﬂ
J —
L= A 'l 1 K%:ANK( K’XK)

Then using the formulas

1/—\

~. o ~ .\ (A)
SW = § cay M (FI) = (21 — $)6FI(FI + I)™'  and (Jd\y;) =3IV
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and denoting §FJ = FJ ¢, we have

. Ik P Ik L
J.S§FpI = 2K J J _ _ 'K J Tl
DLt} - 0F] = S I (5\I/aJd(\I/a) ) g I <5\IlaJ\I/a>

l _ — . _
=K <(Fg + 1)~ 1w (2r — q/g)éFg)

VAN
L i -1 70) sivp )\ 2
- ((Fa ny J\I/a(2I—\Ila)Fa) £).

So, using (4.2.26), we get

\
o , — AW
T} Ly Dyl = 557 (((F; +1)hIwh (2l - Wg) ) :

With respect to HJ we have

Ik .

DLl =M-—" HJ,
Ha™a 2At T

so, denoting e = (I,0), using (4.2.27) and (4.2.19), we obtain

TS‘L(Fg,Hg) (DFgEZ» DHZ;££>

— A\
_ ) Ik i =179 (9]  Gi i LK (i \T i
_ {ZAt (((Fa + 1) W20 — B F L Mo ()T H]

and

Asz£7Hi)—1 (TI*LF;ZDF({££7 TSLH({DH({EZ)

,\ A\
_ ) Ik Jimi -1 700 =i Ik i
_ {mt <(F (F/ + 1) T 2T — §) L M

We note that FJ (FJ+1)~" = (I+(FJ)T)~!. Then given Da, Vg, Da,,,Vk,
Dy Vg, and Dy, Vg already calculated we can now write explicitly the dis-
crete Euler-Lagrange equations for the beam.

Summary of the discrete Euler-Lagrange equation. Discrete Euler-
Lagrange equations for rotations :
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(i) a ¢ {ao,an}
— (AN
lAKt (((1+Fﬂ - 1J\1/2;‘1(21—@g—1)Fg—1) )

((I+ (FHT 1.]\1/?(21 \1:9)>(A)>v

{ Cl( Axa g ) foAxa_1+%C1 (AgAzxa _Es) x AT Ax,
K
1 (A"
E I+ Aa+1A C2wa (dj - 21))
1
ZK< A +I 10271}0, 1(2-[ wa 1) a— lA }
t=tJ
(4.4.2)
(ii) a = ag
lK i - . ~ . . (4) !
o ((1 + RN 2l — \Ifﬁ‘l)Fé”)
Ik j T AR
- g (e -w)
- At{;(h (AaT Alx“ - E3> x AT Ax,
K
1 (A"
o (AT 80) " Ca (4 —21)) (4.4.3)
t=tJ

(i) a =an
\
I i—1y—1 /g\—l Ji—1 j—1 “
AL I+ F7H) 7 Juy (2l -V, HF]
Ik ; T NN
~ A7 ((I+(Fg)T)1J\II?1(21—\I/{l)>

—adlle, AaTAX“*KES x ATAx,_,
2 Ix

1 T 1S > T A\
+r <((Aa—1Aa + I) CQQ/)a—l(QI - d)a—l)Aa_lAa) )

K

t=tJ

(4.4.4)
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We consistently observe that the term Jw + w X Jw and its spatial analog
Co + Q2 x CoQ) appearing in (4.1.11) are now discretized in the same way.

Discrete Euler-Lagrange equations for positions, are unchanged with respect
to the first discretization. That is, they are (4.2.33), (4.2.34), and (4.2.35).

Some remarks about the computations

From equation (4.4.2), (4.4.3), (4.4.4) we need to consider the expression

((1 + FT)=LT0 (21 — @)) ~3,

F = cay(¥) = <I—\§> (I—I-\;).

Defining A := %, we can write the left hand side as

where

4 ((I (= A)(I + A~ TAI - A))(A) =2 ((1 + A)TA(I — A))(A)

=2(I + A)JA(I — A)
—2 (TK +[A, JA] — AjKA)
=2 (ﬁ +AXJTA+ (A - JA)A)
where A € R? is such that A = A. We have JA = 2(J;A)A).
So the initial equation reads
2(JA+AxJA+(A-JA)A) =a,

or in terms of ¥,
1 1

which may be written equivalently as the non-linear equation
1 1
A(T) :J\I/+§(\I/ X J\I/)+Z\IJ((J\I')-\IJ)—a:O,
with the Jacobian DA(V) given by

1~ 1~ 1 1
DA(V) = J + SV =35IV + 1(\I/ (JONT + 5@(@)?}.

4.4.2 Discrete body momenta and Legendre transforms

To calculate the momentum and the Legendre transformation, with or without
constraints, we use the same results as with the first discretization, that is
(4.2.4) to obtain the discrete body momenta when there are no constraints,
and (4.2.39) with constraints.
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4.5 Asynchronous Lie group variational integrator (AVI)

We develop a particular Lie group variational integrator in the multisymplectic
field-theoretic setting. One replaces the discrete time points with spacetime dis-
cretization. There are many references for the multisymplectic formalism (e.g.
Gotay, Isenberg, Marsden, and Montgomery [36]). The discrete multisymplectic
variational view of continuum mechanics was developed in Marsden, Patrick,
and Shkoller [85], in Bridges, and Reich [16], and in Marsden, Pekarsky, Shkoller,
and West [88]. Then after the class of asynchronous variational integrators (AVI)
for non-linear elastodynamics was described in Lew, Marsden, Ortiz, and West
[69; 70] in order to allow different time steps for different elements K in the
mesh. (They emphasized potential computational savings for problems with
localized singularities.)

Engineering researchers already explored spacetime discretization (e.g., Ma-
sud and Hughes [91]) instead of working just in space with fixed time steps.
After the development of AVIs, Lew in his thesis [68] illustrates their perfor-
mance through complex multiphysics problems involving multiple timescales.
More recently Ryckman and Lew [103] employed these algorithms in order to
study impact and contact problems, taking advantage of asynchronous time
stepping.

We now derive the discrete equations of motions for the beam, by combining
the tools of two variational integrators: asynchronous variational integrators
appropriate for continuum systems and Lie group variational integrators ap-
propriate for mechanical systems defined on Lie groups. We review below some
basic facts needed from these two approaches.

4.5.1 Multisymplectic geometry

In continuum mechanics, the configuration is a mapping from a reference con-
figuration B C R™ to an ambient space & = R™ which defines the configuration
at each time ¢, in the time interval [0, T].

In a multisymplectic space-time formulation one considers the base space
X := R x B which is defined to be spacetime, and we define the configuration
space Y := X x S, where the configuration bundle Y is a fiber bundle over x.
With the projection map myy : Y — X, and the section ¢ : X — Y, such that
Txy ©p = Id.

Ty, ly
Y
ite
TxJl(y)
X

Figure 4.5.1: Jet bundle J(Y') over Y

U

Where ¢ maps a time ¢ and a material position X to the corresponding de-
formed position x = ¢(t, X). We note that it is the classic deformation maping.
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The configuration of the system is specified by a map ¢ : Y — Y, where U
is an open subset of X', with the given base space configuration ¢y : U — X,
which verify ¢ = ¢ o (px)t, or mxy 0 ¢ = dx.

Given the configuration space Y, we construct the jet bundle J'Y over Y
with fibers over y = W;(%,(t, X)) € Y4 x) consisting of linear maps 7 : Ty x)X —
T,Y satisfying

Tryy 0oy =1d.
And we define the jet extension of ¢ by j'y : X — (X, T x)¢), which is a
section of J1(Y') regarded as a bundle over X, that is it verifies

Txsy) 0 il =Ia

We call jlo the first jet of . In the terminology of the motion described by
the deformation mapping ¢, the components of the first jet of the section ¢ are

jlgo(t,X) = ((t, X), o(t, X), o(t, X), F(X)),
where F'(X) is the gradient deformation. And the Lagrangian L is now defined
on the jet bundle J}(Y) — X, with image L(j'p(X)) € R.
AVIs

The idea is to replace the infinite dimensional configuration space by a finite
dimensional configuration space with a basis; the latter is the frame of the
algorithm. (See [69; 70] for more details.)

In discrete mechanics, we are given a fixed reference mesh 7 in B. Associated
to the nodes of the mesh, we defined the nodal base space Xy of points in X
and the elemental base space £; which encode the connectivity between sets of
nodes and elements K € T. Thus we get the discrete base space configuration

ba,x = {Xa, Ea}s
Xyim (X0 = (1, X,) | a € T, 1<i<na),
fa={B} =X} |a€ K, t, €0k} | KeT, 1<j<nk},

where X} = (¢}, X,) is the position of node a at time ¢} in the base space and
for each element K of the mesh, O and ©7; are defined as

Ok = {to =t <. <t ' <tix}

ol = U {@K, N [t;’{,tggl]}.
K'eT | K'NK#)

We denote the entire time set by

o= J ox. (4.5.1)
KeT

In addition, we assume that there exists a map

Ea— X, Bl Xy = [t i x K,
K
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where X'p; is the elemental subsets of X', as in Figure 4.5.2. Thus we get a mesh
K

of space-time which discretizes the base space X’ in a finite number of elemental
subsets Xg.

KEJ

K

>

Xa Xa+1 X

Figure 4.5.2: Elemental subsets X,
K

The discrete configuration ¢4 consists of a base-space configuration ¢g x
and a section of the discrete configuration bundle Yy, where Y is defined to be
the fiber bundle over X, with the fiber over X! € X, being the configuration
bundle fiber Y. Then we can specify the discrete jet extension as

7' 0a(El) = (Bl . {(xi eRx S| Xi € BL}),

where x? is the position of X! after deformation. The discrete Lagrangian is
defined on J'Y; as

Ly (j1¢d (Ef,()) z/X L(j%) "X,

J
B

where ¢ is the exact solution of the Euler-Lagrange equations for L over the
elemental subset XAr. And the approximation of the continuous action integral

over E7; is
Sa(¢a) = Y La (j1¢d (Efr()) ;
E;( €€y
to which we apply the discrete Hamilton principle d&(¢q) - d¢q = 0, for all ¢4
with zero boundary components.
In order to simplify the notation we will define a few expressions. That is,
for a given node a, the ordered nodal time set for node a is denoted

.= | Ox={to=t, <. <t <t}
{KeT|K>a}

which contains all the time steps associated to the node a, that is, all the
time steps associated to the elements K € T containing the node a. (See Fig.
(4.5.3).)
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Figure 4.5.3: The ordered nodal time O,

We denote by

—
—

{xi|a€eK,i=1,.,N,,KeT}
the set of all nodal coordinates defining the discrete trajectory. And by
E%:{xfl, a €K, tfze@é(},

the set of discrete trajectories of nodes of K, on the interval of times [/, #/+1].

The informations given by the variables (Z,0) are the same that those
contained in ¢4. So the variations of (Z,0) are equivalent to the variations of
¢4. And the total discrete action is then defined by

Su(2,0) =Y > (k) (4.5.2)

KeT 1<j<Ng

The discrete evolution is obtained by applying discrete Hamilton’s principle to
this action for each node a, which we denote by

DiG4(2,0) =0, forac T andt) € O,. (4.5.3)

In other words, we are considering the discrete Euler-Lagrange equations for
the discrete curve {x! |t € ©,}.

Until now, the time steps have been chosen arbitrarily. It is possible to
choose © in such a way that the discrete energy is preserved by the discrete
dynamics. This can be achieved by imposing the condition

D)6y =0, (4.5.4)

for all K € T and all tjk € Ok, where D%}Gd indicates the partial derivative of
the discrete action with respect to the elemental time t}.. The equation (4.5.4)
expresses a balance transfer between the different subsystems.
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4.5.2 Asynchronous Lie group variational integrator for
the beam

Using the same notations as before, given a node a, the discrete time evolution
of this node is given by the discrete curve {(A%,x%) |t} € ©,} in SE(3). Since
we want to apply a Lie group variational integrator, the discrete variables ¢
and f' = (g°)~'g"*t! associated to this node are (A%, x’) and

(Far Hy) = (Mg, xg) T (AGH xgH) = (A TAZT, (AT (x™ —x7))

where, in the last equality, we use SF(3) multiplication.

First discretization

In terms of these variables (F!, H.), we make the same approximations as in
(4.2.20). The discrete trivialized Lagrangian L7, approximating the action of
the Lagrangian Ly in (4.2.7) during the interval [t} ] '] is therefore

.12 .
; lxg M| H, I Tr |(Is — F)J,
geey Y p ML bl s R
. AT =) 2 (e =)
aeKt%§t3<t?’1 a a
j+1
(" ) v (AK»X%«)

Where £, depends on the nodal coordinates Z7.. We assume that ¢4, # o K
for any pair of elements K and K'.

Using formula (4.5.2), we compute the discrete action sum (see Lew, Mars-

den, Ortiz, and West [70] eq. (45)), which approximates the continuous action
over the time interval [0, 7] as follows

2. . L

KeT 1<j<NK

I M|Hi| Tr [(I3 — F})J4]
Z Z { tz+1 #) +lx (tﬁ+1—tg)

a#ap,an =0
& e || T [(Is — Fi,)Jd]
4.5.5
+ Z { t2+1 *tl ) + 2 (tz—(’)_lft?lo) ( )
T e MHLP |t T [~ Fr) ]
. Z { (=) 2 (G-,

-y Z (t?l—ti()VK(Ai(,x}),

KeT 1<j<Ngk

CF)

where ag and ay are the boundary nodes. Moreover, we used the hypothesis
the # 4./, for any pair of elements K and K.
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The discrete evolution is obtained by applying discrete Hamilton’s principle
to &4 for each node a. In other words, we are considering the discrete Euler-
Lagrange equations for the discrete curve {(AL,x) | t: € ©,}. From (4.5.3),
we get the following systems of discrete Euler-Lagrange equations

T;L(ijl,Hffl) (DF(ﬁ*lﬁfz—l? DH}'L—l,CfI_l)
— Ad{pi iy T2 Ligi gy (Dpi £4, Dy £3) (4.5.6)
+ TP Liag xi) (Dag Loy DxiLa) =0,
for all @ € T, where £! denotes the dependence of &, on (A%, x% Fi H!),
similarly for £271. The equations are different for interior nodes, and boundary
nodes ag, ay.

Given the discrete action sum (4.5.5) we can define the discrete Lagrangian
L at node a and at time ¢ as
(i) Interior nodes a ¢ {ag,an}
_ Hi|? Tr [(I3 — F})J,
‘C?z = K |_||_1 a” " lK [(il a) d}
20 (" —1) (ta"" i)

- (tj;l - t;;) Vi (A;(,x;;)

th.=ti
(ii) Boundaries nodes a € {agp,an}

g b, IHGP  dk T[T — F)Jd]
a 4 (t(i;rl _ tfz) 2 (tz+1 . tf;)

—~ (H,'jl —~ tﬂ) Vi (Ai(,xﬁ{)

+

J _4i
tx=tg

where in the potential term we choose the unique element K containing a and
such that 5 = t%.

Let a single element K. Putting together the computations we made in sec-
tion §(4.2.4), the system of discrete Euler-Lagrange equations (4.5.6) is equiv-
alent to : :

(i) Rotation of the node a

Ik i—1 i—1\T v Ik i iNT\ VY
- (JaF, " — (F J) - —— (F'J; — J4(F

= (tjl'(+1 _tgl’(> ((AQ)TDAQVK(A%,X%))V

’
i —4J
to=ty

(if) Displacement of the node a

Ik i—I\NT pri—1 i
M——— (F! H " —-M— H
o e e T gy e
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Note that the previous equation can be equivalently written as

Ik - Lk , - , o
M AR Mt s A = (6" =t ) Dy Vi (N, ) v
where Ax? = xiT! —x? (not to be confused with Ax, defined in (4.2.4)). This
component of the discrete Euler-Euler Lagrange equations of our AVI consis-
tently recover the discrete-Euler Lagrange equations derived in Lew, Marsden,
Ortiz, and West [69], equ. (31). We already compute explicitly the components
Dy Vi € R3 =~ 50(3)* and Dy, Vi € R3 due to the potential energy Vg given
in (4.2.6).

Note that two situations can occur for a fixed node a. Either K is the element
whose right node is a or K is the element whose left node is a. This depends
on which element K satisfies t7, = ¢.

Discrete Euler-Lagrange equation with respect to matrix of rotation.
From the preceding results, we obtain that the discrete Euler-Lagrange equa-
tions associated to rotation read

(i) Node a # ag on the left of K
Ik
(7 )

- (tﬂgl = tﬂ;{) {;c1 (ATAX“ — E3> x ATAx,

alK

t (0 aran ™ S (e -20) )

Ik

DL S FiJs— Jo(F)T)"
@) (Fada — Ja(F,)")

(JaFit — (FEYT )7 —

)

ti =t
(ii) Node a + 1 # apy on the right of K
l i— i— Vv l ; : Vv
i = i—1 (JdFa-‘r% - <Fa+%)TJd> YRS = i (FGZrFle - Jd<Fz;+1)T)
(ta+1 - ta+1) (taJrl - taJrl)
; ; 1 Ax, T
= (t?l — t‘}() {201 <A3+1li( — E3> X Ag+1AXa
1 T 1@ TNAT @\
- (((ATAwr + D)7 Catha(2l = $)AT A1)
K tfz,+1:ti<
(iii) Node a = ag
l . , l , .
s (JaF T = (R ) Ja) = s (Fada = Ja(F)T)

2 (tat' —ti)

= (tg;l — tﬂ;() {101 (ATAX“ - E3> x AT Ax,

2 “ lk
+i (((I+AaT+1Aa)10/2%(@‘1_21))(A)>v} i
i =t%
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(vi) Node a+1=an

l i— i— l i i
2 (¢ i tiih) (ki = (P 0)” TG = ) (Fisada = JalFi)")”
a-+ a+

a+1 a+1
: . 1 Ax, T
_ (@(ﬂ _ t;() {201 <AaT+1 - E3> x AT, Ax,

Ik

1 T -1~ S NT (AN
1 ( (AT A + D7 Cotha(2l = AT A

A |
t?z-f—l _tK

Discrete Euler-Lagrange equation with respect to position. Similarly

the discrete Euler-Lagrange equation yield

(i) Node a # ag on the left of K

%
a

kM i1 kM
— AT - —————

= (8" =) { 5(-A)C (AT22 — By
2 Ik

1 Ax, l l
+§(_Aa+1)cl (AZHZX - Es) + g+ KN}
K

X

2 2 t?z:t'i(
(ii) Node a + 1 # an on the right of K
lgM i1 lxgM ,
_— Ax' i, — —ii——— AX
i i— a+1 i i a+1
(ta+1 - ta+11) (tajrll - taJrl)
= (6 - ) {3an0s (a1 -5
K
1 Ax, l l
+2(Aas1)Cr (AL, 250 By ) 4 B BN |
2 Ik 2 2 T

(iii) Node a = ag

M - I M
— __AX'
ot —th ) e

_ A AX
2 (t6 —th) *a

= (tg(ﬂ - ti{) {;(Aa)cl <AT SXa g Es)

a ZK

1 Ax, ! !
+5(=Aa)Cr (AT T~ Bs ) + T+ 4N
2 Ik 2 2

I’
th =t
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(vi) Node a+1=an

kM ; kM ,
%AXZA LY S AxL
2 (ta+1 ta+1)

2 (0 -t
; ; 1 Ax,
= (tﬂgl - th) {2(Aa)Cl (AaT o E3>

a+1 a+1)
1 Ax, l I
+2(Aay1)Cy (AT 220 By ) + Kq 4 AN
2 Ix 2173

t2+1

=t
4.5.3 Energy conservation

The explicit equation of energy conservation (4.5.4) for element K and time
th. = t' may be regarded as a set of conditions determining ©, as defined in
(4.5.1). They constitute a set of discrete Euler-Lagrange equations

D& =0, (4.5.7)

which indicate the partial derivative of the discrete action with respect to the
elemental time ¢}, € ©, and reads

(i) Node a ¢ {ap,an}

= (Fi — I3)J(Fi — I5)" ,
23{2M@W@V+WT{( (T — i) ﬂ Vi

aceK

i1 2 i—1 i—1 _ 7\T ]
= ZK 7“ _H1 s+l | (U {?‘)‘_]df‘fQ ) + Vit
€K ta ) (ta ta )

(ii) Nodes ap, € {ap,an} and a ¢ {ag,an}

ey JHLIT e [ (L = B)Ja(F, — 1)
4 (t1+1 _ tz )2 2 (tz;::l _ tzh)Q

Ik [ H [((FZ — I3)Jy(Fi — IS)TH .
Sy —net T a : a Vi
2 (£ — tl) 5 Tl lr (T _gi)2 + Vi

g I T b
4 (tz tébl) 2

e |JHEY K(Fil —I3)Ja(Fy " Iz)T)] i1
Ky e e T a "a izt
27 (1 —ih)’ T (th —ta )2 K

((Féb_l —I3)Ja(Fi " — 13)T>
(

th, —ta,")?

These equations allow us to calculate implicitly the value of t271 when we

know values of i and ! for all a € K, (that is the value of t][';jrl in Fig.
(4.5.3)).
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The global energy balance between the initial and final configuration is given
by the equation

E; = ZD?{Gd = ZDQKGC[.
K K
as the discrete Euler-Lagrange equations (4.5.7) are verified for j = 1,..., Ny —1.

Second discretization

With the discretization as defined in (4.4.1), the discrete Lagrangian ﬁ[‘{ ap-
proximating the action of the Lagrangian Lx in (4.2.7) during the interval

[thes th+ 1], over elements K of length [, is therefore
. Ik o | HI I (W) J
] n i+1 41 a Ay a a
I R L e R =

aCK g <ti <ty
- . o
— (B =) Vi (Mo xhe )
And we obtain discrete Euler-Lagrange equations as previously. But we do not

develop these calculations here. This is a simple repetition of what we did
earlier.
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4.6 Example (AVI)

Parameters of the beam :
section with edge length a = 1 - 1072, Poisson ratio
modulus E =5 - 107, for the following test:
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v = 0.35, and Young’s
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Figure 4.6.1: Motion of a beam with initial torsion and stretch, with initial

velocities, without gravity.

4.6.1 Remark The implementation, in progress, is performed by Leitz (Uni-
versity of Erlangen-Nuremberg), Leyendecker (University of Erlangen-Nuremberg),

and Ober-Blobaum (University of Paderborn).

The integrator already works well and allows the passage from synchronous
to asynchronous time-stepping without difficulties. The quality of the results
is the same as those obtained in §4.3 for a regular mesh. The purpose of the
actual testing is to determine what will be the results for an irregular mesh and
if it performs well when the speeds have significant differences.






Chapter 5

Discrete affine
Euler-Poincaré equations

Introduction

Reduction is an important tool to study many aspects of mechanical systems
with symmetry. Indeed, apart from the computational simplification afforded by
reduction, reduction also is an interesting way to identify invariant subsystems.

The affine Euler-Poincaré reduction is concerned with some important themes.
Namely, the semi-direct product of a group G with a vector space V', where the
construction of a semi-direct product involves a Lie group representation, sec-
ondly the one-cocycle ¢ € F(G,V*) and the associated affine representation
6 : G — GL(V*), and finally the reduction which may be Euler-Poincaré or
Lie-Poisson.! (We can cite as a reference Marsden, Misiotek, Ortega, Perlmut-
ter, and Ratiu [84].)

The theory of affine Euler-Poincaré that brings together these three themes
was developed in Gay-Balmaz, and Ratiu [33] for fluid mechanics, and in Ellis,
Gay-Balmaz, Holm, Putkaradze, and Ratiu [28] for charged molecular strands.

Given a left G-invariant Lagrangian L : TG — R on TG, the reduced
Lagrangian £ : g — R is defined on the Lie algebra g. And the evolution of the
variable £ € g is determined by the famous Euler-Poincaré equations

dot_ .3t
dt o — TS ee

For example, given a rigid body, with G = SO(3) as space of configuration,
an element A € SO(3) defines the configuration of the body. For a rigid body
without gravity in motion, with velocity A and inertia J, the Euler-Poincaré
equations are

Jw=Jw X w,

1Tt is interesting to know that the link between Lie’s work on the Lie-Poisson bracket and
the Poincaré work on the Euler-Poincaré equations took nearly one century to improve.

87
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where w = A~1A is the body angular velocity.

But for the beam the gravity breaks the SO(3) symmetry. The potential
energy is only invariant under rotations S! about vertical axis E. In this case
it is more interesting to consider the Lagrangian L : TG x V* — R defined on
TG x V*, where V* is the space of linearly advected quantities such as strain
(2,T) or the direction y = A~'E.

If the Lagrangian L : TG x V* — R is left G-invariant under the natural
action (vp,a) — (gvn,ga) where g,h € G, vy, € TG, a € V*, then we take
into account the Lagrangian semi-direct product theory. (See Holm, Marsden,
and Ratiu [46]), for example, with the heavy top, or with a compressible fluid
associated to a right G-invariant Lagrangian.

But if the Lagrangian L : TG x V* — R is left G-invariant under the
affine action (vp,a) — (gvn,0ya) = (gun, ga+c(g)) where g, h € G, vy, € TG,
a € V* and ¢ € F(G,V*) is a one-cocycle, then we can consider the affine Euler-
Poincaré theory. What is the situation encountered with the charged molecular
strands, or with the geometrically exact beam.

In this chapter we develop the discrete affine Euler-Poincaré theory in order
to obtain a Lie group invariant discrete Lagrangian and discrete reduction. This
is one of the interesting paths that can be taken in the direction of the discrete
Lagrange-Poincaré equations. The continuous Lagrange-Poincaré equations are
discussed in Cendra, Marsden, and Ratiu [22] in order to study stability of
relative equilibria. Nevertheless, the discrete theory still has a long way to go
because in this area, nothing has been done so far.

5.1 Affine Euler-Poincaré reduction

Representations and affine representations. Let p : G — GL(V) be a
left Lie group representation of a Lie group G on a vector space V. We will
denote simply by

gu=p(g)(u) and ga=p(g~")"(a), g€G, ueV, acV*

this representation and the associated contragredient representation of G on
V*, respectively.

Let p' : g — End(V) be the induced Lie algebra representation of the Lie
algebra g of G on V. For simplicity, we will denote by

d
Ev=p'(&)v=—| exp(ef)v, and
de|._,
a= — exp(ef)a, with {e€g, veV, ac V",
de|._,

this representation and the associated representation on V*, respectively. Recall
that we have the formula p'([¢,v]) = p/(§)p' (V) — p'(v)p' ().
Given a left representation of G on V and a left group one-cocycle ¢ €
F(G,V*) satisfying
c(gh) = c(g) + ge(h), (5.1.1)
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we consider the associated affine left representation 6 : G — GL(V*) defined
by
Og4(a) :=ga+clg), g€G, acV". (5.1.2)

The associated infinitesimal generator is

d

% eexp(tg) (a) = fa + dc(f)) (513)
t=0

where dc = T.c: g — V* is the differential of ¢ at the neutral element e € G.
Given a particular value a,.y € V*, we denote by

G, ={9€G|04(aref) = ares}- (5.1.4)

Qref

the isotropy group of a,.y with respect to the affine action 6.

Semidirect products. Given a left representation of G on V', we denote by
S = G@EV the associated semidirect product whose group multiplication and
inverse are

(91, u1)(g2,u2) = (9192, w1 + grua), (g,0) " = (97", —g 'v).  (5.1.5)
We denote by s = g(®V the Lie algebra of S, with Lie bracket

[(§1,v1), (€2, v2)] = ([£1,&2], §1va — Eaur) -

The adjoint and coadjoint representation Ad : S x s — s and Ad* : S x s* — s*
are respectively given by

Ad(y)(§,u) = (Adg€, gu — (Adg&)v), and
Ad{, (1, a) = (Adj(p—voa), g "a),

where ¢ : V' x V* — g* is the bilinear map defined by
(voa,&)y :=—(8a,v)y .

Note that this map can be rewritten as v o a = (p},)* (a), where p, : g — V is
defined by p, (&) = p'(£)(v), and (p,)" : V* — g* is its dual map.

The associated infinitesimal adjoint and coadjoint representations ad : s X
s — 5 and ad* : s X §* — §* are

ad(g, v)(§2,v2) =

d
dig - Ad(exp(egl)@vl) (52, U2)

= ([61, 82, §1v2 — §ov1) = [(€1,v1), (€2, v2)]
and

* d * *
ad(E,u) (,U,7 (l) = dé“ o Ad(exp(sé),eu) (/1'7 CL) = (ad§ p—uoa, _ga) .
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5.1.1 Affine Euler-Poincaré equations

Consider a function L : TG x V* — R which is left G-invariant under the affine
action given by

Gx(TGxV*) = (TG x V™),

(9, (v, @) = (gun, 0,(a)) = (gun, ga+ c(g)), (5.1.6)

where g,h € G, v, € T},G, a € V*, and gvy, denotes the tangent lifted action of
G on TG.

Given a,.y € V*, we define the Lagrangian L,, ., : TG — R, by Ly, (vg) :=
L(vg,aref). Then Ly, is left invariant under the lift to TG of the left action
of the isotropy group Ggmf on G.

By G-invariance, L induces a function ¢ : g x V* — R defined by

0(g 'vg,0,-1(a)) = L(vg,a), VgeG, vy,€T,G, acV*,

where g7 v, = (e,971g).

1

Given a curve g(t) € G and a,.y € V*, we consider £(t) := g(t)"'g(t) € g,
and define the curve a(t) € V* as the unique solution of the following affine
differential equation

a=—&a—dc(§), (5.1.7)
with the initial condition
a(0) = 00y (ares) = g(0) " 'ares +¢(9(0)7"), for g(0) € G.

Recalling (5.1.3), the solution of (5.1.7) can then be written as

a(t) = Oyy-1(ares) = g(t) 'ares +c(g(t) ") (5.1.8)

Without loss of generality, we always consider g(0) = e, so that a(0) = aycf.
Using the preceding notation, we now recall the following Theorem from
[33].

5.1.1 Theorem (Affine Euler-Poincaré reduction for semidirect product)
The following are equivalent.

(1) With ares held fized, Hamilton’s variational principle
ty
0 La,.;(g,9)dt =0,
to
holds for variations dg(t) of g(t) vanishing at the endpoints.
(ii) g(t) satisfies the Euler-Lagrange equations for L., on G.
(iii) The constrained variational principle

5/t1 (&, a)dt =0

to
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holds on g x V*, upon using variations of the form
on
65 = E + [57,’7]7 da = —na — dc(n)7

where n(t) € g vanishes at the endpoints.

(iv) The affine Euler-Poincaré equations hold on the submanifold gx V* :

a6t ol ol 7 [ 60
ag—adgaé—i—(woa dc <5a>'

Proof. See [33].

5.1.2 Affine reduction for fixed parameter

In many situations, such as the molecular strand in [28], there is no explicit
expression for the G-invariant Lagrangian L : TG x V* — R. Only the ex-
pression of L, . : TG — R for a particular value of a,.y € V* is known.
However, as we recall below, the reduction process described previously can
still be implemented in this case.

Let us consider a Lagrangian Lq,,, : TG — R which is G -invariant. The
reduced Lagrangian £ associated to L, , is now only defined on g x O ; C
gx V*, where Of = {04(arcr) | g € G} is the G-orbit of a ¢, whose tangent
space at a is

T.0;,,, = {dc(n) +na | n € g}.

As before, £ is defined by
L:gx O  Cgx V' =R, (& a):= g g, 01 (arey)) i= Lq,.;(vg).

Given the G7  -invariant Lagrangian L

0(&,a), it is possible to state

are; and the reduced Lagrangian

5.1.2 Theorem Let a,.s be a fized element in V* and g(t) be a curve in G with
9(0) = e. Define the curves £(t) = g(t)~'g(t) € g and a(t) := Oy4)-1(arey) €
V*. Then the following are equivalent.

(i) With ares held fized, Hamilton’s variational principle
t1
] La,.,(g,9)dt =0
to
holds for variations dg(t) of g(t) vanishing at the endpoints.
(ii) g(t) satisfies the Euler-Lagrange equations for L, cf on G.
(iii) The constrained variational principle

5/t1 (&, a)dt =0

to
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holds on g x (’)gmf C g x V*, upon using variations of the form

0
5€:£+[§7n]3 50:*77@*(1‘3(77),

where n(t) € g vanishes at the endpoints.

(iv) Extending £ arbitrarily to g x V*, the affine Euler-Poincaré equations hold
on the submanifold g x O CgxV* :

aor Lo oL Y
ag—adgaé—i—(woa de <5a>' (5.1.9)

We refer to [28] p. 43—44 for the proof.

5.2 Material and convective Lagrangian dynamics of a
beam in R3.

5.2.1 Deformation expressed relative to the inertial frame.

As seen in section §(4.1.1), the configuration of a beam is defined by specify-
ing the position of its curve of centroids by means of a map ¢ : [0, L] — R?
and the orientation of cross-sections at points ¢(S) by means of a moving
basis {d1(S),d2(5),ds(S)} attached to the cross section. The orientation of
the moving basis is described with the help of an orthogonal transformation
A 1[0, L] — SO(3) such that

d;(S) = A(S)E;, I=1,23,

where {Eq,Ey, E3} is a ed basis referred to as the material frame.

The configuration of the beam is thus completely determined by the maps
(A, #) so that the configuration space can be identified with the Lie group
G = F([0,L],SE(3)) of smoth SE(3)-valued function on [0, L], where SE(3) is
the semi-direct product SO(3) ®R? of the Lie group SO(3) with the left repre-
sentation space R3. The Lie group SE(3) is fitted with a group multiplication
and inversion as given by (5.1.5).

5.2.2 Description of the variables and functions involved.

Consider the Lie algebra g = F([0, L], s¢(3)) of the Lie group G = F([0, L], SE(3)).
We define the dual vector space V* := Q([0, L], s¢(3))®F([0, L], R*)®F([0, L], R?)
consisting of pairs formed by smooth se(3)-valued one-forms on [0, L], that is a
one form with values in the Lie algebra se(3) of SE(3), and R3-valued functions
on [0, L]. The elements of group G are denoted by (A, ¢), elements of g are
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denoted (@, ), and elements of V* are denoted by a = (f\l7 I, p, x), such that

o =A"A € F([0, L], 50(3))

v =A"¢ e F([0,L],R?)

Q=A"TA € QY([0, L],50(3)) (5.2.1)
I =A"1¢ € Q[0,L],R?)

p=A"1¢ec F(0,L],R?

x =A"'E; € F([0, L], R?),

where y allows us to use the affine Euler-Poincaré theory at fixed parameter.
The reasons that lead us to define the new variable x will become apparent at
the end of the energy description of the beam. R

The variables which represent position p(S, t), deformation gradients (Q(S, t),
I'(S,t)), and velocities (@(S,t),v(S,t)), as well as the new variable x(S,t), are
all viewed by an observer who rotates with the beam at (5,¢).

We present below the Lagrangian function of the beam. We will then show
how this Lagrangian and the equations in convective representation can be
obtained by the affine Euler-Poincaré process described above. This amounts
to identify the appropriate space V* of advected quantities, the appropriate
affine action of G on it, as well as the appropriate reference variable a,ey.

5.2.3 Kinetic energy

The kinetic energy of the beam was already defined in (4.1.2) and (4.1.3).
The kinetic energy due to rotation may be noted by

Tror(A,6,4,6) = 1 ((w,0)

where ({,)) is the left invariant inertia metric given at the identity. The
inertia tensor matrix J : g — g* such that Jw € R® 22 s0(3)* can be seen as the
image by the Legendre transform of w € R3 2 s0(3), with ((w,b)) = Jw b=
(Jw, b) for all b € R? ~ s50(3), where - is the dot product on R3, and (, ) is the
pairing between s0(3)* and s0(3) (see [89] p488). Jw is the local body angular

momentum density noted

= Jw= 6Trot7
dw

which is expressed in the body frame {d;(S),d2(S),d3(S)}. Then the Hamil-
tonian notation for kinetic energy due to rotation may be noted 1 (I, J~'II)).

5.2.4 Potential energy

The potential energy is given by the sum of interior potential energy (bending
energy) and exterior potential energy (gravitational energy and energy created
by external force and torque).
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Bending energy

Given a configuration (A, ¢) € G, the deformation gradient is defined as

0

F(S,t) = (S, t) :== (N'(S,1),¢'(S,t)), where () := 35

As in [107], we use the maps Q,T : [0, L] — R? defined by
(ﬁ,r) = (ATA, AT

The bending energy is assumed to depend on the deformation gradient only
through the quantity 2 and T', that is, we have

L
(1) = [ W@,
0
where W;,.(I", Q) is the stored energy function, as defined in (4.1.5).

Exterior potential energy

We consider exterior energy created by exterior load

L
Meue(9) = /0 (a,6) dS,

where q = —E; are distributed loads per unit length. In this form Il..(¢) is
not invariant under the left action of elements of SO(3). And in order to apply
the framework of Euler-Poincaré theory, we interpret q as a reference value, i.e.
a variable encoded in the quantity a,.y € V* of the abstract theory. This lead
to the definition of a new convective variable. Such an approach is standard in
the Euler-Poincaré description of symmetry breaking in systems such as heavy
tops, compressible fluids, or nematic particles, see [46], [34]. We thus rewrite
the exterior energy as

L L
Hext(¢) = /0 <A71q, A71¢> s = _Q/O <X:P> ds =: Hewt(p7 X)a

where we introduced the new convective variable y = A~'E;.
Summing all the expressions obtained above, we can rewrite the Lagrangian
in terms of the convective variables (w, v, Q,T, p, x) defined in (5.2.1) as

L(A’ ¢7 Aa ¢) = T(wﬁ) - Hint(Q7 F) - Hewt(p, X) y (5.2.2)

which is a left G-invariant Lagrangian. In the next paragraph we show how
this Lagrangian can be interpreted as a reduced Lagrangian in the sense of the
affine Euler-Poincaré theory. Then we will be able to apply theorem and get
the equations of motion by applying the affine Euler-Poincaré reduction.



5.2. Material and convective Lagrangian dynamics of a beam in R3. 95

5.2.5 Advected variables and affine action for the beam

We here describe the geometry of the beam by using the formalism developed
for the molecular strand in [28].

Given the dual vector space V* := Q([0, L], s¢(3)) ® F ([0, L], R?)), we con-
sider the representation of G on V* defined by

(Av ¢) ’ (Qa F?ﬂ) = (Ad(A,p) (Qa F),Ap)

and the group one-cocycle ¢ € F(SE(3),V*) given by

(A, 9) = ((A,¢> ((A,¢>1)',—¢) .
Note that we have

(A, 9)71) = ((A,0) 71 (A, 0), A1)
= (AN AT AT ) = (T p).

If we chose the reference value
Qref = (Qref, FTefa pref) = (0, 0, O),

then, from (5.1.8), the unique solution a(t) = (Q(t),T'(¢),p(t)) € V* of the
advection equation (5.1.7) is given by

(Qt),T(t), p(t)) = O(a,4)-1(0,0,0) = (AT'A, A1 ¢/, A1)

and thus recovers the convective variables Q, T', p.

In our situation, to solve the problem of the symmetry broken by gravity, we
add the variable y = A~!'E;. This variable can be incorporated in our previous
formalism by enlarging the representation space as V* := Q([0, L], s¢(3)) &
F([0, L], R3) @ F([0, L], R3) and considering the left representation

(Qa vaa X) — (A7 ¢) . (Q’Fa Ps X) = (Ad(A,dJ)(QaF)vApa AX) ) (523)

and the cocycle

(A 9)™) = (M, 0)H(A, ), A716,0) = (T, p,0). (5.2.4)
If the chosen reference value is

Qref = (Qrefarrefapref7Xref) = (07070aE1)7 (525)

the curve a(t) = 0y(;)-1(ares), as defined in (5.1.8), is now given by
a(t) =(A,¢) 7" (0,0,0,E1) + ¢ ((A,9) 1) = (ATA AT AT 0, AT E)

and thus recovers the convective variables (Q, T, p, x).
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The isotropy group of a,ey is

Gy, = {(A7¢) eG | 9(A,¢)(070707E1) = (A7¢) ! (anaOvEl) + C((A7¢)) = (070707E1)}

Qref

={(A,¢) e G| A €Rp,, c(A,¢) =0},

where R, denotes the group of rotations around the axis given by E;. The
orbit of @,y under the affine action of G is

0%, = {000 (0.0.0.B1) | (A,0) € G} = {((A,¢> (o)) - AEl) } .

Thus the expression of L obtained in (5.2.2) and the reduced Lagrangian
¢:gx0Og ; R obtained by affine Euler-Poincaré reduction with cocycle
(5.2.4) and reference value (5.2.5) can be written by

La,,,ef (’Ug) = E (gil’l)g, 0971(0,7)6]'))
L
= %/ [M'H’)’H2 + Tr (de wT)] ds
0
1

L
-5 /0 [QTC1Q + (I — E3)" Co(T" — E3)] dS

+ Q/O (p,x)dS. (5.2.6)

5.2.6 Equations of motion
First derivation: variational principle
The reduced energy Lagrangian £ : g x O,,., C g x V* — R is a functional of
the variables (w, v, Q,T, p, x), and the stationary action principle & = 0 holds
with & = fOT Uw,y, QT p, x)dt on time interval [0, T'], where variations d(w, )
and §(Q, T, p, x) vanish at endpoints.

Consider variations

e (Ac, ¢:)

of the curves (A, ¢) with fixed endpoints. The infinitesimal variations are de-
noted by

d d
0 = — e, OA= — c .
¢ de E:0¢ de|._,

Then it is useful to compute the variations dw, 67, 6§, 0T, 6p and dx induced
by the variations £ = A7'6A and ¥ = A~16¢. A direct computation shows,
[28] p.26, that we have

fw=wxIT+Y

y=yxS4+wxU+T

MN=0QxT+% (5.2.7)
MM =TxT+¥V4+QxT

dp=pxE+VU
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and calculation of dy gives us
Sx=—A"1AATIE; = x x 2. (5.2.8)

The variation of the action & is
T
Y4 Y4 Y4 Y4
= — — —., 60 — ., 0T
oS /0 {<5W’6w>+<57767>+<5976 >+<5F76 >
ol ol
+ 775p + 776X dt = 0,
dp ox

where ( , ) represents the L? pairing in the beam variables. By substitution of
the constrained variations obtained in (5.2.7) and (5.2.8) we get

T
56:/ ﬁ,wXEJrE + %,'yx2+w><\lf+\il + ﬁ,QxEnLE’
0 ow oy o0
+ %,Fx2+\11’+(2><\11 + %,pszr\I/ + %,sz dt.
or dp dx
Integration by parts yields
Tr/oe o ot ot S 0 8¢
06 = — -, X — D) — -——, ¥
© /o[<5wxw Ot dw’ >+<5vx% >+<57><w ot oy’ >
4 o ol Y4 Y4 o o
+<(SQXQ_6S<SQ’ E>+<6F><F, E>+<6FXQ_6S§F’ \I/>
4 4 Y4
— D) —, ¥ — )| dt
+<f5pxp’ >+<5p’ >+<5XXX’ >} ’
Imposing 66 = 0 and collecting the terms proportional to X, we get

0 Y4 0 Y4 Y4 Y4 Y4 4
+wx | —+ | z5 +OQx pPX—+IX =+yxX —+xx—=0.

ot 5w\ 25 0 tP5, 5T oy ox
(5.2.9)
Collecting now the terms proportional to ¥, we find
0 4 0 YAV
v o — 10 — — —=0. 2.1
(at+wx> 67+<8S+ ><> T 0 (5.2.10)

The equations of motion are obtained by inserting the functional derivatives
of the reduced Lagrangian £(w,v,Q, T, p, x) given in (5.2.6).
Second derivation: the affine Euler-Poincaré equations.

Recall that given the left G-invariant Lagrangian L,, ., : TG — R, the reduced
Lagrangian ¢ appearing in the affine Euler-Poincare equations (5.1.9) is defined
on g X ngf CgxV* by

¢ (gilvgvegfl(aref)) =La,.; (vg)-
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For the beam the Lagrangian L, , is known for a particular value a.; =
(0,0,0,E1) in V*. Let us identify all the relevant objects that appear in the
affine Euler-Poincaré equations.
We have
G =7([0,L],SE@)) > (A, ¢)

g =F([0, L], 5¢(3)) > (w,7)
v =Ql([0, L], se(3)) & F([0, L], R?) & F([0, L], R?) 5 (2, T, p, X)-

The representation space V' with dual V* is
V = x([0, L], R® x R®) ® F([0, L], R*) & F([0, L], R®) > (u, w, f, h).

The left representation of the Lie group G on (,T,p,x) € V* was given in
(5.2.3). The left representation of the Lie algebra g on (Q,T,p,x) € V* is
calculated as follows

d
(L px) = | (exp(ew), ) (T p, x) = (ad ) (1), 0 x pw x x)
t=0

We already know, see p. 51 in [28], that
(w,w, f) o (T, p) = (adqu +wo '+ fop, —Q xw),

s0 it remains to compute the expressions h ¢ x, adgu, wo T, and f ¢ p. For a
given (w,7) € g, we have

(hox, (W:))g == (@ )x: h)y = = (wxx,h)y = /0 ((h xx) - w)dS,

which proves that hox = (h x x,0). We have adgu = u x Q, see e.g. [89] p
454. Given £ € g we can let (woF,@B = —({xTw), =—T xw) -, then we
get wo ' =w x I" and, similarly, f o p = f x p. This shows that

(u,w, f,h) o (2T, p,x) =(adgu+wol + fop+hxy,—Qxw), (5211)
=(uxQ4+wxT+fXp+hxy,—Qxw)

Given an element of the group one-cocycle ¢ € F(G,V*) as in (5.2.4), then
dc: g — V*is given by de(w,v) = (—dw, —d~v, —v,0). Concerning dc? : V —

g*, we have (deT(u,w, £,h), (0,7)), = (de(w,7), (u,w, f,h))y, = S (—dwu —
dyw — vf)dS, which yields

dc? (u,w, f,h) = (div(u),div(w) — f). (5.2.12)

Given ¢ = (w,7), a = (Q, T, p, x), and since ad™ — —X, and ¢ — X, we are
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then able to calculate the affine Euler-Poincaré equations by using the equalities

aae(a 50 aae)

ot o~ \Otdw’ Oty

d*%— - x%— x% - x%

Cese =\ 50 T ey TV s

50 YA Y i 5t 5t
Fooa=(-ox L2y o —ox 2
5a ( TR TR PR R VRS Xar)

qr (Y (0 (3 o (5 &
sa) \0S\6Q)’ 9S \ér dp )"
Inserted in (5.1.9), these equations recover the dynamical equations (5.2.9) and
(5.2.10) of the beam.

5.3 Discrete affine Euler-Poincaré reduction

In this section we generalize the discrete Euler-Poincaré equations of Marsden,
Pekarsky, and Shkoller [86] to the case of semidirect products, with an affine
action.

5.3.1 Review of the discrete Euler-Poincaré equations

Consider a Lagrangian L : TG — R defined on the tangent bundle of a Lie group
G. Suppose that a time step h has been fixed, and let Ly : G x G - R, Lg =
Lq(¢7,¢’t1) be a discrete Lagrangian which we think of as approximating the
action integral along the curve segment between g7 and g7 1. The discrete Euler-
Lagrange equations are obtained by applying the discrete Hamilton’s principle
to the discrete action

Galga) = Z Lq (¢, 9.

The resulting equations are
DoLg(¢g’ %, ¢7) + D1Lg(¢?,¢"™) =0, forallj=1,.,N—1.

see e.g. [90].

Discrete Euler-Poincaré reduction

The approach developed in Marsden, Pekarsky, and Shkoller [86] is the following.
If the Lagrangian L : TG — R is G-invariant, the discrete Lagrangian Ly :
G x G — R is chosen such that it inherits this symmetry, namely, it is required
to be G-invariant under the diagonal left action of G on G x G. The discrete
reduction is implemented by considering the quotient map 74 : G x G — G,
74(g,h) = g~h and the corresponding reduced Lagrangian £4 : G — R defined
by
ta((g)'g") = La(d’ 9",
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so that the reduced action reads

N-1

Ga(fa) = ) UF).

0

<

The reduced Hamilton’s principle applied to s4 yields the discrete Euler-Poincaré
equations

—T"Ry; (ijgd(fj)) +T*Lyj (ij71€d<fj—1)) =0, forallj=1,...N—1,
(5.3.1)
where Dy;lq(f?) € T};G denote the derivative of £g.

Poisson property of the discrete Euler-Poincaré flow

Let Qr, = (F*Ly)*Q be the discrete Lagrangian symplectic form associated
to a discrete Lagrangian Lg on G x G. Then the discrete Lagrangian flow F7,, :
G x G — G x G defined by Fr,(¢°71,¢7) = (¢, ¢’ ) is symplectic relative to
Qr,,. In particular, it is Poisson relative to the Poisson bracket

{F7 E}GXG = QLd(XF7XE)7

on G x G, where F, E are any C' function on G x G, and X, Xg are there
Hamiltonian vector fields, satisfying ¢x,Qr, = dF.

Let {f,g}c be the reduced Poisson bracket associated to the quotient map
7Gx G — G, ma(g,h) = g~ *h, and let Fy, : G — G be the discrete Euler-
Poincaré flow defined by Fy,(f7) = f7*1. Then, as shown in [86], Fy, : G — G
is a Poisson map relative to the Poisson structure {f, g}q-.

The associated Lie-Poisson algorithm

Recall that the solution of the Lie-Poisson equations read pu(t) = Ad;(t) o € g%,
where g(t) € G is the evolution of the system in the configuration group. In
the discrete case, given a discrete path {g };V:o, solution of the discrete Euler-
Lagrange equations on G x G, we can construct the discrete path p/ = Ad;j 140
and we have

ﬂj+1 = AdeJA Mo = Ad;f] Mo = Adjcg Ad;] Mo = Adjcg ,uj.
Thus, the discrete Euler-Poincaré integrator {f7 }é\’:_ol
integrator

provide a Lie-Poisson

,u,j'H — Adjcj ,uj

that preserves the (—) Lie-Poisson structure on g*. This Lie-Poisson integrator
recovers the Moser-Veselov equations for generalized rigid-body dynamics on
SO(n), see [86].

Given a discrete Lagrangian Ly, the discrete Legendre transforms F+L, :
G x G — T*@G are defined by

F*La(g’,g’™") - 8¢ = DoLa(g’, g'*) - g7,
F~La(g’,¢’*") - 0¢’ = DiLa(¢’,g"™") - 09,
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Moreover, Ly being G-invariant , the discrete Legendre transforms are G-
equivariant maps, that is,
DyLg(hg’ hg’™) - hdg’*t = DaLa(g’,¢*1) - 6971
DiLa(hg’ hg’*™") - hdg’ = DiLa(g’, 9" - 69,
for all h € G. Thus, there are natural discrete quotient maps

F¥lq: G — g*, defined by F*4y ([¢. ¢ ")) = [F*La(e’,¢’"")] .

that is, 4 4
F4a(f7) = [F¥Lale, f7)] -
We have thus the following commutative diagram where

+

Gx et e

G———¢"
Ftey g

T GxG— (GxQ)/G=a, m:T"G - T"G/G =g".

see [87].
If the discrete curve {¢ } is a solution of the discrete Euler-Lagrange equa-
tions, we have F™Ly(¢’ "1, ¢7) = F~L4(¢’, ¢’ ') and hence

Fea(f771) = Fla(f7).

The corresponding discrete Hamiltonian flow is Fy, = F¥{40 F;, o (Fifdfl
and reads 4 R 4 ,
Pt = F, () = Adjs i
As we see on the diagram we can use Ft/¢, as well F~ ¢, to define the discrete
Hamiltonian flow Fp,

R (uj‘l)&( 7)
F~ 44 F~Lq F~ 44 F g
G, G (fjfl)ﬁ’(fj)

It therefore recovers the above Lie-Poisson integrator. Furthermore by The-
orem 3.2 in Marsden, Pekarsky, and Shkoller [87], we know that the Poisson
structure on the Lie group G obtained by reduction of the Lagrange symplectic
form Qp, on G x G via 74 coincides with the Poisson structure on G obtained
by the pull-back of the Lie-Poisson structure €y, on g* by the Legendre trans-
formation F¢,.
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Discrete Euler-Poincaré and Lie group variational integrator. Recall
that the discrete trivialized Lagrangian for Lie group variational integrator is
amap Ly : G x G — R such that £4(g?, f7) is an approximation of the action
integral over a single time step and with boundary conditions ¢/ and g7 f7.
Discrete Hamilton’s principle applied to the action

N-1 ) )
6= Z ‘Cd(g]afj)

Jj=0

yields the discrete time Euler-Lagrange equations

T Ly (Dps 1) = ToRys (Dps£)) + TiLgs (Dyith) =0, (5.3.2)
¢ =¢'f7 forallj=1,..,N -1
We can go from the discrete Lagrangian Lg4(g?,¢g'*!) of the discrete Euler-

Poincaré approach to the discrete Lagrangian L4(g?, f7) of the Lie group vari-
ational approach, by the relation

La(¢’, g™ =La(d’, (¢)g’™).
We now compute the discrete Legendre transforms of £4 induced by the discrete
Legendre transforms F* L.
F~La(g’,g’"") - 6g + F La(¢’, g ") - 697
= —(DyiLa(g’, ¢ ), 09") + (Dgi+1Lalg?, g *1), 697 ")
= - <Dg-7‘[’d(gja fj)7 5g]> + <Df-7£d(gj7 fj)v 5f7>
= —(DgiLa(g’. f7).69°) + (Dy La(g’, ),
(=) 1o’ 1+ F () 1og ™))
= —(DgLa(¢’, [!) = T*Lgiy+T*RyiDyiLa(g’, f),09”)
+ <T*L(gj)—1ij£d(gj, fj), (5gj+1> ,
then

F+Ld(gj7gj+1) = T*L(gj)—lijL:d(gj, f]) S T;j+1G
F~La(g’,g’*") = =Dy La(g’, f7) + T* Lgiy-1 T* Ry Dy La(g’, /) € T, G.

We get the discrete Hamiltonian map ﬁgd :Gxgt— Gxg*by ﬁgd =
F*Lg0 Fr, o (F¥L;)~! and the following commutative diagrams

F ) . F, .
Gxg"—> G x g* (g7, =) = (g, i)

_ FrLq _ FrLig
F~Lg F~Lg F~Lg4 F~Lg

GXG?GXG (gj_lvfj_l)ﬁ)(gjafj)

L4
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One observes that L, is G-invariant under the diagonal action if and only if
L4 does not depend on ¢/, in which case, it recovers the reduced discrete Euler-
Poincaré Lagrangian ;. Consistently, in this case the discrete Euler-Lagrange
equation (5.3.2) recovers the discrete Euler-Poincaré equations (5.3.1).

5.3.2 Discrete affine Euler-Poincaré reduction

Consider the increasing sequence of times {t/ = hj | j = 0,..., N} C R with
time-step h, and define discrete path spaces

Ca(G)={ga: {t'}2_g — G}, and Cy(V*) = {ay: {tj}j-vzo —V*}. (56.3.3)

We identify discrete trajectories g4 € C4(G) and ag € C4(V*) with their images
gqa = {gj};v:() and aq = {a? }HY_, where ¢/ = g4(#’) and a; = aq(t?).

Let L : TG x V* — R be a G-invariant function under the action (5.1.6)
and a given a,.y € V*, as considered in § 5.1.1. Let Ly : G x G x V* = R, be
a function such that the discrete Lagrangian

dearcf (gjagj+1> = Ld (gjagj+17 aref)

is an approximation of the action integral of the original Lagrangian L, , along
the curve segment between ¢’ and ¢7T!. We assume that L, is left invariant
under the discrete affine action

g (g7, d?) = (997, 9971, 04(a?)), (5.3.4)

where 6, is the affine representation defined in (5.1.2). Similarly the continuous
case, the discrete Lagrangian Ly, ., is left invariant under the lift to G x G of
the left action of the isotropy group G5 . on G, see (5.1.4).

Grey

Then quotient map associated to the action (5.3.4) is chosen to be
T:GXGEXV =5 (GxGxV")/G=Gx V",
(97,0 arer) = ((97) 719", 0(gs) 1 (arer))

so that the reduced discrete function ¢; : G x V* — R, induced by the G-
invariant function Ly : G X G x V* — R is given by

=10y (f7,a7) = La(¢', ¢" T arey), ¢, ¢t €G, o) €V,
where f/ € G and a/ € V* verify the relations
f=(¢) 'y eq, forallj=0,..,N—1.

and ‘
a’ = 0giy-1(arep) €V*, forall j=0,..,N -1

Note that a,.r is not fixed here, it is an arbitrary element in V*.

5.3.1 Theorem (Discrete affine Euler-Poincaré reduction) With the pre-
ceding notation the following are equivalent.
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(i) With arey € V* held fized, discrete Hamilton’s variational principle
N—-1 o
03 Laa,.,(9¢"") =0, (5.3.5)
§=0

holds, for variations 6g° = §¢™ =0 .

(ii) The discrete path {g’ }éV:O satisfies the discrete Euler-Lagrange equations

D2Ld,amf(gj_1,gj) + DlLd@mf(gj,ng) =0, forallj=1,..,N—1

(5.3.6)
for Lia,. on G x G.
(iii) The constrained discrete variational principle
N—-1
5> La(fi,a’) =0, (5.3.7)
j=0
holds on G x V* using variations of f7 and o’ of the form
5f = TeLys (Ad(fj)—l W+ nj'H) , Sa’ = —nla? — dc(nj)

where {nj}é»v:o is a sequence in g satisfying n° =N = 0.
(iv) The discrete path {f7 ;-V:_Ol satisfies the discrete affine Euler-Poincaré
equations
~ Adjpsy 1 TiLps (Dpslhy) + TiLgsr (Dpasb7) + Dasbyo !
—deT (Da,-eg) —0, (5.3.8)
forallj=1,....,N —1, and where {4 is extended arbitrarily to g x V*.

Proof. The equivalence of (i) and (ii) is true in general, see e.g. Marsden, and
West [90]. Next we show the equivalence of (iii) and (iv). The variation of fJ
is computed as follows
5f7 = ()7 1og (¢") Tt + (¢) T Hag’ T
==’ f7 +(¢)) g g T o (5.3.9)
=TeLys (= Adgnym’ + 07",
where 1/ := (¢7)"16g’. The variation of a’ is computed, by using the cocycle
property (5.1.1), as follows
da? = —(g") 109’ (¢7) " ares +de(—(g7) 107 (47) )
= —nj(g") tares — de(n’) — n;e((g)) ™) (5.3.10)
= —n’a’ —dc(i).
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The discrete affine Euler-Poincaré equations are obtained by applying discrete
Hamilton’s principle to the action &4(fq,aq) = (J]V_l L4(f7, a?) relative to the
constrained variations computed above. We have

s = 3 (2ot 7) (2ot 50)
= N-1 (<T:ij (ijfil) ,— Ad(piy n + 77j+1> n <Daj€£l i dc(nj)>)

=0
S (e (o) ) 0 (018

§=0

+ <Daj€fl <>aj717j> _ <dcT (Dajgzl) 777j>)

= N-1 <_ Adzkfj)*l T;ij (ijéé) + T:Lfflefjflfi_l

j=1

#Dulyod —de" (Duty) '),

where in the last equality we used the endpoint conditions n° = 5™V = 0. Since
this should hold for any 77, we obtain the equations (5.3.8).

Finally we show that (i) and (iii) are equivalent. By G-invariance of the dis-
crete function Ly : G x G x V* — R and using the definition a’ = 0(gi)—1 (Grer),
it follows that the discrete actions (5.3.5) and (5.3.7) are equal. Therefore, it
suffices to show that all variations dg’ of ¢7, with §¢° = 6¢" = 0, induce and
are induced by the constrained variations df7 of f/ with n° = »®¥ = 0. By
the computations made in (5.3.9) and (5.3.10), it is clear the the variations
d¢’ induce the constrained variations §f7 and da’, where 7 = (¢7)~16g?. The
endpoint conditions 6¢g° = d¢”¥ = 0 imply n° = 7V = 0. Conversely, given
the constrained variations §f7, we define §¢g’ := g7, and observe that this
yields arbitrary variations of ¢/ with the endpoint conditions §¢g° = §g?V = 0.
From éa’ = —n’a’ — de(n?), which is the variation of a/ = 6gi)-1(ares), it
follows that the variation of 6, (a?) = aref vanishes, which is consistent with
the dependance of L,, ., only on g7 and g/**. [ |
Discrete affine Euler-Poincaré reduction and Lie group variational
integrators. Recall that the discrete Lagrangian of the affine Euler-Poincaré
approach is

Ld,arcf (9]7 gj+1) = Ld(gja gj+17 a’r@f);
and the reduced discrete Lagrangian is defined by
gd(fjv aj) = gd((gj)—lgj—&-l? G(go)*laref) = Ld(gj7 gj-&-l, aref)'

It is related to the discrete Lagrangian £, of the Lie group variational inte-
grator approach by Lq(g7, ¢" T, arer) = La(g?, (97) 71 g7, ares), so that 4 and
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L, are related by
Ca(f7, 0931 ares) = Lasa,e; (975 7).

The derivative of Lg4,,., with respect to ¢’ is thus given by
DyiLaa,.; 09 = Dyila 6 (0(gi)-1arer)) = Dyila - (€a” + de(§))

= (=Dyilgoa’ +dc" (Dyila),€)

= (¢’ (=Dgitaoa’ +dc" (Dyila)),697), E=(g")"og.
which proves that

DyiLaa,.; =9 (—Dailgoa’ +dc" (Dyily)) .
Inserting this expression into (5.3.2), we get

T:Lpis (D 67Y) = TiRps (Dyst) + Dastaoa? = dc” (Dysta) = 0

which recovers the discrete affine Euler-Poincaré equations.

Discrete Legendre transforms. A direct computation, using (1.2.3), yields
the expression F¥/; : G x V* — g* x V* of the discrete Legendre transforms,
given by

FHea(f,al) = (T:ij (ijz;) ,aj+1) ,

Fta(f,0") = (Ad{s)1 T Lys (Dgst]) = Dastlyo a? +de” (Doth) o )
(5.3.11)

The reduced Hamiltonian A : g* x V* — R is defined as h := H R where
H : T*G x V* — R is a left invariant function under the affine action (see
Ellis, Gay-Balmaz, Holm, Putkaradze, and Ratiu [28]). We get the discrete

Hamiltonian map Fp, : g* x V* — g* x V*

Fy, =F*lg0Fy, 0 (FEe,)71,

and the following diagrams

* * ﬁzd * * i1 i1 Fey A
g x V¥ —g" xV (W= ™) — (W, a)
g 27 e
F~ 44 F~ g F 44 F~4q
GxV* T GxV* (fj_l’aj_l)?(fj’aj)

d

5.3.3 Discrete affine Euler-Poincaré reduction for fixed
parameter

As in §5.1.2, we now suppose that the expression of the Lagrangian L, , is
only known for a particular fixed parameter a,.y € V*. As above, we consider
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a discrete function Lg,,., : G X G — R, approximating the action integral of
the original Lagrangian L,, ., along the curve segment between ¢’ and ¢/t
We assume that Ly, is left invariant under the affine action of the isotropy
subgroup Ggmf.

As in the continuous case, the reduced discrete function ¢, associated to
Lg,a,., is now only defined on G x O = C G x V*, where Of = {0y(arey) |
g € G} is the G-orbit of a,ey. It is given by

=104 (f,0°) = La(¢’, " arey), ¢ g €G, o €V,

where f7 = (¢7)"'¢g’t! € G and a?0y5)-1(arep) € V*, for all j =0,..., N — 1.

Given the Gf  -invariant Lagrangian Lq,q,., and the reduced function £4(¢, a),
it is possible to state the following result, whose proof follows the same steps
as that of Theorem 5.3.1.

5.3.2 Theorem (Discrete affine Euler-Poincaré for fixed parameter) Let
aref be a fived element in V* and let {g’ ;_VZO
with ¢° = e. Define the discrete trajectories f7 = (¢°) ‘¢’ € G and o/ =
O(giy-1(areg) € V*, for j =0,..,N — 1. Then the following are equivalent

be a discrete trajectory in G

(i) With arer € V* held fized, discrete Hamilton’s variational principle
N-1
(5 Z Ld,aref (g]agj+1) = 07
§=0

holds, for variations 6g° = 5¢™¥ =0 .
(ii) The discrete path {g’ évzo satisfies the discrete Euler-Lagrange equations
DsLaa,., (9", ¢’) + DiLag,.,(¢°,¢’') =0, foralj=1,.,N—1
for Lyq,., on G xXG.

(iii) The constrained discrete variational principle
N-1

5> La(fi,a’) =0,
§=0

holds on G x Ogref C G x V* using variations of f7 and a’ of the form
5f = TeLy; (Ad(fj)—l n + nj'H) , sa? = —na? — de(n?)
where {nj}évzo is a sequence in g satisfying n° = n™N = 0.

(iv) The discrete path { f7 ;V:_Ol satisfies the discrete affine Euler-Poincaré
equations on G x Og  C G x V™ :

= Adiy 1 ToLys (ijfﬂ) +T0Lpi (Df-f—lff;z*l) + Doy by 0 a?
—dc” (Dajeg) —0, (5.3.12)

forallj=1,..., N —1.
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Discrete Legendre transforms. The Hamiltonian H,,, counterpart of the
Lagrangian L,,,, is only known for a particular fixed parameter a,.y € V™.
And the reduced Hamiltonian h,, ., at fixed parameter, is only defined on the
submanifold g* x 6 gt x Vv

The discrete Legendre transform F*/, is given by (5.3.11), with (f7,a’) €
G x 0¢  and image F¥{4(f7,a?) in g* x 6°

Qref Aref "’

5.4 Hamiltonian approach

This section (5.4) concerning Hamiltonian and Lie-Poisson is in progress. It
must be supplemented by additional studies.

5.4.1 The affine Lie-Poisson algorithm

Let S := G®YV be the semi-direct product. The lift of the left translation
of S on T*S induces the affine G-left action of G on T*G x V*. Consider
a Hamiltonian function H : T*G x V* — R which is left invariant under the
affine G-action (agy, a) — (ha(t),0h(a)), forallg,h € G,a, € TyG,and a € V*.

If a,ey € V*, we define the Hamiltonian H,, ., : T*G — R, by H,, (o) :=
H<a9a arﬁf)'

Given the G-invariance of H, the reduced Hamiltonian A : g* x V* is defined
as

h(g 'y, 0,-1(a)) = H(ay, a).
Then, as proved in [33], we have the following theorem

5.4.1 Theorem For a(t) € T,y G, g(0) = e, and pu(t) == T" Ly (a(t)) € ¢*
the following are equivalent

(i) «a(t) satisfies Hamilton’s equations for H,, ., € T*G, with initial condition
a(0) = o € T/G.

(if) (u(t),a(t)) == (g(t) " tau(t), Oy -1 (ares)) € g* x V*, is a solution of the
affine Lie-Poisson equations on s*

2 () = oy, o) (1,0)

S da

5h T+ [ 0h oh Sh
—(adsﬁ,u—aaoa—i-dc <5a)’_6ua_dc(6u)> (5.4.1)

with initial conditions (1(0),a(0)) = (ko, ares). The associated Lie-Poisson
bracket of two functions f,k :s* — R, on the semi-direct product Lie al-
gebra s* is

_ of Ok 6f 0k OkOf
(00 = (55 (o 5 e

() i)+ (e (G) 500

o, ¥
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Moreover, in [33], they note that the affine Lie-Poisson equations for the
reduced Hamiltonian h on s* are equivalent to the affine Euler-Poincaré equa-
tions (5.1.9) for the reduced Lagrangian ¢ on g x V* together with the affine
advection equation a + a€ + dc(§) = 0.

For the left invariant system, the solution of the Lie-Poisson equations (5.4.1)
read

(u(t),a(t)) = (9(t), v(t))(po, a0),  1(0) = po, a(0) = ao,

where (g(t),v(t))(uo, ao) is the affine coadjoint action of S on s* (see Ellis,
Gay-Balmaz, Holm, Putkaradze, and Ratiu [28]), defined by

(9(1),v(1)) (10, a0) := Ad{y(e),0(t))~1 (10, a0) + o ((g(t), v(t)) ™),

with the left group one-cocycle o : S — (g@® V)*, which verify

a(g(t),v(t)) = (v(t) 0 c(g(t)) — de” (v(?)), c(g(t).

And where the trajectory (g(t),v(t)) € S is the evolution of the system, i.e.
solution of the Euler-Lagrange equations defined on T'S.

In the discrete case we obtain a Lie-Poisson integrator that preserves the
(—) Lie-Poisson structure on s*, by constructing the discrete path

(:uja aj) = (gj’ Uj)(/loﬂlo)a

where the discrete curve (¢7,v7) is a solution of the discrete Euler-Lagrange
equations on S x S. Unfortunately we do not know these equations, and it
seems that we cannot construct a discrete Lie-Poisson algorithm as it was done
in Marsden, Pekarsky, and Shkoller [86].

5.4.2 Discrete Hamiltonian flow

If the discrete curve {g’} is a solution of the discrete Euler-Lagrange equations
(5.3.6) on G x G, and if the discrete Lagrangian is regular, then the discrete
affine Euler-Poincaré equations, on G x V*, are simply

Fra(f771, ™Y = F la(f’, ),

as seen in (5.3.11), where F¥/; : G x V* — g* x V* are the discrete Legendre
transforms of 4 : G x V* — R. And the corresponding discrete Hamiltonian
flow, Fy, = F¥ly0 Fy, o (Fifd)fl, reads

(/u'j+la aj+1) = Ffd (/ijaj)'

5.4.3 Poisson property of the discrete affine Euler-Poincaré
flow at fixed parameter.

It is worth noting that discrete Lagrangian Ly is left G-invariant, that is

Ld(hgj7 hngrlveh(aj)) = Ld(gjvgj+la aj)’
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for all ¢7,¢g’t1,h € G, and a’ € V*, while the discrete Lagrangian Lia,.; is
only G _ -invariant, that is

Ld:aref (hgj7 hgj+1) = Ld7aref (gj7gj+1)7

for all g7, ¢g'*! € G, and h € G¢, ;- Given the discrete hamilton’s variational
principle, for the discrete Lagrangian Ly, , at fixed parameter a,.y € V*, we
obtain the Euler-Lagrange equations for Ly q,,, on G X G as well as the discrete
symplectic form Qp, dayes given in coordinate expression by

0? Ldﬁarr:f

= %dgj /\dgj—H7
faghoghtt T P

QLd,a,Ni‘
which is related to the Hamiltonian momentum map €2 Ha,,, by pullback under
the fiber derivative

Ui,y = (FLiares) Q-

f

We may associate a Poisson structure {-, -}« g, which verify
{F,E}oxc = QL. (Xr, Xp),

on G x G. Where F, E are any C' function on G x G, and X, Xg are there
Hamiltonian vector fields, satisfying iXFQLd,aref =dF.

For the Gg _ -invariant discrete Lagrangian L
ated to the discrete reduction is given by

mq:GXG— (GxG)/GE

the quotient map associ-

Aref

ref .
Thus we obtain a Poisson structure {-,-}, on (G x G)/G¢ ___, by the relation

Aref?

{fih}oma={fomyhomitoxa,
where f,h are any C* function on (G x G)/G¢

ref’
5.4.4 The associated Lie-Poisson structure at fixed pa-
rameter.

Let S := G®YV be the semi-direct product. The lift of the left translation
of S on T*S induces the affine G-left action of G on T*G x V*. Consider a
Gq,. ~invariant Hamiltonian H, ., : T*G — R, defined only for a fixed value
arer € V*. In particular we do not know the expression of H, for other values
of a € V™.

The reduced Hamiltonian & : g* x O ; R is defined on the submanifold
g x Ogmf of §*, as

h(g_lag, g1 (aref)) = H(ag, aref).

The reduced motion evolves on an affine coadjoint orbit.

Then, as proved in Ellis, Gay-Balmaz, Holm, Putkaradze, and Ratiu [28],
we have the following theorem
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5.4.2 Theorem Assuming the previous hypothesis.

(i) Leta(t) € T;(t)G be a solution of Hamilton’s equations associated to H,,
with initial condition po € TG = g*. Then

(u(t), a(t)) = (g(t) " a(t), Oy~ (ares)) € 5°

is the integral curve of the Hamiltonian vector field X, on the affine
coadjoint orbit (Oam,amf)’ w™) with initial condition (po, ag). Conversely,
given py € g* = TrG, the solution a(t) of the Hamiltonian system as-
sociated to H,,,, is reconstructed from the solution (u(t),a(t)) of Xn €
%(Ol(juo,amf)) with indtial condition (po,ag) by setting a(t) = g(t)u(t),
where g(t) is the unique solution of the differential equation §(t) = g(t)m

ef

3h
with initial condition g(0) = e.

(ii) Extending h arbirarily to s*, Hamilton equations on (O ~) can

o
(Hosares) ¥
be written as

9 . Sh o (6h Sh oh
= (s e () - (8).

with initial conditions (11(0),a(0)) = (po, g(0) *ares +c(g(0)™1)). The
associated Lie-Poisson bracket is as defined in theorem (5.4.1) .

5.4.3 Remark It is worth noting that the solution (u,a) € s* evolves on
the affine coadjoint orbit (Oguo,aref)’ w™), for any G ;-invariant Hamiltonian
H

Aref*

5.4.5 Discrete Hamiltonian flow at fixed parameter.

If the discrete curve {g7} is a solution of the discrete Euler-Lagrange equations,
the discrete affine Euler-Poincaré at fixed parameter is simply

Fla(f771, a1 = F La(f7,d"),

where F*/¢; are the discrete Legendre transforms of £4. If the discrete La-
grangian is regular, the corresponding discrete Hamiltonian flow is £y, = F¥/40

Fy, o (Fiﬁd)il, reads 4 4 R o
(,uJ'H,a]'H) — Fed(ﬂjﬂ])-
5.5 Variational integrator

The reduced Lagrangian £ (g7'¢,0,-1(ares)) was defined in (5.2.6).
Spatial discretization We discretize the interval [0, L] by N elements, such

that for one element K of length [, with two nodes a, and a + 1, an element
g € G may be approximated by

91(S) = (An(S), &n(9)) = (Aaexp (li@) xa zi“a) |
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where R : GXG — G is the right translation map. We note that g5, (0) = (A4, %X4)
and gn(1) = (Agt1,Xq+1)- As a consequence the variables in the spatially dis-
cretized Lagrangian are the vector rotations matrix Ax = (A,, Ags1)T ina
and a + 1, the vector positions Xx = (X, Xq41)? of the nodes a and a+ 1, and
9k = (A, XK).

We know by Crisfield, and Jelenic [24] p. 1133 and p. 1137 that this spatial
discretization provides objective strain mesure, whereas with a linear interpo-
lation of the rotational vector we lose the objectivity.

The variables &, (S), 71 (S), Qn(S), Tr(S), pr(S) and xx(S) are obtained by
using the approximations Aj;, and ¢y, instead of the continuous variables A and
¢. We thus have

wp(S) = Ah(S)TAh(S) e C*([0,1k],s0(3)),

m(S) = A(S)Tdn(S) € C([0,1x], R?),

Qn(S) = An(S)TAL(S) = Yu/lx € C=([0,1x],50(3)),

Th(S) = An(S)Tdh(S) = An(S)TAx,/lic € C2([0,1],R?),  (5:5.1)
pn(S) = Ah(S)T Xq + :{Axa> € OOO([O,ZK],RB)

X (S) = A (S)TEy € C([0,1x],R?).
Concerning the potential energy, the expression obtained by using Aj; and

¢, instead of A and ¢ reads

Ix
VK(CLK) = o f(S)dS, (552)

where ax = (QKIK’ PK, XK), With

Qi = (ﬁmﬁaJrl)u 'k = Ta;Tat1), pr = (Pa;pat+1), Xk = (Xa> Xa+1)s

and

f(9) :% [(TA(S) — E3)"C1(Th(S) — E3) + Qu(S)" C2(S)] +  (pn(S), xn(S)) -

For the kinetic energy, we make the following approximations on an element
K of length Ik
1 [l lie
2] M) = M (Il + Ieeal?)
1

Ik l
5/0 (wr ()T Jwp(8)) dS ~ ZK (wa Jwa + wey g Jway1) -

Therefore the discretized Lagrangian fx : (g x V*)? — R is

1. lx
Uk (95 Grc ax) = M (Ivall® + ll7as1?)

l N N . ~
+ ZK (Tr (waJd(wa)T) + Tr (waHJd(waH)T)) + Vi (ak),

(5.5.3)
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where (Ox, Vi) = (Ar,xx) Ak, XK).

Temporal discretization. Given discrete path spaces C4(G) and Cq(V*) as
defined in (5.3.3). Given a node a, the discrete time evolution of this node is
given by the discrete curve

(95, a3) = (A, %3, %, 15, ph, xa) € SE(3) x V™.
The discrete variable f/ = (g7)~1g?*! associated to this node is
(F1, H]) = (AL, x3)T (AL x0T = (A)TALH (ADT (I =)

We denote the time-step by At =t/ — /=1, supposed to be of uniform size. In
terms of these variables (F7, HJ), we make, as in section (4.2.4) the following
approximations.

AFY— AN\ Fi— I
t At

o= ()" R~ () (Mg
T N7 (xITt—xI\  H)
= (A9)" X~ (7)) (At) = A

The discrete reduced Lagrangian £x ( fg(, aé() approximating the action of
the Lagrangian £ in (5.5.3) during the time step At

i+l

b= t(Feai) > [ tilar) i(t) ax()d.

J
is therefore

; I MI|HI|? 1 Te((I3 — FJ)Jy) ;
i LK a YK a _A i)
fx a;{{ 2 At 2 At tVk (aK>

The discrete action sum which approximates the continuous action over the
time interval [0, 7] is computed as follows

Ga((Aesxaa0)) = > > b

KeT 1<j<N

ZMHJ2 Tr((Is — FJ)J
_ZZ{K (A K((3At)d)}

a#ag,an j=0

N .
K HH 1> Ik Te((Is — FY))Ja)
2 {4 5 At

Jj=
NS Ll ML P e (s = F) )
4 At 2 At
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Variational integrator. Recall that given a discrete reduced Lagrangian
laa,..(f7,a’) defined on G x OF ; C G x V", where arey is a fixed element in
V*, the discrete-time affine Euler—Pomcare equations for each node a € N are
given by (5.3.12), where N is the set of all nodes. Thus we get the following
systems of discrete affine Euler-Lagrange equations

- Ad>(¢<Fg7ng)7l T(:(L(F;{,H(Jl) (D(FJ,H(J;)@Z’) + Daég‘(jz & a/(J),
—dc” (Da-g;ﬂi) T Lt gy <D<Fg—1,Hé‘l)£g_1) -0

where ¢ denotes the dependence of the discrete action &4 on (AJ,x7, FJ, HJ al),
similar for #/~!. We denote by ON = {ag, ay} the set of boundary nodes and by
int(N) = {ay,....,an—1} the set of internal nodes. For a € int(N) the discrete

Lagrangian ¢ is

. g M||HI|? Tr I —
0= ?K ”Ata” g (L3 ZAtVK( )
K>a

whereas, for a boundary node a € N, it reads

. ZKM||H,Z||2 lKTI‘((Ig—
b=Tan T2 KZ;AWK( )

So, for a node a, using (4.2.26), we get

T} Ly Dyt = JaFi — (FI)TJ,)" € R? ~ s0(3)".

2At (
The derivative of £ with respect to HJ is

lx
i j
Dyt = Mo H,

so, denoting e = (I, 0), using (4.2.27) and (4.2.19), we obtain

T L (FJ H) (ng%, DH%Z)
1 ; 1 . .
(mt (JaFZ — (FHTJ1a)" ME(FG)T Hé)
and
Al s (Ti Ly Dy s ToLygy Dy 04)

1 M .
_ ] _ J _ J
<2At(FJd JaEDTY wﬂa)

The tangent map D, e T:j O;.. ;s defined by

Dt = (D%eg, Dy, fi, D03, Dxieg;).
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In order to compute D, 3, we approximate the expression Vi of the potential
energy (5.5.2) by

Vie(orc) = Viclarc) i= = (J(0) + ()
= ZZK [(Fa - Eg)Tcl(Fa — E3) -+ (Fa+1 _ E3)TCI(Fa+1 . Eg)

l l
+(2) 7 CoQ + (Qat1)" CoQas1] + L4 Pas Xa) + =g {Pat1, Xar1) -

2 2
Thus we get
D%eg =— %Ath Q)
Dyt = — %Atcl (T4 — E3) ,
D, t, =~ %Athi,

, lx ,
= K
Dt = 5 Atqpl.
Given af = (Q, T, pl, x4) € V*, and relations (5.2.11), we obtain
(DQgega Driégv ng££7 DX{LZ{z> O(Q{z’ F{za p{z? Xi)
_ (D%zg X Q)+ Dpy 6 x T4+ D, 03 % pl + Dy 63 x x, —Qd x Drgég) .

In order to obtain the value of de® we choose £x instead of ¢,. Indeed we
need to calculate the divergence, with respect to the element K. By relation
(5.2.12) we obtain

dc” ((Dszf;@o DFZ'/JI.W DP@Z%{’ DX#%{»
_ ((div (Dﬂi’eﬂ;{) , div (Dri eg’() - Dpi;,”k))

By (5.5.1) we know that Q,(S) is constant on K, as well as DQh@(. Thus
div (DQ;L@() = 0. And we express div (Drg' @() as follows

a

: ; e d
div (DF{l eK) ~ At /O Ci=2(Tn(S) - Es)dS
N (rgH - rg) .
We get
de” (Db, Dryfic, Dyl Dy b))

, , I ,
~ (O, —~AtC, (1"?1+1 - Fi) + ?K Athi) )
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Summary of the discrete affine Euler-Poincaré equations.

Discrete
affine Euler-Poincaré equations for rotations :
(i) Interior nodes a ¢ {ag,an}

I , . l , ,

% (JaFi™ = (FI ) — KKt (FiJa— Ja(FHT)"
1 AX,_ 1

= AR Cy [(A)T2E ) x (Aw)T A%y g + — Cotha1 X tarr
2 lx Ik

A 1
+Cr ((A)" S22 — By ) x (Aa)"Axy + —Cotby X s
lx I

t=ts
(ii) Left node a = ag

ZK . . \% lK : . \%
A% (JaFI™' = (FI YT Ja) " — AL (FlJa— Ja(F))T)
1 A 1
— ARG (A)T 52 — By ) x (M) TAx, + —Catby X
2 Ix P .
iii) Right node a = an
(iii) Rig
ZK . . \% lK : . \%
AL (JaFI ™' = (FI D) — AL (FlJa— Ja(F))T)
1 Ax,_ 1
= -Ats Cy (Aa)TL — B3 ) x (A)TAxq— 1+ —Catha_1 X a1
2 ZK ZK t=tJ

Discrete affine Euler-Poincaré equations for positions :
(i) Interior nodes a ¢ {agp,an}

M sy kM

At ¢ At @
1 A A
— A ZC [(A)" =22 — Eg ) X by — C1 ((Aagt)” — (A)T) =22
2 1% I
1 Ax,_ Ax,_
SCy [ (A)" Xl By ) x a1 — Cs (A)" = (Aa=1)™) Xo1
2 5% Ik

+ lK (Aa)TQ}

t=tJ
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(ii) Left node a = ag

IkM . IxM
RESly 4 /R SR i Sl & &/
2At ¢ 2At @

st (00725 ) ) 3

Ik

(ii) Right node a = an

M . kM .
REi Sl = 5/ Rk NP Sl = /]
2At ¢ 28t

- At{;cl (<Aa)T Dot _ E3) X a1 — C1 (Aa)” = (Aa_1)T) A’l‘;fl

5.6 Alternative temporal discretization

As we did in section § (4.4), we can consider an alternative discretization to
(4.2.20). If we consider that, for a node a € K and t € [t/,t/T1], the trajectory
of an element g € G may be approximated by

—

) t ~. R A )
— J i J J+1 _ J
ga,d(t) (Aaexp ( A \11(1) ’ Xa + At (xa Xa)) ’

with exp(¥/) = (AJ)TAI*L, then the approximations of &/ and 47, in node a
at time 7, are

51— (AT AT~ %

so(3) s @), =(A]) AL~ Af € 50(3),
4 o 4 +1 _

B9340 = (4)" 5 ~ (4]) T e me

Thus the discrete Lagrangian Eﬁ-( is

(MR | b e s 4
%_;{{4 N 4(At)Tr[%]d(%)T”_AtVK(a?)’

and we can obtain a different version of the discrete affine Euler-Poincaré equa-
tions for the geometrically exact model of beam.







Chapter 6

Lie algebra variational
integrator of geometrically
exact beam dynamics

Introduction

This chapter develops a Lie algebra variational integrator, which analyzes the
deformations of the geometrically exact model of a beam introduced and de-
scribed in chapter 4.

Take the configuration space of the beam to be @ := C*°([0,¢], SE(3)), the
space of smooth curves defined on the closed interval [0, ¢] with values in the
special Euclidean Lie group SE(3). The Lie group expresses crucial geometric
attributes of the underlying system (see, e.g., Iserles, Munthe-Kaas, Norsett,
and Zanna [50]). Thus, the configurations of the beam are completely defined
by an element (A, ¢) € SFE(3) specifying the rotation A of the cross-section and
the position ¢ of the mid-line.

For the given Lie group G = SE(3), the Lagrangian L : TQ — R of the
beam studied in this paper, has the form

L(9.9) = 37(6.9) ~ V(o).

where 7 is a G-invariant Riemannian metric on the configuration space ), and
V : @ — R is the G-invariant potential energy. Then, pushing forward L by left
trivialization (g, g) — (9,9~ '¢) gives the trivialized Lagrangian

L(g,&) = L(g,9), ¢:=9¢,

which is consistent with the convected representation.

In this chapter we discretize spatially the interval [0,¢] by a set T of N
simplexes K with nodes a, while the objectivity strain measure is preserved
(frame-indiference). This is how to maintain the strains invariant to the super-
posed rigid body rotation (see Crisfield, and Jelenic [24]). On an element K

119
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we approximate the Lagrangian Lk by the trapezoidal rule. With the notation
9k = (gasgasr1)T, and Ex = (&4,€411)T for the variables associated to an
element K with nodes a and a + 1, we obtain

Lk (91:6K) = "5 {60, €0) +7(Ear1,€01)) ~ Vi),

Next, we discretize temporally, and approximate the convected velocities
€. = g5 'da, at each node by elements in the Lie algebra g = se(3). We obtain
the discrete Lagrangian £, : G x g — R approximating the action of the
trivialized Lagrangian Ly : G x g — R over the interval [t/,#/+1]  for elements
K of length k.

By applying the discrete Hamilton variational principle, we get the discrete
Euler-Lagrange equations. The associated discrete evolution operator is

F:Gxg—=Gxg, (¢ LN (d,¢),

where 7(¢7) = (¢7)71g?*!. Choose a smooth map 7 : g — G with 7(0) = e; for
example, 7 may be exponential map or the Cayley transform. We note that,
given &7 as the average velocity between g/ and ¢g/*!, 7 is an approximation of
the flow of the dynamics (see Kobilarov, and Marsden [60]). The important point
is that the integrator is expressed in terms of the right logarithmic derivative
dfr of 7 for the given left action (see Iserles, Munthe-Kaas, Ngrsett, and Zanna
[50] and Bou-Rabee, and Marsden [15]). This is a linear map, which is easy to
invert, as it is the inverse of a matrix. Thus we obtain an integrator which has
the properties of all the variational integrators and is numerically efficient.

6.1 Lagrangian dynamics of a beam in R3

To set the stage, we recall that the dynamics of a beam in R3 was review
in (4.1) following the classical paper Simo [107]; see also Simo, Marsden, and
Krishnaprasad [110]. This approach generalizes to the fully 3-dimensional dy-
namical case the formulation originally developed by Reissner [99] for the plane
static problem. It can be regarded as a convenient parametrization of a three-
dimensional extension of the classical Kirchhoff-Love rod model due to Antman

[2].
6.2 Lie Algebra variational integrator for the beam

6.2.1 Lie group structure

In this section we develop an asynchronous Lie group variational integrator for
the beam. To do this, we identity the configuration space @ of the beam with
the infinite dimensional Lie group G = C*°([0, L], SE(3)); the group operation
is given by pointwise multiplication in the group SE(3), i.e.,

(A1, 61) (Mg, d2) = (A1A2, 01 + A1g2),
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where A € C*([0, L], SO(3)) and ¢ € C*°(]0, L], R?). The identity element in G
is the constant map (Id, 0) and the inverse is given by (A, ¢)71 = (Afl, —A*Igb).
The tangent lift of left translation has the expression

(A1, 1) (Mg, ) = <A1A27A1€i72> )
where (Ag, ¢o) € T, (As,65)G- Thus, the convective velocity is given by

@,7) = (A, 0) (A, ).

It is important to observe that, in this setting, if boundary conditions have to be
imposed on the configuration space, they have to preserve the group structure.
For example, both boundary conditions considered in Fig. 4.1.1 preserve the
group structure of G.

Trivialized Euler-Lagrange equations on Lie groups. We briefly recall
the expression of the trivialized Euler-Lagrange equations on the tangent bun-
dle of a Lie group G. Let L : TG — R be a smooth Lagrangian defined on
the tangent bundle TG to a Lie group G. The push forward of L by the left
trivialization vector bundle isomorphism T'G' 3 v, = (g, g_lvg) € G x g yields
the smooth function £ : G x g — R defined by

L(g,&) = L(g,9), §:=9&.

The classical Euler-Lagrange equations are obtained by applying Hamilton’s
Principle to the action defined by L and a given interval [to, 1] for variations of
curves keeping the endpoints at t = ¢y and ¢t = t; fixed. Consequently, pushing
everything forward by the left trivialization isomorphism, gives the constrained
variational principle

i bl /oL oL
o=1 ], awqa= [ (o 00)+ (Gore)) o

for all variations &g : [tg,t1] — TG and ¢ : [to,t1] — g satisfying dg(tp) = 0,
5g(t1) =0, 8¢ = 1+ ade n, where n = g~ 'dg, so that n(ty) = n(t1) = 0 (see [89]
p-438). Integration by parts yields hence

2 b1 oL oL d (0L
_ _ -1Z= * 7= _ {2 Z=

for all 7 € g. Hence the Euler-Lagrange equations in terms of £ read

d(oL\ oL _or

In our example, we take G = C*°([0, L], SE(3)).
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The trivialized Lagrangian. In the case of the beam under study, the triv-
ialized Lagrangian L(g,£) can be written as

. 1 [k 1 [
E(Aa¢awa7) = 5/0 M HV”Q ds + 5/0 WTJW ds — Him‘,(Aa d)) - Hemt(d’)v

on G x g = ([0, L], SE(3)) x C>([0, L], 5¢(3)).

6.2.2 Spatial discretization

We return to the original beam problem whose equations of motion are (4.1.11)
with boundary conditions (4.1.12). Recall that the configuration space is @ =
G =C>([0,L],SE(3)).

The discretization of the variables (A, ¢) € SE(3), and of the associated
convected variables (@, 7), (Q,T) € se(3) is described in section § (4.2.2).

The spatially discretized Lagrangian Lx : TSE(3)? — R and its trivialized
form Lx : SE(3)? x s¢(3)? — R over an element K of length I, are given by

L ! . .
Lic(Asexic, A ki) = M (|all® + %o )

+ IZK (wf Jwa + Wiy Jwag1)

— Vi (xk,Ak) = Lk (Ak, XK, @K, VK ), (6.2.2)

where Vi was defined in (4.2.6). The spatial discrete Lagrangian L, of the total
system is obtained by summing over all the elements K, i.e., Lqg = ;7 Li.

6.2.3 Discrete Euler-Lagrange equations on Lie groups

Exponential map derivative. In this subsection we present a variational
integrator for mechanics on Lie groups based on the paper of [50] that uses
the right trivialized derivative of the exponential map, also known as the right
logarithmic derivative. We will later apply this variational integrator to the
beam.

If G x M — M is a smooth left action and 7 : M — G is a smooth map, its
right logarithmic derivative at m € M is the linear map defined by

A7 (m) == Ty (m)Ry(my-1 © T : TuM — g. (6.2.3)
Thus, if t — m(t) is a smooth curve in M, we have
d
prad
Let us apply these formulas to the exponential map exp : g — G which

has the additional advantage that the right logarithmic derivative is known
explicitly. Thus if £ € g, we have

(m(t)) = (%7 (m(t)) - in(t)) 7(m(t)) € Trn(e)) G-

00
1 n
df exp(§) = Texprexp(fg) oTeexp = Z i ad5 = ade g0,
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a linear map from g to itself. Therefore, if ¢t — £(t) is a smooth curve in g, we
have d
—exp((1)) = (A" exp(&(1)) - (1) exp(§(1)) € Texpe(n)G-

There are similar considerations for the left logarithmic derivative by simply
replacing the series in (6.2.4) by the series Y - % adf = (I —e ) /ade.

This right logarithmic derivative of 7 was used also in [15] to develop a va-
riety of integrators of variational partitioned Runge-Kutta type for Lie groups.
In control theory, Kobilarov, and Marsden [60] developed a structure preserving
variational integrator to actuate a system, based on the rigid body model, to
move from its current state to a desired state with minimum control effort or
time.

From (6.2.3), writing 7~
derivative of T

_ -1
TT({)T 1 (dRT(g)) o TT(g)RT(f)—l : T.,.(g)G — g. (6.2.5)

Lo = id, we get the inverse right logarithmic

The integrator we present is developed to treat numerically mechanical sys-
tems on finite dimensional Lie groups.

Explicit-implicit integrator

Let L : TG — R be a Lagrangian defined on the tangent bundle TG of a Lie
group G and let 7 : g — G be a map with 7(0) = e. We assume that 7 is a
C?-diffeomorphism in a neighborhood of the origin. The discrete Lagrangian
%1 : G xg— Ris defined as an approximation of the action functional over
one time step, namely, we have
I+l
2 )~ [ Lo,
ti
where g(t) is the unique solution of the Euler-Lagrange equations such that
g(t?) = ¢/ and g(t/T1) = ¢g*! and where
T(ALE) = (¢7) gt (6.2.6)
We assume that the time step is small enough so that (¢7)'g’*! is in a neigh-
borhood of the identity element of G where the map 7 is a diffeomorphism.
In our applications, the Lagrangian is always of the classical form kinetic

minus potential energy, where the kinetic energy is G-invariant, so that we can
write the discrete Lagrangian as

Za(g’, &) = K(&) - V(g), (6.2.7)
We now compute the variation §¢7 induced by variations of g7. Defining
= (¢7)"16¢’ and f7 := (¢?)"1g’T!, we have
. (6.2.6 _ \ (6.2.5 -1 - L
7 OZ0 =1 (557) OV (@Rr(ate)) T (67 m(ALET)Y))
= (aRr(Ateh) T [(—(¢)) g (o) g + (7)Mo ) ()7
- . .
= (dRT(Atgj)) (77)] +AdT(At£j) ?7J+1) . (628)

AtoE
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The discrete Euler-Lagrange equations are obtained by applying the discrete
Hamilton’s principle to .%;. Taking into account that n° = n™V = 0, we get

N-1

084 =Y Dy Lulg’,&) 0¢’ + Des Lu(g’, &) - 687

<
o

2

—1
=Y D, Z(g, &) g'n

j=0
+ ingfd(gjyfj) - (dfr(At fj))i1 (=0’ + Adrareny ™)
—1
=Y () pata ) - 5; (@72t ™) (Do Lala! )
=1
1 L1\ * ) ) )
+EAdi(At§J’*1) ((dRT(Atfj)) 1) (Dgflfd(gjl7§]1))> .

Thus, the discrete Euler-Lagrange equations are

L . . 1 o —1\* . .
() (DyZalg &) = 1 ((@7r(ate)) ) (DesZale’ &)
1 " o —1\ * . .
+ EAdT(Atfjfl) ((dRT(Atf‘])) ) (ij—lzd(g] 1,§] 1)) = O, (629)
with (¢7)"tg/ ! = 7(At ).
In (6.2.9), for a given pair (¢7~1,&/71), we obtain ¢/ = ¢/ ~17(¢&7~1) from the
second equation, and we solve the first equation to find &7. This yields a discrete-

time flow map (¢? =%, &771) — (g7,&7), and this process is repeated. The discrete
Euler-Lagrange equations may thus be written as

‘uj — Adi(Ath‘*l)'u‘jil = (gj)il (nggd(gj’gj))

j 1 SN\ T * . .
W= = ((dRT(Atgﬂ)) 1) (Dei Za(g’,€)) (6.2.10)
g = gIr(Ate).

In the context of Lie algebra variational integrators, the discrete Legendre
transforms F* %, : G x g — G x g* are given by

F+$d(gja€j) = (9j+1a Adi(Atga‘),Uj)
F~Zi(g7, &) = (¢, — ()" (D s Lulg?,€7)) + 1Y)

We note that equation (6.2.9) can be written in terms of the Legendre transform
as

FrZy(g’h &7 =F Zu(g", &),
as in (1.2.4).
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The infinitesimal generator of left multiplication on G for { € g has the
expression (g(¢’) = (¢’. In the context of Lie algebra variational integrators,
the discrete Lagrangian momentum maps Jf;d :G X g — g* are defined by

(I (¢,6).¢) = <F+$d(gj,£j), ()~ Ca(g-j+1)> (6.2.11)
(32,(07,).¢) = (F~Zalg’ &), (o)) " Cale))). (6.2.12)

These definitions are adapted from the relations (1.2.8) to the case of Lie algebra
integrators. Thus we get

J:;d (gj7§j) = Ad?gj+1)71 (Adi(AtEJ)p,]) = Adzkgj)—l ,uj,
T2,(97,€) = Adjgsyr - (0 = () (Do Zule’, &) )-

Note that equation (6.2.9) can also be written in terms of the spatial discrete
Lagrangian momentum maps Jffd as

Ady 5, (g1, 871 = Adg I o, (o7, €).

6.2.1 Remark Recall that for mechanical systems on Lie groups the spatial
and body momenta associated to a momentum o, € TG are respectively given
by ms = agg~! and mp = g~ 'y, so the coadjoint representation Ad; maps
the spatial momentum to the body momentum (see Abraham and Marsden
[1]). Note also that the momentum map associated to left invariance reads
Jp:T*G = g%, J(ay) = ayg~ " and thus coincides with the spatial momentum.
We refer to Demoures, Gay-Balmaz, Leyendecker, Ober-Blébaum, Ratiu, and
Weinand [25] for a more detailed study of these relationships in the discrete
formulation and its connection with geometric integrators.

6.2.2 Remark Recall that if the Lagrangian L : TG — R is left G-invariant,
then the Euler-Lagrange equations reduce to the Euler-Poincaré equations, as
one notes from (6.2.1) by inserting L£/9g = 0. Similarly, in the discrete case, if
%y is a left invariant Lagrangian, that is, if .Z;(g%, £) = Z4(£°), then (6.2.10)
is a discrete approximation of the Euler-Poincaré equations.

Discrete Lagrange-d’Alembert equations

In a similar way with the continuous case, external forces can be incorporated
in the dynamics by replacing the discrete Hamilton’s principle with the discrete
Lagrange-d’Alembert principle (see Marsden and West [90]). For Lie algebra
integrators, the discrete Lagrange-d’Alembert principle reads

N-1 N-1
=0 =0
for all variations d¢g7 with §¢° = dg"V = 0, where F; (¢/,&) € T;;G and

]:; (g1, ¢0) € Tg*HlG are the discrete external Lagrangian forces. These dis-

crete forces are chosen in such a way that the second term in the variational
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principle is an approximation of the virtual work done by the force field in the
continuous case. Using the notation 7/ = (¢7)~16g?, we have

597 = 0g’T(ALE) + ¢/ 6(T(AtET))
= g’ T(AtE) + ¢ (AT (ALET) - AtseT) T(ALET)
O g (Adyave W) T(ALED),

At6¢0 = (AP (At)) " (=1 + Adparen ) .

Then, since n° =7~ = 0, we get
N-1 o _
06a = (ngfd(gj,ﬁj) +]'"d_(g”7ij)> - 69’
j=0
+ Dei Za(g, &) - 067 + F g+, 67) - 09"

=2

=3 (D Zale' &) + Fi (g7,€0)) - g

<.
Il
=)

1 o o , 4
EDg.igd(g]7 fj) . (dRT(At fj)) ( - 77] + AdT(At gj)77]+1)

+ FF 0 8) - (9 (Adraren n'*) m(ALE))

+

= {(gj)’1 (Dys Za(g? . &) + (") (Fy (67, €))

L ((dRT(Atgf))_1>* (Des Za(g?, &)

At
AitAdi(Atgrl) ((dRT(Atfjfl))A)* (Dej—r Zalg’ =1, 671)
() (FET) o
Thus, the discrete Lagrange d’Alembert equations are
(¢7) 1 (Dgs Za(d’ . &) + (9°) " (F4 (67, €))
-5 (@rae) ™) (D 2ale?, )
A g (@ r(atg ™) ) (Do Zatg 7))
+() T (FIE7h) =0,
with g/ = g/T(At¢d).
They may be conveniently written as
p = Ad pp ey’ = (g7) ! (Dgs Zalg’, €))
+() T (F (. €) + () (Fa (. €7h)
w = ((@Fraee) ™) (Do Lo’ €)
gt =gir(Atg).

_|_

(6.2.13)



6.2. Lie Algebra variational integrator for the beam 127

When forces are present, one has to incorporate them in the discrete Leg-
endre transforms and the discrete momentum maps, as explained in Marsden
and West [90]. In the context of Lie algebra variational integrators, the forced
discrete Legendre transforms F/* Ly : G x g — G x g* are

F¥La(g),¢) = (97 Adzaren i + ()7 (Fi (67.€))
FILa(g’ &) = (970 = () Dy Zalg? &) + () Fi (67,

The forced discrete Lagrangian momentum maps J f;d :Gxg—gtforg? €eG

and &7 € g, are given, in terms of the discrete Legendre transform, by (6.2.11)
and (6.2.12). Thus we get

Jf;;; (gjafj) = Adfgjﬂ)fl (Adi(mgﬂ')#j + (9j+1)71 (]:j(gjﬂ,fj))) )

I (7€) = Adfyya (W = (9) ' Dy Zulg? &) + (/) Fi (97,6

Implicit-implicit integrator

In this approach, the discrete Lagrangian is evaluated on the couple (g7*1, ¢7)
instead of (g7,&7), where &7 is still given by At&d = 771((¢?)"tg’*1). In the
context of discrete Lagrangian of the form (6.2.7), we now have

Zalg™,€7) = K(€) - V(g™

so that the only difference with the previous case is that the potential energy
is evaluated at g7t! instead of ¢7. As we shall see below, this has important
consequences; for example, the integrator that will be developed below is totally
implicit.

The discrete Euler-Lagrange equations are obtained by applying the discrete
Hamilton’s principle to .%y. As before, we get

N—-1
084 =Y Dy Lo(g,&) - 6¢F" + Dey Lulg’™, &) - 68
=0
N—-1
- (Dgf+1$d(9j“,§j) g Tt
7=0
1 L L _
+ 17 DerLalg’™, &) - (AR (ALED) T (=P + Adareyr™) )
-1
i P 1 A ; ;
B {(QJ) 'Dy; ZLu(g?, & 1)—5((611{7(&5’)) ) Des Za(gt, &)
j=1
L aar AR (AN Do Za(g?, )\
T A (( T(AtEh) ) i Lalg?, &) ¢
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The discrete Euler-Lagrange equations are thus given by
o o 1 -1\ ; ;
(¢°) "Dy Zalg’ &) = 5= ((@°7(ate) ™) DesZalg’™ &)

1, 1\t ——
A ) (@A) ) Do Zalg? €71 =0,

N

and may thus be written as
1 — A are-ny? = ()T Dy Ll €7
. 1 L —1\ * . . .
W =5 ((@Fr(ate) ™) DeZalg'r(ate). &)
g =g r(Atg).

The discrete Legendre transforms F*.%; : G x g — G x g* are given by
Ft (g™, ¢) = (gj“, () ' Dy Ll ) + Adi(mgj)uj) 7
F~Za(g",€) = (¢, 1)

Given (6.2.11) and (6.2.12), the discrete Lagrangian momentum maps Jffd :

G xg—g* for ¢t € G and & € g are

J5, (g7, €) = Ad{yiiny <(9j+1)_1Dgf+lfd(9j+1,€j) + Adi(mgf)“j) ’

J;fd (gj+1a§j) = Ad’(rgj)*luj'

6.2.4 Lie algebra variational integrator for the beam

In this subsection we shall present a variational integrator for the beam, by
applying the previous approach to the spatially discretized Lagrangian (6.2.2).

Time discretization

Recall that the Lagrangian (6.2.2) is defined on the tangent bundle
TSE(3)N+1 9 (Aa7 Xaa Aa; Xa)ae./\ﬁ

In the time discretized case, the discrete time evolution of a node a is given
by the discrete curve {(AZ,xJ) | #/ = jAt} in SE(3) and hence the discrete
Lagrangian is defined on SE(3)V*! x ge(3)N+1.

The discrete Lagrangian %}, approximating the action of the Lagrangian
Ly in (4.2.7) over the interval [t/,#/ 1], for elements K of length lf, is

2= 2SOl 4 ()t}

acK

= AtV (Mo A XXl (6.2.14)
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where we define (w?,~7) as

Atel = At(wl, ) =7""((g))"gl™)
=71 ((AD)TTAIT (AD) T AXD) (6.2.15)

In this formula, in Vg, we keep the values of both variables at the times ¢/
and /T, As we shall see later, we will develop two algorithms, one for which
only Vi (A, x%) is needed and the other where only V¢ (A7, x75") is needed.
Of course, one can imagine other algorithms, such as ones using the midpoint
rule, where all four variables intervene.

The discrete action, which approximates the continuous action over the time
interval [0, T, is therefore given by

N-1
Su=D, > Lk

KeT j=1
l N-1 ) N-1 . ]
= AT N Ty — AL YD DT Vi (W)
KeT j=1 aeK KeT j=1

l N-1 )
=Aatg >0 > (E€)
a#agp,an j=0
N-—-1 N—-1

l Ik P i
+AtZKZ< . >+At—Z<J£fLN7§$N>
7=0 J=0
_AtZZVK(AJI(7AJ+1 j’jl';rl).
KeT j=1

where J : se(3) — se¢(3)* is the linear operator which has the matrix

J 0
J= ( 0 M 13> ’

Note that in the kinetic energy the sum is over the nodes a, whereas in the
potential energy the sum is over the elements K € 7. We have also isolated the
terms corresponding to the boundaries.

Explicit-implicit integrator

By evaluating the potential term Vg at time t;, in the discrete Lagrangian
(6.2.14), the dependence of the discrete action G4 on (AZ,x7, wi ~47) reads

(i) Interior nodes a ¢ {agp,an}

2= < €60 — At Y Vi (Me,xk ). (6.2.16)

K>a
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(ii) Boundary nodes a € {ag,an}

) l o o
L = A (T )~ ALY Vi (AJK,XJK) . (6.2.17)

K>a

where in the potential term we choose the elements K containing a.
We now compute the discrete Euler-Lagrange equations (6.2.10). Given & €
5¢(3), as defined in (6.2.15) we have

(i) Interior nodes a ¢ {ag,an}

. Jwl
§igaj = Atlg (M’ya]> ,

a

D

(i) Boundary nodes a € {ap,an}

: I [ Jwl
D 2] = At? <M%> .

Next, we have to compute Dp Vg € R3 and Dy Vi € R3 with V given in
(4.2.6). Tt was already done in (4.2.4).

For the algorithms presented below, the map 7 : se(3) — SE(3) is the
Cayley transform. The variables of these integrators are g/ = (AJ,x7) € SE(3)
and & = (w], ) € 5e(3).

Discrete Euler-Lagrange equations for the left boundary ay of the
beam.

UO j * —1
—At (Vo> —py + A (ppg-yig - =0,

= (@) ) (), G209

T .
g = gir(atg),

with
T AXO
0

K

t (0 ata) " G (o -2r)) )

Vo = (Ag)! {;Mo)Cl (AgAzXO B E3)

1
U() = 501 (A — E3> X AOTAXO

?

t=tJ

K
1 A l
+o(—A)C; (ATSR s ) + Kq ;
2 lK 2 t=tJ

where Ag, 1o are the values at ag, and Ay at a;. Moreover, ¥y = cay_l(AgAl)
and Axy = x1 — Xp.
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Discrete Euler-Lagrange equations for the right boundary ay of the
beam.

UN ] * j—1
—At(VN) _Mgv—i_AdT(AtEg(l)/”LgV :O,

: li NN\ Jwd
j _ 'K R J an 6.2.19
/’LN - 2 ((d T(Ath)) ) (M,ygN> 9 ( )
g = ghT(ALEY),
with
UN = %Cl (A% AXN?l — E3> X A%AXN_l
1 T AT -~ T (A"
7 ((ARAy + D)7 Gt (27— dv-1)A 1 Aw)
t=ti
1 Axpyn_
Vi = (An) "' =(Ay_1)Cy (AT 2EN=L g,
2 Ik
1 Axpn_ l
+5(AN)C (A]TV zN L E3> + ;‘q} :
K t=tJ

where Ay is the value at ay, and Ay_1,¥n_1,AXNy_1 at ay_1. Moreover,
’L/)N_l = cay_l(Ajif,flAN) and AXN—l = XN —XN-—-1-

Discrete Euler-Lagrange equations for any node a ¢ {ag,an}.
Ua j * j—1
—At (Va> _ufl—’_AdT(Atﬁzfl)Mgl :0,

=k ((dRT(Atgg))‘l)* <AJ4°"732) , (6.2.20)

gt = glr(Atg)),

with
1 Ax, 1 A
Up==Cy (AT By ) x ATAx, 1 + =Cy (ATEE2 By ) x ATAx,
2 Ix 2 Ix
1 T B N T @\
7o (A8 + D)7 G5y (2 — dum)AT 1A

t (0 Aan) " G (d-20)) M)

K

3

t=tJ
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1 Ax. 1 A
Va :(Aa)_l {(Aa_l)cl (Ag—l Xo1 - E3) + 7(_Aa)Cl (AT Xa — Eg)

9 Ik 2 g
1 Axg_ 1 Ax,
+ *(Aa)C1 Ag L Es; ) + *(_AaJrl)Cl A§+1 —E;
2 % 2 5%
t=tJ

where 1, = cay "N (ATAyy1), Va1 = cay L(AT | A,), AXy 1 = X4 —Xq_1, and
AXafl = Xg — Xg—1-

Discrete momentum maps. We consider the action of SO(3) on SE(3)
given by R - (AJ,x7) := (RA7, Rx?). In particular, we admit the S! symmetry
with respect to the orientation of the gravity. Then the infinitesimal generator
for a given ( = 6E;3 € s0(3) is

CSE(S)XE&(3)(<Aj?Xj>7 (wj7 'Y])) = ((Aja Xj7 CAj7 ij)7 (wj7 fij 0, 0)) :

Then the discrete momentum map J}d as describe in (4.2.37) (chapter 4) is :
J5, (A7), (W, 97))

=E;- ) lgAd&Af,xj))-l'(((dRT(At(wﬂ‘,w‘)))_l>*(Aﬁ%ﬂ%))

a€{ag,an}
. S =1 Jwl
—+ E3 . Z ZK Ad((/\‘j},xi))71 . <((dRT (At(wé7 ’Yé))) 1) (Muf;] >> :
a¢{ao,an} ‘

By discrete Noether Theorem we know that discrete momentum is a con-
served quantity of the discrete Lagrangian map, that is

J5,(¢7,&) =35,(4.¢).
Discrete Lagrange d’Alembert equations

Given the discrete Lagrangian ., as define in (6.2.16) and (6.2.17), we choose
the fiber preserving forces as following

]:;:d((Ai+1a X‘Z.+1)7 (wéa V(JL)) = (0,0)
‘Fajd((Aé7 Xé)y (wga ,YZL))
= At (Mg (A}, x1), (Wi, 7)), Fo (AL, x3), (wh,72))) ,
where M, and F, are respectively the exterior moment and force applied in
node a.
This choice is motivated by remarks in Marsden and West [90, page 427],

where the authors describe how to choose discrete forces. Other choices of fiber
preserving forces are possible.

We give the discrete Lagrange d’Alembert equations (6.2.13), for a given
map 7 : s¢(3) — SE(3) which is the exponential map or the Cayley transform.
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Discrete Lagrange-d’Alembert equations for the left boundary ay of
the beam.

Uao J * (A] ) 1(M‘é0)7 —
_At(Va()) —ua0+AdT(Atf£ 1)ua0 +At<(AJ )L(F ) =0,
0
; Ik R A Jwgo
g =5 (et ) ™) (3% ).
géjl - g?LUT(Atgio)a

where U,,, and V,, are defined in (6.2.18).

Discrete Lagrange-d’Alembert equations for the right boundary ay
of the beam.

() g+ e () b ) <o

g R )7 o
%_7(((1 T(AtE))) ) (M%:V ’

gttt =gl T(ALE ),

where U,

an

and V,,, are defined in (6.2.19).

Discrete Lagrange-d’Alembert equations for any node a ¢ {ag,an}.
Ua j—1 (Ag)_l(Ma)_ _
o () k0 e (G ) o

. =1\ [ JwI
wl =lg ((dRT(Atffl)) 1) (Mu,}yaj) )
gt = gir(Ate)),

where U,, and V, are defined in (6.2.20).

6.3 Numerical simulations

Initial conditions. The initial condition at time t° are (AY,2°) € SE(3),
and (w?,1Y) € se(3).

Stresses

Let the given stored energy Uy (Qk,T'x) in terms of strain, for an element K,
be :

l
K(Qk,Tk) = Z { (Te —E3)" Cy (Ty — E3) + (Tay1 — E3)” Cy (Tay1 — Es)

+ (Qa)TCQQa + ( a+1) CQQa—H}
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The expressions of the stress (see, for example, [83]) are 651’0" and a;'FK , that is,
for each node a and a +1

Ma = %CZQay Ma+1 = %0290,’
l l
N, = ?KC1 (T'q — Eg), Nyt = ?KC1 (Ta41 — E3).
6.4 Example

Parameters of the beam : length L = 0.5, mass density o = 103, square cross-
section with edge length a = 0.05, Poisson ratio v = 0.35, and Young’s modulus

E = 10*, for the following test:

Figure 6.4.1: Free motion of the cross-sections of the beam relative to each
other, when initial bending. Snapshots of the motion and deformation.

gy 1, V1o,

6.4.1 Remark The implementation, in progress, is performed by M. Kobilarov
(University Johns Hopkins).



Chapter 7

Lie algebra variational
integrator of geometrically
exact plate dynamics

Introduction

In this chapter we consider the geometrically exact model of plate as defined in
Simo, Marsden, and Krishnaprasad [110] and Simo, and Fox [108]. The space
of configuration of this plate is very similar to that of the exact model of
beam defined in Simo [107]. Indeed, for the beam, the space of configuration
is ([0, L], SE(3)), whereas for the plate it is N = C*(A, Sz x R?) which
is a subset of Q = C®(A, SE(3)), where A C R? is an open set with smooth
boundary, and compact closure, and Sg is the set of rotations whose rotation
axis is normal to the vertical direction E. We note that S is a sub-set of SO(3)
and not a sub-group.

In order to maintain the matrix of rotation in Sg we introduce a holonomic
constraint ® : Q — RY, such that N = ®~1(0) C Q. Thus the solutions of the
Euler-Lagrange equations stay in N.

This plate model is different from the one introduced in the classical pa-
per of Ericksen and Truesdell [29]. The difference is that Simo considered a
constrained-frame point of view in order to stay in S x R3. Thus the equations
of motion and the Poisson bracket are very close to those of the geometrically
exact beam model considered in chapter 4. (See Simo, Marsden, and Krish-
naprasad [110]).

During the past decade, the Kirchhoff theory of thin plates and the Kirchhoff-
Love theory of thin shells were often chosen in association with the finite element
method to study finite membrane stretching, as well as large deflections. The
energy functional of this model depends on curvature; consequently, the equa-
tions contain second-order derivatives of displacement. The use of subdivision
surfaces ensures the testing of deformed geometries to be of Sobolev H? class
(see Cirak, Ortiz, and Schroder [23]). However, the strain measures deduced

135
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from the deformation of the middle surface are generally obtained after lin-
earization of the kinematics, which is not the case for the Simo model that uses
Lie groups. We develop a Lie algebra variational integrator, as in Chapter 6, to
take full advantage of its numerically efficiency and properties.

7.1 Lagrangian dynamics of a plate in R3

7.1.1 Basic kinematics of a plate

We review from Simo, Marsden, and Krishnaprasad [110] and from Simo, and
Fox [108], the kinematic description of a plate in the ambient space R3.

We denote by s0(3) the Lie algebra of SO(3) consisting of skew symmetric
matrices endowed with the Lie bracket [£,n] = £&n — n&. The adjoint representa-
tion of SO(3) on its Lie algebra is denoted by Ads & = AEA™L, where £ € s0(3)
and A € SO(3).

We denote by S? = {t € R? | ||t|| = 1}, the unit sphere and by

T,S% = {WGR3 | th:O}

its tangent space at t. Let E € R® and define Sg to be the set of rotations
A € SO(3) whose rotation axis is normal to E, that is

SZ = {A € SO(3) | there is 1 € R3, satisfying ¢ # 0, Ay =9, and T E = 0},

which is a subset of SO(3) and not a subgroup. The tangent space at the identity
IeS3is
TiSg = {n€s0(3) | n"E =0} (7.1.1)

and the tangent space at an arbitrary element A reads
TASIQE = {Aﬁ | ?]e T]SIQE} .

We now recall from Simo, and Fox [108] a fundamental result concerning a
relation between S? and Sg.

7.1.1 Proposition Given any two vectors E,t € 5% with t # —E there exists
a unique A € S§ such that

t = AE,
where

——

A:=G(TE)Y+ (E x t) + (Ext)®(Ext)

1+tTE

7.1.2 Deformation expressed relative to the inertial frame

Given a fixed orthonormal basis {E1, Eg, E} of R? referred to as the material
frame, the configuration of a plate is defined by specifying the position of its
mid-surface by means of a map

gf):AC Span(El,Eg) —>R3, u= (Ul,UQ) &—>¢)(u),
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and the orientation of the deformation director t(u) attached to ¢(u), where
A is a compact subset with piecewise smooth boundary. The orientation of the
director is obtained from E through the orthogonal transformation A : A — Sg,
such that

t(u) = A(W)E, aslongas t#—E.

The configuration of the plate is thus completely determined by the maps
¢ and A in the configuration space

Q:=C> (A, S xR%) 3 =(A,0¢).

If boundary conditions are imposed, then they need to be included in this
configuration space. For example if A = [0, L1] x [0, Lo] is a rectangle, we can
consider the following boundary conditions: ¢(0,uz) = (0, u2) which means that
the boundary {0} x [0, L] is fixed; A(0, u2) = Id, which means that the director
t is parallel to E along {0} x [0, Ls]. One can add the condition g—i (0,u3) = AEq
for A > 0, which means that the curve u; — @(uq,us) is orthogonal to the
boundary {0} x [0, ug] at u; = 0. Similarly we can impose boundaries conditions

at the other edges of the rectangle.

Suppose that the plate is in the configuration determined by (A,¢) € Q
and that its thickness is given by a compact subset [h~,hT] C R, then the set
occupied by the plate is

B={X€eR®| X =¢(u)+{A(0)E, with (u,&) € Ax[h,n"]},

where ¢ maps the mid-plane A to the mid-surface ¢(A) C R?, and A(u)E =
t(u) is the unit vector attached to the point ¢(u) € R? not necessarily normal
to the mid-surface ¢(A).

The time evolution of the plate is described by a curve (A(t), (t)) € Q in
the configuration space. The material velocity Vg is defined by

Vi 1) = - (A, ), 6w, 1)) = (Aw 1), d00,1))

and thus belongs to the tangent space T4 4)@ of Q at (A, ¢).
The convective angular velocity and convective linear velocity are the maps
@,v: A— TiSg x R? defined by

G:=ATA, y:=AT¢ (7.1.2)

Note that this definition can be rewritten, using the group structure of SE(3),
as

((’A‘]a’}/) = (A’¢)_1(A’¢3)7 where (A7¢) €Q.

7.1.3 Kinetic energy

We present below the Lagrangian function of the plate.



138Chapter 7. Lie algebra variational integrator of geometrically exact plate dynamics

The kinetic energy is found by integrating the kinetic energy of the material
points over the whole body. Denoting D := A x [h~, h*], we have

1 . T
7(80.4,0) = 5 [ ot + et 1aade
_ % /D Hd)(u)+§A(u)€u(u)EH2p(u,§)dAd§
=3 [ o]+ teatrmie | . anas.

where p(u,€) is the mass density and where we used the fact that the mid-
surface ¢ passes through the center of mass, i.e.

ht
/ EEp(u,&)dé =0, forall ue A
.

For simplicity, we assume that p(u, &) = po is a constant, so that we neces-
sarily have —h~ = h* =: h/2. Using the relation AB = —BA for A, B € R? we
get

- 1 . 2
T 0Ad) =5 [ (M | éw +w<u>TJw<u>> a4,
where we defined the inertia tensor
h/2 N2
J = —/ oo € (B) de.
—h/2

and the distributed loads per unit surface M := pgh.
Since J is a positive definite matrix, it can be diagonalized, and provide
eigenvalues {J1, Ja, J3}. The associated eigenvectors are principal axis.

7.1.2 Remark Note that using the equalities
|GE|]*> = Tr (E"&"GE) = Tr (G EE"&7)

we can rewrite the kinetic energy as
. 1 12 o
r(86.4.8) = [ 28] + 1 preT]an
A

where

h/2
Jy = / po2EET d¢.
—h/2

7.1.4 Potential energy

The potential energy is given by the sum of interior potential energy (bending
energy) and exterior potential energy (gravitational energy and energy created
by external force and torque).
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Bending energy

Given a configuration (A, ¢) € G, the deformation gradient is defined as

F(u) = (dA(u), do(u)),

where d denotes the derivative with respect to u. As in Simo, Marsden, and
Krishnaprasad [110], we will use the convected deformation gradients defined
by

Q:=A"'dA € Q' (A, T;53), T:=A"'d¢ec Q' (AR?). (7.1.3)

In coordinates, dA, d¢, 2, I' are denoted by
Oa A\, 6a¢a Qo = A_laozAa Iy = A_18a¢7 o€ {172}'

The bending energy is assumed to depend on the deformation gradient only
through the quantities 2, and I', that is, we have

(A, 6) / Ui (Qus T ) AAdE,

D

where U;,;(24, ) is the stored energy function.

We assume that the unstressed state is unstretched and unsheared. That is
to say that we have ¢ 1 (u,t =0) = E;, ¢ 2(u,t =0) = Ey and A(u,t =0) = Id,
for all u € A. Also by considering that the thickness is small compared to its
length, and that the material is homogeneous, we can interpret the stored energy
by the following quadratic model

1
ine (A, 9) =5 /A > {(th —E.) Cop(Ts —Ep) + QgDa,ﬁQB}dA ;
o

for a € {1,2}, where Cll,@QQ,ClQ = Cgl,Dn,DgQ, and ]D12 = Dgl are sym-
metric matrices, whose values depends on the thickness and on the material of
which is composed the plate.

We note that the internal energy is invariant under the left action of elements
of SO(3), i.e. H;nt(RA, Rp) = It (A, @), for all R € SO(3).

Exterior potential energy

We consider the potential energy created by exterior forces

M0 (6) = /A ({0, 6))dA,

where q = ¢E is the distributed loads per unit surface. In this form II.,.(¢) is
not invariant under the left action of elements of SO(3).
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7.1.5 Equation of motions and constraints for the plate

In order to implement our numerical method, we will work on the bigger con-
figuration space @ = C°°(A, SE(3)) > (A, ¢) and impose the condition A € SZ
via the holonomic constraint. The equation of the motion under constraint is
obtained by the following theorem (see Marsden and West in [90])

7.1.3 Theorem Given a Lagrangian L : TQ — R with holonomic constraint
®:Q — R set N =& 10) C Q and LN Then the following are
equivalent :

= L’TN'

(i) ¢ € C(N) extremizes &N and hence solves the Euler-Lagrange equations
for LN

(i) ¢ € C(Q) and X € C(RY) satisfy the constrained Euler-Lagrange equations

a0 - 5 (5 @000 ) = (X0 G at0) )

P(q(t)) = 0;

(i) (g;A) € C(Q x R?) extremizes S(q,\) = S(q) — (X, ®(q)), and hence
solves the Fuler-Lagrange equations for the augmented Lagrangian L :
T(Q xR =R, as

The constraint that we are dealing with for the plate is as follows :

3:Q R, BN ) = %Tr (ETexpfl(A)) , (7.1.4)

which constrains the dynamic to the submanifold N = Sg x R3 = ®71(0), in
such a way that is an embedding i : N — Q.

Constrained Euler-Lagrange equations for the plate

The associated augmented Lagrangian L : T(Q x R) — R reads
_ Lo 1 12
T 6.0 A 6.8 = [ (a1 o] + w70 s
A
1
- 5 /A Z ((Fa - E(x)Tcaﬁ(rﬁ - Eﬁ) + QgDaﬁQﬁ>d¢4
o,

- / (@ 6) + (N, 6))dA — / AD(A, 6)dA,
A A

where A € R. The Euler-Lagrange equations are obtained by applying Hamil-
ton’s principle to the action

S0 0 = [T (800 A0 A0 60, A0) ar.

0
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Consider variations
[l (A57 ¢5a )\5)

of the curves (A, ¢, \), with fixed endpoints. The infinitesimal variations are

d d d
sA= 2| AL se=2| 4 ax= 2 A
de|._o i de s:o(b def._o

and vanish at the endpoints. Since the Lagrangian is expressed in terms of the
auxiliary variables w, €2, and T, it is useful to compute the variations dw,
0Q and 6T, induced by the variations A and d¢. Writing dA = A7, a direct
computation shows that we have

dw=n+wxn=n+on
0Ty = AT6040 +To x 1.

We will denote by df exp, expe and df exp; ! the maps df exp, and dr expg ,

as described in (6.2.4) and (6.2.5), when seen as linear maps on R3. Using this
notation, the derivative of the constraint reads

1 /a B . 1, /= . .
(A, 9) -0 = 5 Tr (ETdexp; ' (AAT)) = o Tr (BT dexp; ! (Adai))
=E - dfexp; L(An)

Applying Hamilton’s principle we get

36 = / ! / o7 (60) +wT Jow) dA

/Z Eo)"Cap 0T + QL Dq 5 605 ) dA

_ /A (a”00)dA— /A (@(A)MH&@(A))M} dt

Taking into account of the formulas for the variations dw, 6§25, 6I'g, 69, this
integral is

/ ) [/ (v (5¢'>) + T+ @) dA

/Z — o) Cos (AT6050 +Ts x 1) + 2D, 5 (aﬁmﬁgn))d/t

— /A (qT6¢)dA— /A (@(A@)M+AE.dRexpgl(An))dA} dt
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Now we isolate the quantities 7, d¢ by integrating by parts and obtain

/ttl [/A (~M8750 + (-7 +w"JB)n) dA
: az/; {/A % (e =) Caph?) 2904 - /OLQ (T = Ba)"Ca sAT86] ) due
- /A ((Cas(Ta = Ea) x Tp)" + QI D0 605 — 95(QLDa p) ) 1A
_/OLa Q7D gn]5” dua} _ /A ((qT) 56 + B(A, $)5A + )\ETnglAn> dA} "

We thus obtain the Euler-Lagrange equations

Jotwx Ju+y (ca,ﬁ(ra —E,) xTj
a,f3

T IR —1T
~04 X Do, 50 — 95(Da,52) ) — M dFexp; T E =0

MG =3 (85 (ACap(Ta — Ea)) ) +a =0

a,f
(A, 0)=0
(7.1.5)
with boundary conditions
(Ta — Ea)|u5:0 =0
(T — Ea>|uﬁ:Lﬁ =0 (7.1.6)
02,(0) = Qo (Lg) = 0.

7.2 Lie algebra variational integrator for the plate

In this section we develop a Lie algebra variational integrator for constrained
systems, see e.g. Marsden, and West §3.4, §3.5 in [90].

7.2.1 Lie group structure

As we have seen, in the Lagrangian representation the motion of the plate is
described by variables ¢(u,t) € R3, which is the position of the mid-surface,
and A(u,t) € S§ denotes the rotation of the director t in relation with E. In
this section we will use the fact that N C C*°(A, SE(3)), where SE(3) is the
special Euclidean group with group multiplication and inversion given by

(A1, 1) (Ag, ¢2) = (AjAg, ¢ + A1), (A, 0) " = (A7H —A""9).
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The angular and linear convected velocities and the angular and linear con-
vected strain, defined respectively in (7.1.2) and (7.1.3), are

O =A"TA € F(A s50(3)),
v=A"'$ e F(AR?),

Qo = A‘lgTA € 0'(A,s0(3)),
Iy = A_l(%s € Q'(A,RY).

Recall also that, from (7.1.1), we have

wWTE=0, (2,)'E=0.

Trivialized Euler-Lagrange equations on Lie groups. We now quickly
recall the expression of the trivialized Euler-Lagrange equations on the tangent
bundle of a Lie group G.

Let L : TG — R be a Lagrangian defined on the tangent bundle TG to a
Lie group G. Using the left trivialization TG ~ G x g of the tangent bundle
(see Bobenko, and Suris [11]), we get the function £ : G x g — R defined by

L(g,&) == L(g,9), §:=9&.

By applying Hamilton principle we obtain the Euler-Lagrange equation in terms
of L. For an interval of time [tg, 1] and given the boundaries points (g(to),&(t0))
and (g(t1),£(t1)) held fixed, we let

i horjor oL
o, o= [ ((Gm) + (a0 v

where the variation dg vanishes at the endpoints and the variation of £ is given
by 66 =1+ ade n, with n = g7'dg, (see Marsden, and Ratiu [89] p.438). Using
integration by parts we get

h h oL oL d (OC
_ -17= * T (== =
o, e [ ({5 +wiem) - (s (5e) o)) o=

for all n € g. Hence the Euler-Lagrange equations in terms of £ read

d (0L 0L _ 0L
dt \ ¢ cac 9 By

The trivialized augmented Lagrangian for the plate. We trivialize the
tangent bundle T'Q by using the Lie group structure of SE(3). More precisely,
we use the diffeomorphism (A, ¢, A, ¢) — (A, ¢, A=A, A=1¢). Thus the trivial-
ized augmented Lagrangian £ : C> (A, SE(3) x R) xC™ (A, se(3) x TR)) — R
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for the plate to be

_ ! ) 1 .
L‘(A,d?,/\,wﬁ,A)_2/AM||7H dA+2/AoJ Jw dA o
(A, ) — Taur(6) — /A (N ®(A, 6)) dA.

7.2.2 Constrained Lie algebra variational integrator

In this subsection we present a variational integrator for mechanics on Lie
groups based on the paper of Iserles, Munthe-Kaas, Ngrsett, and Zanna [50]
that uses the right trivialized derivative of the exponential map, also known as
the right logarithmic derivative as defined in (6.2.3). We will later apply this
variational integrator to the plate.

This right logarithmic derivative of the smooth map 7 : M — G, which
can be the exponential or the Cayley maps, was used also in Bou-Rabee, and
Marsden [15] to develop a variety of integrators of variational partitioned Runge-
Kutta type for Lie groups. In control theory, Kobilarov and Marsden [60] de-
veloped a structure preserving variational integrator to actuate a system, based
on the rigid body model, to move from its current state to a desired state with
minimum control effort or time.

The integrator we will present is developed to treat numerically mechanical
systems on finite dimensional Lie groups.

Review on discrete variational mechanics with constraints

Suppose that a time step At has been fixed, denote by {t/ = jAt|j =0,..., N}
the sequence of time, and by C4(Q) = {qq : {tj};»vzo — Q, qtV) = ¢’} the
discrete path space. Let Ly : Q@ x Q — R, Ly = La(¢’,¢°t!) be a discrete
Lagrangian which we think of as approximating the action integral of L along

the curve segment between ¢ and ¢?*!, that is, we have

it

Lad, g+ ~ / Liq(t). 4(t))dt,

t

where ¢(t/) = ¢/ and q(t/*1!) = ¢/ 1.

Let the holonomic constraint ® : @ — R?. Then we constrain the dynamics
to the submanifold N = ®~1(0) C Q. Given that 0 is a regular point of ®, N is
a submanifold of @), and we can define an embedding iN*N : N x N — @Q x Q.

We denote by C4(R?) = C4({At,...,(N — 1)At},R?) the set of the maps
Mg : {At, ..., (N —1)At} — R? with no boundary conditions.

Thus we recall the theorem 3.4.1 as given in Marsden and West [90)].

7.2.1 Theorem Given a discrete Lagrangian system Lg : Q x Q — R with
holonomic constraint ® : Q — R%, set N = ®~1(0) C Q and LY = Ld|N><N'
Then the following statements are equivalent:

(i) g = {¢'}}Lo € Ca(N) eatremize G} = 6d|N><N and hence solve the

discrete Euler-Lagrange equations for LY ;
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(i) g0 = {¢’}}20 € Ca(Q), and Ng = {N ;VZEI € Ca(R?) satisfy the con-
stmmed dzscrete Euler-Lagmnge equations
DyLa(¢’,¢7) + DiLa(¢, ¢ ) = (M, V&(¢)) ,
B(q’) = 0;

(iii) (qa, Aa) = {(¢7, M) évzo € Cq(Q x R?) extremize éd(qd,)\d) = G4(qa) —
(A, ®a(qa));, and hence solve the discrete Euler-Lagrange equations for
either of the augmented discrete Lagrangians L;, Ly (QxRY) x (Q x
R?) — R defined by

f;(qj7)\j7qj+17)\j+1) = La(¢/,¢" ™) — <)\j+1’ <I>(qj+1)>,
Ly (¢, N, ¢ N = La(d?, ¢ F1) — (W, @(¢7)) -
Constrained integrator on Lie group

Let £ : G xg — R be a trivialized Lagrangian defined on the trivialized tangent
bundle TG of a Lie group G and let 7 : ¢ — G be a map with 7(0) = e. We
assume that 7 is a C2-diffeomorphism in a neighborhood of the origin. The
discrete Lagrangian %; : G x g — R is defined as an approximation of the
action functional over one time step, namely, we have

i1

Lol &) ~ /t L(g(t). g(t))dt,

i
where g(t) is the unique solution of the Euler-Lagrange equations such that
g(tj) = ¢’ and g(tﬂ_l) = ¢/*! and where

T(AtE) = (¢) g T = f (7.2.2)

We assume that the time step is small enough so that (¢7)~1g’*?! is in a neigh-
borhood of the identity element of G where the map 7 is a diffeomorphism.
We constrain ¢g/+1 € S x R? via the holonomic constraint ® : G — R, with
set N =®71(0) C G, and the discrete Lagrangian ;" = fd‘NxN
In our applications, the Lagrangian is always of the classical form kinetic
minus potential energy, where the kinetic energy is G-invariant. So we can write

the augmented discrete Lagrangian as
Zilg XN = L) = (Ve (Pree)),
Ly(g N, &N =2(4,8) = (N, 2 (¢)). -

We now compute the variation 6&7 induced by variations of g7. Defining
= (¢7)"16g’ and f7 := (¢?)"tg’T!, we have
Atser O 1y (§f]) C2 (aRr(ateh) Tt ((0fir(ALed) )
= (aRr(ateh) " [(—(¢)) g (o) gt + (gF) T hag ) ()Y
= (dRT(At fj))_l (777j =+ AdT(Atgj) 77j+1) . (724)
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Constrained discrete Lagrangian .Z,. The variation of the constraint
I =P (g7) is written
607 = Dy ®7 - 67 = (¢°) 1Dy ® 1

The constrained discrete Euler-Lagrange equations are obtained by applying
the discrete Hamilton’s principle to .2, (g7, M, &7, 1), Taking into account
that n° = n™¥ =0, we get

N-1
084 =Y Dyt 0g' + D L - 66 — &7 - 6N — (N, Dy - 5g7)
j=0
N-l . . . 1 .o —1 . .
=2 DyZi-g'n + Do 2 - 1 (7(ALE) (=1 + Adraren ™)
j=0
— @7 gN — ()T ((gj)—lpgjq)j) Y
-1
. . 1 N A . . . .
=Y {0 (0o 2d) - 57 (@) ™) (D020) - W7 (@) Dy 0)
j=1
1 ] 1\ * . . Nl . .
+ AL e ((dRT(Atgﬂ—l)) ) (Dgﬂzg—l) } AN Y
=0

Where we denote ZC{ = Zy(g?,¢) and &I = P (ng(At fj)). The discrete
trajectories {(g7,&7)} and {\} satisfy the constrained discrete Euler-Lagrange
equations

(¢)" (ngfj) - Ait ((dRT(Atfj))_l)* (ng,g;) ~ ()T ((¢) 1D, 97)
s (@A) ) (Do i) =

O(gT(ALE)) =0, with (¢/) g/ = 7(At¢).

(7.2.5)
Thus for given (g7=1, &7~ A —1) by (7.2.2), we obtain g/ = ¢/~ 17(At &I~ 1),
and we solve the first equation with the constrain ®(g77(At£7)) = 0 in order
to get & and M.
This yields a discrete-time flow map (¢7=1, &=L, N =1 — (g7,£7, M), and
this process is repeated. The discrete Euler-Lagrange equations may be written
as follows

< (W = A e ™) = (0)7 (D) = ) ((67)7 D)
p = ((dRT(Atgj))_l)* (ng,i”g)
g

O(PT(ALE)) =0, with (¢7) gt = 7(At ).
(7.2.6)
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In the context of the Lie algebra variational integrators, we define the dis-

crete Legendre transforms F*.Z; : G x RY x g x R? — G x R? x g*, given
by

F 7,7 = (gﬂg A+ AitAd:(At@-) ((dRT(Atgj))*)* (Dg_fyj)>

, , 1 . A
— <g]+17 )\J+17 AtAdT(Atfj)luj)7
— . . 1 o 1\ * . o .
F-Z," = (937”7 Ar ((dRT(Atﬁj)) 1) (D§j$j> — (gt (ng.,?j)
FOT () D) )
= (gua i = (@) (D) + )T ((gﬂrngijﬂ))-

We note that equation (7.2.5) can be written in terms of the Legendre transform

as . .
FrZ," " =F 2,7, with ®(gr(Atel)) =0.

The infinitesimal generator of left multiplication on G for ¢ € g has the
expression (g(g?) = (g’. Using the expression (1.2.8), one computes that the

discrete momentum maps J%j : G xR4x gx R — g* associated to the discrete

X d
Lagrangian y;’j are given by

1
Jt = —
=z, At

_ . 1. , . - _
3, = Ay (g~ @) (Do 2l) = OO (@) D) ).

e

Note that constrained discrete Euler-Lagrange equations (7.2.5) can also be
written in terms of the spatial discrete momentum maps J% as
d

Ad;jJ%fi,l = Ad;jJ%g, and ®(g/7(AtE7)) = 0.
7.2.2 Remark Suppose that a G group action let N = ®~1(0) invariant, then
the discrete Noether theorem holds on the constrained system, and the momen-
tum map is preserved (see Marsden, and West [90]).

7.2.3 Forced constrained discrete Euler-Lagrange equa-
tions
Given the discrete augmented trivialized Lagrangian .2, , defined in (7.2.3),

discrete external Lagrangian forces can be incorporated in the dynamics by re-
placing the discrete Hamilton principle with the discrete Lagrange-d’Alembert
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principle. For Lie algebra integrators, the discrete Lagrange-d’Alembert princi-
ple reads

N-—1 N—-1
83 Ly (@ NN+ [Fi(e, )69 + Ff (g, ¢) 6] =0,
j=0 j=0

for all variations d¢g’ with 6¢° = §g% = 0, where F~(¢7,¢&) € T;_,»G and
Fr(goth¢) e T;jJrlG are the discrete external Lagrangian forces. ' Using the
notation 1/ = (¢7)~1dg’, we have
57+ = 097 T(ALE) + ¢76(T(ALET))
=g/ T(Ate) + g7 (AP (AteT) - Atsgl) T(AtE)

T2 0 (Adyiares, ) (AL D),
N-1
66d = Z ngyg(gj7 /\jvgjv Aj+1) : 6.9] + D@?C;(g]’ >‘j7£j7 )‘j+1) : 6£]
=0

+ Dy Ly (¢ N N SN + Fr(g?, &) 6g7 + Ff (g7t &) 57

2

-1

S 1 a1 , .
= 2 DyZi-g'n + Do 2 - 1 (A77(ALE) (=P + Adyaren ™)

<.
I
o

— P 5N — ()\j)T ((gj)—lpgjq)j) )
Fi(g, &) - + Ff (g, &) (gj (Adrarey ') T(Atﬁj))

N-1
o . 1 . .
) j=1 {(gj> 1(D-"""2ﬂi) At j+A Adzarei—nyp’ '
=W ((¢") "D @) + (¢)) 7! (Fy (¢7.€))
N-1
+() T (F €T }-n — > V6N,
7=0

Thus, the discrete constrained Lagrange d’Alembert equations are

o , 1 . 1, . , o .
(g")7" (ng,jfj) - EMJ + EAdT(Atgj’l)M] P ()T ((¢) "Dy ®7)

+() T (F )+ (@) TH(FL L ET) =0,
i = ((dRT(Atgi))’l)* (De2i).
q)(ng(Atgj)) =0, with (gj)_lgj'*'1 = T(Atfj).

(7.2.7)

IThese discrete forces are chosen in such a way that the second term in the variational
principle is an approximation of the virtual work done by the force field in the continuous
case.
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When forces are present, one has to incorporate them in the discrete Leg-
endre transforms and the discrete momentum maps, as explained in Marsden,
and West [90]. In the context of Lie algebra variational integrators, the forced

discrete Legendre transforms F/*.Z; : G x R? x g x R? — G x R? x g* are
]Ff+§(; (gj’)\j’gj’)g#-l)
= (a1 SAG e + ) L) ),
Fffy(;(gj, /\j7£j7 >\j+1)

= (70, ~@) (D 20) + g0 + O () D)

) ) ).
And the forced constrained discrete Lagrangian momentum maps Jf;f: :
G xg—g* for ¢/ € Gand ¢ € g, are
f+ (40 N ¢i i+l
JE; (g ) )\ ) 5 ) )\ )

. 1, ., , o . :
= Ad{j+1)1 (NAdT(quJ + (T THFE (L)) )

F= (g3 N I Hd+1
I (¢ N, &, X7

§ o . 1 . ) L .
= Adigy ()7 (Do 2d) + g0+ OV (697D @)

() (F () )

7.3 Spatial and temporal discretization

7.3.1 Spatial discretization

We return to the plate whose equations of motion are (7.1.5), with boundary
conditions (7.1.6), for the augmented Lagrangian (4.1.9). We recall that the
constraint submanifold is N = Sz x R3 = ®~1(0) with the constraint ® : Q — R
as defined in (7.1.4).

Spatial discretization of the variables. We suppose that A is a rectangle
and we decompose it by N7 x Ny rectangles K of size [; x I3 whose nodes are
denoted by a, a + 1, a+ 2, and a + 3.

a+2 a+3 (7.3.1)
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Given the configurations (Aq, X4 ), (Aa+1, Xa+1), (Aat2,Xat2), and (Aat3, Xat3)
at nodes a, a + 1, a + 2, a + 3, we extend the spatial discretization defined by
Crisfield, and Jelenic [24] in order to get the frame indifference 2. So we consider
the following interpolations over the subinterval K:

Ul ~ ~
Ap(u1,ug) == Agexp <l11¢1> exp (1;22 91(u1)> )

= Agexp (7;2212}\3) exp (1;11 52(u2)>

where uy € [0,11], uz € [0,12], and

(7.3.2)

T
~ U1 ~ Uy ~
exp(61(u1)) = exp (lll ¢1> AgAaH exp (111 1/J2) ,

T
exp(fz(uz)) = exp (1;221#3) AaTAa_H exp (1;221@1) ,

exp(82(0)) = exp(¢1) = ATAur1,  exp(Ba(l)) = exp(iha) = AL,y Aars

exp(81(0)) = exp(v3) = ATAura,  exp(8i(h)) = exp(ths) = AT, Auys,
(7.3.3)
and

U lo —u U U
(,bh(ul,'UJQ) = [Xq + lllAXa,a+1:| ( 2 2> + |:Xa+2 + lllAXa+2,a+3:| <122> )

la
(7.3.4)
with
AXa,a—‘,—l = Xg+1 — Xa» AX&+2,G+3 = Xg+43 — Xa+2 (7 3 5)
AXa,a+2 = Xaq+2 — Xa, Axa+1,u+3 = Xaq+3 — Xa+1-

As expected we get

Ah(ov O) = Aav Ah(llv O) = Aa+17 Ah(oa 12) = Aa+27 Ah(lla l2) = Aﬂ+33
#n(0,0) = x4, On(l1,0) =Xat1, On(0,l2) =Xar2, On(l1,12) = Xays.

From now on, we will use the notations
Ak = (Mg, Ags1, Aaya, Aass)”  and = r
K = ( ay Na+1y Na+2,s a+3) an XK = (Xa,Xa+1,Xa+2,Xa+3)

In order to get the interpolated convected variables @y, (u1,us), Jp(u1, us),
Qo (ur, uz), and T'p o(u1,u2), we replace the original variables A(u1,u2) and
¢(u1, uz) by the approximations Ay (u1,uz) and ¢p(u1,uz) as defined in (7.3.2),

2Consider a rigid motion of (A, ¢) given by the transformation (A, 5) = (RA,v + R9),
where R € SO(3), and v € R3. Then, since (Ag)TAg+1 = AT Agt1 and ATAX, = AT Ax,,
the strain measures are unchanged by this transformation.
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and (7.3.4). Thus we get
@h(ul,UQ) = (A{Ah) (ul,u2),

. uy . . lo —u
vh(ul,ug) = AZ( |:Xa + llAXa,a+1:| < 2 12 2)

1

. u . u
+ Xa+2 + ! AXa+2,a+3 2 )
1 lo

~ -
A (ur, uz) = QEUQ)’ (7.3.6)
1
~ 0
33 (ur, uz) = )
la
lo —u U
F}lz(ulvu2) = Az; 2 2 AXa,a-‘rl + iAXa+2,a+3 ,
lily lily
I —
F%L(U/l,UQ) = Az: {( 1l lul) AXa7a+2 —+ lullAXa-i-l,a-‘r?)} .
1t2 1t2

The spatial discretization of the augmented Lagrangian (7.2.1). The
spatially discretized Lagrangian is obtained by inserting the variables considered
in (7.3.6) in the continuous Lagrangian (7.2.1) and by considering the following
approximations on rectangle K.

(i) For the kinetic energy, we make the following approximations :

1 ;i
5 [ Mt ) Pdatdnd = 30 22N
K acK
1 1 2\T 1,2 17,2 Liy
3 (wp (u', u?)" Jwp (uh,w?)) du'du® ~ Z —w, Jw,.
K acK

(ii) Concerning the potential energy, the expression obtained by using Ap and
¢p, instead of A and ¢ is denoted by

VK(AK,XK) = /Kf(ul,uz)duldu2, (737)

where f(u1,ug) := Wint (An(u1,u2), dn(ur, uz))+Wer (Ap (w1, uz), nlu1, uz)),
see (4.1.5) and (4.1.6). We get

1
Fluruz) =5 3~ {08 = Ba) Can(T, — Bs) + (24 Das ¥}
a,p

+(a, on(u1,uz)) -
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We approximate the expression (7.3.7) by

Vi (Ak,xK) = % (£(0,0) + f(0,12) + f(I1,0) + f(I1,12))
© 3 3 M B B+ 0275 0]
acK a,p
+ a;{ % (@ %a) == Vi (Ak, Xk), (7.3.8)

where ', and €, are the strain mesures in a. 3

(iii) Concerning the scalar product (A, ®(A, ¢)). By replacing A and ¢ by A
and ¢p,, and by denoting Ax = (Mg, Aat1, Aat2; Aat3)’, we obtain

[ (e (Brew ) paas 3252 (o (e (1))
acK

As a consequence, the trivialized form Lx : [(SE(3) x R) x (se(3) x R)* —
R of the augmented Lagrangian Ly : T(SE(3) x R)* — R, over a subinterval

3Based on group actions of (exp(%), Ax) € SE(3) on (A,x) defined in (7.3.3), and (7.3.5),
we observe that a + 1 is on the right of a and on the left of a + 3, otherwise a + 2 is on the
right of a and on the left of a + 3, see (7.3.1). That is, the strains (7.3.6) are

AT
r},(0,0) = Z—GAXWH =T
1

Q)

1 ~
7(0,0) = —exp™ (A Ag 1) =: O,
1
1 A{ 1 ol 1 —1 T Ol
Th(0.l2) = — = Axat2.a43 = Tapp,  Q(0,02) = exp™ (Agyohats) = Qoyo,
1 1

2 Ag‘ 2
I';(0,0) = Z—Axa7a+2 =T

—~ 1 ~
R a’ Qi(ov 0) = Eexpil(AEAlkFQ) = Qi?

AT ~ 1 e
Fi(l170) = foa+1,a+3 =: F2+1, Qi(ll,O) = gexpfl(AZﬂJrlAaJrg,) =: Qg+1,
1 Az‘i’l 1 ol ol
Iy, (11,0) = i Axga+1 = Tgyq, Qo1 =9,
AT ~ ~
Tl le) = (;:3 Axgr2,a43 = Tos  Quis = Qio,
2 Az"‘Q 2 a2 a2
Fh(07l2) = 12 Axﬂ,a+2 = Fa+27 Qa+2 = Qa?

AT
5 - -
I (11, 12) = ‘Z: Axatia+s = Taps,  Qags = Q04
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K, is given by

_ R . 11
Lr(Ax, X5, A\, WK, Vi AK) = Z 182 (Mll Yall® +wTJwa)
aceK

- VK(AK,XK)
S (BTe (A0) ) (789)
acK

where we use the notations

~ A ~ ~ \T d _ T
Or = (Wa;Dat1,Wat2,Dat3) 5, and Y = (Ya, Yat1s Ya+2,> Ya+3)

Note that the spatial discrete form of the trivialized Lagrangian of the total
system is L7 = > o7 Lk, read

ZT ((Aa, Xas Aas Was Vas }\a)aeN)

= 3 (Mt e = (T (e (1))

a€int(N)

N > (llleH aH2+ hily wT Jw, 1412 <)\a,Tr (ETGXP 1(Aa))>)

a€ON\Corners

Py <Z1Z2M|| vall? + 8l2 w! Jw, l18l2 <)\a,Tr( exp 1(Aa>)>)

acCorners

— Z VK(XK,AK).
KeT

7.3.1 Remark For convenience we take in count external corners and not the
internal corners.

7.3.2 Temporal discretization of the Lagrangian

Temporal discretization. Given a node a, the discrete time evolution of
this node is given by the discrete curve (AZ,x7, \]) € SE(3) x R. The discrete

. . . . a’’'a X X
variables ¢/ and f7 = (g7)71g’*! associated to this node are (AJ,xJ) and

((ADTALL (AT (™ = x)) = (AL xi) T AL ™)
=7 (At (w],72))
The discrete Lagrangian ?jK approximating the action of the Lagrangian

L, defined in (7.3.9), during the interval [t/,#/71], and over an element K of
size 11 X lg, is therefore

Pl =2 S (01 g+ () — (0T (Bexpt (42)) )

acK

— At Vg (AK,XK)
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where
A& = At (W), yl) =7""((g))"gi™)
=77 ((A)TIALT (M) T AX))

Then the discrete action, for a plate where the size of the elements K are
equal, with 4 external corners, and 4 edges, is as follows

&y = At@ 3 Z > (e ) - (AT (BTexp ' (A)) )

KeT j=1 aeK

—ar Y Nz_:lVK (Adexk)

KeT j—l

_At@ 3 Z ((@e,e2) = (N T (BTexp (A1) ))
acint(T) j=1
N-1

+At% 3 ;(Jf <Aﬂ Tr( exp™ (Ag))>)

a€edge\cor. jJ

+At@ Z Z( <)\] Tr( exp~ (Afl))>)

accorner j=1
N—-1
— ALY ST Vi (Mo xk)
KeT j=1

where J : se(3) — se(3)* is the linear operator which has the matrix

J 0
I= ( oM 13> ’
Thus, we can associate with each node a discrete Lagrangian .7, depending
on its position. That is

(i) a € int(T)
P l1l2 (<J£ 5y <)\J Tr( exp (Ai))>)
_ At ZVK ( K’XK>

K3a

(ii) a € edge\corner

LI = l1l2 (<J§ 7 - <)\j Tr( exp~ (Aé))>)
— At ZVK ( K,XK>

K>a
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(iii) a € corner

23 =882 (1 ¢y - (0,7 (e (1) )

— At Z Vi (A%,xi}) .

K>a

7.3.3 Lie algebra variational integrator

In order to obtain a Lie algebra variational integrator as defined in (7.2.6) we
have to calculate D, Z7, and D ; £, that is

Derivative D(\I,LHZ).,Z{.
D, 2 = Attila 7%

a € int(T), gh“a = 2\ M )

a € edge\corner, 7 N
i hia [ Ju}

a € corner, Dg{;‘gg :AtT <M,Yaj :

Derivative DAQVK ¢ In order to facilitate the calculations, we denote

1 1 - —1(AT 1 1 - —1(AT

¢a+1 = d)a = ’d}l = exp (Aa All+1)7 ¢a+3 = ¢a+2 = w2 = exp (Aa+2Aa+3)7

72 ) —1(AT 72 72 - —1(AT

Yato =Yg = P3 =exp (AgAat2), Yaq3 =Vaq1 =Pa=exp (Agp10a+3),

Axi+1 = Ax} = A%y 041 = Xat1 — Xa, Axi+3 = AX}HQ = AXq42,043 = Xa+3 — Xa42,

2 2 2 2
Axg o = Axy = AXgat2 = Xa+2 — Xa, AXgip3 = AX5 = AXat1,0+3 = Xa+3 — Xa+1-

(exp(P}hy o), Ax}y)

(Aat2,Xa+2) (Aa+3,Xa+3)
(exp($2), A:%)T T(exp@im, AxZ i)
(Aayxa) (Aa+1,xa+l)

(exp(ih}), Ax})

For the node a, there are two possibilities: a can be on the left or on the right, with respect
to a+ 1 or a+ 2. And the position is given by the Lie group actions (7.3.3), and (7.3.5). On
the right when it is the image, on the left when it is the origin. (The same for the other nodes
a+1,a+2,and a+ 3.)
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(i) At a on the left of a + 1 and a + 2. As calculated in the appendix §(7.4) we get :

Il !
(ATDy, Vi)Y = 1—% 1 (04— B1) x ATAx) + % hle,, (T2 — ) x AT Ax?

141 1 (A"
25 <( I+cay(@h)T)  Drafl (w; - 21)) >

\Y
l1la 2 -1 a2 (2 4
25 <( 1+ (cay(92)) ) D202 (%*ﬂ)

+@C12( —El) XATA —0—1172@21 ( —Ez) XAZ;AX&

zz -1 (A"

lila <<<I+ (cay(wa ) Dy ,202} (@2 — 21)) )

l1lz <<(I+cay1/) )7%@;52 (1;1_21>>(A)>v

2[1 a 3 a a

l1l2 - ~ A\ Vv
s (o) o)

bl 5 - ~ 4\ v
+ ;Tf <((I+cay(7/’;+1)T) ]D)2 192 (711(1”1 - 2])) >

(ii) At a + 3 on the right of a + 1 and a + 2. As calculated in the appendix §(7.4) we get :

(Ag+3 DAa+3VK)V

l1l2 l1l2
<c1 1(This —E1) x AL sAxE 4 +5 <c2 2 (M2, —E2) x AL sAX2 4

% (((Cay(lz}lﬁ) + I>71D1,/1§2\é+3(21 - $i+3)cay($¢1l+3)> (A)) !

4222 (((oy(@R )+ D720y 01 - Ra)enr(P240) )

" %Cl 2 (Pits — B1) X AgysAxgy +3 1l2 (C1 2 (T3 —Ba) x AL 3Ax} 5
121112 (( cay(§243) + 1) "D QL 5(2] - @+3)cay(1;g+3)) (A)) v

l1l2 v

oA (cay Tl}a+3 +1)7'Dy 19a+3(21 wa+3)Cay ¢a+3

<

2o
l1l2
2l1

A\

(e )")
Ll lily (( (cay %H D) 1]1))1 20 (2T — waﬂ cay ¢a+1 >(A))
( )")

(cay(h o) +1)7'Da 1Qa+2(21 Vi o)cay (il o)
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(iii) At a + 1 on the right of a and on the left of a + 3, we get :

(AZJrlDAa_HVK)V
l1l2

= 7@1,1 (Fa+1 El) XAa+1AXa+1+ l,
1

—Ca,2 (FaJrl Ez) X Ag+1Axi+1

1l
+ 7@112 (Fa+1 El) X Aa+1AXa+1 + 172
2

o, G2 (T2, —E2) x AT Ax!,,
o~ —_— —~ - (A) \
222 ((((cay (o) + 1) DO 21 - w;mcay(w;m) )
\
11lo -1 — N (4)
+ 2% < I+ (cay( a+1))T) D2,2Q3+1 (¢(21+1 - 2[))
- (A
(1+ Cayw““))T) D120, (9241 - 21)) >

Il 02 " b, )
a2 (( cay "/’a+1 +I)~ 1D2,193+1(21 - ¢é+1)ca)’(’f’é+1)) )

N poor . (32 (4)
+ Uy I+ (cay z/’a+3)) ) D1,29; 5 <¢a+3 - 21))
Y ~ - v
* % ((“ay@z) +1) 7D 92 (21 - wi)cay(w}l))w) .
1

(iv) At a+ 2 on the right of a and on the left of a + 3,

(AZJrQDA +2VK)V
l1l2
419

Il

—(Cl 1(Phie —E1) x AT )AxE oy + == Ca2 (12, — E2) x AT ,AX2

l1l2
+ ECI’Q (Pas2 —E1) X Al pAxg o + 761 2 (Tago —Eo) X AT o AXy s

l1ls -1 /\1 1 4 v
+ 2% I+cay ¢a+2) ) D118, 5 (Wa+2 - 2I)>
(AN
((tcar(@20) + 112202y (21 = B poear(T2,2) )

(A)
(( CaY(waJrz + 07Dy 2Qa+2(21 ¢a+2)CaY(7$Z+2)) )
Il - (A"
+ % <( I + CaY(wa-Q»Q) ) DQ 1Qa+2 wa+2 - 21)) >
(A) v
(( cay d}a + I) 1]Dl 291 (21 wa CaY(wa )
+ E <(<I + CaY("Z"\tlz—HS)T)i D2 1Qa+3 1/’a+3 ) >

The derivatives Dx_ Vg are :
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(i) At a on the left of a 4+ 1 and a + 2,

11 11
Dse,Vie =7 (~Aa)Cr1 (Tf = B1) + % (~Aay1)Cii (Phyr — En)
1 1
Il 1l
£(—Aa)(cz,z (2 —E2) + 1fQ(—A(H-z)(Cz,z (2., — Ez)
4lo 4l
11 11
22 (—Aa)Ci2 (T2 —E2) + —2(=Aq41)Cr2 (T2, — E2)
4l 4l
11 11
+ 2 (~Aa)C2,1 (TL — E1) + 2 (~Aq42)Ca,1 (Thyp — Er)
4lo 4lo
l1l2
4
(ii) At a + 3 on the right of a +1 and a + 2,
Dy o Vi = 22 (A, 0)Cy s (T B+ 22 (A )0 (1 E
Xq43 VK = E( a+2) 1,1 ( a+2 1) + E( a+3) 1,1 ( a+3 1)
11 1!
+ £(A(1+1)(C2,2 (T2, —E2) + £(Aa+3)(c2,2 (F§+3 - Ey)
412 4lo
11 111
+ %(Aa+3)cl,2 (T2 5 —E2) + %(Aa+2)cl,2 (2., — Ez)
1 1
Il 11l
+ 22 (Aa3)Cot (This —B1) + —2(Aat1)Co1 (T 4y — Br)
4lo 4l
111
+ %Qa+3~

(iii) At a + 1 on the left of a + 3 and on the right of a,

lllz lll2
Dx, VK = E(—Aaw)cl,l (Tas2 —E1) + E(—Aa+3)<C1,1 (Tavs —E1)

Il 11

+ 22 (Aat2)Cay2 (r2,, —E) + 22 (Aa)Ca,2 (2 — Ep)
4lo 4l
lllz l112
E(—Aaw)cm (Tai2 —E2) + E(—Aam)cl,z (Ta15 — E2)
111 11

+ £(Aa+2)(c2,1 (F}H—Q — El) + i(Aa)CQ’l (Flll — E1)
412 4l2
l1l2

+ 4 qa+2-

(iv) At a + 2 on the left of a + 3 and on the right of a,

11 11
Dx, 1 VK = %(AaJrl)(Cl,l (P, —E1)+ %(Aa)cl,l (rt - )

1 1
I 11

+ 22 (~Aa41)Ca2 (T2, — E2) + —— (—Aat3)Ca2 (T2 5 — E2)
4lo 415
Il 11

+ 1f2(1\114-1)(c1,2 (M2, —Es) + £(/\a)(C1,2 (2 — Ez)
4l 4l
l1l2 T )
— (Tht1 —E1) Coa(—=ALy1) + ——(—Aat3)Co (Toys — B1)
412 412
Il

+ %qtznkl-

From the preceding results, we obtain that the forced discrete Euler-Lagrange

equations read
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Discrete Euler-Lagrange equation (7.2.5) for a corner of the plate.

—T
. IANT JR -1 .
,LL‘Zl + (AaAad (e)XPCZL E> _ —At <‘U/:Z) +Adi(5£71),ule71,

, 11 Y (T
ug}:At%((dRT(g)) 1) <Ma’}72)’

Tr (]?)TeXp_1 (Agexp(\l’g))) =0, with g/ =gl7(&)),

with U, = (A'DA Vi)Y| . Vo=ATD, Vg

t=tJ

t=tJ

Discrete Euler-Lagrange equation for an edge of the plate.
. /\j ATdR —1TE U .
fio + ( atla GCXPyy ) = —At (Va) A g
0 a “

, 1l 1Y (e
= (@) ) (7).

T (BTexp™ (Aexp(0))) =0, with 7! = glr(e))

with U, = (AaT Kz: DAG,VK>V s’ Vo=AL Kz: Dy, Vi
Sa Sa

t=tJ

Discrete Euler-Lagrange equation for the interior of the plate.

—T
. i AT JR -1 )
g, + (AiA“d P E) = —At <\U/a) +Adi(gj*1)“ffl,
0 a “

= Atlyly ((dRr(EZ))fl)* (A‘%%) :

Tr (ETexp ™ (Aexp(¥))) ) =0, with g7%" = gir(€l).

with U, = (AaT 3 DAaVK>V‘t:”7 Vo=AlS DXGVK‘

t=ti
K>a K>a

7.3.2 Remark For the algorithms presented below we need to decide whether
T :5¢(3) — SE(3) is the exponential map or the Cayley transform.
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7.4 Appendix : intermediate calculation

The potential energy (7.3.8) may be written as follows

. l1l2 Il —-E; T 7y Coa I -E;
Vi) = D ?{ (Fg - E; C21 Co2 ) \ T3 —E2

a€eK
QT /Dy Do\ [ QL lils
+ (Qg) D21 Dag 02 + anK 4 (@, %a)

11
=> 1?2{(1“(1; —E1)"Cii(Ty —E1) + (I — BE2)"Coa(T% — E2) + 2(Ty — E1)TCi2(T; — E2)
acK

11l
HODTCHOL + (02T €002 + 207 C02 ) + T U ()
acK

We denote

N
U = = ((Tg = Ba)TCap (TS — Eg) + (22) Do s OF).

We compute {b\a using gle Cayley transform, i.e., {ZJ\a =cay 1 (AL'Aq+1), over element K
of size Iy x la. If 6Aq = Ao& € Th,SO(3), we have :
D, o - 086 = 2(6A0) T Agy1 (AT Agyr + 1)1
—2(Ag Aat1 — DA A1 + D)7 HOAT Aar1 (AL Agr + 1)1
= —26AT Aay1 (AT Agqr + 1)1
+2AT Ay = DAL Aayr + 1) AT Ayt (AT Agr + 1)1

- (@a - 21) 5(1 + AZ_HAa)il - (12@ - 21) E(I T cay(qza)T>71
Dayyy%a - 8Aag1 =207 6A a1 (AT Agyq + 1)1
—2(Ag Aoyt — D(AG A1 + 1) TIAT6Aar1 (AG Aar + 1)1
=2AT Ao 1E(AT Aayr + )71
—2(AT Aapr = (AT Aayr + D) 7' AT Mgy 1 EAT A + 1)1
=21 = Ya)AL Ao 1 E(AT Agyr + )71
=(2I — a)cay(va)é(cay(Pa) + 1)~
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Derivative Dy U% in a on the left of a+1 and a+2 :

D, U - 6Aa
lslzl; (TG —Ba)" Ca,p 0Ag AXG + #ma)%a,gmawé’ - 6Aa
B2 (1~ Ba) " Cop ST + B2(0)7 DD, 08
- 7% Tr (0% —Ea)” (CQYBEAEAXE> - % Tr ((pg ) B) Co oEAT Axg)
- % T (D0 9 (Da, B3 - 340) = l;% Tr (Da/,a\ﬂf(DAan : 6Aa))
= —% T ((AfoE (T~ Ba)" Ca) g)
- % Tr <((1 + cay($5)7) T a0 (%8 - 21)) v E)
_ %ﬂ ((AZAXg (v - EB>T(CQ!B)<A> E)
(o ) )

hi ANV
- ok ((AaTAxg (I —Ba)” ca,ﬁ)( )>

I+(cay @N7) " Dt (@521))<A)>v-£

(A"
+l1l2< A AxY 7E5>T(Ca,ﬁ) > <€

I+cay wa) )71 D:[g\Qg (Jg - 2]))(A)>V 3

l1l2
4la

4 1
then, using the formula ((va)<A)> = EW X v, we get :

iy
T 8l

+@ <[+(Ca (TZJ\B))T)_I[D)/BQ 55 o (A"
4lg ( Vi¥a o, 8823 (% ))
4l ( y(¥a) ) Dy, 5820 (qpa 2[))

Derivative Dj, Vg is obtained by the following calculation :

Il
(AT Dy, UV Cap (T2 — Eqa) x AT A +£<c&, ( _EB)foAxg

Da, Vi = Dp, Uk + Dy UST! + Dy UL

a+2

a———a+1
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Derivative DAHSU‘};FS in a + 3 on the right of node a+1 and a+2:

DA, UK 0hays

lile o T l1l2
= ? (T243 —Ea) Cap 6Aa+3Axa+3 + 7(Qa+3)TDOt”3DAa+3¢5+3 “0Aat3

l1l2 T o lll2 o
+ o 3l <F§+3 EB) Cap 6AE+3Axa+3 + (Qa+3)TDa,6DAa+3wa+3 “0Aa+ts
l1l2 l1l2 T ~ o
=——"Tr ( a+3 Ea) Ca Ban+3Axa+3 - TIr Fa+3 Eg Ca,BEAaT+3AXa+3
8lg 8la

Il

_ . 141 — ~
B 12 B
T Tr (Da,ﬁ¢g+3(DAa+3¢a+3 : 6Aa+3)) ~ Slals Tr (Da,ﬁ%+3(DAa+3"/’g+3 '6Aa+3))

l1la

o T (A) R
= _Tﬁ Tr ((AE+SAX2+3 (Fa+3 - Ea) Cavﬁ) g)

Iils N T (A)
~ 3T ((Af+3Axa+3 (o5 —Ep) Ca,ﬁ) €

— gt T (((ear () + D) D0 01 — Py (72,) ')
8lal5 a+3 aﬁ a+3 a+3 a+3

~ — ~ N (A)
S (((eayw;ng)+I>-1Da,wf+g<ﬂ—¢3+3>cay<w3+3>) s)

Vv
lll2 T T (A) v l1l2 T 8 T (4)
= 1, ((Aa+3Axa+3 (Te4s — Ea) (Ca,B) £+ e Agy3Axgy 3 (Fa+3 - EB) Ca,p 3

lil2

5 ()
t i (((cay(¢f+3)+l) Do 0245 (21 — L4 5)cay(9F5)) ) "

lilo

-~ -3 ~ N (A)
+ als <((cay(¢3+3) + 1)71]]])&,,81/)54,_3(2[ - w3+3)cay(wg‘+3)) ) 3

Thus, using (4.2.29), we get :

1112 l1l2
(AT43Da, UK = 7Ca 8 (D84 — Ea) x AL 3AXS 4 + 7(Ca B ( P s — EB) X Ao 3AXG, s

1112 ~3 IR ~3 —~g An\Vv
+ @ (((CaY(¢a+3) + I) (Da,BQaa+3)(21 - wa+3)caywa+3)> )

1l

~ — ~ . (A)
+ a2 <(<cay<¢3+3> D)7 P g0 )T — sy (T2 1)) >
«@
Derivative Dy, +3V K is obtained by the following calculation :

Dpgis Vi = DAa+3Ul}l(+l + DAa+3Ul}l<+2 + DAa+3U?(+3'

a+2 a+3

a+1
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Derivative Dy, Vi in o on the left of a +1 and a 42 :

Dy, Vi - 0xq

= 2;2 (T —E1)" €11 (~AT5x4) b l1l2 (FEH B1)7 C1a(—AT, 6%0)
lillj (2 — Ba)" Co2(~AT6xa) + 2112 (T2, — B)" Co(—AL,6%4)
lll2 (1"2 2)T (ngl(—Agéxa) lllz (Fa+1 EQ)T C2,1(—Ag+15xa)
l1l2 (Fl 1)T<C1,2(—Agéxa) l1l2 (Fa+2 1)T(C1,2(—AQT+2(SXQ)

l l
+%<Qa76xa>-

Derivative D Vi in a+ 3 on the right of a+1 and a + 2 :

Xa+3

Dxa+3VK . (5xa+3

lllg l1l2 T
=0 (Tlys —E1) " Cra(AT56%at3) + 0 (Thi3 —E1) Cia(AL 30%ar3)
l l 111
=2 (Fa+1 E2)" C22(AT, 6xa3) + iﬁ (12,5 — Ba2)" Can(AT, 36%a4s)
l1l2 1112 T T
(Fa+3 Es)" Co1 (AL, 36%043) T (Fa+2 Ez)" C2,1(Agy20%a+3)
l1l2 T l1l2 T
(Fa+3 E;) C1,2(AaT+35xa+3) + Uy (Fé+1 —Ei) C1,2(AZ+15Xa+3)
l1l2

+ —= (da+3,0%a+3) -

Derivative D Vi in a+ 1 on the left of a + 3 and on the right of a :

Xa+1

Dxa+2VK - 0Xg42

lilb (Thio —B1)" Cra(—AT 56xat2) + 2;2 (T, —E)" Ci1,1 (AT, 30%012)
* % (Tata — EQ)T C2,2(AL,20%ay2) + % (T2 - Ez)T Ca2(A] 6xat2)
% (Tava - ) C2,1(—Ag420Xa+t2) + lllh (Tots — Ez)T Ca,1 (=AY, 30%Xat2)
% (Tata = El) Ci1,2(A7 20%a12) + % (T3 — El)T C1,2(AT6xa42)
+ bl (Qa+2,0Xa+2) -

4
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Derivative D Vi in a+ 2 on the left of a + 3 and on the right of a :

Xa+2

Dy, 1 Vi - 0Xg41

= % (Tl =B Ca(AT, 0x0t1) + % (L — )" Ci1(AT6x011)
+ % (a1 — E2)T Coo(—AL, 1 6%xa11) + % (M2 s — EQ)T C2,2(—AT 56x011)
+ % (T2, —E2)" Co (AT, 6%0t1) + % (T2 —B2)" Ca1 (AT6x011)
+ ZTZQQ (Thg1 — El)T Ci,2(—Ady10%at1) + % (Ths— El)T Ci,2(—AT, 36%a041)

Il
+ % (da+1,0Xq+1) -

7.5 Conclusions

We obtained a constrained Lie algebra variational integrator for the geomet-
rically exact model of plates. Moreover, another integrator for plates is in
progress; it will be obtained with the gained experience from the study of vari-
ational integrators for beams. Then we will start to implement and compare
the different integrators for plates.



Chapter 8

Dissipation and discrete
affine Euler-Poincaré

Introduction

This chapter studies the dissipation added to the reduced discrete affine Euler-
Poincaré system with symmetry.

Phenomenons of dissipation and instability for Euler-Poincaré systems on
the Lie algebra, or equivalently for Lie-Poisson systems on the duals of the
Lie algebras, were studied in Bloch, Krishnaprasad, Marsden, and Ratiu [10].
This paper is a reference for our work. Thus a dissipative force is construct
which dissipates the energy, but angular momentum is conserved, or equiva-
lently symmetries are conserved. In the context of the Lie-Poisson systems, this
means that the coadjoint orbits remain invariant.

In view of the objective that we have set to find the equilibrium position of
a structure, it is essential to preserve symmetries when applying dissipation.

Dampers in satellites act this way. That is, once a structure is deployed in
space, it is subject to vibrations due to guidance systems, space debris. Then the
damping mechanisms must remove the vibrations without modify the angular
momentum maps.

Energy-Dissipative Momentum-Conserving or EDMC algorithms, verifying
the laws in the non-linear range, were recently developed by several authors (see,
e.g., Armero and Romero [4]), where conditions are imposed on the algorithm
in order to conserve the momentum (such as the mid-point scheme).

Our point of view is different as there are no conditions on the discrete
Lagrangian. Then we take into account the discrete theory, established by the
use of the laws of mechanics.
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8.1 Review of continuous Euler-Poincaré systems with
forces

8.1.1 Forced Euler-Lagrange equations and momentum
map conservation

A Lagrangian force is a fiber preserving map F': TQ — T*Q over the identity.
Given such a force, it is standard to modify Hamilton’s principle, seeking sta-
tionary points of the action, to the Lagrange-d’Alembert principle, which seeks
curve ¢(t) satisfying

T T
5/ L(q(t),q'(t))dt+/ F(q(t),q(t)) - dq(t)dt = 0. (8.1.1)
0 0

This is equivalent to the forced Euler-Lagrange equations

d oL 0L
—— — — =F(q,9q).
793 04 (¢, 4)

Given the action of a Lie group G on configuration manifold @ by G x Q —
@, we define the Lagrangian momentum map J : TQ — g* to be

(JL(vg), &) = (FL(vq), &0 (a)) »

where {q is the infinitesimal generator and FL : T'Q) — T Q is the fiber deriva-
tive.
Let L be a G-invariant Lagrangian. Evaluating (8.1.1) for a variation of the

form dq = £g(q), gives
T T
/ dL - &rqdt + / F-&qdt
0 0

T
= /0 F(q,q) - {q(q)dt

Tror, . doL A T
- [ |G - 4 5@+ Flaida.i)| + 01 éral;

= [(IL o F/)(q(0),4(0)) — I (g(0),4(0))] - €,

where FI': TQ — TQ is the Lagrangian flow at the frozen time 7', and where
we took into account the fact that L is invariant along &g, and the definition
of the Lagrangian momentum Jy,.

Thus if we consider the effects of forcing on the evolution of momentum
maps, we observe that when the forcing is orthogonal to the group action the
momentum map is conserved. This is the content of the next theorem.

8.1.1 Theorem (Forced Noether’s theorem) Consider an action of the Lie
group G on the manifold Q. Consider a Lagrangian system L : TQ — R with
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forcing F': TQ — T*Q such that L is G-invariant. Let q(t) be a solution of the
Euler-Lagrange equations with force. Then for all £ € g

& T0al6),4(),6) = (F(a0) 4(1). Gola(t)) (312)

In particular, if (F(vq),8q(q)) = 0 for all vy € TQ and all { € g. Then the
Lagrangian momentum map Jr, : TQ — g* will be preserved by the flow F} of
the Euler-Lagrange equations with force F', so that Jr o Ft = Jp, for all t.

As seen in (1.4.3) we recall an equivalent result for discrete mechanics, where
the condition to conserve discrete momentum map Jr,, : Q@ x @ — g* is that
the discrete force Fjy : @ X Q — T*(Q and the discrete infinitesimal generator
§Q><Q : Q X Q — T(Q X Q) Verify <Fd7£Q><Q> =0.

Note that the forcing F' is not required to be G-equivariant. However, in
the following theorem from Bloch, Krishnaprasad, Marsden, and Ratiu [10] we
recall an important particular class of equivariant force fields.

8.1.2 Theorem Consider a G-invariant Lagrangian L and a G-equivariant
force field F. The solutions of the Euler-Lagrange equation with force preserve
the inverse images of the coadjoint orbits in g* by the Lagrangian momentum
map Jp, if and only if for each vy € TQ, there is some n(vy) € g such that

(F(v9),80(a)) = (JL(vg), [n(vg), &) (8.1.3)
forall€ € g.

This result is the consequence of a number of properties, namely : the coad-
joint orbits have a symplectic structure. Moreover, the Lie-Poisson bracket and
the coadjoint orbit symplectic structure are consistent. Thus, for a given coad-
joint orbit O, if v(t) € J;'(O) or equivalently if J(v(t)) € O, then J(v(t)) verify
Lie Poisson equations

aw) .
T = adn(t)']('l}(t))
Given the relation (8.1.2) in the Forced Noether’s theorem, we obtain the con-
dition (8.1.3).

8.1.2 Euler-Poincaré reduction with forces

The Euler-Poincaré equation may be found in many papers, and books as in
[89]. We note that Lie-Poisson and Euler-Poincaré equations are equivalent if the
fiber derivative of Lagrangian L is a diffeomorphism from T'G to T*G. Now we
recall from Bloch, Krishnaprasad, Marsden, and Ratiu [10] the Euler-Poincaré
reduction with forcing.

8.1.3 Theorem Let G be a Lie group. L : TG — R a left invariant Lagrangian,
and let F' : TG — T*G be an equivariant Lagrangian force relative to the
canonical left actions of G on TG and T*G, respectively. Let £ : g — R and
f:g— g* be the restriction of L and F to T.G = g. For a curve g(t) € G,
consider the curve &(t) = TyyLgy-19(t) € g. Then the following statements
are equivalent :
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(1) g(t) satisfies the FEuler-Lagrange equations with forcing for L on G.

(ii) The integral Lagrange-d’Alembert principle

b b
5 / L(g(t), g(t))dt + / F(g(t), o(t)) - 6g(t)dt = 0

holds for all variations 0g(t) with fized endpoints.
(iii) The Euler-Poincaré equations with forcing hold
d o Y4
—— —ad;— = f(§). 14

(iv) The variational principle

b b
5 [ etenar+ [ s neyie o
holds on g, using variations of the form

6& =1+ [&,ml;
where 1 vanishes at the endpoints.

8.1.4 Remark From Theorem 8.1.1, it follows that in the particular case where
@ = G, with forcing F' : TG — T*G, the momentum map is preserved by the
flow of the forced Euler-Legrange equations if and only if F' = 0.

In the particular case where ) = G, with a G-equivariant force field F :
TG — T*G, and f : g — g* its restriction to T.G = g. Then Theorem 8.1.2
yields the following condition in order to preserve the momentum.

8.1.5 Corollary The solutions of the Euler-Poincaré equations with forcing
(8.1.4) preserve the coadjoint orbits of g*, provided the force field f is given by

£(() = ady ) &

") 5¢° (8.1.5)

for some smooth map n: g — g.

Indeed, the condition that the integral curves preserves the coadjoint orbits
of g* is given by (8.1.3). Since the infinitesimal generator for a left Lie group
action is £z(g) = &g, and, knowing that the Legendre transform FL of a G-
invariant Lagrangian L is G-equivariant, we get the condition (8.1.5).
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8.1.3 Euler-Poincaré reduction for semi-direct products
with equivariant forces

The main difference between the left invariant Lagrangian considered in the
theorem above and the ones we shall work with below is that functions L and /¢
depend on another parameter a € V*, where V is a representation space for the
Lie group G and L has an invariance property relative to both arguments. Note
that L is not a Lagrangian function as it is not defined on a tangent bundle.

Recall that the semi-direct product S = G®V, as previously defined, is
associated to a representation p of the Lie group G on the vector space V,
and that we consider the left action of G on TG x V* given by g - (vp,a) =
(ThLgvn, py(a)) = (gvn, ga).

We assume that the function L : TG x V* — R is left G-invariant, then we
define a reduced function £: g x V* — R by

(g™ vy, 97 a) = L(vg, a).

For a particular ay € V* we define the Lagrangian L,, : TG — R by
Lo, (vg) = L(vg, ap), then Ly, is left invariant under the lift to TG of the left
action of G,, on G, where G, is the isotropy group of ay.

For a curve g(t) € G, let £(t) := g(t)~1§(t) and define the curve a(t) as the
unique solution of the following linear differential equation with time-dependent
coefficients a(t) = —a(t)&(t), with initial condition a(0) = ag. The solution can
be written as a(t) = p; ;) (ao) = g(t) " ao.

Given an equivariant Lagrangian force F' : TG — T*G, we consider its re-
striction f : g — g* to g. Then Euler-Poincaré reduction theorem for semidirect

products generalizes to the case with forcing as follows.
8.1.6 Theorem With the preceding notations the following are equivalent :

(1) With ag held fized, g(t) satisfies the Euler-Lagrange equations with forcing
for Ly, on G.

(ii) The integral Lagrange-d’Alembert principle

b b
5 / Luo (9(8), 4(8))dt + / Fg(t), §(t)) - Sg(t)dt = 0

holds for all variations dg(t) with fived endpoints.
(iii) The Euler-Poincaré equations with forcing hold on g x V*

d 6¢ L0 oL
%%_adgg—%oa_f. (8.1.6)

(iv) The variational principle

b b
5 / (e, alt)dt + / £(E(t) - n(t)dt = 0
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holds on g x V*, using variations of & and a of the form

6€:n+ [5777]7 da = —na,

where n € g vanishes at the endpoints.

Proof. The equivalence of (i) and (ii) holds according to the previous one
theorem.
Next we show the equivalence of (iii) and (iv).

b b
- [ty ttde =5 [ . aenar
b6 o0
- ((Gerse) (5aroe))
b
ol . Y4
- [ ((Gernewen) = (5oom) ) o
b/ d ot LYY
= ——=+tadi—=+ — dt
/a < dtoe A% T 5a°“’”>
And we show that (ii) and (iv) are equivalent. Not that L., (g(t),§(t)) and
0(&(t),a(t)) are equals, as L : TG x V* — R is G-invariant, and a(t) = g(t) ~tao.
All variation d¢g induced and are induced by variations d¢, and the variation

between §g and 7 is given by n = g~16g vanishing at endpoints. Moreover force
fields are equivariant relative to the canonical left actions so

b b
/ F(g(t), §(1)) - 6g(t)dt = / a(t) - F (g(t) " g(), g(t)"g(8)) - Sg(t)dt
b
- / F (g(t) " g(t), g(t) "4 ()) - n(t)dt
b
- / ORI

where 1n(t) = g(t)~1dg(t). As a consequence we get the equivalence. |

8.2 Affine Euler-Poincaré reduction with forces

8.2.1 Remark The preceding theorem easily generalizes to the case of affine
actions. If we assume that the function L : TG x V* — R is left G-invariant
under the affine action as described in (5.1.6). Given an equivariant fiber pre-
serving map F': TG x V* — T*G over the identity, such that

F(hvg, harer) = hF (vg, arey)-

We get the same result as previously, except that one has to replace the Euler-
Poincaré equations with forcing (8.1.6) by the equations

d ot YA [0l
— = _adr = - = — | =f 2.1
a5 ad55§ 5a<>a+dc <5a) ; (8.2.1)
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where f : g x V* — g* is the restriction of F' to g x V*, and that the variations
of a are now given by da = —na — de(n). Indeed, as the map F is equivariant,
we see that

b b
/ F (Ug(t)(t)v aTef) : 5g(t)dt = / F (g(t)ilvg(t) (t)a ag(t)—l (G‘Tfif)) ’ ﬁ(t)dt

ab
- / £ ((),a(t)) - n(t)dt.

With a G-equivariant force field F : TG x V* — T*G, and f : g x V* — ¢g*
its restriction to TG = g. Given the isotropy group G7 of ag as defined in
(5.1.4) and its Lie algebra g , the Theorem 8.1.2 yields the following condition
in order to preserve the momentum.

8.2.2 Corollary With ay € V* held fixed, the solutions of the Affine Euler-
Poincaré equations with forcing (8.2.1) preserve the coadjoint orbits of (g5 )",
provided the force field £ : g5 x V* — (g5 )* is given by

£(() = ady ) &

") 5¢° (8.2.2)

for some smooth map n : gg — 95, and £: g5 X V* — R.

Proof. With ap € V* held fixed, consider a G -invariant Lagrangian L,
and a G-equivariant force field F,, (vq) = F(vg,a0). Thus by theorem (8.1.2)
the solution of the Euler-Lagrange equation with force preserve the inverse
image of the coadjoint orbits in (g )*, if and only if for each v, € T'G, there is
a map 7(vy) € g5, such that

<F¢10 (vg)ng(g» = <JL(10 (Ug)v [ﬂ(”g)»fb 5

for all £ € g5, . Since {c(g) = §g and Iz, (vy) = FLg, (vg)g~ ! we get

<Fao(vg)7§g> = <Fao(vg)gil,£>, and
(I10y ), n(v).€]) = (a0, FLay (v5)97,€)

By G-equivariance of Fy, we obtain

<Fao(v9)gilag> = <Ad2*1F(g71vg)a€> . (1)

. ¢ . e o
As Lg, is only G -invariant, then FL,, is G§ -equivariant. As a consequence,

from now on, we choose g € G, and we get

ady () © FLq, (vg) g7t =ad} yo Adg—1 o FLg, (g7 vy).

n(vg n(vg

Moreover, as Adg-1 0 ady(,,) = adAdgfln(%) o Ad,-1, we obtain

(Try (00), (), 1) = (Ady1 0 adag, agey) 0 FLuglg 000 €) - (2)
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The equation (8.1.3) is equivalent to (1) = (2). Thus we obtain
fao (C) = adng_ln(vg)FLao (C)’

with ¢ = g7 lv, € 96,0 N(vg), € € g, and g € G . By taking g = e we get
(8.2.2). |

8.3 Reduction of discrete forced Lagrangian systems with
symmetries

8.3.1 Discrete affine Euler-Poincaré reduction with forces

In this subsection we generalize the discrete affine Euler-Poincaré reduction for
semidirect products (§5.3.2) to the case with forcing, with @ = G. We will
assume that the discrete forces FjE : G x G xV* = T*G are G-equivariant,
that is, for a fixed a,.r € V*, they read

F (997, 99" 04(arey)) = gF; (97, 9", arey), forall g € G.

This allows us to define the reduced discrete forces fdjE G xV* = g* by
f;(fj’ aj) - = F({ (6, (gj)_lgj+1a e(gj)’l(aref))

fj((fj)_la aj+1) L= FJ ((gj+1)_1gj7 €, e(ngrl)*l(aref)) .

The geometric setting is the same as in §5.3.2, namely, we suppose that the
discrete function Ly : G x G x V* — R is G-invariant under the action

h-(¢’, "t a) = (hg’, hg' ™', 01(a)), h,¢’,¢" T € G, acV*,

(8.3.1)

and, for a particular a,.y € V*, we define the discrete reduced function ¢4 :
GxV*—=Rby

Ed (fja aj) = gd ((gj)ilngrl,e(gj)*l(aref)) = Ld(gj,ngrlv aref)'
And we define Lgq,,, : G X G = R, by Laa,., (97, ¢° ") = La(¢7, g7, arey).

Then Lgq,., is invariant under the left action of isotropy subgroup G¢ ;on

G. As well Fyq,., :GxG—=T*G, by Fd’amf(gj,gj"'l) = Fu(¢?, ¢, arey).

With the same notations as in Theorem 5.3.1, its generalization to the case
with forces is the following.

8.3.1 Theorem (Discrete affine Euler-Poincaré reduction with force)
The following are equivalent :

(i) With arey € V* held fized, the discrete Lagrange d’Alembert principle

+ [F+ (979" ") -6 + Fy, (97,97 '693} =0, (832

holds, for variations g7 with 5¢° = 6g™ = 0.
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(ii) The discrete path {gj}j-vzo satisfies the discrete Euler-Lagrange equations
with forcing

D2Ld,aref (gj_lagj) + DlLd7l17~Ef (gja gj+1)
+E, @)+ F, (99T =0, forallj=1,..,N—1.

(iii) The constrained discrete variational principle

N—1 N-1
8 ta(f7,a)+ Y (B () ) T £ (F,07) -] =0,
j=0 j=0
(8.3.3)
holds on G x V*, using variations of f7 and o’ of the form
5f = TeLy; (— Ad(fj)fl(nj) + nj+1) , da? = —na? — de(n?),

where {nj}j»vzo is a sequence in g satisfying n° = n™N = 0.
(iv) The discrete affine Euler-Poincaré with forcing are valid
— Ad{ys)y 1 Ty Ly Dyl + T Ly Dps-i b + Dy 0 a?
—ac” (Dajég) HEF (YN al) £ (faT) = 0. (8.3.4)

Proof. The equivalence of (i) and (ii) holds according to Theorem 1.4.1.
Now, using the result of Theorem 5.3.1 the equivalence of (iii) and (iv) is
easy to show. We already know that

N-1

5NZ_1£d(fj,aj) = > (= Ay Ti Ly (Dgsl) P ) + (T Ly (Dgal) 7™
j=0 0

+ <Dajle<>aj ,nj> - <dCT (Daﬂ'ezl> 7nj>’

for all variations {n’ ;»V:O vanishing at endpoints. So the constrained variational
principle (8.3.3) is clearly equivalent to the forced discrete affine Euler-Poincaré
equations

i 7 (0 ) 51 (01 87)
+ Dythoal —de” (Do) + 87 (1771 ad) + £ (,07) = 0.

Now we consider the equivalence between (i) and (iii). By G-invariance the
actions associated to L,q,.,, (¢7,¢7t1) and £4(f7, a’) are equal. We already know
that the variations d¢’ induce and are induced by the constrained variations
§f7. Tt remains to be shown that the right hand side of (8.3.2) and (8.3.3) are
equal. By equivariance of F;~ and (8.3.1), we have

Fd_(gjvgj+1aa7"ef) ' 6.9] = gJ ! Fd_ (evije(gj)*lav"ef) : 69]
=y (f.al) -’
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and
F;(gj7gj+17 aj) : 5gj+1 = gj+1 : F;_ ((fj)ila €, o(gl*l)*laref) : Jngrl
= £ ()7 L) Pt
Then we get the result. |

The discrete affine Euler-Poincaré equations with force (8.3.4) implicitly
define the forced discrete Lagrangian map

Fo:GxV* 5 GxV (fLa™ Y e (f,a).



Chapter 9

Discrete mechanical
connection

Introduction

The mechanical connection originates from the works of Smale [113], Abra-
ham and Marsden [1]. Then after, it was explicitly described by Kummer [62],
Guichardet [37], Shapere and Wilczeck [105], Simo, Lewis, and Marsden [109],
and Montgomery [92].

Principal connections, and in particular mechanical connections, are an im-
portant tool, which allows one to split the trajectories into a horizontal and a
vertical part. The vertical equation gives the trajectories along the orbit associ-
ated to the action of a Lie group G, and the horizontal is perpendicular to that
orbit. The first one is associated with the Euler-Poincaré equation, and the last
one with the Euler-Lagrange equation. (See Cendra, Marsden, and Ratiu [22].)

Moreover mechanical connections allow to study the stability and bifurca-
tion of relative equilibria. Where the relative equilibria are the dynamic orbits
generated by the symmetry group, which correspond to equilibrium points in
the quotient space. When stability of a relative equilibrium is lost, one can get
bifurcation, instability and chaos. (See Herndndez-Garduno, and Marsden [43].)

Furthermore, mechanical connections play an important role in the energy-
momentum method. (See Lewis, and Simo [72].)

In discrete mechanics, a nice theory of discrete connections was established
by Leok, Marsden, and Weinstein [67] through the pair groupoid composition.
Unfortunately, it seems that this theory does not provide expressions that can
be directly applied to concrete problems.

In this chapter, we obtain definitions and expressions in coordinates of the
discrete mechanical connection, as well as of the discrete vertical and horizontal
trajectories which are reminiscent of the continuous expressions.
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9.1 Discrete Euler-Lagrange equations

9.1.1 Euler-Lagrange variational operator

We consider a smooth manifold ¢ which describes the configuration of the
system under study. Let Q(Q;q',¢?) be the set of all smooth curves ¢ : I —
Q satisfying q(t') = ¢! and q(t?) = ¢* for given ¢',¢> € Q. The state or
velocity phase space is the tangent bundle T'Q) of the manifold (; we shall
use interchangeably the notations v, and (g, ¢) for the tangent vectors at ¢ € Q.
The phase space is its dual T*Q, the cotangent bundle of @), whose elements
are denoted by a4 or (g, p).

Two smooth curves q1, qs : (—&,¢) — @ are said to be second order equiv-
alent at ¢ € Q, if ¢1(0) = ¢2(0) = ¢, %|t:0 q(t) = %|t:0 g2(t), and in a chart
o (pog2)(t).
The set of these equivalence classes, denoted by [¢(t)]®) or by triples (g, 4, §),
form a locally trivial fiber bundle T Q = O — Q, called the second order
tangent bundle of Q. In classical notation of jet spaces, T?Q = JZ(R,Q),
i.e., the second order jets of maps from R to ) whose source is fixed at the
origin 0 € R. Note that T Q is a submanifold of the double tangent bundle
TTQ.

Given another manifold R and smooth map f : Q@ — R, there is a naturally
induced smooth locally trivial fiber bundle map T® f : TAQ — TR given
by T® f(q,q,§) := (r,7,7#), where (r,7,#) is the equivalence class of the curve
f(g(t)) in R if the equivalence class of the curve ¢(¢) in Q is (¢,4,q). In the
alternative notation this is easier to write, namely, T3 f ([q]®) := [(foq)(t)]®.

We recall the classical result linking the Euler-Lagrange equations to the
calculus of variations.

(U, ¢) with ¢ € U we have, in addition, ;Té‘t—o (poq)(t) = % -

9.1.1 Theorem Let L : TQ — R be a smooth function, called from now on,
the Lagrangian. The action of L is defined by

for all curves q(-) € QQ;q',q?). Let q(t,\) be a deformation of a curve q(t)
fizing the endpoints, i.e., q(t', \) = q(t') and q(t?,\) = q(t?) for all X € (—¢,¢)
and q(t,0) = q(t). Let

dq(t) = — q(t,\) € Ty @
A=0

be the corresponding variation. Since the endpoints are fived, we have dq(t') = 0,
§q(t?) = 0.
There is a unique bundle map

ELL): TPQ — T*Q
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such that, for any deformation q(t,\), keeping the endpoints fixed, we have

dS(L)(q(")) - bq(-) = /t EL(L)(q(1),4(1),q(t)) - 5q(t)dt,

1

where

SL)(g(, V) = 2

a&(L)(a() -d4() = A=0 4

=< / L(g(t \), 4(t, \))dt.

1

A=0
The 1-form bundle value map EL(L) is called the Euler-Lagrange operator
and has the following expression in standard local charts

oL d oL o

Oqt  dt dgt ’

where, on the right hand side, it is understood that one formally takes the time
deriative and then replaces %q by ¢ and %q by q.

EL(L)(q. 4, d)udd’ = (

9.1.2 Discrete Euler-Lagrange operator

With this background, the following result, the discrete analogue of Theorem
9.1.1, is obvious.

9.1.2 Theorem Given a manifold Q, let Ly : Q X @ — R be a given discrete

Lagrangian, and
N—

S(La)(qa) = Y _ La(d,¢’*")
k=0

—

the associated discrete action map.

Let ¢ be a deformation of a position ¢7 in Cq(Q) = {qd At j-V:O — Q},
the space of discrete curves, such that ® = q° and ¢ = ¢V for any € in
an open interval containing 0 € R and g} = ¢/ for all j =0,1,...,N. Let

o d _
oq? == T @ €Ty

e=0

be the corresponding variation. Since the endpoints are fized, we have §¢° =
5qN =0.
Then there is a unique bundle map

DEL(Ly) : TP Qq — T*Q,
where the discrete second-order submanifold

T®Qa = Qa = {((a,b), (b,¢)) | a,b,c € Q} (9.1.1)
is naturally embedded in (Q x Q) x (Q x Q), such that, for any deformation ¢,
keeping the endpoints fized, we have

N-1

d&(Lg)(qa) - 0qa = Y _ DEL(La) (¢, ¢"), (¢, ¢ *)) - 8¢,
k=1
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where

N-1
§ +1
Ld qs’qg
e=0 r—o

A8 (La)lad) 000 =

The discrete 1-form bundle-valued map DEL(Ly) is called the discrete Euler-
Lagrange operator and has the following local expression

DEL(La) (¢ @), (¢ d*)) dg’ = (DaLa(¢’~",¢’) + DiLa(d’,¢’*")) dd’
(9.1.2)
forj=1,...,N — 1. The discrete FEuler-Lagrange equations are given by
the system

DEL(La) (¢ ¢"), (¢, ¢)) = (D2La(¢’ ", ¢’) + D1La(¢’ . ¢1)) = 0
(9.1.3)
forallj=1,... N —1.

9.2 Discrete Euler-Poincaré equations

9.2.1 Euler-Poincaré variational operator

We begin by recalling from Cendra, Marsden, and Ratiu [22] a modern formu-
lation of Poincaré’s theorem ( Poincaré [95]). Let G be a lie group with Lie
algebra g. For every u € g, ad, : g 2 v — [u,v] € g denotes the adjoint repre-
sentation of g on itself. In what follows ad}, : g* — g* denotes the dual of the
linear map ad,, relative to the canonical duality pairing (-,-) : g* x g — R.

9.2.1 Theorem Let G be a Lie group, L : TG — R a left G-invariant La-
grangian, and

S(L)(9() = / L(g(t). g(t))dt

1

the action functional of L defined on Q(G;g*, g*). Let £ := L|y and

t2
S)(v(+)) = " L(v(t))dt (9.2.1)
the reduced action functional defined on Q(g), the space of curves in g with
no conditions imposed at t' and t2. Then the following are equivalent :

(i) the curve g(t) satisfies the Euler-Lagrange equations EL(L)(g,d,9) = 0
on G;

(i) the curve g(t) is a critical point of the action functional S(L) for varia-
tions §g vanishing at the endpoints;

(iii) the curve v(t) solves the Euler-Poincaré equations

do_ o
dtov  Cay’
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(iv) the curve v(t) is a critical point of the reduced action functional (9.2.1)
for variations of the form

v =1+ [v,7],

where n(t) € g is an arbitrary curve that vanishes at the endpoints.
These variations dv are exactly the variations induced by left translation
of arbitrary deformations g(t,\) of the curve g(t) = g(t,\) such that
dg(th) = 8g(t?) = 0, i.e., Sv = g~ 1dg.

In addition, there is a unique map, the Euler-Poincaré operator,
EPW):gdg—g"

such that, for any deformation v(t,\) = g(t,\)"1g(t,\) € g induced on g by a
deformation g(t,\) € G of g(t) € Q(G; go,91) keeping the endpoints fized, and
thus dg(t;) = 0, for i =0,1, we have

d&(0)(v() - v () = / CEP(O) (u(t), (1)) - m(b),

t1

where

and
du(t) = (% L (9(t, )71t N) = 0(t) + [v(t), ()], with n=g~'dg.

The FEuler-Poincaré operator has the expression

Lot dor
YOv  dtov’

where on the right hand side one takes formally the time derivative and then
replaces %v by v.

EP)(v,v) = ad

9.2.2 Discrete Euler-Poincaré operator; Lie group version

There are two ways of discretizing the Euler-Poincaré equations while keeping
the geometric structure of the smooth case in mind. The first one yields a
discrete Lagrangian defined on the group, whereas the second is based on a
discrete Lagrangian on the Lie algebra. In this subsection we develop the group
version.

The following theorem, the discrete analogue of Theorem 9.2.1, is established
by using the diffeomorphism (G'x G)/G > [g1, g2] — g7 *g2 € G as in Bobenko,
and Suris [11] and Marsden, Pekarsky, and Shkoller [86] (the Lie group G acts
on G x G by left translation on each factor).
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9.2.2 Theorem Given a Lie group G, let Ly : G x G — R be a given G-
invariant discrete Lagrangian and

S(La)(ga) ZLd (9", 9" ") (9.2.2)

the associated discrete action sum defined on C4(G), the space of all discrete
paths in G. Let £y : G — R be the the Lie group reduced discrete La-

grangian defined by Ed(gflgg) := L4(g1, 92), and

S(la)(fa) = ng )

the associated Lie group discrete reduced action sum defined on the space
of discrete paths Cq(G) = {fa : {tJ Vo = G}, with f7 = (¢7) "', Then the
following are equwalent

(i) the discrete path g4 satisfies the discrete Euler-Lagrange equations on G
DEL(La) (9, 97), (o7, 9" F1)) = 0;

(ii) the discrete path gq consists of a finite sequence of critical points of the
discrete action sum S(Lg) for variations vanishing at the endpoints, i.e.,
dS(Ly)(gq) - g4 = 0 for all variations 6gq satisfying 5g° = 6g~ =

(iii) the discrete path fq satisfies the Lie group discrete Euler-Poincaré
equations

—T*Ry;Dla(f7) + Ad}; 1 T* Ry Dly(f771) = 0, j=1,...,N -1,
where D denotes usual differentiation in a vector space;

(iv) Lie group discrete Euler-Poincaré variational principle: the dis-
crete path fq consists of a finite sequence of critical points of the discrete
action sum &(Ly) for variations of the form

- 0 , 0
i_ 9 ji_ Y
of Oe E Oe

(92) ggﬂ TRy (= + Adpn/th),

e=0

where n = (¢7)"18¢7 € g is a sequence of Lie algebra elements such that
n° =0 and nN =

Moreover, there is a unique smooth map
DEP(Ly) : G x G — g*

such that, for any deformation fI = (g2)~'git! € G, keeping the endpoints
fized, i.e., 6g° =0 and 6g" = 0, we have

N-1

&(la)(fa)-6fa =Y DEPULa)(f7~ ) -

Jj=1
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where
d N—1 ‘
AS(la)(fa) -6fa= | > talfd).
=0 k=0
The discrete 1-form bundle-valued map DEP({y) is called the Lie group dis-
crete Euler-Poincaré operator, and has the following local expression:
DEP (L) (f77, 7)) = =T;RpsDLa(f7) + Ad}; 1 T Ry DE(f77H).

The Lie group discrete Euler-Poincaré equations are the system
DEP(La) (71, 1) = ~T7 Ry Dla( f)+Ad} 1 T7 Rys DU~ = 0 (9.2.3)

forallj=1,...,N —1.

Proof. The following calculation yields for any sequence 1/ € Ty; G satisfying
n°=0and nN =0

N-1
d . ) .
| S0 = XDl - (TR (7 + Ay ™))
A=0 =0
N_l . . . .
= [7D£d(f]) . TeRfjn‘] + Déd(fjil) . TeRfjflAdfj—l')?J:I
j=1
N—-1

(TR Dly(f7) +Ad}j_1T;RfHDzd(fj—1)} -,
1

<.
Il

so we get the desired result. [

9.2.3 Discrete Euler-Poincaré operator; Lie algebra ver-
sion

In this subsection, we present a discrete version of the Euler-Poincaré operator
that has the discrete Lagrangian defined on the Lie algebra, as opposed to the
Lie group, that was discussed in §9.2.2.

In this approach we will need the logarithmic derivative of a map with values
in a Lie group. Let G x M — M be a smooth left action and 7: M — G is a
smooth map. The right logarithmic derivative of T at m € M is the linear map
defined by

AP (m) :=Tr(m)Rr(my-1 © T : Trn M — g.

Thus, if ¢t — m(t) is a smooth curve in M, we have

d .
pril (m(t)) = (dBr(m(t)) - m(t)) 7(m(t)). (9.2.4)

For example, we apply these formulas to the exponential map exp: g - G
which has the advantage that the right logarithmic derivative is known explic-
itly, namely, if £ € g, we have

> 1 erde — T

A" exp(€) = TespeRexp(-e) 2 Teexp = 3 oy adf = —7— 59 = 0

n=0
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a linear map from g to itself. Therefore, if ¢t — £(t) is a smooth curve in g, we
have

%eXP(E(t)) = (d%exp(£(1) - €'(1)) exp(€(t)) € Toxpe(n) G- (9.2.5)

There are similar considerations for the left logarithmic derivative.

As proved in Bobenko, and Suris [11], the variational problem for the func-
tional (9.2.2) is equivalent to finding extremals of the functional &(L4) =
Z;\;—Ol Lq(g”,(¢7)tg"™), where Ly : G x G — R, Lq (g7, (¢7) g’ ™) =
Ly (gj, g’ “), is the left trivialized discrete Lagrangian. Then, for a given C?-
diffeormorphism 7 : g — G defined on an open neighbourhood of the origin
with 7(0) = e, this trivialized Lagrangian £; may be transformed to the Lie
algebraic left trivialized Lagrangian .%; : G x g — R, where .Zy(¢’,¢&%) =
La(g’,(g7)"rg™) for & = 77((¢7)"1g?™!). The following result is also a
discrete analogue of Theorem 9.2.1.

9.2.3 Theorem Given G a Lie group, Ly : G X G — R be a left G-invariant
Lagrangian, and

S(La)(9a) ZLd (97, ¢t
=0

the discrete action sum defined on C4(G). Let g : g — R be defined by 1(&7) :=
szd(e7€j)7 and

N-1
S(la)(€a) = > lal¢
k=0

the Lie algebra discrete reduced action sum defined on
9) = {&:{'} 2o — 0},

with & = 771((¢7) " 1¢?*Y) and no conditions imposed at t° and t. Then the
following are equivalent :

(i) the discrete path g4 satisfies the discrete Euler-Lagrange equations on G
DEL(La)((9" ", 97, (4%, ¢"F)) = 0

(ii) the discrete path gq consists of a finite sequence of critical points of the
discrete action sum S(Lg) for variations vanishing at the endpoints, i.e.,
dS(Lg)(ga) - 69a = 0 for all variations g4 satisfying 6g° = dg™ =

(iii) the discrete trajectory &g C g satisfies the Lie algebra discrete Euler-
Poincaré equations

<(dRT(§j))71)* (D[d(fj)) = Ad;i-1) ((dRT(gj—l))’l)* (D[d(gj—l)) ’

where D denotes usual differentiation in the vector space g.
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(iv) Lie algebra discrete Fuler-Poincaré variational principle: the dis-
crete path &g consists of a finite sequence of critical points of the discrete
action sum S(lg) for variations of the form

» 0
i Y
o8 Oe

0

Oe

1 ((gg)_l gg‘-ﬁ-l) _ (dRT(gj))*l (—77j +Adfﬂ]j+1)7

& =
e=0

e=0

where n/ = (¢?)"10g’ € g is a sequence of Lie algebra elements such that
n° =0 and nN = 0.

Define the discrete first order submanifold g, of g x g by
dq:={(a,b) cgxg|7(a)=A"'B, 7(b) = B~'C, for some A,B,C € G}.
There is a unique smooth map
DEP(la) : §a = g7

such that for any deformation & € g, induced on g by a deformation fI of
7 =(¢7)"tg?t! keeping the endpoints fived, we have

N-1
dS(la) - 6¢a = Y DEP()(E 1, €) -0,
j=1
where
a] =
d&(la)(8a) - 66a = = Z la(&).
“le=0 k=0

The map DEP(ly) is called the Lie algebra discrete Euler-Poincaré oper-
ator and its expression is given by

DEP(la) = Adi ) ((477(¢7) 1) (Dlae’ ™)~ ((a"7(¢) ") (Dla(¢)).
The Lie algebra discrete FEuler-Poincaré equations are the system
DEP(Iq) (¢, ¢) =

Adz sy (@€ )7 (DY) - (@ (¢)) " (Dl(€)) =0
(9.2.6)

forallj=1,... N —1.
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Proof. By calculation of the variational principle &,(l4) = 0, we obtain

N-1

064(1a)(€a) = ) Dla(¢’) - 8¢

<
o

=2

DUy(¢7) - (d%r(€)) " (= + Adyen ')

I
[ing

2

[z (@r(e) ™) (D)

1

_ <(dRT(£j))—1>* (D[d(gj))] P,

J

which yields (9.2.6). O

9.3 Discrete mechanical connection

In this section we recall some basic facts about mechanical connections (see
e.g. Marsden, Misiolek, Ortega, Permultter, and Ratiu [84]). Then we define a
discrete mechanical connection and study its properties.

9.3.1 Principal connections

Let & : G x Q — Q be a free and proper action of a Lie group G on a manifold
Q. Let g denote the Lie algebra of G. If £ € g, its associated infinitesimal
generator is the vector field {g € X(Q) whose value at ¢ € @Q is defined by

Salq) == % P(expts, q).
t=0

Thus, the flow of &g is Fi(q) = ®(exptE,q). Let 7 : Q@ — Q/G denote the
canonical projection; it is a surjective submersion and @ /G carries the quotient
manifold structure. We shall denote elements of Q/G by z := [¢]¢ = 7(q).

The vertical subbundle is the vector subbundle VQ C TQ whose fiber at
g€ QiskerTym = {{q(q) | £ € g}. We have T, ®,(V,Q) = V,Q for all ¢ € Q
and g € G.

A principal connection one-form on the (left) principal bundle 7 : Q —
Q/G is a g-valued one-form A € Q'(Q, g) satisfying

A(Ty®y(vg)) = Adg (Avg))  and  A(&o(9)) = &, (9.3.1)

for all g € G, vy € TQ, and & € g. The horizontal bundle is the vector
subbundle HQ C T'Q whose fiber at ¢ € Q is H,Q := ker A(g). As before, we
have T, ®,(H,Q) = Hy,Q for all ¢ € Q and g € G. In addition TQ = VQ &
HQ. Conversely, a vector subbundle HQ C T'Q satisfying these two properties
uniquely determines a connection one-form A. The associated projections onto
VQ and HQ), respectively, are denoted by

vy = ver(vy) + hor(vy) = A(vg)g(g) + hor(vy).
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Since T'm : TQ — T(Q/G) restricted to H,Q is a vector space isomorphism
with T,(Q/G), where = := 7(q), given ¢ € Q and X, € T,(Q/G), the vector
X = (Tq7r)71 (X5) is the horizontal lift at q of X,. Note that if v, €
T,Q, then hor(vy) = (Tqﬂ(vq))s. Given a curve z(t) € Q/G, z(0) = xo, the

horizontal lift of x(t) passing at t = 0 through go is the curve xgo (t) in @ such

that 2% (0) = qo and & a" (t) is a horizontal vector for all t. If X € X(Q/G), its

horizontal lift X" € X(Q) is defined by X"(q) := (T,7)~* (X(n(q)) € H,Q.
The curvature two-form B € Q2?(Q, g) is given by

B(ug,vq) = dA(hor(ug), hor(vy)) = dA(ug, vg) — [Alug), A(vy)], (9.3.2)

where d.A is the exterior derivative of the one-form A. The following formula
links the curvature 2-form B to the horizontal lift operation on vector the fields

Xl, X2 S X(Q/G)
(X1, X" (¢) = [XT, X3] (@) = (B(X1(9), X3(0)))  (0)- (9.3.3)

9.3.2 Mechanical connection in geometric mechanics

In geometric mechanics there is a natural principal connection that we now
describe. Consider a G-invariant Lagrangian L : TQQ — R. We assume that
there is a G-invariant Riemannian metric -y on the configuration space @) and
that the Lagrangian is of the form

L(v,) = %’y(vq,vq) - V(g), (9.3.4)

for a G-invariant potential V' : @ — R. The associated Legendre transform
FL :TQ — T*Q becomes in this case

FL(vg) - wg = 7(vq, wy).
We denote by J, : TQ — g* the (Lagrangian) momentum map defined by

(JL(v9), ) = (FL(vq),8q(2)) = 7(vg: §q(q))- (9-3.5)

By choosing local coordinates on @ and a basis {e,}"; of g, we write the
infinitesimal generator and the Lagrangian momentum map

o)) = Ki(g)¢" and  (Tr(vy)), = v/7:,KL(q)-
For each ¢ € @, we define the locked inertia tensor1(q): g — g* by

I(g)n, &) =v(me(a), (), VYn ey (9.3.6)

Since the action is free, I(q) is invertible, so (9.3.6) defines an inner product on
g. In coordinates, the locked inertia tensor reads

I(q)ar = 9:; K2 (0) K7 (q).
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We recall that the locked inertia tensor is G-equivariant, i.e.
I(9q)Adg¢ = Ady—11(q)¢. (9.3.7)

If @ is endowed with a G-invariant Riemannian metric -y, then there is
a natural associated connection defined by the condition that the horizontal
subspace is the orthogonal to the vertical subspace HQ := (VQ)™ . It is called
the mechanical connection and the associated connection one-form reads

Avg) = ]I(q)flJL(vq), (9.3.8)

where [ and J;, are associated to the action ® and the Riemannian metric 7.
The horizontal subspace is hence given by

H,Q =ker(Ay) ={v, € TQ | J(vy) = 0}.

TQ—75—~¢
Figure 9.3.1: Diagram defining the mechanical connection

9.3.1 Remark The physical interpretation of the mechanical connection in
concrete examples, where G is equal to or a subgroup of SO(3), is angular ve-
locity. For example in the case of the spherical pendulum, we have @ = S%,
the sphere of radius R in R3 centered at the origin, G = S' acts on the sphere
S% by rotations about the vertical axis, the Riemannian metric on S% is the
pull back of the standard metric on R? given by the inner product of vec-
tors, and V is the gravitational potential for a mass m and is hence given
by V(6,p) = —mgRcosf, where g is the magnitude of the gravitational ac-
celeration and (6, ) € [0,7] x [0,27] are the spherical coordinates with the
convention that 6 is measured from the negative Oz-axis to the positive one
and ¢ measures the angle in the horizontal (z,y)-plane starting at the positive
Ox-axis. The mechanical connection A € Q!(S2,R) has in this case the expres-
sion A(, ¢, 9, ®) = ¢, which is the angular velocity of the rotation about the
Oz-axis (see, e.g., [82, §3.5] for this computation).

In the case of the free rigid body, @ = SO(3), the left invariant Riemannian
metric has the expression at the origin equal to Iu- v, where I = diag(11, I3, I3)
is the diagonalized moment of inertia tensor of the body, Iy > 0, Is > 0,
Is >0, u,v € R?, and there is no potential energy. In this case, the mechanical
connection has the expression A(A, A) = AA_l, the spatial angular velocity,
were A € SO(3), A € T4SO(3).
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9.3.3 Discrete momentum maps

Let @ : GxQ — @ be a left Lie group action. There is a natural induced action
on @ x @ given by

P 7t = (24()), (M) (9.3.9)
and with infinitesimal generator denoted by £gxo(¢7,¢’ ™). Given a discrete
Lagrangian Ly : Q x @ — R (not necessarily G-invariant), the discrete La-
grangian momentum maps J zd, J7, 1 @ xQ — g* are defined by

(IF (@, ),€) = (0] (. ¢ 1), éoxq(d, ™))
= (DaLa(d’, ¢’ *") éo (")
(I, ¢, €) = (0L, (¢, d1"). Coxald , d1))
= (~=DiLa(¢d’, ") éa(d")) -
(see (1.2.5) for the definition of @di). Note that we have
T, - (F5L)' 3,

where J : T*Q) — g* is the cotangent lift momentum map given by (J(ag), &) =
(g, €0 (a))-

It is important to note that if the discrete curve {qj o verifies the dis-

crete Euler-Lagrange equations, then we have the equahty already mentioned
n (1.2.9)

sz(qul7qj) = sz(qjvqurl)v for auj = ]-a 7N - L

"Q——g* g ——>¢" i) ——— (/)
— sz — erd
]F:*:Ld Jf JLd JLd JL"T JLdT
d
@xQ QxQp~Q@xQ (¢ ¢) 4 (@ ¢*)
Lg

Figure 9.3.2: On the left: the definition of the discrete momentum maps. Two
diagrams on the right: illustration of the equality (1.2.9).

When G acts on Q x @ by special discrete symplectic maps, that is, if
(©9*@)*©7 = OF, then the discrete Lagrangian momentum maps are G-
equivariant, that is,

+
Jf 0®@*? = Ad} . J]
J 0®9"9 = Adz_lJZd.
This happens, for example, if the discrete Lagrangian L, is G-invariant, i.e.,
Lgo @?XQ = L4 for any g € G, since in this case @?XQ is a special dis-
crete symplectic map. Moreover, in this case the two momentum maps coincide:
J} =J7,, and therefore, from (1.2.9) we obtain the discrete Noether Theorem.

(9.3.10)
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9.3.2 Theorem (Discrete Noether Theorem) Let Ly : Q X Q@ — R be a
given discrete Lagrangian invariant under the lift (9.3.9) of the left action ® :
G xQ — Q. Then the corresponding discrete Lagrangian momentum map Jr,,
Q x Q — g% is a conserved quantity of the discrete Lagrangian map Fp,, :
QRQxQ—QxQ, that is, Jp, 0 Fr, =J,.

To introduce a future development of this work and a better understanding
of the discrete horizontal lift we will prove the following lemma.

9.3.3 Lemma Let the discrete state space QQ X QQ and let J;fd QX Q — gt obe
a discrete G-equivariant Lagrangian momentum map of a Lie group action of
G onQxQ. Let G-p?, and G - /Tt be the coadjoint orbits through 1’ and
Wt e gt Let G, ={g€ G| g u=u} be the coadjoint isotropy group. Then
we have

() ) NG w)=G-I;) (W)
= {7, ) | g€ G and I (¢, ¢F") =1}
(i) (I7)" G- W) =G-(IF,) (W)
= {279, ) | g€ G and If (¢, 1) =T}
(i) Gui- (¢, ™) = (G- (¢, ¢ ™)) N (IL,) " (w);
(iv) Guinr- (@) = (G- (¢, @) N (IL ) ().

Proof. (i) We have
(¢ e @) G- p) =T (¢),¢") = Adj-.p/, for some g € G
= =ALI (7T =3 (97 g )
= (g eI) W)
= (¢, ¢ =g, g7 T e G- (I,) ()

(ii) Same proof as (i) with p’ replaced by pf+t.
(iii) For any g € G, we have

(9¢° 99’1 € AL ) (W) <=1 =37 (997, 9¢’™") = A} T] (¢, ") = Ad} -1 (1)
— e G-
(iv) Same proof as (iii) with u/ replaced by p/*1. [ |
Since we considered G-equivariant discrete momentum maps J i, it follows

that G,; leaves (J )~ (u?) invariant and G ,+1 leaves (Jf )~'(u/*1) invariant.
Thus, the orbit space (ij)_l(uj)/Guj is well defined.

9.3.4 Discrete mechanical connection and discrete varia-
tional mechanics
This subsection is devoted to the definition of a discrete mechanical connection,

which is related to the definition in the continuous case, and is compatible with
the general framework of discrete Lagrangian mechanics given in [90].
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From now on we assume that Ly : Q x @ — R is the discrete Lagrangian
associated to a simple classical G-invariant mechanical system, that is, L :
TQ — R is of the form

L(vg) = 51(vg,v) ~ V(@)

where v is a G-invariant Riemannian metric and V' : @ — R is a G-invariant
potential. The discrete Lagrangian is of the form

La(¢, ") = K(¢, /™) = V(¢) (9.3.11)

and is supposed to inherit the symmetry of L, that is, we suppose that Ly is G-
invariant under the diagonal action ®@*@ (see (9.3.9)). Note that in this case,
there is only one discrete momentum map since J}fd (¢, ¢+ = Jr, (¢, ¢ t1).

Given a discrete Lagrangian of the form (9.3.11) and the locked inertia tensor
I(q) : g — g* (see (9.3.6)) associated to 7, we define the discrete mechanical
connections Af as follows.

9.3.4 Definition (Discrete mechanical connection) The discrete mechan-
ical connections are the maps Afd 1 Q X Q — g defined by

Af (@, @) =)L (¢ 7,
AL () =) T I, (& ).

Note that the expressions in coordinates are given by

(9.3.12)

(Af (@ @) = M@ ™™ (DaLa(d, ), (K@),

(AL (@ ™))" = (1)) (~DiLald? . ), (K(¢)), -
9.3.5 Remark The maps Ai assign to each discrete path (¢, ¢'™!) € Q x Q
the corresponding angular velocities at times ¢/ and t/+!, respectively. If the
system under consideration is formed by a chain of rigid bodies with ball-socket
joints or is formed by an elastic material, the locked inertia tensor is the inertia
tensor of the rigid body obtained by freezing all the joints or by rigidifying
a given configuration of the elastic material. For example, in the case of the
double spherical pendulum, I(ry,rs) = myr} + mor3, where r1 and ry are the
distance of the masses m; and ms to the z-axis. The mechanical connection in
this case gives the angular velocities of the two bodies about the Oz-axis (see,
e.g. Marsden [82, §3.5]).

9.3.6 Proposition (i) The maps .AjLEd 1 Q X Q — g are G-equivariant, i.e. for
al ¢, ¢t € Q and g € G, we have

AL (%97, M) = Adg AT, (¢, ¢ T). (9.3.13)
(ii) The discrete and continuous mechanical connections are related via the
identities S ‘ ——

Ap (@, @) = A¢) (F~ Lalg’, ¢ +1)?)

o , - 9.3.14
AL (@@ 1Y) = AT (FF La(¢’, ¢ 1)) ( )
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where § : T*Q — TQ is the index raising operator associated with the metric -y,
and hence FL; (¢7, ¢/ 1) €T,@Q and FL} (¢, ") € Ty Q.

(iii) If the discrete curve {¢? };V:() verifies the discrete Euler-Lagrange equations,
then

Af (7)) = AL (¢, ¢T), forallj=1,.,N—1 (9.3.15)

Proof. Using the equivariance of the locked inertia tensor and of the discrete
Lagrangian momentum maps, we get
Azrd ((I)?XQ(qj,qu)) _ H(gqﬂl)fl‘]; ((I)EQXQ(qj’qj+1))
CEO (gt T Ad T (¢ )
9.3.7) Ad () I (¢ )
= Adg AL, (¢ ¢ ),
similarly for A} . The equalities (9.3.14) follow from the definitions. Equality

(9.3.15) follows easily from the relation (1.2.9) that holds when the discrete
Euler-Lagrange equations are verified. |

Note that (9.3.13) implies the relation

d

dt exp(t§)

AL, (‘I’QXQ (qj,qj“)) =&AL (¢, ¢T)], forall{ €g.
t=0

The relations between the various maps considered so far are illustrated in
the diagram below.

T'Q——g' g0 Pt
+ + +
JLd _ JLd _ JLd
IFj:Ld 1 JLd JLd sz sz
Fr, F
QxQ—=9 QxQ—>=QxQ (¢ ) —> (@, g *)

Ad B Azd _ Azd
e = lAZ\ iAZd

g———>9 nj—l N nj

Figure 9.3.3: On the left: definition of the discrete mechanical connection. Two
diagrams on the right: illustration of the equalities (1.2.9) and (9.3.15).
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Qx QL g L 1g
+ \L \fd\ \L y l
Az, J AL
g g* g

Figure 9.3.4: Illustration of the equalities (9.3.14).

9.3.5 Discrete horizontal space

In this subsection we show that it is possible to define a splitting of the elements
(¢7,¢’T1) € Q x Q in horizontal and vertical components, in a compatible way
with the discrete mechanical connection we just defined.

We begin by noting that (9.3.14) and the usual vertical plus horizontal
decomposition of a vector relative to the smooth connection A, implies that

vergs (F~La(¢’, ¢’ *')?) = [AL, (¢, "), (&) (9.3.16)
vergin (F*La(¢’, ")) = [AL (¢, "], (@), (9.3.17)
Given a regular discrete Lagrangian Ly, we get a discrete vertical space.

9.3.7 Definition The (—) discrete vertical space at ¢’ is
Vo ={( ¢ | (F La(,a ) € V@), (9.3.18)
and the (+) discrete vertical space at ¢! is
ViaQ= {(qj,qj“) | (F*La(¢,¢’t))" € quQ}. (9.3.19)

To define the discrete horizontal space we will shift the problem to the cotan-
gent bundle T*@Q). We recall that, given the decomposition TQ = VQ & HQ,
we have T*Q = (VQ)° & (HQ)®°, where (VQ)° and (HQ)° are the annihilators
of V@Q and HQ, that is,

(V,Q)° = {aq € T;Q | {ag,v9) =0, Vv, € VZJQ}7
(H,Q)° = {ﬁq € T;Q | (Bgywq) =0, Vw, € HqQ} .

Since the Legendre transform of the smooth Lagrangian L coincides with the
flat (index lowering) operator induced by the metric v, we have the relations

FL(V,Q) = (H,Q)°,  FL(H,Q) = (V4,Q)°,

and the equivalence v, € H,Q <= FL(v,) € (V,Q)°.
In the definition below, we adapt this relation to the discrete case, in order
to obtain the notion of discrete horizontal space.
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9.3.8 Definition Given the discrete mechanical connections A%d :QxXQ — g,
the (=) discrete horizontal space at ¢’ is

H,Q={(¢,¢"") | F La(¢’.d’™") € (Vu@Q)°}, (9.3.20)
and the (+) discrete horizontal space at ¢! is
H Q= {(d.d™) | F"La(¢’, ') € (Va1 Q)°} - (9.3.21)
9.3.9 Proposition We have the following equivalences
(@) e H Q<= AL (¢, ¢) = 0= I} (¢, ¢"") =0
= F La(¢’, ¢ € HyuQ

(qj7qj+1) c H;SHQ — AJer(qj7qj+1) =0 < JJer(qJ'?qj-H) =0
= FLi(¢, ¢ ) € HynQ
Moreover, if the discrete Lagrangian is G-invariant we have
(¢, ¢’ e H ;Q <= (¢, ¢ e HSLQ.
Proof. We have the following equivalences

(9 3.20) <

(@, @) e H;Q " (F La(¢, ¢’ 1), éq(¢)) =0, VEeg

(I (FLale’ ') €) =0, Ve

" (1) (A, (0',07) €)= 0, Ve

L (. )] (@) ald)) =0, Ve
= [AL(@ @], (@) =0

(9<2>6) Ver (IFde(qj,qJ#l)ﬁ) =0,
where -y is the Riemannian metric on (). The other equivalences follow from the
fact that the action is free and I(q) is an isomorphism.
If the discrete Lagrangian is G-invariant the additional equivalence follows
from the equality J (¢, ¢+ = JJer (¢, ¢ th). [ |

Horizontal trajectories. Recall that if the discrete Lagrangian is G-invariant,
then the momentum maps coincide, i.e., J zd =Jr. and are the same conserved
quantity. So, if (¢°,q') € H,Q (or, equivalently, (¢°,q') € H+ @), then the
solution {q] o of the dlscrete Euler-Lagrange equatlons is necessarlly hori-
zontal, that is, (¢7,¢'*!) € H_;Q (or, equivalently (¢7,¢" 1) € H;;Q), for all
7=0,.... N —1.
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9.3.10 Definition The discrete horizontal projections at ¢ and ¢! are
the maps

org, {d'} xQ = H;Q C {¢'} x Q
hor; 2 Q x {1} » HE,Q C Q x {¢™'}
defined by
hor (¢ = (F*Ld)_l (hOI'qj (]Fde(qjvqu)ﬂ))ba (9.3.22)
hor’s.,(¢7,¢/t) < = (F*Lg) " (horyiss (]F*Ld(qj,qj“)ﬁ))b. o

Note that we have the equivalences
(@’,¢’™) € H;Q <= hory; (¢, ¢’™") = (¢, ')
(@’ € H;;+1Q < hory (¢, ¢'*) = (¢, 1)
and, in view of (9.3.16) and (9.3.17), the relations
o ¢ , A
(FLa (hory (a7,07*1) "+ vergs (FL (¢7,07 1)) = (FL (a7, +))’

(FL;(hor;H(qj’qurl))) + vergj+1 (FL (q j J+1) ) (FL"'( j g+1))ﬁ
(9.3.23)
These identities suggest the definition of the two discrete vertical projections.

9.3.11 Definition The discrete vertical projections at ¢/ and ¢'*1, ex-
pressed in {¢'} x Q and Q x {¢’T'}, are the maps

oY xQ -V Qc{d} xQ
VerqJ+1 Q % {qurl} — V—l_+1Q cQx {qurl}

defined by
b

very, (¢!, ™) = (FL7) ™ ([A, (™), (@)

vert (¢'.0™) = (FLD) ™ ([AL, (@ )] (@)

The definition and (9.3.23) imply the analogue of the horizontal plus vertical
decomposition in the discrete setting, namely,

FL, (hor; (¢, ¢t +FL; (ver,; (¢, ¢ ™) =FL; (¢, ¢" )%,

FL;F(horq_Hl(qj, @)+ IE‘L;r(verqH1 (¢, ¢ ™) =FLI(¢7, ¢ )"

(9.3.24)

(9.3.25)

We summarize the previous discussion in the following commutative diagram:

=+
FL §

QxQ : ™0Q TQ

vcri EBhor:t l \Lver@hor
(FL7)™? b

VQ* xq HQ* <—— (VQ)* & (HQ)* <—— VQ & HQ.
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We shall need later on the behavior of the discrete Legendre transformation
of a discrete G-invariant classical Lagrangian under the group action. Thus, the
smooth Lagrangian is equal to the kinetic energy of a G-invariant metric v on @
minus a G-invariant potential V' : @) — R. Assume that the discrete Lagrangian
L, is also G-invariant. We shall establish the following formulas

Ty ®y (F~La(d’, ¢ *)F) = F Lalge’, 94’ ) (9.3.26)
Tye1®g (F*La(g’, ¢’ ™)) = F La(g9¢’, g’ *1)F. -
To do this, we begin by proving that for any v € T;Q and g € G we have

T 1,0, (v") = (T, 0, (v))’ (9.3.27)

or, equivalently, for any o € T;Q and g € G

(T_;_lqcpg(a))ji = T, ®,1 (af) (9.3.28)

where b : T,Q > v — v(v,-) € T,;@Q is the index lowering operator defined by
the Riemannian metric v and f : T°Q — TQ is its inverse. Indeed, for any
u € Ty—14Q, by G-invariance of v, we have

<T;71q@g (Ub) ,u> =7 (U’Tq‘qu)gu) =7 (Tq@g‘l(v)vu) = <(T‘I(I)9_1(v))b ,u>

which proves (9.3.27). Identity (9.3.28) is obtained by letting a = v”.
Now we prove the first identity in (9.3.26). Taking the derivative with respect
to ¢/ in the identity L4(g9¢”, 9¢’t!) = La(¢?, ¢’ 1), we obtain

DiLq(¢?,¢"™) = D1Lq (9¢°,9¢° ") o T @,
and hence
- i gty (1:2:3) R RS J i+l 5\
F~La(¢’, ') =" =DiLa (¢’,¢’"")" = = (D1La (99, 99’ ") 0 Ty @)
o g
=— (T,;Z P, (D1Lg (gq],gq”“)))
(9.3.28)

—Tgqi Py (D1Ld (quygqurl))ﬁ .

Thus, applying T; ®, to this relation and using the definition of F~ Ly yields
the first identity i 111 (9 3.26).

9.3.12 Lemma For all g € G, we have
QxQ - -
o (qu@ =Hy, (1)@
(I)?XQ (H-";+1Q) = H;;._ (qj+1)Q
892 hor, (¢, ') = hory, ) (@y(@?), ("))
P (hor ) (07, ¢’ Th)) = horg iy (Ry(a’), Dy(g7 ™))
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Proof. We have the following equivalences : (¢7, ¢/T1) € H;Q <= AL, (¢, ¢t =

0 = AdgA7 (¢, ¢*) = 0 (93:13) ES7 09%9(g) g7 M) € Hy (¢7y@> which proves
the first equality. The second is shown in an identical mangner.

For the next, using the relation (<I>gQXQ)*IFL:i‘L = IFL;E, where FLdi are locally
isomorphisms, and the definition hor(v,) = vy — (A(vq))g(g), we obtain

— b
hor@g(qj)(q)ng(q ¢*))

)
©L29 (L) (horg, ) (TDy(FLy ( J“))“))
—  (FL;) ™' (T®,hory ((FL (¢, ¢") ))"
O (FLy) T T, (hory ((FLy (¢ 7))’
OEY 9@ (FLg) ™ (nory ((BLg (0" *))

The last equality is verified in the same way. W






Concluding Remarks

We have described a series of Lie group and Lie algebra variational integra-
tors for flexible beams and plates which are synchronous or asynchronous, for
finite-element nonlinear dynamics, in order to provide tools to study complex
structures, composed of beams and thin plates.

At the same time, we developed a discrete theory, like the discrete affine
Euler-Poincaré reduction. Other parts of this theory can be applied to a general
configuration space which may or may not be a Lie group. For example, we
introduced discrete mechanical connections.

The results we obtained by implementations and benchmarks have always
verified the theory. It seems that the algorithms we get are faster than energy-
momentum preserving algorithms. However, we know that much work remains
to be done, because the development of these integrators is associated with the
development of the theory.

In this thesis, we have not studied the order of approximation of the results
as it was done in Marsden and West [90]. This aspect of the theory is an exciting
direction of research for the future.
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